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ARTICLE INFO ABSTRACT

Edited by Menghua Wang Northern high-latitude river ice provides ecritical natural infrastructure for winter travel, commerce, hunting,

fishing, and recreation in rural areas with little or no road access. Open water zones (OWZs) in river ice are

Keywords: dangerous for such travel and are most common during early winter. Changes in the occurrence and duration of

River ice OWZs may also indicate more widespread shifts in ice regimes across Alaska and other northern regions. To aid

:y“?’eamlapermre radar (SAR) in detecting open water hazards and broader changes in winter conditions, we developed a supervised classi-
entine!

fication with a principal component analysis (PCA) using both polarizations of Sentinel-1 C-band synthetic
aperture radar (SAR) dual-polarized data for rivers in early winter to discriminate between ice cover and open
water. Previous SAR river ice classifications have focused on one or two river reaches often with an emphasis on
moving ice during spring break-up, hampering generalization of these results to other rivers and seasons. To
address this limitation, we used 12 reaches from eight rivers for training and validation with the aim to combine
data from different river types to create an ice classification that could be applied to northern high-latitude rivers
from October through January. The classification was trained using shore-based time-lapse photos, aerial photos,
and on-ice observations, and validated with shore-based time-lapse photos and independent citizen scientists’
photo observations. Overall accuracy for the classification ranged from 65 to 93% with a corresponding range of

Northern rivers
Citizen science
Climate change

0.31-0.84 Cohen’s Kappa statistic (K). We report some ambiguity between open water and smooth ice, especially
in slower-flowing parts of rivers. We conclude that VV and VH thresholds can therefore be customized to increase
accuracy, depending on specific river attributes such as river morphology, silt/sediment load, and channel flow
velocity. This classification, which allows for mapping long river reaches in low-light winter conditions, can be
performed on historical Sentinel-1 imagery to determine areas that display open water year after year. Once
customized to a particular river, it can be automated to provide current open water zone maps to Alaskan and
other rural northern communities worldwide to aid safer travel on ice.

1. Introduction zones (OWZs), and earlier break-ups (Brown et al., 2023; Brown et al.,

2018; Knoll et al., 2019; Prowse et al., 2011; Yang and Zhang, 2022;

Ice-covered rivers are rural Alaska’s winter highways and provide
snowmobile and dog mushing access to the off-road-system villages and
towns which comprise the majority of communities in the state and are
typical of high-latitude regions across the pan-Arctic. Ice-covered rivers
also serve as foundations for ice bridges, ice roads for vehicles, and as
runways for ski-planes in northern high-latitude rural communities.
Arctic warming has changed the ways rivers freeze and has impacted
rural winter river travel due to later freeze-ups, mid-winter open water
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Yang et al., 2020). Travel safety is compromised as OWZs become more
common and appear in new locations due to intensified warming in the
Arctic (Cold et al., 2022; Herman-Mercer et al., 2011; Schneider et al.,
2013; Wilson et al., 2015). Permafrost thaw in Alaska (Hinzman et al.,
2005; Romanovsky et al.,, 2010) has increased winter ground water
contributions to major Alaska rivers (Brabets and Walvoord, 2009; Ge
et al.,, 2013; Walvoord and Striegl, 2007) and may also create persistent
OWZs in northern river ice.
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Monitoring the progression of river freeze-up and detecting persis-
tent OWZs has been approached from multiple perspectives (Lin-
denschmidt, 2020). Our research is focused on rural northern
communities’ need for information on river OWZs, and, to that end, we
engaged community members in deploying and maintaining shore-
based cameras and sharing photographic observations. This has shown
to be advantageous on many levels (Eicken et al., 2021; Goldstream
Group, 2022): 1) local community members identify areas that are
perhaps most important to them, 2) wide spatial distribution of rural
Alaska communities is advantageous for comprehensive spatial
coverage of observations, and 3) citizen science is a cost-effective
method for data collection in remote northern high-latitude regions
where logistics are complicated. Fixed shore-based cameras operating
alone have been used to gather river-ice information (Ansari et al.,
2017), and are useful in providing regular, autonomous repeat photos.
Photo observations collected by community members have the advan-
tage of focusing in on river ice open water occurrences that are impor-
tant to the community beyond the frame of the fixed camera. Satellite
imagery can cover entire river reaches with a broader footprint than
fixed cameras, record changes in regular time increments, and provide
information from remote river locations that are difficult or dangerous
to access. However, remote sensing imagery requires validation to
ensure proper interpretation of river ice conditions. We used synthetic
aperture radar (SAR) remote sensing coupled with shore-based cameras
and photo observations from community members to train and validate
a SAR remote sensing classification of early winter rivers’ surface (ice vs.
water).

SAR is an active microwave sensor and can image at night and
through clouds, making it a valuable tool for river ice imaging at
northern high-latitudes during winter when optical imagery is scarce.
The reflected signal (backscatter) that constitutes a SAR image generally
depends on the roughness and/or wetness of the target (Meyer, 2019),
although imaging parameters such as SAR polarization and incidence
angle also affect backscatter. C-band SAR (~5.5 cm wavelength) can
penetrate dry snow and ice to interact with the ice-water interface of
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rivers as long as the surface is dry, although some signal may be reflected
from within the ice cover (Fig. 1). Low backscatter occurs with specular
reflection, where the signal bounces off a smooth target and travels away
from the reception antenna, while high backscatter occurs when it
bounces off a rough or wet surface back toward the reception antenna.
Early SAR river ice classifications posited that backscatter from river ice
was caused by the rough ice-air surface as well as volumetric scattering
from gas bubbles, cracks, and impurities in the ice (Unterschultz et al.,
2009) or small air bubbles in the ice (Mermoz et al., 2009). However, a
backscatter model for river ice, based on wave propagation through
media with contrasting dielectric properties, predicted that scattering
from the ice-water interface would be the dominant scattering mecha-
nism for VV and VH polarizations over all incidence angles (Gherboudj
et al., 2010). The high dielectric constant of liquid water (¢’ ~ 80,
Skolunov, 1997) creates a high contrast with ice (¢’ & 3.2, Matzler and
Wegmiiller, 1987), causing the ice-water interface to be the most
reflective horizon in a river ice profile for SAR (Gherboudj et al., 2010).

Incidence angle (Fig. 1) will affect SAR backscatter (60) from ice and
open water in different ways for different polarizations. Measured
backscatter from pure ice shows that C-band VV polarized olis relatively
unaffected by incidence angle as opposed to HH o which decreases
sharply as the incidence angle increases, even when imaging the same
freshwater ice target (Leconte et al., 2009). This makes VV polarization
useful for classifying river ice that can stretch over a single Sentinel-1
scene where incidence angles range from 29°-46°. However, C-band
vV o° over open water is more sensitive to wind- and current-caused
small waves that roughen river water surfaces than is HH polarization
(Long et al., 1996). This results in higher VV ¥ from rough open water
(Long et al., 1996), which can confound the detection of ice vs. open
water. VH ¢ is not as sensitive to small waves on the surface of open
water. By using VH in conjunction with VV polarized o° intensity, we
aimed to avoid false ice detections due to rough open water that can
occur when using only VV polarized o’

While previous empirical studies can apply their results to their
specific river reaches, there is currently no SAR river ice classification
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Fig. 1. Some possible scattering features in a northern river ice system. Schematic represents a SAR instrument transmitting in vertical orientation (V) and the target
reflecting the wave in the same vertical orientation (V) or depolarizes it to horizontal polarization (H). Incidence angle, represented by theta (8), considers the
curvature of the earth as well as satellite look angle. The origin of the returning arrows illustrates the probable depth of penetration based on dielectric constants of
the targets but does not indicate backscatter magnitude nor direction. Bent arrows indicate direction of refracted wave through the media of snow and ice.
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that can be generalized and expanded to use the freely available
Sentinel-1 VV/VH polarized data across the northern landscape, espe-
cially in early winter. In previous imaging efforts of Canadian rivers,
HH-polarized SAR data was used to monitor ice jams and flooding risk
(Gauthier et al., 2006; Los et al., 2016; Los et al., 2019; Mermoz et al.,
2009; Unterschultz et al., 2009; Van der Sanden and Drouin, 2011; Van
der Sanden et al., 2021; Weber et al., 2003) as well as travel hazards
(Gauthier et al., 2010). Quadrature-polarized (quad-pol) Freedman-
Durden decomposition has been used for the Slave River, with an
emphasis on determining structural strength for river ice travel (Lin-
denschmidt and Li, 2018). Previous SAR-river-ice classification work
using VV/VH C-band SAR (Sentinel-1) focused on one or two rivers in
temperate climates with little or no underlying permafrost or glacial silt
load: Stonevicius et al. (2022) trained a VV and a VH classification
threshold for river ice on the Nemunas and Neris Rivers in Lithuania
(54-55°N latitude), and de Roda Husman et al. (2021) used Sentinel-1
for the Athabasca River in Canada (56.6° N latitude), examining
breaking ice later in the winter.

Results from these studies cannot be applied with confidence to
northern high latitude rivers in early winter since they were empirically
developed based on only one or two river reaches, sometimes at
temperate latitudes, and often focused on late winter/spring breaking
ice. Further, the use of HH- or quad-polarized data limits transference to
VV/VH polarized SAR that Seninel-1 uses. To address this shortcoming,
we present a classification using the first principal component of VV and
VH polarizations from Sentinel-1 C-band SAR using data from 12 river
reaches representing a variety of northern river types.

This method assesses VV and VH values for each pixel, considering
the intensity of each polarization returned from open water and from
ice, to create a bi-conditional SAR river ice classification. Our emphasis
is on open water as a travel hazard during river freeze-up from October
through January, a timeframe when OWZs are likely to hinder safe
travel, though this technique could be applied to other timeframes. Our
main objective was to create a generalized C-band SAR river ice classi-
fication that could be applied operationally to Alaskan and other
northern rivers >60° latitude coursing through differing extents of
permafrost, by using sites and data from rural community members. This
classification should be straightforward enough to be used by opera-
tional users and scientists, and should be easy to customize to individual
rivers. Our second objective was to assess the accuracy of this classifi-
cation, especially to detect OWZs in river ice, looking for relationships
between classification accuracy and river attributes to examine where
these data show the distinction between river ice and open water the
best and where it can separate classes better than others. Our third
objective was to assess the effect of incidence angle on a SAR river ice
classification using VV and VH polarizations, in order to ascertain
classification integrity across the broad range of incidence angles used
by Sentinel-1 to image long river reaches.

2. Methods
2.1. Study sites and design

Of the four Alaska river reaches used to train our classification, three
were large multi-channel rivers (the Yukon, Kuskokwim, and Tanana
Rivers) and one was a smaller, single-channel, deeper river (the Innoko
River) (Fig. 2, Table 1). We compared shore-based camera images in
early 2019-2020 winter to both channels (VV and VH) of Sentinel-1
dual-polarized SAR data. The solar-powered shore-based cameras
(Nupoint remote viewer Lite Sight Rapid Pack) took an oblique photo
once daily at near noon local time to capture river surface conditions at
the brightest time of the winter day. In addition to shore-based cameras,
in situ observations on the Tanana River between Fairbanks and Nenana
from late January 2021 were used to train the SAR classification. We
used a principal component analysis (PCA) to establish VV and VH in-
tensity thresholds for a SAR classification of open water and river ice
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Fig. 2. Red stars mark locations of training camera locations (early winter
2019-2020) and 97 field observations on the Tanana River downstream from
Fairbanks (January 2021). Yellow stars show validation camera locations (early
winter 2020-2021). Green star outlines show locations of citizen observations
for validation on the Tanana, and Yukon, Rivers (early winter 2020-2021).
Background image: Alaska High Resolution Imagery RGB 2020 (Maxar Tech-
nologies Inc., Alaska Geospatial Office, USGS). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
of this article.)

cover and then validated this supervised classification with early winter
2020-2021 shore-based photos from remote cameras on eight Alaska
rivers (Fig. 2, Table 1, Bondurant et al., 2022). We also used citizen
science observations taken by community-based monitoring teams or
individuals and uploaded to the Fresh Eyes on Ice Observer portal
(https://obs.feoi.axds.co/observations/) for the Tanana and Yukon
Rivers to validate our classification and assess its accuracy.

2.2. River characterization

The locations of training and validation shore-based cameras were
chosen to capture a variety of river types with different characteristics,
including: large and small rivers; different river bed morphologies
(multi- or single-channel: braided, anastomosing, straight, meandering);
glacial-fed, non-glacial and mixed tributaries; wide and narrow; north-
south and east-west orientation; tundra and boreal biomes; and
residing in a variety of permafrost conditions. Ice begins forming in
these rivers in October or November and remains until May to June,
depending on latitude. River morphology was determined manually by
viewing the channel form in optical imagery (Table 1). We differentiated
between single and multi-channel rivers, and characterized reaches as
either meandering, anastomosing, or braided, which vary in their for-
mation processes, channel stability, and sedimentary properties
(Makaske, 2001). Meandering reaches are single-chandelled and the
most stable, braided reaches are the most dynamic of the multi-channel
morphologies and exhibit humped-up bar-like forms between channels,
while anastomosing reaches encloses parts of the floodplain between
multiple channels. The width of the river at the location of the shore-
based camera was measured in ArcMap. Glacial silt contribution was
manually determined from optical imagery of each river’s headwaters
and tributaries and represents a first-order assessment of glacial silt load



M. Engram et al.

Table 1
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Characteristics of rivers used for training and validation of SAR ice/open-water classification. Channel form indicates river reach at the location of shore-based camera
or citizen observation. Permafrost extent from Jorgenson et al. (2008). Rivers are listed in order of descending latitude.

River Nearby Community/ Place Role (Training vs. Channel (multi/single) Glacial contrib- River width Lati-tude Permafrost”
Name Validation) Form® ution (m) (°N)

Colville Ocean Point Valid. multi A none 263 70.07 G
Noatak Noatak Valid. multi B none 204 67.52 G
Tanana Fairbanks Train. multi A high 268 64.79 I
Yukon Galena Train. & valid. multi A high 774 64.73 S/
Tanana Sam Charley Is. Valid. multi A high 282 64.72 I
Kantishna Tolovana Roadhouse Valid. multi A medium 181 64.70 I
Innoko Shageluk Train. & valid. single M low 146/186 62.65 S
Copper Tazlina Valid. multi B high 260 62.02 I
Yukon Paimiut Valid. multi A high 974 61.96 D/1
Kuskokwim  Kwethluk Train. multi A medium 341 60.86 I
Kuskokwim  Napaskiak Valid. multi A medium 683 60.72 I

# A = anastomosing, B = braided, M = meandering.
P C = continuous, D = discontinuous, § = sporadic, I = isolated.

from glacial melt. We also aimed to represent a variety of regions and
permafrost conditions, and installed shore-based cameras in Alaska’s
north slope, interior, southwest, and south-central regions in contin-
uous, discontinuous, sporadic, and isolated permafrost (Jorgenson et al.,
2008) with the goal that our results could be applied to a variety of
northern rivers worldwide. We compared all quantitative river charac-
teristics to our SAR classification accuracy, checking latitude, river
width, and number of observations for correlations with classification
accuracy.

2.3. SAR dataset

Sentinel-1 carries a C-band SAR instrument with a ~ 5.4 cm wave-
length, which is a useful SAR frequency for freshwater ice classification
as demonstrated by earlier missions such as ERS-1/2, RADARSAT-1/2,
and ENVISAT (Bartsch et al., 2017; Engram et al., 2018; White et al.,
2008). Frequent dual-polarization (dual-pol) Sentinel-1 SAR scenes ac-
quired with vertical transmit and receive (VV) coupled with vertical
transmit and horizontal receive (VH) polarizations are readily available
worldwide in Interferometric Wide (IW) swath mode, due to open access
policy of the European Space Agency (Torres et al., 2012). Each
Sentinel-1 IW mode pass covers a 250 km wide area with a pixel spacing
of ten meters (Torres et al., 2012). The exact-path repeat time is 12 days,
but overlapping orbits at high-latitudes and the combined orbits for
Sentinel 1 A and 1B allow for more frequent images albeit with differing
incidence angles and flight directions (ascending and descending
passes). To develop and validate a river ice classification for Alaska, we
used all Sentinel 1 IW Level 1 ground range detected (GRD) data from
Sentinel 1 A and Sentinel 1B in early winter (from Oct. 1 to Jan. 31) over
training sites for 2019-2020 with one January 2021 scene (Supple-
mental Table 1) and over validation sites for 2020-2021 (Supplemental
Table 2).

2.4. SAR image processing

Data were downloaded from the Alaska Satellite Facility’s Vertex
interface and processed using the Sentinel-1 toolbox in the Sentinel
Applications Platform (SNAP) toolset (v7 and v8) freely provided by the
European Space Agency. Precise orbits were applied, thermal noise
reduction performed, the Lee Sigma speckle filter was applied (Lee et al.,
2009) and data were calibrated to sigma-naught backscatter (D).
Terrain-correction was implemented using the Global Earth Topography
and Sea Surface Elevation at 30 arc-second resolution (GETASSE30)
elevation model available in SNAP for all rivers except the Innoko and
Copper rivers where steep terrain required the more precise correction
provided by the IfSAR digital terrain model (DGGS, 2013). The Coper-
nicus GLO-30 DEM was not available in SNAP when these data were
processed. Data were then projected to the Alaska Albers map projection

with ten-meter pixel spacing in a geo-tiff file format for GIS analysis in
ArcMap (v10.7). Incidence angles at the locations of shore-based cam-
eras and in situ sample locations were determined from each scene in
SNAP.

2.5. Supervised classification training sampling

To compare SAR ¢ values from river ice/open conditions at the lo-
cations of shore-based cameras’ field of view (FOV) on the four Alaska
training rivers (Table 1), we first digitized river shorelines using very
high-resolution optical imagery from Planet (Planet, 2017), using the
last image before freeze-up to omit highly reflective sandbars exposed in
late fall when river water level drops. We created shore-based cameras’
FOV polygons in ArcMap (v. 10.7) using landmarks along the shores,
then used the FOV polygons to select SAR pixels from both VV and VH
polarizations in SAR (Fig. 3). For photos where there were both water
and ice in the camera’s FOV (ex. Innoko R. at Shageluk late 2019), two
separate polygons were digitized, again using shore-based landmarks,
and the open water polygons were only used on imagery acquired when
open water or steam was clearly visible in the shore-based camera
image.

State of the river as “open”, “skim ice”, “pan ice”, “rough ice”,
“smooth ice”, “wet rough/smooth ice” were manually determined from
shore-based camera images closest to SAR acquisition times, although
we later simplified this fairly complex ice-type delineation. We con-
structed a time series for our four training river reaches by calculating
the mean and standard deviation of each VV and VH c° for the shore-
based camera’s FOV for each SAR scene (Fig. 3). Skim ice was defined
as a thin film (~ < 1 cm) of ice moving down the river on the water, not
necessarily completely covered but was later combined with open water
since ¢” intensities from skim ice and open water were indistinguishable.
Pan (frazil pan) ice could be considered open water with moving ice. The
number, size, and texture of the pans can change from minute to minute,
thus invalidating any comparison with SAR imagery acquired hours
later: pan ice was therefore omitted from the classification. Smooth and
rough ice categories described the top surface of the ice, sometimes
covered with snow, once a static ice cover was established. We explored
distinguishing wet from dry ice to see if there was a difference in & but
later aggregated these groups when no notable difference was found. We
used a combination of “rough ice” and “smooth ice” as well as “open
water” to train our four-state classification scheme of “ice”, “open
water”, “less certain ice” and “less certain open water”.

We expanded training samples to include one area of smooth ice and
two OWZs on the Kuskokwim River that were near our shore-based
camera but were outside the FOV, using aerial photos taken by the
Bethel Search & Rescue (Guest, 2019) on Nov. 18 and Dec. 3, 2019 and
comparing them with SAR imagery acquired between the two flight
dates on Nov. 24 and 25, 2019 (Fig. 4). Additionally, we used 97 in situ
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Fig. 3. Shore-based camera installation (a) and ice type examples from shore-based photos: pan ice (b) and rough ice cover (c) on the Tanana R.; skim ice (d) and
smooth ice (e) on the Innoko R.; and wet, rough ice on the Kuskokwim River (f). Panel g shows training camera location on the Kuskokwim River (white camera icon)
with approximate range of view in white and SAR pixel sampling area outlined in black. Green stars in panels f and g show the same location. Photo credit (a) C. Arp.
Background image (g): Alaska High Resolution Imagery RGB 2020 (Maxar Technologies Inc., Alaska Geospatial Office, USGS). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Kuskokwim R. above Kwethluk. Panel (a) and (b) show VV and VH Sentinel-1 intensity, respectively, for Nov. 24, 2019 (Copernicus Sentinel data 2019,
processed by ESA). Panel (c) and (d) show aerial photos from Bethel Search and Rescue from Nov. 18 and Dec. 3, 2019, respectively. Each panel shows the location of
shore-based camera (camera icon), the pixel sampling area which was classified as “rough ice” (black solid line), smooth ice (black dashed line), open water (white

dashed lines). Photo credit C. Guest.

observations from a section of the anastomosing Tanana River from Jan.
26-29, 2021 between Fairbanks and Nenana, AK, recording the location
of smooth ice, rough ice, and open water conditions with Garmin hand-
held GPS units. During field work, cold air temperatures of —32 °C
created rising steam from open water areas and facilitated open water
detection downstream from Fairbanks along a ~ 35 km section of the
river SW of Sam Charley Island. We compared these field observations
with 6° from the temporally closest SAR scene (Jan. 25, 2021 @ 6:21 pm
local time). SAR intensity values were extracted in ArcMap for these
locations using the GPS coordinates for points and bilinear interpolation
of the four nearest pixels, weighted by distance from the point.

While shore-based cameras on all four rivers provided data from one
location at high temporal resolution, the in-situ data provided broader

spatial sampling from one river with low temporal resolution (only one
image). Altogether 140 examples of ice and 26 observations of open
water were used to train the SAR VV and VH ice classification.

2.5.1. Determining SAR threshold dividing ice and open water using PCA
Our sample sizes were not equivalent: we had more pixels from
rough ice than from open water or smooth ice. We used all ~1250 pixels
from smooth ice and randomly selected an equivalent number of pixels
for rough ice (1262) from our larger rough ice pixel pool, using the
random number generator in Excel software (v. pro-2019) resulting in a
~ 2500-pixel dataset of “ice” (Table 2). Using the same random selection
method, we chose an equivalent number of open water pixels (2596) in
preparation for a statistical analysis of SAR o from ice (50% rough and
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Table 2
Mean backscatter from all training pixels from four rivers randomly sub-sampled
to create equivalent sample sizes.

Class n Mean VH Stdev VH Mean VV Stdev VV
pixels (dB) (dB) (dB) (dB)
Open
water 2596 —-273 1.5 —-19.6 27
All Ice 2515 -215 5.3 -11.9 4.5
Smooth
Ice 1253 -26.1 23 -16.1 1.6
Rough Ice 1262 -16.9 3.0 -7.8 2

smooth) vs. open water (Table 2).

Since VV and VH were highly correlated, we performed a PCA using
VV and VH intensity values from river ice and open water using NumXL
software (v. 1.68.544979), effectively rotating the dataset along the
least-squares regression line prior to determining a threshold between
these overlapping classes. We tested the first principal component, PC1,
frequency distributions of all classes (all ice, smooth ice, rough ice, open
water) for normality (NumXL v. 1.68.544979). We then used the PC1
values with Eq. 1 to determine the threshold to divide all ice from open
water, resulting in equal classification error from two normal distribu-
tions (Engram et al., 2018),

- Ho =t 4
Threshold = p, + Lszdl s stdy | @h)]

where p7, std; and p3, stdz are the mean and standard deviation of open
water-PC1 and ice-PC1, respectively. We converted the PC1 threshold
back to VV and VH components, creating a line through this threshold
with a slope orthogonal to the original regression equation to divide
pixels into ice and open water. Using the x- and y- intercepts to draw an
orthogonal line (VV4g = —1.0552 * VHgp -yint), we determined that a
pixel (VH;, VV;) was on the right side of the line and classified as ice, if
Eq. 2 were true:

[xint*(VV; — yint) | < (— yint*VH,) ()]

where xint and yint are the x- and y-intercepts for the threshold
orthogonal line. The pixel (VH;, VV;) would be on the left (lower) side of
the line and classified as open water if Eq. 2 were false. Kernel density
plots were created in Origin software 2023b (v. 10.0.5.157). To account
for the considerable overlap between some smooth ice and open water,
we also outlined a “less certain” category where the following two
conditions both existed: 1) VV was higher than 95% of all ice pixels, and
2) VH was lower than 95% of all open water pixels that satisfied the first
condition.

2.5.2. Validation and accuracy assessment

We validated the resulting river ice classification using 160 images
from shore-based cameras along eight Alaska rivers from Oct. 1, 2020 to
Jan. 31, 2021, and with community observations from submitted photos
to the Fresh Eyes on Ice Observer portal (https://obs.feoi.axds.co/)
during that time frame. Validation shore-based cameras acquired daily
near noon local time photos for the Colville, Noatak, Tanana, Kantishna,
Innoko, Kuskokwim, Yukon (at Galena and at Paimiut), and Copper
rivers (Table 1). One camera stayed in the same location as the previous
year (Galena) and the other eight cameras were mounted in new loca-
tions to capture the 2020-21 freeze-up (Fig. 2). Citizen science obser-
vations consisted of oblique shore-based photos, the time/date taken,
and map location where they were observed. We used all citizen science
observations that were made on the same day as a SAR acquisition,
omitting two observations showing OWZs smaller than one SAR pixel.
We also included two citizen’s observations that were noted to be
persistent OWZs, using the SAR scenes that had been acquired closest in
time for validation. Altogether five citizen science observations were
used.
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We compared these observations with all SAR data from both
ascending and descending passes from Oct. 1, 2020 - Jan 31, 2021
(Supplemental Table 2), processed to o° intensity images in SNAP (as
described in Section 2.2) and classified to show four classes: ice, open
water, less-certain ice, and less-certain open water. Classification was
performed with a Python script (available in GitHUB) in ArcMap
(v10.7). Autumn river perimeters and camera FOV polygons for vali-
dation were established using the same methods as for training data.

Photos from shore-based cameras and from citizen science observa-
tions were too oblique to be rectified in ArcMap and we therefore could
not perform a pixel-by-pixel classification accuracy assessment. Instead,
we performed a case-by-case accuracy assessment, matching ice condi-
tions in the photos with SAR classification results in the shore-based
camera’s field of view (FOV), where a “case” is an instance of either
ice or of open water: when the river shows all ice or all open water, one
case exists but where there is both ice and open water in the shore-based
camera photo, two cases exist. We validated SAR classification results
using cases of water and ice according to the rubric outlined in Fig. 5.

Instances when the shore-based camera lens was obscured by snow
or ice, as well as areas of ambiguity within a shore-based camera image
(dark areas could be either wind-blown ice or open water in the far field
of view), were classified as “no data” and omitted from validation.
Additionally, since pan ice is a very dynamic state and SAR scenes were
not acquired at the same moment as the shore-based camera scene, pan
ice was therefore omitted when validating this SAR classification.

2.6. Incidence angle as a factor

We investigated incidence angle as a factor in 6° because we saw a ~
1-4 dB difference in VV 6° from ice with incidence angles ranging from
33 to 44° although data were acquired from one to three days apart on
the Tanana River at Fairbanks (Fig. 6). Additionally, F.os et al. (2016)
called for further investigation on the influence of incidence angle for
different river ice types. We used 6 because it has been the ground-
range convention in SAR since it is ellipsoid-based (Small, 2011).
However, gamma-naught (y°) will produce a radiometric flatter scene
across varying incidence angles when corrected with an accurate digital
elevation model: the two ground-range calibrations are related with o°
= y° *cosB (Small, 2011). The incidence angle at each of our training
locations were recorded from SNAP software at the latitude and longi-
tude of the shore-based camera FOV in each scene, then mean o° and
standard deviation of pixels sampled from the FOV in each scene were
calculated and plotted against SAR incidence angle. Data were checked
for statistical correlation (SPSS v.25) between incidence angle and 6" for
rough ice, smooth ice, and open water.

3. Results
3.1. Backscatter intensities from ice and open water

The time series for training data using shore-based cameras show low
¢ in both VV and VH from open water in October prior to freeze-up,
then higher ¢° for VV and VH from ice after freeze-up, especially from
rough ice (Fig. 6). As the rivers start to freeze, floating pans of frazil ice
on open water (pan ice) are observed in shore-based photos on the
Yukon, Tanana, and Kuskokwim Rivers, resulting in rough ice with frazil
ice inclusion once the river freezes to a static ice cover. Smooth ice in the
slower flowing Innoko River is probably columnar ice (inferred from the
lack of pan ice) and shows less of a o contrast from open water than
does rough ice on the other three rivers. The two smooth ice points on
the Kuskokwim River are lower in both VV and VH than the smooth ice
on the Innoko River (red symbols, Fig. 6).

Note that ¢° from pan ice is highly variable, overlapping the range of
o° from open water as well as ice. This large variability in & from panice
is most likely due to differences in pan density, a dynamic condition that
could not be compared to SAR backscatter when captured by shore-
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Fig. 5. Schematic shows accuracy scoring rubric for SAR classification using validation photos. Curved shapes represent river surfaces with ice (grey) and open water
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to the web version of this article.)

based camera photos taken hours earlier than SAR acquisition.

Mean o from open water pixels (combined training data from the
four rivers) was low with —20 dB for VV and — 27 dB for VH (Table 2).
Mean ¢ from rough ice in all rivers was high for both VV (-8 dB) and
VH (—17 dB) polarizations at the training locations (Table 2). Back-
scatter from smooth ice for all training data pixels was generally lower
than that of rough ice with mean VV (—16 dB) and VH (—26 dB),
(Table 2, Fig. 7a, b).

Backscatter in VV and VH polarizations for pixels of rough ice,
smooth ice, and open water from the four training rivers are highly
correlated: VVgg = 0.95*VHgg + 7.34, 2= 0.74, p < 0.01 (Fig. 7a). A
kernel density plot of these data reveals a bimodal aspect to both the
smooth ice and open water classes, as well as a substantial overlap be-
tween smooth ice and open water (Fig. 7b). The density plot of VH vs.
VV (Fig. 7b) also shows a horizontal orientation to the smooth ice
density contours and a vertical orientation to the open water density
contours. Plotting the results of the principle component analysis as PC1
vs. PC2 effectively rotated the data along the axis of greatest variance for
the scatterplot (Fig. 7¢) and kernel density plot (Fig. 7d).

3.2. SAR backscatter distributions and thresholds

The first principal component (PC1) frequency distributions (Fig. 8)
for rough ice, smooth ice, all ice, and open water all demonstrated
normality according to the Jarque-Bera test which emphasizes goodness
of fit with skew and kurtosis matching a normal distribution (scores:
open water = 2.13, all ice = 1.95, smooth ice = 2.81, and rough ice

=3.17). Additionally, the PC1 frequency distribution for open water
passed the Kolmogorov-Smirnov normality tests (Lilleifors corrected
significance value was 0.14, greater than required 0.05). In addition to
the Jarque-Bera test, the PC1 frequency distribution for ‘all ice’ was
considered normal with the Shapiro-Wilk test, the Doornik-Hansen Chi-
Square test, and barely failed normality with the Kolmogorov-Smirnov
test with a Lilleifors corrected significance value of 0.048 (0.05 is
needed to pass normality test). We believe these test results indicate that
we cannot completely reject normality for all ice or open water, and that
a parametric technique to determine the threshold is appropriate.
Additionally, the skewness (0.19 for all ice and 0.595 open water) and
kurtosis (—0.975 for all ice and — 1.14 for open water) values are quite
reasonable compared to a normal distribution. Alpha value was 0.05 for
all normality tests. Using the equivalent sized samples of pixels for ice
and open water (Table 2), the PC1 threshold to delineate open water
from ice using Eq. 1 was determined to be —0.4869 (Fig. 8b). When this
PC1 value was converted back to VV and VH intensity values, the result
was a dividing threshold line orthogonal to the least square regression
line with the equation.

VVys = — 1.055° VH,y — 45.244 (3)

where pixels to right (higher) of this line are classified as ice and to
the left (lower) are classified as open water (Fig. 9).

We outlined a less-certain category for the overlap of open water and
smooth ice (Fig. 9) where 1) VV was higher than —19.34 dB (95% of all
ice pixels), and 2) VH was lower than —25.52 dB (95% of all open water
pixels that satisfied the first condition). Our decision to use percentages
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this article.)

of VV and VH as criteria for less-certainty was based on the horizontal
(VV) and vertical (VH) orientation of smooth ice and open water data
(Fig. 7b).

We therefore finished with the following four classes: ice, less-certain
ice, open water, and less-certain open water (Fig. 9) for early winter
(Oct.-Jan.) river ice classification. These classes are statistically based on
both the VV and VH ¢” backscatter from 5111 pixels in our training
dataset (Table 2), trained with shore-based camera and citizen scientist
photos, and in situ observations.

3.3. Classification accuracy for different rivers

Our analysis covered a wide range of river forms and sizes, glacial silt
contributions, and latitudinal and permafrost settings (Table 1). The
single-channel river width was 186 m while multi-channel river width
ranged from 181 to 974 m. The two Arctic river reaches (north of
66.5°N) were on continuous permafrost while the remaining sub-Arctic
reaches wire in discontinuous, intermittent, or sporadic permafrost
(Jorgenson et al., 2008).

The accuracy of our PC1 threshold classification varied from river to
river (Table 3). Overall classification accuracies ranged from 65 to 93%
(mean 78%) across nine reaches on eight Alaska rivers. The Kappa sta-
tistic (I?) for our accuracy assessment, a more stringent measure of ac-
curacy that removes random agreement, ranged from 0.31, indicating
fair agreement, to 0.84 indicating almost perfect agreement (Table 3).
We did not find a statistical correlation between classification accuracy
and river width nor with latitude. Rivers that had moderate to almost
perfect agreement using the Kappa statistic criteria (Landis and Koch,
1977) had some glacial silt contribution, with the exception of the
Noatak River.

3.4. Incidence angle influence on o’ from ice and open water

Incidence angles from Sentinel-1 scenes acquired for training sites

ranged from 32.5° to 44° and were very similar to those at our validation
sites (31°- 45°). Results for our investigation on the effect of incidence
angle on our classification showed only weak, slight trends toward lower
backscatter with increasing angle. Linear regression slopes of VV and VH
backscatter for smooth ice, rough ice, and open water vs. degree (deg) of
incidence angle were all negative and relatively flat, ranging from —0.1
to —0.3 dB deg.™" (Fig. 10), indicating a slight decrease in backscatter
from the same target with increasing incidence angle. Pearson’s r?
correlation coefficient ranged from 0.0167 to 0.519, indicating weak
trends with a high degree of scattering. Correlations had very poor
explanatory power, but were statistically significant, in three of the six
regressions: VV from rough ice (slope = —0.2 dB deg.‘l, = 0.121,p <
0.01), VH from smooth ice (slope = —0.2 dB deg.””, % = 0.0464, p<
0.05), and VH from open water (slope = —0.3 dB deg.'l, 2 =0.519, p<
0.01).

3.5. Case studies: Yukon and Tanana Rivers

The resulting SAR river ice classification can show ice and open
water conditions over long river reaches throughout the winter. Ice
formation processes and patterns can be observed using a SAR time se-
ries. We present three case studies to compare the SAR classification
with the shore camera photos.

Our SAR classification performed moderately well (Table 3) on the
Yukon River at Paimuit where the river is relatively straight and wide
(974 m, Table 1). The high position of the shore camera at this location
provided a steep observation angle, resulting in a more downward-
looking oblique photo of the river surface than a lower camera posi-
tioned closer to the river's elevation. SAR classification matched the
shore camera photo well, showing open water in early October, a fairly
well-established ice cover by late October, and an oblong OWZ in early
December that was frozen by January (Fig. 11a).

To demonstrate how long reaches of rivers can be classified, we show
the Tanana River at Sam Charley Island ~20 river-km SW of Fairbanks.
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Fig. 7. Scatterplot (a) shows VH and VV from all training data (four river reaches) for open water, smooth, and rough ice are highly correlated, but the extent of
overlap and data depth are obscured. Kernel density plot (b) of same data shows density of pixels using contours, revealing the extent of overlap, density of data, and
showing a vertical orientation of two lobes of open water and horizontal orientation of two lobes of smooth ice. Principal component analysis effectively rotates the
data along the axis of highest variance as seen in the scatterplot (c) and the kernel density plot (d).

Here, the Tanana River is anastomosing, with camera at the junction of a
slough and the main river channel. Fig. 11b shows the freeze-up of the
Tanana as the SAR classification compares to the shore camera, with
completely open water on Oct. 10th, open water in the main channel on
Nov. 1, 2020, and an ice cover with no large OWZs in mid-December
through late January 2021.

Comparing the freeze-up on these river reaches, the Yukon R. at
Paimiut froze earlier than the Tanana R. at Sam Charley Island, despite
the Yukon River reach’s more southerly location by over two degrees
latitude (Table 1). The Yukon River showed more ice in late Oct. 2020
while the Tanana River showed more open water in early Nov. 2020.

An OWZ in the main channel of the Tanana River near the Rosie
Creek trail ~12 river-km SW of Fairbanks persisted until late December
2020. On-ice photos taken the same date as the SAR acquisition show the
SAR classification performed very well (Fig. 12). Using high bluffs along
the Tanana River as landmarks, the SAR classification shows the large
OWZ in the same location as the photos (Fig. 12).

4. Discussion
4.1. Toward creating a classification that can be used operationally

We gathered a large pool of data from different types of rivers across
a large geographic area north of 60° in Alaska which included a variety
of river morphology, river flow velocity, permafrost extent, and glacial/
sediment load with the aim to create a generalized ice vs. open water
classification that demonstrated fairly good accuracy when tested on
nine northern river reaches. By determining thresholding intensity with
PCA, then converting PC1 to VV and VH o values, we created a bi-
conditional classification that is statistically-based, yet straightforward
for environmental scientists and ice-predicting government agencies to
implement with our published Python code. The relatively large number
and different types of northern rivers used for training and validation
contributed to a general classification that can be applied to other
northern rivers with moderate confidence, and possibly fine-tuned for
individual rivers.

4.2. Classification accuracy

We looked for trends in classification accuracy relating to river
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SAR classification accuracy for nine northern river reaches. Kappa statistic agreement is per Landis and Koch (1977).

Validation River River Type”/ Glacial contri- n valida-tion % false open % false ice Overall Kappa Kappa Statistic
Name Width (m) bution cases water cases cases Accuracy Statistic Agreement”
Colville multi A/ 263 none 10 42% 25% 65% 0.31 fair
Kuskokwim multi A/ 683 medium 17 44% 17% 71% 0.40  fair
Copper multi B/ 260 high 36 9% 50% 69% 0.40  fair
Innoko single M/ 186 low 18 45% 7% 69% 0.42 moderate
Yukon, P. multi A/ 974 high 28 33% 8% 79% 0.58 moderate
Tanana multi A/ 282 high 38 0% 50% 86% 0.59 moderate
Kantishna multi A/ 181 medium 13 15% 17% 85% 0.61 substantial
Noatak multi B/ 204 none 29 4% 23% 86% 0.73 substantial
Yukon, G.* multi A/ 774 high 23 0% 21% 93% 0.84  almost perfect
# A = anastomosing, B = braided, M = meandering.
b Landis and Koch, 1977
“ Indicates site was also used for training in previous winter.
Incidence Angle (8, °) Incidence Angle (8, °)
30 35 40 45 30 35 40 45
0 1 1 ] 0 1 1 J
o Mean VH Rough Ice
-5 23 o o Mean VH Smooth Ice
o Mean VH Open Water
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r?=0.121 r2=0.0167 r?=0.0318 r’=0.0349 r?=0.0464 r*=0.519
p<0.01 p <0.05 p<0.01

Fig. 10. Mean backscatter from VV (left panel) and VH (right panel) from shore-based camera field of views (FOVs) and field training points plotted against
incidence angle of acquisition, show very shallow negative slopes, low r? values, and are statistically significantly correlated for three regressions. Error bars show

standard deviation.

attributes (permafrost type, river morphology, glacial silt load, latitude,
and river width) but did not find clear-cut relationships between types of
rivers and classification accuracy: the classification performed moder-
ately well or better for the majority (six out of nine) of the reaches we
tested it on. The highest accuracy, (moderate to almost perfect agree-
ment) was achieved in multi-channel rivers, although the single-channel
river Innoko River also performed moderately well, but it should be
noted that the majority of our samples were from multi-channel rivers
(Table 3).

Once the ice in a river stops moving in early winter and creates a
stationary cover, our C-band dual-pol river ice classification approach
performed moderately well (Table 3, Fig. 11) and would be useful for
travelers living in river-side communities. However, since pan ice has
such a wide range of backscatter response, this classification should not
be mis-used to gauge when a river freezes up and stops moving.

The Colville and Kuskokwim rivers had a high percentage of false
open water pixel detection while the Copper River showed a high per-
centage of false ice classifications. We examine possible reasons for these
results below.

4.3. Factors affecting classification accuracy

4.3.1. Accuracy and temporal offset
The temporal offset between observation and SAR acquisition may
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have impacted accuracy. SAR acquisition times were usually 3-4 h prior
or 6-8 h after the shore-based camera image was taken, depending on
whether the satellite was in ascending or descending flight geometry.
This may have been a factor in classification accuracy for the Kuskok-
wim River near Napaskiak, which demonstrated fast changes by freezing
and melting completely at least twice before finally developing a static
ice cover.

4.3.2. False ice classification from open water at “rapids”

Fast water at river “rapids” (fast-flowing water with a rough surface)
is most likely the cause of persistent false ice classifications from open
water at the current-roughened reach of the Copper River in this study,
causing high 6% in both VV and VH. This river carries a high glacial silt
load, and visible riffles on the water surface in shore-based camera
photos indicate high flow velocity. The VH & from open water on the
Copper River at the fast-moving current-roughened reach was in the
—22 dB to —25 dB range, well above most VH o? for open water. This
river never completely froze over, exhibiting an OWZ that persisted all
winter in the fast-flowing main channel and was consistently mis-
classified as ice. Jasek et al. (2013), also saw confusion in their C-
band classification between rough open water at river reaches known as
“rapids” and ice. While VH shows less sensitivity to roughness, certain
rough open-water conditions (possibly emergent rocks, whitecaps, or
spray) seem to cause depolarization and therefore elevate VH o, SAR
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Fig. 11. Panel a shows the Yukon R. at Paimiut with SAR classification and shore-based camera for four dates, and panel b shows the Tanana River at Sam Charley
Island, about 20 river km SW of Fairbanks with shore-based camera image on top row and SAR classification on bottom row. Camera icons indicate location of shore-
based camera and green stars are in the same location in the vertical SAR-classification and the oblique photos. Background image in panel a is Planet Oct 14, 2020;
in panel b is Planet Oct. 10, 2020. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

classifications of river ice may be useful only in non-rapids river reaches,
but further investigation is needed to identify conditions that increase
VH ¢ from “rapids™.

4.3.3. Potential controls of & ° from river ice

4.3.3.1. Grounded ice. Clear, columnar river ice that freezes entirely to
the river bed lacks the high dielectric contrast that exists at the ice/water
interface and therefore bedfast ice returns a much lower o° than ice
overlying liquid water (Juhls et al., 2021). On the Colville River, false
open water classification occurred in an area adjacent to the shore and a

12

sandbar, which could indicate grounded ice in shallow water as a
possible cause for low o', The training area of smooth ice on the Kus-
kokwim River near Kwethluk (Fig. 4c, dotted black polygon; Fig. 6,
lower left panel, red symbols) showing very low " is from an area close
to shore lying outside the main river channel and could be grounded ice.

4.3.3.2. Backscatter from wet ice. Since ¢° values from smooth open
water are low, due to specular reflection where the microwave is re-
flected away from the sensor, we could expect low o” in the case of water
on top of ice (overflow). Yet, early winter overflow on ice as detected by
shore-based cameras on three Alaska rivers, could not be differentiated
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Fig. 12. Citizen science photos uploaded to the Fresh Eyes on Ice Observer (https://obs.feoi.axds.co/) showing a large OWZ still unfrozen on Dec. 20, 2020 on the
Tanana R. near the Rosie Creek Trail (a,b). On-ice photo observations show perfect agreement with SAR classification from the same date (c). Red, blue, and black
arrows point to the same landmarks in all panels for orientation between oblique view (a,b) and vertical view (c) of this river reach. Background image in lower panel
Alaska High Resolution Imagery RGB 2020 (Maxar Technologies Inc., Alaska Geospatial Office, USGS), photo credit (a,b) C. Arp. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

from dry ice with SAR. Both VV and VH o° from overflow on rough ice,
as noted by the Kuskokwim shore-based camera (Fig. 3d) was similar to
dry rough ice, following results reported by Unterschultz et al. (2009).
Since water is highly reflective, a thin coat of water on an ice surface
would theoretically prohibit the SAR signal from penetrating the ice,
reflecting the signal back to the satellite from a rough wet ice surface (for
both VV and VH polarizations), or away from the satellite if the surface
were smooth. Overflow on smooth ice would theoretically create a
smooth surface similar to smooth open water and the SAR signal would
be expected to be scattered away from the sensor, resulting in lower o’
Yet, as seen from the Innoko R. shore-based camera in Nov. 2019 was
correctly classified as “ice”. One explanation could be that the area of
overflow was too small to show up, or that “smooth ice” has enough
rough perturbations to create a rough surface when coated by a thin
layer of water. Overflow under snow was detected on areas of Copper
River ice, due to high position of shore-based camera which provided a
more vertical view, but 6° from these areas were also high enough to be
classified as ice, although the shore-based camera was too far away to
determine the texture of the ice (smooth or rough) prior to overflow. We
note these three cases of ¢ from overflow on rough, smooth, and un-
known textured ice being very similar to o’ dry ice. However, ¢ from
the Kuskokwim River near Napaskiak oscillated between low and high in
the main river channel, and the shore-based camera here showed some
re-frozen overflow. The intermittent low SAR 6° from this river reach
could be explained by overflow with a smooth surface hidden under the
snow causing false open water classification.

4.3.3.3. River flow velocity and frazil ice in and under ice cover. We
noticed that VV ¢° values were generally higher from ice in main, faster-

13

flowing river channels whereas ice formed over slower currents tends to
show lower o° values. Higher-velocity channels tend to have a rougher
top surface causing scattering at the air/ice interface from jumbled pan-
ice which, although secondary to the scattering at the ice/water inter-
face, still contributes to overall 6°. Turbulence under the ice in fast-
flowing channels could cause a rough water surface below the ice,
which would increase ¢°, especially in VV polarization. Other reasons
that ice in main fast-flowing channels have higher ¢” could be super-
cooled water from high-velocity flow creating small particles of frazil
ice that adhere to the underside of the ice to potentially cause a rough
ice/water interface (Fig. 1). Frazil ice are small ice crystals (0.001 to 10
mm, Svensson and Omstedt, 1994) formed in super-cooled, turbulent
water. We have observed small particles (~ 8 mm) of frazil ice sus-
pended in liquid water beneath well-formed ice covers (40-80 cm thick),
on the Tanana River. Frazil ice can also make up a significant portion of
a river ice cover, in contrast to columnar ice (Fig. 13b) which forms in
low flow velocity regions of rivers with calm surfaces (Ashton, 1986). Ice
crystal orientation in frazil ice and columnar ice is different, and may
lead to higher backscatter from frazil ice than columnar ice.

4.3.3.4. Glacial silt frozen in river ice. The rivers with the highest ac-
curacy, (moderate to almost perfect agreement) were multi-channel
rivers, with the exception of the single-channel river Innoko River
which showed moderate agreement (Table 3). Rivers with the highest
accuracy carried some glacial silt load, with the exception of the Noatak
River, that could create “dirty” ice (Fig. 13), possibly increasing SAR
backscatter. Many northern rivers carry a high load of suspended glacial
silt and sand (Chikita et al., 2002; Harrold and Burrows, 1983; Neill
et al., 1984; Williams and Rosgen, 1989). While quantifying the glacial
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Fig. 13. Examples of varying glacial silt concentrations in Tanana River ice from “smooth” ice locations. Panel a) shows two samples relatively near each other with
very different amount of frozen sediment/silt harvested near Nenana. Columnar ice block (b) harvested near Sam Charley Island shows no silt inclusion. Panel c)
shows relatively clear ice harvested near Tolovana Roadhouse with no visible frozen sediment. (Photo credits: a,c: M. Engram, b: C. Arp.)

silt load is beyond the scope of this paper, we note that silt or sediment in
ice could increase backscatter by increasing the dielectric constant of
pure ice. Glacial rivers could therefore have a different backscatter
threshold dividing ice and open water than clear-water rivers.

Flow velocity could interact with sediment load to influence ¢ in
river ice since swifter currents keep sediment suspended longer possibly
leading to more particulate matter included in the ice. Conversely, a
slower current would allow particles to settle prior to freezing, pro-
ducing clearer ice. We noticed a large variation in the amount of sedi-
ment frozen in ice blocks we extracted ice from three “smooth ice”
locations on the Tanana River, observing clear ice at two locations and
sediment/silt frozen into the ice at the other (Fig. 13).

If dirty ice were a driver of o*, it would follow that ice which freezes
earlier when glacial silt suspension loads are higher would include more
silt and therefore have a higher ¢ than later-freezing, cleaner ice. A
large open water zone near Rosie Creek on the Tanana River didn’t
freeze until late December 2020 (Fig. 12). We compared the o at the
Rosie Creek site from early and late-freezing ice across the channel
(orthogonal to current) and along the channel (parallel to current).
Although we did not extract an ice block at this location during field-
work, sediment from glacial melt should lower as winter progresses. We
saw much lower VH ¢° in late-freezing ice in the central channel in
January (~—20 to —24 dB) compared to VH o° from early-freezing ice in
the central channel (~ —8 to —13 dB) indicating that sediment frozen in
the ice could be a control on VH 6°. We did not see lower VV ¢ from
late-freezing ice in the main channel, indicating that sediment in the ice
does not drive VV ¢°.

0

4.3.4. Smooth ice and open water backscatter overlap

We saw an overlap between backscatter from smooth ice and open
water which impacted our ability to differentiate these classes (Fig. 9).
Previous attempts at ice classification using SAR also reported an
overlap between smooth ice and open water (de Roda Husman et al.,
2021; Jasek et al., 2013). While we saw open water and ice as sometimes
distinct within a river (Fig. 6, Yukon and Tanana rivers), our SAR clas-
sification produced cases of false open water at locations of smooth ice in
slow-moving parts of rivers, especially on the Colville and Innoko rivers
(Table 3).

Both VV and VH o° values for smooth ice at the slow-moving, deep
single-channel Innoko River were lower than those from rough ice on
multi-channel rivers (Fig. 6). However, comparison of field observations
on the Tanana River in Jan. 2021 to SAR showed smooth ice 6° as
sometimes higher and sometimes lower than ¢° from rough ice on that
same river. This difference s° at the location of smooth ice observed
from above while standing on the river surface, indicates the air-ice
interface is not the only factor affecting 6. Our top-of-ice field obser-
vations cannot determine whether the ice is columnar ice or if there is
significant frazil ice within the ice column causing scattering from
within the ice, and also could not perceive the roughness at the ice-water
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interface: this could be a source of the confusion between smooth and
rough ice. Humans observe the top ice texture at the air/ice interface
while SAR is reacting to the underside of the ice at the ice/water
interface (Gherboudj et al., 2010) and could also be scattering from
within the ice.

By determining our threshold between open water and ice along the
axis of highest variability (PC1) between VH and VV polarizations for
each pixel, we have developed a bi-conditional classification that slices
through the smooth/open water overlap at a low-density area for both
(Fig. 9). To acknowledge the uncertainty associated with the overlap
between smooth ice and open water, we created parameters for less-
certain ice and open water using statistics that consider both VV and
VH intensities.

4.4. Imaging with different incidence angles and gamma-naught

Sentinel-1 has an incidence angle range from 29.1°-46°, and mea-
surements from lab-grown ice (Leconte et al.,, 2009) and predictions
from a river ice ¢ model (Gherboudj et al., 2010) show only a slight
decrease in 6° from clear ice over this range. Our results agree with these
published results, showing only a slight (slopes from 0.1 to 0.3 dB)
decrease of 6° from river ice with increasing incidence angle in both VV
and VH polarizations (Fig. 10). The slopes are shallow and low Pearson’s
r statistics indicate weak correlations, although there is some statistical
significance to the effect of incidence angle across a Sentinel-1 scene for
rough ice in VV, and for smooth ice and open water in VH. This slight
decrease in o° for rough ice and open water have no effect on our
classification since pixels showing this decrease would still be classified
as “ice” and “water” respectively. Significance for the slight decrease in
VH for smooth ice could be caused by having only a single sample at
higher incidence angles (Fig. 10). While we conclude that this slight
decrease in ¢° with increasing incidence angle has negligible effect on
the SAR ice classification, radiometrically flatter scenes can be obtained
by using gamma-naught (yo) calibration. We therefore recommend using
gamma-naught (yo), geometrically corrected with a digital elevation
model, to produce a radiometrically flatter scene for future river ice
analyses. There is also a trend in SAR application science toward
providing ready-to-use radiometric terrain corrected products to SAR
users (e.g., from the Alaska Satellite Facility), which are calibrated in yD.
We have therefore included yu thresholds in our supplementary material
(Supplemental Fig. 1) and have published python code in GitHUB for
both ” and yo.

4.5. Future work

4.5.1. Determining depolarizing features and scattering mechanisms in river
ice

We used top-of-ice observable features to categorize ice into “rough”
and “smooth” and we see ¢° from these two categories clustering in
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density plots (Fig. 7b), indicating that these two categories are fairly
useful. However, we see a wider spread of VH intensity values (>10 dB)
compared to VV values (<10 dB) from “smooth” ice with two distinct
density clusters (Fig. 7b). It would be pivotal to examine why VH is
sometimes higher from ice; specifically, which features on, in, or under
river ice cause depolarization of the vertical transmitted signal that re-
sults in higher VH ¢°. We could then determine the conditions when VH
polarization can be accurately applied to classify ice and the scenarios
where it is unreliable. It would also be useful to learn major causes of
o for the VV polarization: we've suggested some drivers of C-band
backscatter as frozen sediment in the ice, frazil ice sticking to the un-
derside of high flow velocity channels, and frazil ice in the ice. Knowl-
edge of the physical features that increase SAR scattering would be
useful to further improve this C-band SAR river ice classification. Taking
it one step further, using decomposed quadrature-polarized (quad-pol)
C-band SAR to learn the scattering mechanism (single-bounce, double-
bounce, or volumetric) over various targets coupled with ground truth
could guide modification of the classification to fit different kinds of
rivers.

4.5.2. L-band SAR

The upcoming NASA-ISRO SAR Mission (NISAR) planned to launch
in 2024 will provide data with L-band (~24 cm) wavelength freely
available to the scientific community. Future work in SAR river ice
classification could include a multifrequency component, comparing or
differencing C- and L-band backscatter to take advantage of different
SAR wavelengths scattering from different sized targets. Quad-pol ac-
quisitions are planned over limited northern areas, although generally
NISAR will acquire dual-polarized data. Knowledge of scattering
mechanisms and the different types of river ice that produce such scat-
tering in L-band could be determined from polarimetric decomposition
of quad-pol data and could be useful to interpret SAR backscatter from
river ice.

4.5.3. Future field work

Future field work to sample and measure the possible controls of C-
band backscatter from river ice would be an important step to improving
SAR river ice classification. Location and extent of grounded ice, frazil
ice in the ice column, frazil ice in suspension beneath ice cover, and flow
velocity under the ice, would be helpful measurements to improve
classification accuracy. Backscatter from grounded river ice needs
further characterization with the goal to create a separate grounded-ice
class to differentiate the low backscatter from grounded ice and open
water. Measurements of sediment load frozen in river ice would be
valuable data to compare to SAR backscatter as well as identification of
sediment type (e.g., organic, glacial silt, algal): different types of im-
purities trapped in the ice will probably cause different a° intensities, for
example, frozen organic matter might not reflect C-band SAR while a
certain percentage of glacial silt could increase o°. Identifying a reliable
remote sensing proxy for each type of suspended sediment would be
very useful input for customizing SAR o° thresholds for different
northern rivers. Mapping the extent and location of overflow, as well as
observing and noting the roughness of liquid water surface would aid
understanding of how overflow could affect a SAR fiver ice classification
(and could also aid in the development of using SAR for overflow
detection).

4.5.4. Observation guidelines for the future

Fixed shore-based camera and citizen scientist photos were very
important in training and validating this classification and we learned
that 1) camera positioning, 2) repeated photos, and 3) photos timed
close to SAR overpass from citizen scientists are all important. Camera
positioning from the most vertical angle possible would make compar-
ison to remote sensing imaging easier and more accurate. Repeated
photos at the same location over time improves our ability to validate
remote sensing classifications. Optimal citizen science repeated
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observations would include “interesting” freeze-up (or break-up)
photos, but also need to include observations of completely open
water and complete ice cover to use for validation. The most useful
observations are those timed to coincide with satellite overpasses:
publishing satellite acquisition dates and times to rural northern com-
munities could facilitate citizen science integration into remote sensing
validation.

4.5.5. Determining persistent OWZs

Future work could also include performing this classification on
rivers during previous years (2015-present) using Sentinel-1 data to
create hazard maps of perennially open areas to avoid. These maps could
be validated and built upon by local indigenous knowledge and provided
to rural Alaska communities. As well as improving winter travel safety
for rural Alaska community members, knowledge of river freeze-up
timing and ice extent is important as a climate change indicator (Welt-
zin et al., 2020) and a SAR river-ice classification will provide important
information on warming of the Arctic.

5. Conclusions

We present a SAR classification based on the first principal compo-
nent (PC1) of both VV and VH intensity values for early winter river ice
after a static ice cover has formed with fairly high confidence on large
multi-channel rivers, and with the caveat that OWZs smaller or narrower
than one 10 m pixel will probably not be detected. However, since pan
ice has such a wide range of backscatter response, this classification
should not be mis-used to gauge when a river freezes up and stops
moving. Another limitation seems to be the inability to detect ice/ open
water at high-turbulent “rapids™ sections of rivers, although these sec-
tions could be masked out of a river ice map. Frequency of SAR acqui-
sitions is also a limitation since acquisitions are not daily.

Overall accuracy of this classification for these northern rivers in

early winter ranges from 65% to 93% resulting in K statistics of
0.31-0.84 at nine reaches in eight Alaska rivers, with higher confidence
for turbid/glacial-silt laden and faster-flowing main channels of rivers.
Since channels of anastomosing rivers may be the most prone to open
water because they are often steeper with higher turbulence, this SAR
classification can show new hazardous reaches of an anastomosing river
that may have been safe in the past. The incidence angle for o® VV-VH
dual-pol Sentinel-1 is not a factor in producing classification errors,
but we recommend using radiometrically-flatter vo for future work. The
SAR classification may not by useful where there is grounded ice or in
“rapids” sections of rivers, but further characterization of backscatter
from these conditions could improve the classification. In addition to our
first principal component SAR river ice classification, we present a large
number of data points collected through remote sensing, fixed cameras,
and citizen science from 12 reaches of eight rivers north of 60° N latitude
which should prove valuable to other researchers. We anticipate this
work to continue to develop toward map products to inform rural
northern winter travelers of unsafe and changing conditions on river ice.
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