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ARTICLE INFO ABSTRACT
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Boreal peatlands store vast amounts of soil organic carbon (C) owing to the imbalance between productivity and
decay rates. In the recent decades, this carbon stock has been exposed to a warming climate. During the past
decade alone, the Arctic has warmed by ~ 0.75°C which is almost twice the rate of the global average. Although,
a wide range of studies have assessed peatlands’ C cycling, our understanding of the factors governing source /
sink dynamics of peatland C stock under a warming climate remains a critical uncertainty at site, regional, and
global scales. Here our focus was on answering two key questions: (1) What drives the interannual variability of
carbon dioxide (CO2) fluxes at the Bonanza Creek rich fen in Alaska, and (2) What are the internal carbon
allocation patterns during the study years? We addressed these knowledge-gaps using an intermediate
complexity terrestrial ecosystem model calibrated by a Bayesian model-data fusion framework at a weekly
timestep with publicly available eddy covariance, satellite-based earth observation, and in-situ datasets for 2014
to 2020. We found that the greening trend (a relative increase of leaf area index ~0.12 m? m2 by 2020) in the fen
ecosystem is forced by a COs fertilisation effect which in combination resulted in increased gross primary pro-
duction (GPP). Relative to 2014, GPP increased by ~75 gC m? year’l (by 2020; 95% confidence interval (CI):
-41.35 gC m2 year™ to 213.55 gC m™ year'!) while heterotrophic respiration stayed constant. Consistent with the
observed greening, our analysis indicates that the ecosystem allocated more C to foliage (~50%) over the
structural (A carbon pool consisting of branches, stems and coarse roots; ~30%) and fine root C pools (~20%).
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Gross primary productivity
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et al., 2022). The Arctic has warmed at ~4 times faster than the rate of
the rest of the planet during the industrial period (IPCC, 2023;

1. Introduction

Northern peatlands play a significant role in the global carbon (C)
cycle by storing a third of the global soil organic C pool (—415 £ 150
PgC (Beaulne et al., 2021; Hugelius et al., 2020)), despite only covering
~3% of the Earth’s surface (Gorham, 1991; Limpens et al., 2008; Loisel
et al.,, 2014; Yu, 2011). In comparison, a similar amount; 409 PgC is
stored in the global vegetation biomass (Spawn et al., 2020). Peatlands,
in their natural hypoxic state are net sinks of carbon due to lower rates of
decomposition compared to C fixed by the plants (Makiranta et al.,
2018; Sonnentag et al.,, 2010). These organic soils are exposed to
intensified climate warming (Huang et al., 2017; Post et al., 2019) and
extreme events such as droughts, leading to a water table decline (Ma
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Myers-Smith et al., 2020; Post et al., 2019; Rantanen et al., 2022). These
events can start a domino effect of climatic responses (Belyea, 2009). For
example, the vapour pressure deficit (VPD) in the boreal biome alone
has increased ~10% since the late 2000s (Helbig et al., 2020) and
resulted in increased evapotranspiration. Warming could extend the
period of thaw, shorten winter, prolong the growing season, and trigger
flooding during the C uptake period. Sources and timing of these
floodings can have significant impact on the inter-annual variability of C
(Euskirchen et al., 2020). For instance, water table drawdown could
trigger enhanced decomposition or gross primary productivity (GPP),
shifts in phenology and community structure (Antala et al., 2022;
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Davidson et al., 2021; Guay et al., 2014; Peichl et al., 2018; Wilkinson
et al., 2023; Zhang et al., 2018). Satellite-based Earth Observation (EO)
provided indices of vegetation cover and leaf area have shown positive
trends which indicate increased photosynthetic activity and potentially
an associated increases in biomass, canopy cover/leaf area (Berner et al.,
2020; Guay et al., 2014; Ju and Masek, 2016; Myers-Smith et al., 2020).
On the other hand, a warming induced browning effect is also reported
in parts of the Arctic (Myers-Smith et al., 2020; Phoenix and Bjerke,
2016).

A multitude of controlled experiments have looked at the impact of
elevated temperature, water table fluctuations, and atmospheric CO5
concentrations on plant growth, growing season length and C exchange
(Chivers et al., 2009; Kane et al., 2021; McPartland et al., 2019; Olefeldt
et al., 2017). While these studies shed light into climate change impact
on peatland C cycle, it is limited to number of sites, scarce number of
biotic and abiotic factors and to major fluxes such as net ecosystem
exchange (NEE), ecosystem respiration (Reco), and GPP. Hence it is
imperative to include peatland CO2 dynamics in process-based models.

Several recent studies have focused on process-based modelling of
high latitude peatland C accumulation, decomposition rate and climatic
influence in the past and future (Belyea and Malmer, 2004; Chaudhary
et al., 2020; Gorham et al., 2012; Qiu et al., 2020; Yu, 2011; Zhang et al.,
2018). However, uncertainties remain in the magnitude, extent, and
inter-annual variability of climate-carbon feedback, as is the role of
multiple biogeochemical processes. This includes the peatland C allo-
cation patterns and its response to climate warming. Recent field and lab
experiments found contrasting evidence for allocation patterns under
increased temperature (Tian et al., 2020; Zeh et al., 2022) leading to
differences in soil respiration estimates (Walker et al., 2016; Zeh et al.,
2022). This can be further complicated by CO5 fertilisation as it is the
only negative feedback (increased uptake of CO5 by terrestrial ecosys-
tems). Models, field, and EO driven studies have reported varying
sensitivity of the terrestrial ecosystems to increased atmospheric con-
centration of CO2 (Chen et al., 2024; Keenan et al., 2023; Tian et al.,
2020; Smith et al., 2016; Liu et al., 2019). These differences could
contribute significantly to the C budget especially in the Arctic and
sub-Arctic ecosystems. Consequently, net C uptake, its allocation to
plant tissues (e.g. foliar, litter, and root), their residence time, and C
stock of live and dead biomass pools under changing climate remain
especially poorly understood.

In light of these knowledge gaps, we investigated the boreal peatland
plant C cycling under the warming climate using an intermediate
complexity model; Data Assmilation Linked Ecosystem Carbon model
version 2 (DALEC2) (Bloom and Williams, 2015; Williams et al., 2005)
calibrated using a Bayesian model-data fusion (MDF) framework called
CARbon DAta MOdel fraMework (CARDAMOM) (Bloom et al., 2016).
CARDAMOM probabilistically estimates the parameters of DALEC2
using a combination of eddy covariance (EC) information and EQ for
Bonanza Creek rich fen in Alaska, USA. In this study we seek answer to
two research questions and test four hypotheses (H):

1. What drives the interannual variability of CO; fluxes at the site?
a. Hj: Production has increased due to CO, fertilisation
b. Hj: A reduction in decomposition has driven the C balance.
2. What is the internal carbon allocation patterns during the study
years?
a. Hj: Fractional allocation of photosynthate will be greater to fo-
liage than fine root
b. Hy: Fractional allocation of photosynthate to wood / structural C
(DALEC2 representation of the structural C includes coarse roots)
will be significantly greater than foliage.

2. Materials and methods

In this study, a Bayesian MDF framework, CARDAMOM, is used to
calibrate an intermediate complexity model of the terrestrial ecosystem
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(DALEC2) at site scale using location specific biophysical and biogeo-
chemical observations (outlined below). We examined the meteorolog-
ical and biophysical factors that govern the interannual variability of
CO4 fluxes and plant C traits describing internal dynamics such as
photosynthate allocation to different plant tissues, residence time of C in
the live and dead biomass pools by considering a seven-year period at
weekly time-step (2014-2020). For this, we initialized the model with in-
situ observations of soil organic carbon stock (SOC), aboveground
biomass (AGB), and fine root C stock (Table 1). The model was cali-
brated with publicly available EC tower dataset (US-BZF, (Euskirchen,
2022a)), and EO. We used the model retrieved C variables (NEE, GPP,
Reco, and LAI) to investigate the reasons behind the inter-annual vari-
ability of plant C dynamics and C uptake at the site scale. Additional
synthetic experiments on the calibrated model were caried out to
examine the individual effects of the climatic drivers on the inter-annual
variability of GPP, LAI and heterotrophic respiration (Rp). The study
site, model inputs, model, Bayesian framework, synthetic experiments,
and statistical tests performed are outlined below.

2.1. Study site

Bonanza Creek is a rich fen peatland situated ~45 km southeast of
Fairbanks in interior Alaska (64.82°N, 147.87 W). The site is positioned
within the Tanana River floodplain and is characterised as rich fen (pH
5.2-5.4). The vegetation is comprised of marsh cinquefoil (Potentilla
palustris), wheat sedge (Carex atherodes), water horsetail (Equisetum
fluviatile) and a ground cover mostly comprised of brown mosses (Dre-
panocladus aduncus and Hamatocaulis vernicosus) and sparse Sphagnum
spp. (Euskirchen, 2022). The site is part of a long-term ecological
experimental study dating back to 2005. The total above ground carbon
stock for the year 2009 was 282 (SE: + 49.165) gC m™? and the ancillary
biomass data indicates an above ground net primary productivity (NPP)
0f 186.5 (+ 63.16) gC m™ year and a maximum vascular green area of
around 2.5 m? m™, achieved in summer season. The depth of peatis ~1
m and is within an area of discontinuous permafrost with seasonal
freezing. The long-term (1917-2000) mean annual temperature is
-3.1°C. In comparison, the mean annual air temperature for 2014-2020
was -0.95°C. In accordance with the updated Koppen-Geiger climate
classification scheme, the site falls within the sub-Arctic climate (con-
tinental, warm summer, and without a dry season; Dfc zone) (Kottek
et al., 2006).

2.2. Inputs

We used an array of observations spanning in-situ inventory and EC,
along with EO and databased information. NEE and night-time parti-
tioned Reco (Reichstein et al., 2005) were extracted from EC (US-BZF,
Euskirchen, 2022a). We chose night-time partition modelled data over
day-time partition because it aligns with the in-situ GPP (Churchill

Table 1
In-situ measurements used for the model calibration and validation with
CARDAMOM.

Parameter Value + SE Unit Relevant literature
Total NPP 214.33 + gCm™ Churchill et al.
150.5 year™! (2015)
Belowground (BG) NPP 34.8 + 10.165 gC m2 Churchill et al.
year! (2015)
Aboveground (AG) NPP 186.5 + 63.16 gC m? Churchill et al.
year! (2015)
Aboveground carbon 282 + gC m2 Churchill et al.
stock* 49.165* (2015)
Fine root carbon stock* 247.06 + gCm?2 McConnell et al.
140.86 (2013)

Soil organic carbon (SOC) 64055 + 5000 gC m? Fan et al. (2013)

stock®

*Assimilated data.
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2011; Fan et al., 2013; Churchill et al., 2015). Uncertainty associated
with NEE was assumed to be 0.58 gC m™ day™! based on an analysis by
Hill et al. (2012) and previously applied in CARDAMOM (e.g. Fami-
glietti et al., 2021). Reco uncertainty is composed of the NEE uncertainty
plus the mean mass balance mismatch from the flux partitioning (0.16
¢C m™ day™) and inflated to account for uncertainty in the partitioning
approach totalling an uncertainty of 1 gC m2 day'l. Time series infor-
mation on LAI was extracted from the 300m Copernicus product (Fuster
et al., 2020), using the product provided uncertainty but with a mini-
mum bound of 0.5 m® m™ to account for model-structural uncertainty.
Continuous LAI time series were only available for the months starting
from April until September for most of the seven-year period, while the
rest were absent because of the deciduous nature of the plant foliage. We
assimilated NEE, LAI, and Reco at weekly timestep and the in-situ SOC
stock and fine root C stock were used for the model initialisation. The
aboveground C stock data was assimilated as time series where it was
used as a point in the first week of 2014, leaving the rest of the time steps
empty. We assimilated EC and LAI data from the alternating years
(2014, 2016, 2018, 2020). The remaining EC and in-situ data were used
for model validation (see Table 1 for the list of in-situ data).

2.3. Climatic drivers

A set of weekly time-step meteorological data (SI table 2) was
required as model drivers. We used the atmospheric CO2 concentration
for 2014, 2015 and the first six months of 2016 from the nearby black
spruce forest EC data (US-BZS, Euskirchen, 2022b), since the measure-
ments for this period were unavailable for the rich fen peatland.

2.4. DALEC2

DALEC2 is a C mass balance model representing four live biomass
pools and 2 dead biomass pools (Fig. 1). Parameters within DALEC2
represent the initial C states in the first time step and define the internal
C-cycling and their sensitivity to the environment (Table S1).

Photosynthesis, GPP, is estimated as a function of leaf area, canopy
photosynthetic capacity, temperature, shortwave radiation, and atmo-
spheric CO5 concentration by the aggregated canopy model version 1
(ACM-1) (Williams et al., 1997). Autotrophic respiration (R,) is esti-
mated as a fixed parameterizable fraction of GPP, the remainder being
NPP. NPP is then allocated to the four live biomass pools using fixed
fractions retrieved during the calibration process. Canopy growth is
determined by a combination of direct allocation of NPP and C supply
from a labile pool based on a day of year model. Canopy senescence to a
litter pool is determined by a day of year model. The litter pool is either
decomposed to SOC or released as Ry, based on an exponential temper-
ature function. Mineralisation of SOC also follows an exponential tem-
perature function.

GPP R

NPP

O
O
NPP allocation

Live biomass
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2.5. CARDAMOM

The CARDAMOM MDF framework uses a Bayesian approach with an
Adaptive-Proposal Markov Chain Monte Carlo (AP-MCMC) algorithm
(Haario et al., 2001) to retrieve ensembles of model parameters and pool
sizes (28 parameters; Table S1) for a model that are consistent with the
observations, their uncertainties and ecological theory embedded in
ecological and dynamical constraints (EDCs, Bloom and Williams,
2015). The use of MCMC allows uncertainty characterisation without
assuming the shapes of the distribution. The MCMC with the help of
EDCs, uniform prior ranges (Table §1), and initial prior estimates (where
applicable) retrieve a sample parameter hyperspace. This then becomes
the new prior estimate which is then is tested against the assimilated
data and draws new sets of parameters that are consistent with EDCs and
the other samples are rejected. CARDAMOM analyses each time step
three times (known as chains) independently and assess 100 million
parameter proposals in each chain. 100 subsamples (parameter ensem-
bles) are drawn from each of the three chains for estimating posterior
probability density estimates for each of the 28 parameters. The
retrieved parameter ensembles allow us to directly quantify parameter
uncertainty and through simulating these ensembles, the uncertainty in
the ecosystem C stocks and fluxes. We normalised the likelihood esti-
mates of the posterior parameter probability estimates generated by
CARDAMOM by calculating square root to balance multiple data con-
straints and the imbalance between large volume of EC data compared
to the field observations (Wutzler and Carvalhais, 2014).

2.6. Statistical analysis performed on the model posteriors

CARDAMOM calibrated weekly time-step posterior probability dis-
tributions of C variables, meteorological drivers, and time invariant
parameters along with their characterised uncertainties at 95% confi-
dence interval (CI, it is estimated using quantiles (in fractional form);
0.025, 0.5 and 0.975) were averaged at an annual scale. To assess the
associations between fluxes, parameters, and climatic factors, we
calculated the changes in CARDAMOM profiled probability estimates of
C fluxes relative to the year 2014 to find the driving factors behind the
growth in the production in the ecosystem. Further corroborative
analysis using simple linear regressions answering our research ques-
tions were also made.

2.7. Experiments to analyse the individual contributions of the climatic
drivers in the CO, balance

We designed two simulation experiments on the calibrated DALEC
model for extracting the information on the independent contribution of
the meteorological drivers in CO; exchange. To do this we repeat the
retrieval of the C variables at a fixed atmospheric CO5 concentration

(400.584 ppm, this estimate represents the atmospheric CO2
Foliar Ry,
z c
. F. g
Labile I @
3 229
+ E
% 8
> o
Wood

Dead organic matter

Fig 1. DALEC2 model carbon path.
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concentration on the first week of the study period. and simulated
DALEC and retrieved the C variables. This was then compared with the
original CARDAMOM calibrated DALEC estimates. These original CO5
estimates (from the sensor onboard the EC tower) on average were
increasing during the study period (mean annual estimate is ~ 432
ppm). In the second experiment, we removed the interannual variations
in the meteorological drivers (except atmospheric CO5 concentration)
aggregating by the weekly timesteps and estimated the mean across the
seven-year study period (estimated mean of week 1 for each year, week
2 for each year and so on). We repeated the retrieval of the C variables
again and compared against the CARDAMOM profiled DALEC estimates.

We then isolated the direct CO- fertilisation effect and the indirect
effect through the changes in LAI by driving ACM-1 with the respective
model drivers of the two experiments. The difference in ACM-1 esti-
mated GPP and the respective experiments represent this indirect effect.

All the analysis on the posterior probability estimates generated by
CARDAMOM and outputs from the tests performed on the calibrated
model were done using the R programming language version 4.1.3 (R
Core Team, 2022) in RStudio version 2023.12.0.369 (Posit team, 2023).

3. Results
3.1. Carbon balance

We provide a simplistic representation of the peatland plant C cycle
dynamics (Fig. 2; These estimates are generated from weekly timestep
estimates simulated by CARDAMOM (Fig S1). We validated the
CARDAMOM estimates with the data which were not part of the
assimilation (Fig $2)) starting with GPP. CARDAMOM calibrated DALEC
model estimated, the fen peatland on an average fixed 543.9 gC m?
year! as GPP with an uncertainty (95% CI) ranging from 489.6 gC m™
year! to 597.4 gC m year’. From this, a NPP of 286.5 gC m™ year™
(95% CI: 242.5 g Cm ™~ year™ to 333.6 gC m2 year™) was allocated to the
four live biomass pools represented in DALEC, giving a plant carbon use
efficiency (CUE, NPP: GPP) of ~0.52. While the foliage C pool got 129.8
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gC m2 year'1 (95% CI: 77.8 gC m? year'1 to 243.8 gC m? year'l) for the
seven years, the fine root and structural C pools received only 56.1 gC m”
2 year'1 and 88.8 gC m2 year'1 respectively. These estimates resemble
the field data closely (Table 1, Table S3). We estimate that labile C pool
takes up the second largest share of the NPP after foliage (116.9 gC m?
year with 95% CI: 75.3 gC m™ year™ to 148.5 gC m? year™) which is
then used for leaf flushing during the spring onset.

DALEC estimate of the fine root C stock; 252.8 gC m2 (Fig. 2 & 5b,
95% CI: 136.5 gC m™ to 406.9 gC m2) accurately represent the bio-
physical conditions at the site (in-situ data 247 + 145 gC m?,
(McConnell et al., 2013; A meta analysis of published literature is pro-
vided in Table S3). CARDAMOM profiled mean annual estimates of
structural, labile and foliage C stock were 327.6 gC m™ (95% CI: 172.6
gC m? to 433.8 gC rn'2), 70.8 (95% CI: 39.7 gC m? to 95.7 gC m) and
136.3 gCm™ (95% CI: 83.2 gCm™ to 182.1 gC m™2) respectively (Figs. 1
& 5b). From this live biomass pool, due to foliage and fine root mor-
tality, litter C stock accounts for 100 gC m> (Fig. 5b; 95% CI: 42.2 gC m?
to 1186.9 gC m?) annually. CARDAMOM also estimated 6.6 gC m?
year (0.3 gC m? year' to 135.8gC m? year™") to be part of the organic
C stock annually from the litter C pool and 83.0 gC m?2 year'1 (27.5 gC
m™ year to 128.6 gC m™ year™!) from the structural (woody) C pool.
These two dead biomass pools contributed 178.6 gC m? year'1 (50.9 gC
m? year! to 240.6 gC m™ year™!) and 95.3 gC m™? year (40.4 gC m™
year'] to 244.4 gC m? year'l) in that order to an annual Ry, (273.5 gC m?2
year (228.4 gCm™ year to 341.6 gC m? year)).

3.2. The inter-annual variability of COz fluxes

We found the increasing net carbon uptake was most likely driven
primarily by a positive trend seen in the photosynthesis (Fig. 3a; and 6a
(Rgdj = 0.97, p value= 2.62e-05)) and a stable Ry, (Fig. 3b).

This is corroborated by the increasing LAI (Figs. 3¢ & 4a). Relative to
2014, GPP exhibited a steady growth of around 75 gC m? year'] (95%
CI: -41.35 gC m2 year™! to 213.55 gC m? year™) by 2020 (Fig. 3a). The
relative increase of Ry, by ~8 gC m? year'1 (95% CI: -36.03 gC m?2 year'1
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section 2.7

to 44.75 gC m? year'l) (Fig. 3b) was not enough to offset this growth in
photosynthetic capacity. This could be because the rich fen peatland was

(Fig. 7).

flooded (~40 cm above the peat surface) for most of the growing seasons
(Euskirchen et al., 2024). We think any increase in the mean annual
temperature (Fig. 6¢) was not enough to cancel out this effect and the

flooding pointed to an absence of SWC limitation of GPP and NEE
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3.3. Elevated atmospheric CO; concentration drives production

The increase in GPP seen above (Fig. 3a) was caused by the impact of
LAI (Fig. 4a; Rgdj = 0.96, p value = 4.5e-05, residual standard error
(RSE) = 5.35 with 5 degrees of freedom (DF)) and CO,, fertilisation effect
(Fig. 4b, Rgdj =0.29, p value = 0.13, RSE = 23.53 at 5 DF). Our synthetic
experiments show that compared to the original CARDAMOM estimates
(marked as CARDAMOM in Fig. 4c & 4d), the fixed CO, experiment
revealed a decline in GPP (Fig. 4c) and LAI (Fig. 4d). DALEC revealed
similar effects in the NEE and Reco estimates (Fig. S3). The Fixed
Climate experiment did not show any independent climate—carbon
feedback (Fig. S4) suggesting that the effect is restricted to CO; fertil-
isation. Furthermore, we did not see any changes in GPP compared to
CARDAMOM estimates, when the sub-model ACM-1 was driven by the
same synthetic meteorological datasets used in the fixed COz and
climate experiments and thus separated the indirect CO> fertilisation
effect through changes in LAI (Fig. S5).

3.4. Foliage allocation is favoured over the fine root and structural C pool
allocation

Foliage received the largest allocation of NPP (Fig. 5a). On an
average 50% of the NPP is foliage allocation, ~30% of NPP is allocated
to woody (i.e. structural, including coarse root) C pool with the
remaining 20 % of NPP allocated to fine roots (Fig. 5a). Our analysis
estimates that the foliage C pool has a residence time of six to eight
months (Fig. 5c).

The fine roots and woody C pools are estimated to have a C residence
time of 4.6 (95% CI: 4.5 to 4.7 years) years (This is supported by pub-
lished literature. See Table: S3).

4. Discussion

Research on peatland C cycling, associated phenological and bio-
physical traits including carbon allocation patterns and residence times
of the C pools is a necessity and seldom explored to our knowledge. We
investigated the inter-annual variability of the major C fluxes (GPP,
Reco), internal C allocation patterns and C residence times of a sub-
arctic lowland boreal rich fen peatland using model-data fusion. We
found that the increasing production is driven by COa fertilisation by
designing two experiments. We provide a novel and innovative Bayesian
calibration framework, CARDAMOM which can be applied for esti-
mating the plant C cycle budget changes and its internal C traits.
CARDAMOM will provide probabilistic estimates of the model
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parameters and its available inputs accounting for the quantity, their
type, and associated errors. For this CARDAMOM uses APMCMC to run
the model millions of iterations and search for parameter posteriors that
are consistent with the observations. This allows CARDAMOM to pro-
duce large parameter ensembles making uncertainty characterisation
possible. As opposed to traditional models, CARDAMOM does not
impose strict steady state and thus avoids model spin up of 100s of years
to attain steady state. Here CARDAMOM use the EDCs to reach a quasi-
steady state if there is no clear parameter knowledge. This uncertainty
will be registered when determining whether the ecosystem is a source
of C or not (Williams, 2022).

4.1. Inter-annual variability of COz fluxes

The fen peatland exhibited an increase in production and Ry, failed to
counterbalance it. Since we calibrated DALEC2 with weekly time-step
EC tower and EO data for a reasonably longer time-period of seven
years, the model may have captured any short-term perturbance in the
climate and biases in the data inputs which is accounted for in the un-
certainty characterisation. This estimation of the error propagation is a
key factor for detecting trends in the inter-annual variations (Baldocchi
et al., 2018). We found that the uncertainty dominated the mean esti-
mates (Figs. 2, 6a, b, & ¢; RSE: 1.91, Rgdj = 0.97, F-statistic: 216.3 on 1
and 5 DF, p-value: 2.627e-05; RSE: 7.38, Rgdj = 0.59, F-statistic: 9.918
on 1 and 5 DF, p-value: 0.0254; and RSE: 2.14, Rgdj = 0.97, F-statistic:
171.7 on 1 and 5 DF, p-value: 4.618e-05 respectively). This uncertainty
could originate from the lack of sufficient data on the pool sizes, internal
fluxes, and model structure (Table 1, Table S1). For example, litter, and
fine root C stock uncertainty have a huge 95% CI of 42.2 gC m 2 to
1186.9 gC m™ and 136.5 gC m™ to 406.9 gC m™? respectively (Figs. 2, &
5). Though, the trend in the mean annual estimates of CO fluxes implies
at plant growth, we did not observe an explicit interannual variation.
This is partly due to the uncertainty in the interannual estimates.

Several recent studies have shown a production-driven greening ef-
fect globally (Piao et al., 2020) and in the Arctic (Ackerman et al., 2017;
Arndt et al., 2019; J. Jia et al., 2009; Myers-Smith et al., 2011, 2015,
2020). This implies that the browning trend reported by Phoenix &
Bjerke (2016) for the period 2011 to 2014 may have been a local
short-term temperature acclimation trend. Although the global and
Arctic greening trend has been explained by land surface temperature
(Hopple et al., 2020; Li et al., 2023), our results do not show temperature
sensitivity of GPP. Instead, the increase in GPP is driven by higher at-
mospheric CO, concentration.

1.00 7 2000 1 20 A =
a b " b .
= & =
[=] — 2
§ 0.75 ""E 1500 A o. é 15 4 . o
& y,l @] e = @
g L te 2
= = 1000 1 . -5 10 . °
g 0.50 2 * o -
2 & =] 5 ; .
- L] w
S [ & S 5 RN
@ 500 §7 . *
S 02s- WL i
0 <«
o % > 2 & 8 & . . , r .
% &L S oY Y & & z Az o &
3 < o A S SR, o A (O (LR
d o N o &
NP o & Y &Y <¢°\& NV < SR

Fig 5. a: Mean annual NPP allocation fractions, b: C stock, and c: mean residence time of the five C pools estimated from the 300 ensemble members. The points

indicate respective ensemble members.



S. Thayamkottu et al.

~100 1 TraT o —T—
8
> 50 1
=
o U7
20
= =50 4
m
Z-100 { LL L
R,;=097 [—
-150 P value: 2.62e—05 - ull
510 530 550 570 590
GPP (g C m” year”)
_ 100 7 C
g 501
-
r'IE 0 1
&)
20 =501
&
=~ 100 1
~150 R, =097 pvalue: 4.61e8e—05

0.875 0900 0925 0950 0975
LAI (m’m?)

Agricultural and Forest Meteorology 359 (2024) 110261

1001 + b T B
ﬁE 50
-~
QE 01 4 ¢
O
50 =50 -
LLE—IOO. 1 AL 1l
Z L

-150 R:W =0.59 p value: 0.02 =
270 273 276 279 282
R; (g C m” year")
0 - @
d o .

5
©-104 i
=
© [ ]
sn—20 |
o L ]
23
m
Z

30] 4

=2 - i)

Temperature .. (°C)

Fig 6. Association within CARDAMOM profiled median estimates of a: GPP & NEE, b: Ry, & NEE, c: LAI & NEE, d: mean annual temperature and NEE (marked as red

points). The error bars represent the 95% CL

4.2. COg fertilisation effect on greening

We separated the impact of atmospheric CO5 concentration on GPP
from climatic drivers (minimum and maximum temperature, incoming
shortwave radiation, and precipitation) by two synthetic experiments
with the calibrated model. In the Fixed CO; experiment we fixed at-
mospheric CO; at 400.584 ppm and left the other model drivers un-
changed. The experiment revealed CO; concentration as the limiting
factor for primary production in the rich fen (Fig. 4, Fig. S3). We also
separated the effect of CO> fertilisation through changing LAI.

A manipulation experiment on monoliths from a sedge-dominated
boreal peatland in Canada showed the impact of temperature and At-
mospheric CO3 (Tian et al., 2020). Our work, to the best of our knowl-
edge, is the first long-term ecosystem-scale study to partition between
effects on peatland C dynamics. While we found evidence of CO, fer-
tilisation effect on peatland production, temperature (McPartland et al.,
2019) and other climatic factors including SWrad and precipitation did
not show any impact on plant productivity (Fig. S4). Still, there is recent
evidence on both individual and synergistic effects of climatic factors on
plant community structure, species abundance, and succession. How-
ever, these aspects are not directly in the scope of this study.

4.3. Role of soil moisture in the CO2 fluxes

It is worthwhile to note at this point that DALEC2 does not include
soil moisture input or parameterisation of moisture-related abiotic fac-
tors. Soil moisture did explain almost 60% of the variations in mean
annual estimates of GPP (Fig. 7c; Rgdj = (.59, F-statistic: 9.273 on 1 and
5 DF, p-value: 0.05) as a positive linear trend similar to Evans et al.
(2021). The mean annual estimates of SWC, filling around 60% to 70%
of soil pore space, did not represent the saturated conditions of growing
seasons as they were skewed from the winter-frozen and thus dry
readings. Neither did weekly estimates of SWC explain any variation in
the COz2 fluxes (Fig. 7a; & d). On closer inspection of the growing-season

variability of C fluxes, we got a similar outcome (Fig. 7b & 7e).
Apparently, all growing season variation in SWC (Fig. 7a & 7b) happens
during saturated conditions. In the same vein, Laine et al. (2019) showed
that water table did not have any impact on primary production in a
sub-arctic Finnish fen. But these estimates might not be a realistic rep-
resentation of the site conditions since it was flooded. Analogous out-
comes were reported for leaf production in a bog and poor fen in the
Southern Finland (Koster et al., 2023). Contrasting results were obtained
for a Finnish rich fen (Koster et al., 2023). The site is reported to have
contribution to GPP from algal production during the periods of inun-
dation (DeColibus et al., 2017; Wyatt et al., 2012), especially in previ-
ously drier sites as opposed to sites with constant inundation (Kane
et al., 2021). Hence it is likely that GPP was influenced by algal pro-
duction during the flood years of 2014, 2016, 2017 and 2018. This might
have contributed to underestimation of CARDAMOM simulated GPP
compared to night-time partition EC data (Fig S1 & S2). In this study, we
excluded soil moisture parameterisation to avoid adding to model
redundancy.

4.4. Allocation to foliage is favoured over the fine root C pool

The greening trend seen in our findings also meant the foliage allo-
cation is favoured over fine root and structural C pools. We think this is
due to the climate warming and CO,, fertilisation effect at the site scale.
This goes against the consensus that these effects force the plants to
allocate more C to fine roots (Malhotra et al., 2020). But since the fen
peatland was flooded for most of the study period, it did not have a
necessity to retrieve water from the deeper soil horizon and hence the
longer fine roots were not present. This could explain the relatively
lower photosynthate allocation to fine roots (Weltzin et al., 2000).
Similar fine root allocation patterns have been reported from the
northern bog and fen ecosystems (Makiranta et al., 2018; Murphy and
Moore, 2010). Several field manipulation experiments have portrayed
the allocation patterns under warmer and wetter conditions. The
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experiments done by Weltzin et al. (2000) revealed a belowground
allocation preference in both fen and bog systems under drier conditions
and with higher water table levels aboveground allocation prevailed.
This supports our findings (BNPP of 62.5 + 7 gC m2 year™ against our
56.1 gC m? yea.r'1 Figs. 2 & 5a). Their findings imply an increasing
aboveground allocation under warming conditions which corroborate
the foliage allocation preference seen in our investigation. It is un-
equivocally clear that in Bonanza Creek, flooding made the allocation
dynamics complicated. We think this is probably why while CO, fertil-
isation had an impact on the production, increasing temperature did not
have the same efficacy. Laine et al. (2019) found that drying is the
dominant factor in CO; dynamics than warming, supporting the allo-
cation patterns seen above.

4.5. Implications for the boreal zone peatlands

High latitudes, including the sub-Arctic, are experiencing unprece-
dented warming from the recent decades. This could lead to increased
respiration of the CO; trapped in the northern peatlands that cover 3.7 =
0.5 million km?, shifting them from a sink of C to a source. On the other
hand, the warming and rise in atmospheric CO; concentration is
enhancing C uptake during the growing season (IPCC, 2023). The fer-
tilisation effect is to an extent offset by the increased peat respiration
during the winter (Rafat et al., 2021). Peatlands with different trophic
status and vegetation type will respond variously (Dieleman et al., 2015;
Dorrepaal et al., 2004, 2009; Laine et al., 2019). Rich fens in particular
may respond to climate change faster (Koster et al., 2023). Despite
ongoing solid research on peatland C cycling and its climatic forcing,
and better constraints on the uncertainty characterisation of C dynamics
as seen in this study, the estimates are still largely uncertain (This study,
Spawn et al., 2020). This demands the strengthening of peatland plant C
specific inventories and model restructuration to suit peatland hydrol-
ogy and ecosystems.
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