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Abstract

In this paper, we address the problem of predicting the time to share (real or fake) news items on online social media.
Specifically, given the scenario where a user u is influenced on some given (real or fake) news item n by at least one of the
people they follow v, we predict when the user u will re-share the news item n among their followers. We model the problem
as a survival analysis task, which is a statistical analysis method aimed at predicting the time to event (the re-sharing event
in our case). Survival analysis differs from other methods such as regression in that it also considers the data where the event
(sharing) never occurs (censored data) in the considered time window. We considered Twitter data containing information
on real and fake news shares to test our proposed survival analysis approach and modeled different aspects of the problem
including user, news, and network characteristics. We show the superiority of survival analysis as compared to regression to
model this problem in both the cases of real and fake news sharing.
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1 Introduction

The spread of online misinformation' is one of the largest
threats we face every day. People regularly consume news
from online platforms,? and many are unable to assess its
veracity correctly [2]. Researchers have modeled different
aspects of the fake news sharing process on different social
media platforms, including defining diffusion models for
fake news spreading [3] and profiling and detecting fake news
spreaders [4]. Being able to understand better and model how
misinformation spreads can help simulate its diffusion and
reasoning among possible interventions.

However, current research lacks models able to compute
when a user will share a piece of news they have received

1" Misinformation is incorrect or misleading information that can be
shared accidentally, causing different levels of harm. Misinformation
comes in many forms, such as satire, propaganda, hoax, rumor, conspir-
acy, and fake news. This latter, in particular, explicitly implies false or
misleading information spread deliberately to deceive and is one form
of misinformation [1]. Although they can have slightly different con-
notations in specific contexts, misinformation and fake news are often
used interchangeably in popular discourse. In this manuscript, we use
the terms synonymously to refer to the dissemination of false or mis-
leading news.

2 https://www.pewresearch.org/journalism/2021/09/20/news-
consumption-across-social-media-in-2021/
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from another user they follow. Adding this time component
to existing models is important to model misinformation dif-
fusion better, as not everyone shares information as soon
as it is received. Some people do it immediately, some are
exposed to it for a while before taking any action, while oth-
ers will never re-share (skeptic users) [5]. Predicting the time
to share can inform the diffusion model on the time step when
anode will be infected, which not necessarily is the time step
right after a neighbor got infected (as assumed by classical
information diffusion models [6, 7]). Creating better news
diffusion models contributes to simulating news spreading
more realistically which helps with reasoning better on the
efficacy of possible interventions. Also, modeling time to
share, especially at the user level, can be helpful to prioritize
better who might need an intervention quickly.

Thus, in this paper, we address for the first time the prob-
lem of predicting the time to re-share real and fake news
on online social networks. We consider different aspects of
the problem, including modeling user, news, and user net-
work characteristics, as they are all factors already shown to
be relevant to model fake news sharing [8]. We use Twitter
data, which is more readily available than other social media
platforms, and model the problem via survival analysis.

Survival analysis is a statistical method to estimate the
expected duration of time until an event of interest occurs
[9]. In our case, the event of interest is when a user re-shares
a piece of real or fake news received by a user they follow.
Survival analysis is better suited than regression models for
this problem as it allows to effectively work with censored
information in input, i.e., the fact that the event did not occur
in the considered time window and may or may not have
occurred after the end of the time window.

Our experimental results on two Twitter datasets, one con-
taining sharing and non-sharing instances of fake news items
and the other containing sharing and non-sharing instances
of real news items, show the superiority of survival analy-
sis approaches compared to regression models to address the
problem. Specifically, we show that the best of the consid-
ered survival analysis models can predict the time to re-share
anews item with a normalized RMSE (NRMSE) of 0.43 and
a concordance index (C-Index) of 0.84 for fake news (vs. an
NRMSE of 0.50 and a C-Index of 0.83 achieved by the best
regression model) and an NRMSE of 0.46 and a C-Index of
0.83 for real news (vs. an NRMSE of 0.52 and a comparable
C-Index of 0.83 achieved by the best regression model). We
also show that the considered features differ in importance
in predicting the time to share real vs. fake news.

The manuscript is organized as follows. Section 2 summa-
rizes related work, Sect. 3 describes the dataset we used in this
work, Sect.4 presents our proposed survival analysis-based
framework to predict the time to re-share fake and real news
in online social networks, Sect.5 reports our experimental
evaluations, and, finally, conclusions are drawn in Sect. 6.

@ Springer

2 Related work

In studying information diffusion, many existing studies have
focused on modeling fake news propagation via epidemio-
logical models [3], where the problem is addressed similarly
to the diffusion of an infectious disease (epidemiological
models) or as a Hawkes process [10]. In both cases, these
models assume an implicit network (unknown connections
among individuals). This makes these models more suitable
to study global patterns, such as trends and ratios of people
sharing stories of a given topic, but not the local node-to-node
diffusion patterns.

However, in case there is the need to work with an explicit
network and compute who is infected (i.e., shares fake news)
and by whom is infected, classical models such as the Inde-
pendent Cascade and the Linear Threshold models can be
used to model misinformation spread [6]. However, some
works went beyond just considering the network to explain
news diffusion and tested hypotheses inspired by the Diffu-
sion of Innovation Theory, which also finds user and news
characteristics as essential factors to explain news sharing
behavior [11]. Ma et al. [12] found opinion leadership, news
preference, and tie strength to be the most important fac-
tors in predicting news sharing, while homophily hampered
news sharing in users’ local networks. Also, people driven by
gratifications of information-seeking, socializing, and status-
seeking were more likely to share news on social media
platforms [13]. Joy et al. [8] showed how combining user,
news, and network characteristics lead to better predictions
of people sharing or not a piece of news than models that are
only based on network information such as the Independent
Cascade and the Linear Threshold models. The importance of
using user characteristics in fake news spreading behavior has
also been highlighted in work addressing the problem of pro-
filing fake news spreaders. For instance, Vosoughi et al. [14]
found out that fake news spreaders had, on average, signifi-
cantly fewer followers, followed significantly fewer people,
and were significantly less active on Twitter. Concerning the
social media platform Twitter, although bots contribute to
spreading fake news by injecting fake news into social media
[15], the dissemination of fake news on Twitter is mainly
caused by human activity.

Shu et al. [16] analyzed user profiles to identify the charac-
teristics of users who are likely to trust or distrust fake news.
They found that, on average, users who share fake news tend
to be registered for a shorter time than the ones who share
real news. Additionally, while bots were shown to be more
likely to post a piece of fake news than real news, users who
spread fake news are still more likely to be humans than bots.
They also show that real news spreaders are more likely to be
more popular than fake news spreaders and that older people
and females are more likely to spread fake news.
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Table 1 Size of the PolitiFact # Users # News # Tweets # Retweets # Real news # Fake news
dataset

281,596 992 438,504 619,239 560 432

Guess et al. [17] also analyzed user demographics as pre-
dictors of fake news sharing on Facebook and found that
political orientation, age, and social media usage be the most
relevant. Additionally, researchers theorized that senior citi-
zens tend to share more fake news because they may have a
lower digital media literacy, and that people who post more
news on social media are less likely to share fake news
because those users are more familiar with the platform’s
features.

The author profiling shared task at the PAN 2020 con-
ference focused on determining whether or not the author
of a Twitter feed was keen to spread fake news [4]. Partic-
ipants proposed different linguistic features to address the
problem, including (a) n-grams, (b) style, (c) personality and
emotions, and (d) tweet text embeddings. Shrestha and Spez-
zano [18] showed that a combination of user demographics,
writing style, personality traits, emotions, and behavioral and
network features strongly predict fake news spreaders, out-
performing the best models proposed at the PAN 2020 fake
news spreaders profiling shared task.

However, current research on fake news spreading models
is limited in predicting when a user will re-share a received
piece of news. In fact, not everyone takes the same time. For
example, some users may share it as soon as it is received,
others may take some time to analyze the received news
item (exposed), while others may never re-share the received
news (skeptic) [5]. In this paper, we introduce a user-news-
dependent sharing time component that, coupled with news
diffusion models working with an explicit network, can make
the simulation of news propagation more realistic.

3 Dataset

We used the PolitiFact dataset from FakeNewsNet to carry
out our experiments. FakeNewsNet [19] is a well-known data
repository comprising two datasets, PolitiFact and Gossip-
Cop, from two different domains, i.e., politics and entertain-
ment gossip, respectively. Each dataset contains details about
news content, publisher, social engagement information, and
social network. In this paper, we only used the PolitiFact
dataset (as gossip is different from fake news), which con-
tains news with known ground truth labels collected from
the fact-checking website PolitiFact® where journalists and
domain experts fact-checked the news items as fake or real.
The size of this dataset is shown in Table 1.

3 https://www.politifact.com/

In order to test our proposed method to predict time to
share, we first computed the labels for user sharing or not
sharing a given piece of news, as follows. First, we computed
pairs of influencer and influenced users. An influencer is a
user who tweeted a given piece of news, and an influenced
user is a follower of that influencer. We considered (a) users
(influencers) who have shared at least one piece of news and
have at least one follower (influenced user) and (b) followers
who shared at least five instances of news (and ordered those
instances in chronological order of shared time). Hence, we
annotated news items as shared or not as follows:

e Shared a piece of news that is shared/tweeted by a user
(influencer) and then shared/retweeted by its follower
(influenced user) as one of their two most recently shared
news items.

e Not Shared a piece of news that is shared/tweeted by
a user (influencer) but never shared/retweeted by their
follower.

Next, for each instance of sharing, we computed the time
elapsed between the influencer and influenced user sharing,
and used this time as the variable to predict. The cases where
the influenced user did not share the news item are consid-
ered censored. Also, since the news sharing after the first 48 h
is sporadic, random, and with no effect on viral spread, we
limited our instances of shared news items to less than 48 h
and counted the rest as non-shared (or censored). Further-
more, we divided the time window into 48 time intervals of
one hour each.

We used the remaining three or more news articles shared
by followers to profile these users and compute the user’s
interest similarity with the given news item, as discussed in
4.2.1. In addition, for each follower, we crawled all tweets
posted one month before the shared news article’s publish
date to compute the remaining user-based features.

We have a total of 1,572 influenced users in our dataset
sharing 127 real and 169 fake news items, and 18,080 shar-
ing and non-sharing instances. To compare real and fake
news sharing dynamics, we consider two different datasets,
one containing only sharing/non-sharing instances of real
news items and the other containing only sharing/non-sharing
instances of fake news items (cf. Table 2).

@ Springer
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Table2 Size of the datasets used in our experiments

Dataset #Users #News #Shared # Not shared
Fake news sharing 1,557 169 465 7,196
Real news sharing 1,572 127 2,409 8,010

4 Methodology

In this paper, we address for the first time the following prob-
lem: given that a user u is influenced on some given (real or
fake) news item n by at least one of their followees v (i.e., u is
following v and v has shared some news item n among their
followers), predict when the user u will also share news item
n among their followers. It is worth noting that the fact that a
follower re-shares a news article based on shares made by an
influencer is a reasonable and realistic assumption according
to how re-sharing of information works on social media plat-
forms such as Twitter, i.e., it is enough that a single neighbor
has shared a piece of content for it to potentially be seen and
retweeted by its followers [20-22].

‘We model the problem mentioned above as a survival anal-
ysis task. Survival analysis is a statistical method to estimate
the expected duration of time until an event of interest occurs
[9]. The benefit of using survival analysis over other tech-
niques for modeling the problem of predicting the time to
share real and fake news on online social networks is the
fact that, in this scenario, censored instances can occur. Cen-
sored instances are instances (news articles in our case) for
which the event (re-share of the article) did not occur within
the study duration or for which we may have incomplete or
missing, or unavailable data about the event occurrence. This
occurs because we are observing the problem in the limited
time window or we miss the traces of some instances. Data
including censored instances can be effectively approached
using survival analysis. Other modeling methods such as, for
instance, regression are not able to handle censored instances.

The time when the event of interest (time to share a
news item by an influenced user) happens for the instance
i = (v, u,n) is denoted by T;. If the event of interest is not
observed for an instance i, we say that i is censored and
denote by C; the censored time. In our case we have right-
censored instances, which means that the censored time is
the end of the considered time window. Given an instance i,
we denote by X; the feature vector. Let §; be a Boolean vari-
able indicating whether or not the instance i is not censored,
i.e., if §; = 1 then the instance i is not censored. We denote
by y; the observed time for the instance i that is equal to 7;
if i is uncensored and C; otherwise, i.e.,

[mits =1
T ifs =0

@ Springer

Given a new instance j described by the feature vector
X, survival analysis estimates a survival function S; that
gives the probability that the event for the instance j will
occur after time ¢, i.e., S;(t) = Pr(T; > t). Hence, the
expected time y; of event occurrence for an instance j can
be computed by integrating the survival function.

In survival analysis, another commonly used function is
the hazard function /(t), also called the instantaneous death
rate or the conditional failure rate, and indicates the rate of
event at time ¢ given that no event occurred before time ¢.
Mathematically, the hazard functions can be computed by
the survival function (and vice versa) as h(t) = f(t)/S(t),
where f(t) = —%S(t) is the death density [9].

4.1 Survival analysis models

There are different types of statistical methods to estimate
the survival function. In this paper, we consider machine-
learning methods such as Random Forest Survival (RSF) and
Gradient Boosting Survival (GBS) and Multi-Task Logistic
Regression (MTLR) models such as the Linear MTLR and
the Neural MTLR, and semi-parametric methods such as the
Penalized Cox Proportional Hazards (Cox PH) model where
the knowledge of the underlying distribution of survival times
is not required [9].

4.1.1 Penalized cox proportional hazards model

The Penalized Cox Proportional Hazards Model estimates
the survival function for a population by assuming that the
hazard functions across time are proportional. The basic Cox
Proportional Hazards Model computes the hazard function
(which is the instantaneous rate of event occurrence) by

h(t|Xi) = ho(t)exp(X; - B)

where X is the vector of covariates (or feature vector), and
B are the various impact weights of the covariates. The sksurv
python package implements the Cox Proportional Hazards
Model with an Elastic Net penalty, which allows for features
to be correlated (as many of our features for the considered
datasets are). The Elastic Net penalty uses a weighted com-
bination of two penalty choices and selects a certain subset
of all highly correlated features for the penalty terms.

4.1.2 Gradient boosting survival model

Gradient Boosting is not a specific model but rather a learn-
ing framework through which several survival models can
be optimized. Gradient Boosting optimizes a specified loss
function; here, we use the Cox Proportional Hazards Model to
take advantage of the sksurv predict_survival_function capa-
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bility. Gradient Boosting combines the predictions of many
base learners (CoxPH models).

4.1.3 Random survival forest model

Random Survival Forest builds survival trees from bootstrap
samples of the original training data, unlike Gradient Boost-
ing (which uses the entire training set for each base learner).
Predictions for the survival function are formed by combining
the predictions of each survival tree in the overall ensemble.

4.1.4 Multi-task logistic regression models

The Multi-Task Logistic Regression (MTLR) Model [23]
provides an alternative to the Cox PH model as this model
has some drawbacks [24], including (i) it relies on the pro-
portional hazard assumption, which specifies that the ratio of
the hazards for any two in the exact formula of the model that
can handle ties is not computationally efficient, and is often
rewritten using approximations, such as the Efron’s or Bres-
low’s approximations, in order to fit the model in a reasonable
time; (iii) the fact that the time component of the hazard func-
tion remains unspecified makes the CoxPH model ill-suited
for actual survival function predictions.

Linear Multi-Task Logistic Regression Linear Multi-Task
Logistic Regression (LMTR) is a series of logistic regres-
sion models built on different time intervals to estimate the
probability that the event of interest happened within each
interval [24].

Neural Multi-Task Logistic Regression Neural Multi-Task
Logistic Regression (NMTLR) is a type of Multi-Task Logis-
tic Regression Model that uses a Neural Network to resolve
the performance of the prediction models when there are
nonlinear elements in the data [24].

4.1.5 Deep learning models

Survival analysis models based on deep learning use artificial
neural networks to learn the hazard function or the distribu-
tion of survival times and alleviate the problems of making
specific assumptions regarding these functions, e.g., assum-
ing linearity.

DeepSurv DeepSurv is a Cox Proportional Hazard Model that
leverages deep neural network to alleviate the Cox Propor-
tional Hazard assumption that risk is linear [25]. Specifically,
this method uses a deep feed-forward neural network to pre-
dict the log-risk function /() parameterized by the weights
of the neural network.

DeepHit DeepHit uses deep neural networks to learn the dis-
tribution of survival times directly [26]. This model is meant
to alleviate the reliance on often violated, strong parametric

assumptions. It makes no assumptions about the underlying
stochastic process, allowing for the possibility of a relation-
ship between covariates and risk(s) that changes over time.

4.2 Features

As we report in Sect. 2, the current literature highlights sev-
eral features as important predictors for distinguishing fake
news spreaders. These include demographics (age, gender,
and political ideology) [17], emotions and sentiment of the
news article or expressed by users in their timeline before
sharing fake news [18, 27, 28], user interest in the news [29],
user Twitter explicit features and behavior [16, 18], user cen-
trality in the follower—followee network [14] as well as weak
and strong ties [12, 30]. Hence, we have considered all of
these factors when defining features to be used in input to
our proposed survival analysis framework to predict the time
to re-share a news article. We group them into user-based,
news-based, and network-based features and describe how
these features are computed in the following.

4.2.1 User-based features

Demographics This information is often not publicly avail-
able on social media; thus, we used M3inference, a deep
neural architecture [31] trained on Twitter data, to infer the
users’ age and gender. Predicted gender is classified as male
or female, while age is grouped in these categories: (<18,
19-29, 30—39, >40). To infer users’ political leaning (left
or right), we used the #Polar Score algorithm [32], which
leverages the polarity of hashtags used by the users in their
tweets, and we trained it on the U.S. Congress member tweet
dataset by Chamberlain et al. [33].

Explicit Features and Activity These features include the
number of tweets and retweets by the user (status count),
the number of liked tweets (favor count), tweets being pro-
tected or not (protected), account verification (verified), and
the length of registration of the account (registered). Addi-
tionally, we analyzed the user tweeting behavior within the
day (24h) by computing the user insomnia index, i.e., the
difference between the number of night and day posts upon
the total number of user posts.

Emotion Users’ emotions are extracted from their tweets.
This information is captured by concatenating all the user’s
tweets together and then calculating every single emotion
using Emotion Intensity Index (NRC-EIL) [34]. VADER [35]
is used to calculate the sentiment analysis, and it measures
the average sentiment across all the tweets (positive, nega-
tive, neutral). Finally, stress was included using the lexical
dictionary created by Wang et al. [36] for LIWC.

User Interest in News Two similarity measures are used to
compute the user’s interest in a given news item. Similarity

@ Springer
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news 1is the cosine similarity between the topics extracted
from the shared news item and the three or more previously
shared news items. Similarity tweets is the cosine similarity
between the topic extracted from the given news item and all
the tweets the user authored. We used an LDA model [37]
with 100 topics and trained on Wikipedia articles. This model
was utilized for retrieving the topical similarity between the
users’ interests and shared news.

4.2.2 Network-based features

User Centrality We considered the number of followers (in-
degree), the number of followees (out-degree), the PageRank
of the user, and the ratio of followers to followees (TFF) [16]
calculatedasTFF = % (the greatness of this ratio,
the higher the user’s popularity).

Weak and Strong ties News sharing intention is correlated
with the tie strength between the influencer and the influenced
user in the social network [12, 30]. We used two approaches to
compute tie strength: receiver’s perspective—the percentage
of user’s tweets that are retweets of the influencer’s posts, and
time-based tie strength—the average time the user would take
to share the influencer’s tweet.

4.2.3 News-based features

These features help capture the various aspects (stylistic,
psychological, and complexity) of the news items users are
exposed to. These features have been used in [27] for fake
news classification.

Stylistic Features These features capture the writing style
of a user and include word count (WC), words per sentence
(WPS), number of personal and impersonal pronouns, num-
ber of exclamation marks, punctuation symbols, and quotes.
We computed these features by using the LIWC tool [38] and
the Python Natural Language Toolkit part of speech tagger.

Psychology Features The emotion Intensity Lexicon (NRC-
EIL) was used to calculate news emotion features: anger, joy,
sadness, fear, disgust, anticipation, surprise, and trust [34].
The LIWC tool was used for computing the positive (pos)
and negative (neg) sentiment metrics.

Complexity Features Simple Measure of Gobbledygook
Index (SMOG) measures readability as a complexity fea-
ture (ease of reading and understanding text). The higher the
score, the easier it is to read the text. Besides this, we also
computed the average length of each word (avg word length)
and the Type-Token Ratio (TTR, lexical diversity).

@ Springer

5 Experiments

In this section, we compare survival analysis against regres-
sion models on the task of predicting when a user will re-share
areceived (real or fake) news item.

5.1 Experimental setup

We considered a time window of 48 h since the news item is
shared by the influencer and divided the time into intervals
of 1h each. If the influenced user did not re-share the news
item within 48 h, we consider that instance censored.

We used the implementation of the survival analysis mod-
els described in Sect.4.1 provided by the Python packages
sksurv [39], PySurvival [40], and pycox [41].

For regression models, we considered Linear Regression
[42], Ridge regression [43], Lasso regression [44], Random
Forest regression [45] and Multi-layer Perceptron (MLP)
regression [46] as implemented in the sklearn [47] Python
package. For a fair comparison, we considered the same set
of features presented in Sect.4.2 in input to the regression
task. In addition, since regression cannot deal with censored
instances, we approximated the occurrence time of censored
instances with a time value much larger than the end of the
considered time window, in our case we chose 200 > 48.
This is a typical setting when comparing regression with sur-
vival analysis [48]. It is worth noting that the news article
features and user features such as user demographic, person-
ality, and others are not temporal; hence, we did not compare
with other regression methods such as AutoRegressive Inte-
grated Moving Average (ARIMA) [49], Long Short-Term
Memory (LSTM) [50], etc.

We considered the C-Index [9], a commonly used met-
ric to evaluate survival analysis models, and the Normalized
RMSE (NRMSE) to compare the performances of these two
classes of algorithms.

The C-Index is defined as

Nim >G>

i:Ci=1Yy;>Vi

C-Index =

where Ny is the number of all pairs (y;, y;) such that
C; = 1 (non-censored instances) and it holds that y; >
vi, ¥; is the estimated duration predicted by the model. The
C-Index measures the concordance probability between the
actual observation times and the predicted values.

The Normalized RMSE (NRMSE) is computed by divid-
ing the RMSE by the difference between the maximum (ymax )
and minimum values (y,,;,) of the observed times:

1 S i — 92
(Ymax — Ymin) N

NRMSE =




International Journal of Data Science and Analytics (2024) 18:369-378

375

Table 3 Experimental results

on the real news dataset Model NRMSE C-Index
Survival analysis models
Cox PH 0.75377 0.52316
Gradient Boosting Survival 0.48354 0.8276
Random Survival Forest 0.46178 0.8292
Neural MTLR 1.75419 0.80569
Linear MTLR 1.56596 0.82788
DeepSurv 0.66844 0.77134
DeepHit 1.06052 0.78078
Regression models
Linear regression 2.53825 0.78452
Lasso regression 2.16395 0.77823
Ridge regression 2.57118 0.78697
Random forest regression 0.50813 0.82733
Multi-layer Perceptron (MLP) Regression 5.40171 0.74841
Best results are in bold

Tabes Expemmend el i N
Survival analysis models
Cox PH 0.75118 0.6867
Gradient Boosting Survival 0.43352 0.839
Random Survival Forest 0.47004 0.823
Neural MTLR 1.70562 0.78083
Linear MTLR 1.40477 0.85764
DeepSurv 2.96060 0.72086
DeepHit 0.98162 0.52258
Regression models
Linear regression 3.71823 0.7841
Lasso regression 0.69516 0.78227
Ridge regression 0.71818 0.78139
Random forest regression 0.49897 0.8311
Multi-layer perceptron (MLP) regression 0.55257 0.83267

Best results are in bold

A higher C-Index and lower NRMSE are desirable.
Furthermore, we performed five-fold cross-validation and
majority under-sample to deal with class imbalance.

5.2 Experimental results

Tables 3 and 4 show survival analysis models’ performances
compared to regression models on the real news dataset and
the fake news dataset, respectively.

Table 3 shows that Random Survival Forest is the best at
predicting time to share for real news among all the consid-
ered survival analysis models, achieving an NRMSE of 0.46
and a C-Index of 0.83. In comparison, Random Forest regres-
sion turned out to be the best regression model, achieving a

worse NRMSE of 0.52 and the same C-Index as the Random
Survival Forest Model.

Table 4 shows that considering both an NRMSE of 0.43
and a C-Index of 0.84, Gradient Boosting Survival is the best
survival analysis to predict the time to re-share fake news.
On the other hand, linear MTLR achieves a better C-Index
of 0.86, but a much worse NRMSE of 1.4. In comparison,
Random Forest regression turned out to be the best regres-
sion model also in this dataset, achieving, however, worse
scores of NRMSE (0.50) and C-Index (0.83) compared to
the Gradient Boosting Survival Model.
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Fig.1 Top-ten most important
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Overall, these experimental results show that, in general,
survival analysis is better than regression at predicting the
time to share for both the cases of real and fake news.

Feature Importance For the best-performing models (Ran-
dom Survival Forest for real news and Gradient Boosting
Survival for fake news), we used the Mean Decrease in Accu-
racy (MDA) algorithm from the eli5 Python package * to
compute the feature importance for each model when trained
on the entire dataset.’> This algorithm systematically runs
a specified model on the data while removing one feature
each time and computes the mean decrease in model per-
formance via the C-Index metric. The features are weighted
and ordered according to importance. (The higher the mean
C-Index decrease, the most important the feature.) Results
are shown in Fig. 1.

Among the top-ten features computed to have the high-
est importance for predicting time to share on the real news
dataset, we see that similarity news is the most important
feature for predicting real news sharing. The two features
relating to tie strength follow, implying that a user who
closely follows everything the influencer (a user who shared
the given news article to this user) shares, carefully responds
to most shares. Al//Punc, which is the measure of proper punc-

4 https://eli5.readthedocs.io/en/latest/overview.html

5 We used the Mean Decrease in Accuracy method to compute feature
importance as this method is independent of the prediction model in use
and hence allows for comparison among different models. In our case
we compare Random Survival Forest and Gradient Boosting Survival.
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tuation used by the user in their tweets, ranks fourth, while
similarity tweets ranks fifth.

Among the top-ten features computed to have the high-
est importance for predicting time to share on the fake news
dataset, we see that num_propernouns, the measure of proper
nouns used by the given user in their tweets, ranks high-
est for predicting time to share, followed by the measure of
possessive nouns used in the news article. The similarity to
previously shared news articles ranks third, compared to first
for real news, followed by the two influencer tie strength
measures. Gender, number of followers, and the number of
posts during the weekend are features that appear to be more
important for predicting the time to share real news.

6 Conclusions

Through survival analysis, we have addressed the problem
of predicting the time to share real and fake news on online
social networks. Our experimental results show that survival
analysis achieves better results than regression on the consid-
ered problem. Specifically, Random Survival Forest performs
the best for real news (NRMSE of 0.46 and C-Index of
0.83), and Gradient Boosting Survival performs the best for
fake news (NRMSE of 0.44 and C-Index of 0.84). We also
investigated feature importance and showed similarities and
differences between real and fake news.

One challenge in applying survival analysis to the pre-
diction of news sharing is the choice of the time window to
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consider for the event of interest. According to our data, the
majority of the news articles are re-shared within two days,
while re-sharing after the first 48h is sporadic. Hence, we
considered a time window of two days. Extending the end of
this time window would have introduced outliers that could
have biased the predicted times. As a consequence, one lim-
itation is that events occurring after the 48 h are considered
censored, i.e., as non-sharing instances.

In future work, we plan to combine our survival anal-
ysis models with diffusion models working with explicit
network information to simulate better how real and fake
news diffuses in online social networks. We will use these
new diffusion models to simulate news spread in the social
network and reason about the efficacy of possible interven-
tions to combat the spread of fake news.
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