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Rapid warming and increasing disturbances in high-latitude regions
have caused extensive vegetation shifts and uncertainty in future carbon

budgets. Better predictions of vegetation dynamics and functions require
characterizing resilience, which indicates the capability of an ecosystem
torecover from perturbations. Here, using temporal autocorrelation of
remotely sensed greenness, we quantify time-varying vegetation resilience
during 2000-2019 across northwestern North American Arctic-boreal
ecosystems. We find that vegetation resilience significantly decreased in
southern boreal forests, including forests showing greening trends, while
itincreased in most of the Arctic tundra. Warm and dry areas with high
elevation and dense vegetation cover were among the hotspots of reduced
resilience. Resilience further declined both before and after forest losses
and fires, especially in southern boreal forests. These findings indicate
that warming and disturbance have been altering vegetation resilience,
potentially undermining the expected long-termincrease of high-latitude
carbon uptake under future climate.

Arctic and subarctic regions (hereafter ‘Arctic-boreal’) have warmed
several times faster than the global average since the mid-twentieth
century, with further rapid warming projectedin the coming decades'.
Warmer temperatures are widely promoting vegetation productivity
(thatis, ‘greening’), thereby contributing to increased carbon sink
capacity innorthern highlatitudes®®. However, rapid warmingis also
accompanied by climate stresses and disturbances, including droughts,
permafrost degradation, fires and insect outbreaks™*. Consequently,
Arctic-boreal vegetation exhibited heterogeneous greening and
browning trends along with extensive land-cover changes (LCCs) in
recent decades'’ . Multiscale observations have documented shrub
expansion in Arctic tundra®, boreal forest losses”" and composition
shifts post disturbance'®. Pervasive vegetation changes have profound
yet uncertain impacts on carbon dynamics'®"”"°, energy budgets®*,
ecological stability'® and climate feedbacks'. For example, while Earth

system models typically projectincreased Arctic-boreal biomass and
productivity over the coming decades, the associated uncertainties are
three times the global average change, in part due to underconstrained
vegetation changes®. Long-term changes in Arctic-boreal ecosystem
functions depend not only on the greening and browning trends but
also on the trajectories of intermittent and abrupt vegetation shifts
andtherecovery rate afterwards. Thus, predicting the abrupt changes
and their consequential impacts requires understanding ecological
resilience, that is, when and where vegetation becomes vulnerable
to climate stress and disturbance with a high propensity to cross the
tipping point of enduring vegetation shift™.

Ecological resilience measures the capacity or rate of asystem to
recover from deviated states’ . Here, we define vegetation resilience
as the recovery rate from deviations caused by perturbations to the
equilibrium state. Low resilience before vegetation loss reflects slow
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recovery fromsubtle anomalies of biomass or greenness, possibly due
toimpaired ecophysiological capability to repair partial damage. This
indicatesincreased vulnerability to further climate perturbations and
thusincreased likelihood of approaching a tipping point where abrupt
loss may occur®®~*", Such an early warning signal has been found use-
ful in predicting temperate and tropical forest losses*!. After LCCs
or disturbances, low resilience reflects restricted recovery capability
to the new equilibrium state'®*, possibly dampening the ecosystem
carbon sink'®****, Observational studies have measured boreal forest
resilience by comparing observed growth, density and composition
afterdroughts and fires to those predisturbance'®***. These metrics,
however, mostly measureresilience after disturbance events, with the
exception of diagnosing radial growth before disturbance or forest
loss using tree-ring records***** and are limited by spatial-temporal
coverage. Diagnosingresilience, including that before abrupt changes,
requires a broader scope entailing the ability to recover from pulse
disturbances such as acute droughts and fires but also press distur-
bances related to more gradual changes in climate variables, such as
temperature and long-term moisture availability***°. Doing so allows
detecting ecosystems exhibiting increased vulnerability and lowered
capacity to withstand ecosystem degradation or conversion.

Low resilience is linked with high lag-1 temporal autocorrela-
tion (the correlation between values that are one time step apart)
of system state variables such as biomass or greenness according to
nonlinear dynamical theories”*°, Recent studies have applied such
theories to estimate vegetation resilience change over large areas
using decadal-scale satellite-observed vegetation indices, for exam-
ple, the normalized difference vegetation index (NDVI) or vegetation
optical depth (VOD)***, The rationale behind this approach is that
high autocorrelation indicates slow recovery from anomalies due to
changes in vegetation photosynthetic capacity, thereby leaving the
ecosystem less capable of withstanding further perturbations. For
example, slow recovery has been linked to reduced growth, hydraulic
impairment and depletion of non-structural carbon storage under
drought stress before abruptlosses®®*"**, The existing regional to global
studies have suggested reducedresiliencein the tropicsand arid tem-
perate forests, in contrast to mixed but generally enhanced resilience
in Arctic-boreal regions in response to climate change®*“***, However,
the coarse (5-25 km) spatial resolutions of the existing studies hindered
investigating resilience at ecologically relevant scales and assessing a
multitude of fine-scale environmental controls of resilience trends. In
addition, unlike resilience before vegetation change, applications of
using lag-1 autocorrelation to evaluate resilience after regime shifts,
suchas vegetation loss, have beenrare; however, theoretical analyses
have demonstrated its effectiveness inmeasuring the recoveryrateto
the new equilibrium state***. Applying the theory to observed data
requires a method that allows adaptive estimation of lag-1 autocor-
relation while considering shifted equilibrium state, which will allow
explicitly diagnosing resilience variation both before and after abrupt
changes. Doing sois essential for deriving mechanistic understanding
on the factors driving the emerging resilience signal and leveraging
remotely sensed resilience to better predict vegetation changes and
their impacts on the global carbon cycle.

Here, we address this knowledge gap by focusing on vegetation
dynamics across the NASA Arctic-Boreal Vulnerability Experiment
(ABOVE) core domain, mainly Alaska and northwestern Canada, during
2000-2019, when resilience changed more prominently than in
earlier decades due to increased wildfires and climate warming®.
Previous studies have developed rich datasets quantifying climate
change, disturbances, LCC and multiple environmental conditionsin
this area, offering an ideal testbed to address the following questions™:
(1) What were the spatial-temporal patterns of Arctic-boreal vegetation
resilience change? (2) What environmental conditions could explain the
change patterns? (3) How did resilience vary before and after LCCs or
fire disturbances? To quantify resilience, we used vegetation greenness
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Fig.1|Vegetationresilience pervasively decreased insouthern boreal
forests while increased in Arctic tundra. The map shows the trend of resilience
(posterior mean) from 2000 to 2019 across the ABoVE core domain. Only areas
showing significant trend (two-sided ¢-test a = 0.05) are coloured. The inset
shows the latitudinal variation of resilience trend with a bin size of 0.75°, where
theline and grey band denote the mean and the standard deviation, respectively.
Darker grey polygons delineate the boundaries of Arctic tundra based on
ecoregions of North America from the US Environmental Protection Agency.
Areas with low availability of valid data, dominance of water bodies or non-
significant resilience trend are shown in white.

asthestate variable, measured by the enhanced vegetationindex (EVI)
from the moderate resolutionimaging spectroradiometer (MODIS) at
a300 mspatial resolutionand al6-day temporal resolution®®, We first
estimated time-varying lag-1autocorrelation of EVIwith al6-day inter-
val using a Bayesian dynamic linear model (DLM), which disentangles
autocorrelation from concurrent signals arising from trend, changing
equilibrium state and climate forcings (Extended Data Figs.1and 2)*,
Becausea high autocorrelation indicates low resilience?*°*2, we used
the posterior mean of negative lag-1 autocorrelation of EVI as a proxy
of vegetation resilience. We quantified long-term trend of resilience
across the domain and identified environmental factors controlling
its spatial pattern for areas without LCC or recorded disturbance. We
then focused on areas that experienced climate-driven LCCs or fire
disturbance to characterize annual resilience variation before and after
these abrupt changes. We found that resilience pervasively increased
in Arctic tundra but decreased in southern boreal forests. Reduced
resilience was mostly likely to occurinwarm, dry, high elevation envi-
ronments with dense vegetation cover and was further exacerbated by
LCCsand firedisturbance. Reduced resilience probably undermines the
projected productivity increase in the coming decades with continued
climate warming.

Spatial and temporal pattern of vegetation
resilience

Boreal forests with high tree cover experienced extensive resilience
declines, at fast rates in interior Alaska and the southeast portion of
the domain (Fig. 1 and Extended Data Fig. 3). In contrast, the Arctic
tundra exhibited widespread resilience increases. Across the latitu-
dinal gradient, the average resilience reduced at faster rates at lower
latitudes, switching from positive to negative trends at -61° N (Fig. 1).
Throughout the 3.6 M km?domain, resilience significantly increasedin
56% ofthe vegetated area, whileitsignificantly decreased in36% during
2000-2019 (two-sided t-test a = 0.05) (Fig. 2). Thelarge areal fraction
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Fig.2| Greening does not always enhance vegetation resilience. a-f, The
outer pie shows the areal fractions of significantly (two-sided ¢-test a = 0.05)
increased (R+), significantly decreased (R-) and non-significant (R-NS)
resilience trend among all vegetated areas (a) and the major land-cover types,
including evergreen forest (b), deciduous forest (c), shrubland (d), herbaceous (e)

and sparsely vegetated (f). The nested inner pie shows the areal fractions of
significant greening, browning and non-significant (EVI-NS) greenness trend
within each resilience trend group (outer pie). The number of pixels in each panel
isnoted in round brackets.

of significant resilience trends benefited from the Bayesian model,
which can disentangle the autocorrelation signal from other com-
ponents blended in the time series (Methods). Among the five major
land-cover types, deciduous forest experienced the most pervasive
resilience decline (75% of deciduous forest area) followed by evergreen
forest (42% of evergreen forest area). By contrast, only 12% and 31% of
sparsely vegetated and herbaceous areas showed resilience decline.

Notably, the spatial pattern of resilience trends is not always
consistent with that of greenness trends. Vegetation greenness sig-
nificantly increased (greening) in 23% of the domain and decreased
(browning) in 6% of the domain, while the remaining showed no sig-
nificant trend during 2000-2019 (Fig. 2). Most (56%) browning areas
experienced reduced resilience. However, a substantial fraction (31%)
of greening areas also showed reduced resilience, especially in boreal
forests (Extended Data Fig. 3). More than 40% of greening evergreen
forest and >76% of greening deciduous forest showed reduced resil-
ience. A similar pattern holds when excluding areas with recorded
LCC or disturbances (Extended Data Fig. 4). These results highlight
that, although greening is expected to indicate enhanced productivity
and biomass**'?, it does not always enhance vegetation resilience,
potentially predisposing these forests to more substaintial losses due
to future climate stress.

Environmental controls on vegetation resilience
change

Toinvestigate what environmental factors affect resilience trends, we
built arandom forest classification model to explain the sign of resili-
ence change for areas without LCC or recorded disturbance during
2000-2019. The predictors include climate, permafrost, topography,
land cover, soil moisture and soil nitrogen. These factors explained
81.4% [80.7%, 82.1%] of the spatial variation in the sign of resilience
change [95% confidenceinterval]. Vegetation resilience was most likely

to decrease in areas with high summer air temperature, deep active
layer thickness (ALT), high elevations, dry winters with low precipitation
assnow, high summer EVI, low soil nitrogen contentand dry summers
with high climate moisture deficit (Fig. 3). Notably, factors represent-
ing aboveground (summer air temperature) and belowground (ALT)
temperature were the mostimportantin explaining resilience change.
Resilience was more likely to decrease if long-term average summer
air temperature was >12.5°C or if ALT was deeper than 1.5 m. Com-
pounded with high temperature, limited moisture supply as measured
by low precipitation as snow (<180 mm) and high summer climate
moisture deficit (>40 mm) further contributed to resilience reduction.
Resilience also tended to reduce in areas with dense vegetation cover
compounded with low soil nitrogen availability, which is indicative of
nutrient limitation***". Conversely, resilience change was minimally
explained by the trend of summer EVI or land-cover type, indicating
thatthereduced resilience was not specific togreening/browning areas
oragiven plant type but primarily regulated by thermal, moisture and
nitrogen regimes.

Resilience before and after LCC or fire

After climate-driven LCCs (changes not caused by recorded fire, log-
ging orinsects™) and fires, the growing season EVI exhibited hetero-
geneous variations, reducing in 45% of forest loss areas and 61% of
fire-disturbed areas 5 years after (Extended Data Fig. 5). The changed
EVIwas used to estimate the shifted equilibrium states in the Bayes-
ian DLM and the corresponding resilience after changes (Methods).
We further examined how the emergent resilience trajectories were
affected by the abrupt changes by comparing to the baseline resili-
ence unaffected by the changes. We calculated the fractions of pixels
experiencing resilience lower than the baseline between 5 years before
and after the abrupt changes (Methods; examples in Supplementary
Fig.1). Focusing on areas with LCC, 76% and 82% of deciduous forest
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Fig. 3| Vegetationresilience was more likely to decline in warm, dry regions
with deep active layers, high elevation, high greenness and low soil nitrogen.
a, The relative importance of environmental factors predicting the direction

of vegetationresilience change. A larger mean decrease in accuracy indicates
greater importance. The bar height and the error bar show the median and the
95% uncertainty intervals of mean decrease inaccuracy across 100 simulations,

respectively. b, Partial dependence plots illustrating the response of the
classification probability to each of the top eight predictors. The lines and bands
indicate the medians and the 95% uncertainty intervals across 100 simulations
for the probability of increasing (R+) and decreasing (R-) resilience, respectively.
ST, summer temperature; ALT, active layer thickness; PAS, precipitation as snow;
CMD, climate moisture deficit.

losses were preceded by reduced resilience 3 and 1 years before, respec-
tively (Fig. 4a). Evergreen forest loss was only frequently preceded by
reduced resilience onthe southern edge of the study domain (Fig. 4b).
Resilience also reduced in shrublands or non-woody ecosystems before
being colonized by deciduous forests. The reduced resilience provided
early warnings before the changes, with stronger signals atshorter lead
times. The early warning was probably contributed by impaired eco-
physiological functions under moisture stresses, which were typically
severer duringthe low-resilience periods than the long-term averages
(Supplementary Fig. 2). Notably, forest losses led to persistently low
resilience afterwards. By contrast, shrub gain, which primarily occurred
in Arctic tundra, contributed to enhanced resilience both before and
after. Consistent across all the LCC types, resilience reduced more
frequently in lower latitudes (Fig. 4b).

After fires, most evergreen forests (74%) and deciduous forests
(89%) remained at lowresilience 5 years after, suggesting limited recov-
erywithin5 years postfire, especially in forests compared to non-forests
(Fig. 4c). Given that more areas exhibited low resilience after fires
(Fig. 4c) than after LCC (Fig. 4a), fires probably impaired ecosystem

resilience more than climate stress alone. Nevertheless, as reflected by
the variability across and within the latitudinal groups (Fig. 4d), post-
fire resilience was probably modulated by complex interactions such
as among fire severity and postfire climates. To account for different
ecosystem dynamics after LCC and fires, we also tested intervening the
Bayesianinference at the time of change by reducing the weight of prior
knowledge learned from observations before the change while mostly
relying on limited number of new observations afterwards to estimate
resilience (Methods). The results show substantial uncertainty in the
aggregated fraction of resilience reduction especially within 3 years
after LCC and fires due to limited observations (Extended DataFig. 6).
However, the reduction of resilience 5 years after remains robust in
lower latitudes. Thus, while further research is needed to evaluate
the heterogeneous patterns and uncertainties of resilience trajecto-
ries, the consistent finding that LCC and fire disturbances were fre-
quently accompanied by reduced resilience highlights their prominent
impacts on diminishing ecosystem resilience on the southern edge of
the domain. Results showing F(R-) calculated by comparing resilience
inthetarget year to the spatial baseline are in Extended Data Fig. 7.
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Fig.4 |LCCs and fires were frequently accompanied by reduced resilience.
a, The fraction of resilience lower than the baseline (F(R-)) between 5 years
before and after climate-driven LCC, grouped by LCC types; that is, evergreen
forest loss (EF.loss), deciduous forest loss (DF.loss), shrub loss (SHB.loss),
deciduous forest gain (DF.gain), evergreen forest gain (EF.gain), herbaceous
gain (HB.gain) and shrub gain (SHB.gain). An F(R-) >0.5 indicates that most
pixels in this group experienced reduced resilience. b, The latitudinal variation
of F(R-) grouped by a bin size of 0.75° for each LCC type. ¢,d, F(R-) before and
after fires grouped by the prefire land-cover types (c) and the corresponding
latitudinal variation (d), similar to aand b. The colours represent 5 years before
(-5) and after (+5) the LCC or fire and so forth. F(R-) was calculated by comparing

@ +

[] +3 [|] +5 years

resilience (posterior mean) in the target year to the temporal baseline; that is, the
resilience at the same location averaged between 2003 to 5 years before changes.
The bar heightinaand cis the mean F(R-) across 100 sets of bootstrapping pixels
foreach group (n=10,000 for each set). The thick black vertical line shows the
standard deviation, suggesting robust estimates across sampled pixels. The
lower/upper end of the thingrey vertical lineis F(R-) quantified by comparing
the upper/lower boundary of resilience (posterior mean + posterior standard
deviation) to the abovementioned baseline, indicating large posterior range of
resilience estimates post changes. The lines and shaded bands in b and d show
the mean and standard deviation of F(R-) from 100 bootstrap resampling.

Discussion

We found that the resilience of Arctic tundra benefited more from
recent warming than boreal forest did. This is probably due to allevi-
ated constraints of temperature and resultantly nutrient availability
on growth, establishment and post-disturbance recovery of tundra
vegetation'*~**3* Nitrogen-fixing shrubs can increase the nitrogen
inputs and create a positive feedback for shrub gain®. As a result, stead-
ily enhanced tundra vegetation growth and shrub gain could enhance
ecosystem productivity and structural diversity, thereby hypothetically
contributing to enhanced ecosystem resilience (Fig. 4a)'**°. In boreal
forests, although a previous global analysis covering southeastern

Canada and Eurasia suggested increased boreal forest resilience®,
our results indicate generally reduced resilience in western Canada
and interior Alaska, especially in areas with high heat and mois-
ture stresses. This contrast probably arises from the strong impact
of droughts on boreal forest resilience and different methods used
to calculate lag-1 autocorrelation. To evaluate the impact of the
methods, we replicated the method used in the previous global
analysis using our data and found similarly increasing resilience in
parts of the southeastern domain*. However, the replicated spatial
patternshowed much greater spatial heterogeneity probably duetoa
higher dataresolution used here and substantial estimation uncertainty
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duetolarge fractions of missing EVI data and uncertainties in the esti-
mated climate-induced autocorrelation—two challenges more promi-
nentwithinthe domainthanataglobal scale (Extended DataFig. 8). The
difference highlights thatresilience estimates depend on the choice of
methods and study domains. The Bayesian DLM here produced robust
estimates relatively insensitive to specific values of posterior ranges
and model hyperparameters (Extended Data Figs. 9 and 10), benefiting
from joint estimation of autocorrelation and climate impact without
interpolating missing data, whichis known tointroduce artifactsinto
autocorrelation estimates™. The pervasive resilience trends inferred
from the Bayesian model (Supplementary Method 2) suggest promi-
nent changes in vegetation resilience over the recent decades, while
future work is needed to further examine the effectiveness of remote
sensing derived resilience metrics by relating it to ground observed
ecological transitions and recovery types. We note that uncertainty
exists in the divide between enhanced and reduced resilience across
the latitudes due to posterior uncertainty of the estimated autocor-
relation and the information discounting parameter in the Bayesian
model (Extended Data Figs. 9 and 10). However, the contrasting pattern
between tundra and boreal forest regions is robust, with higher confi-
dence in the declining resilience of boreal forests than the enhanced
resilience of tundra vegetation.

The results of the resilience change pattern and its response
to environmental conditions (Fig. 3) are supported by previous
experiments and field observations'®***%°*%5° patterns of resili-
ence reduction conform with drought-induced browning'?, reduced
productivity®®, limited radial growth® and mortality®, which have
already been increasingly detected in boreal forests of northwestern
North America, particularly on the warmer and drier extents of the
biome. Specifically, previous observations suggested that warming
probably inhibited tree growth in southern boreal forests, especially
those with limited moisture supply®®, which is in line with pervasive
resilience decline in warm and dry boreal forests found here. Remote
sensing revealed that postfire recovery of tree cover was much slowerin
the south thanin the north of North American boreal forests®, support-
ing the latitudinal gradient of postfire resilience (Fig. 4d). Furthermore,
deeper active layers have been found not to sustain boreal productivity
inthe long-term but could promote drainage and make boreal forests
more susceptible to drought®’. Resilience decline with soil nitrogen
is also supported by observations suggesting that nutrients limited
productivity and postfire recovery in the already nutrient-limited
Arctic-boreal ecosystems®***, Despite Earth system model projec-
tions of increasing Arctic-boreal carbon sink, driven by enhanced
boreal forest productivity under warming and CO, fertilization'*,
the expected long-term carbon sink will probably be dampened with
declining resilience in southern boreal forests in northwestern North
America with large biomass and productivity'*****. This is because
reduced resilience implies a higher likelihood of crossing a threshold
of forestloss—as supported by the resultsreported here (Fig. 4) and in
other ecosystems®®*—and a limited capability to recover afterwards.
As boreal forests are generally less resilient to drought compared to
other ecosystems due to low species richness®, declining resilience
under future warming and droughts may further impair their stability®.

Our findings suggest that greening does not always enhance resil-
ience (Fig. 2). Increased greenness is positively correlated with radial
growth, productivity, biomass and tree and shrub expansion'®***’,
which could in theory allow greater capacity to absorb climate per-
turbations. Although we indeed found that greening co-occurred with
increased resilience more frequently than browning did, greening
also frequently co-occurred with reduced resilience in boreal forests
(Extended Data Fig. 4). Spatial discrepancy between greening and
enhanced resilience was also found in China’s loess plateau®®. This
could partially be attributable to the fact that ecosystem degradation
to herbaceous land covers may also exhibit greening®. Additionally,
the contrastimplies that greening in these areas may not be sustained

inthelong term, subject to ahigher likelihood of changing land cover
or productivity changes associated with shifting biomes. This hypoth-
esis is supported by previous findings indicating that Arctic-boreal
ecosystems are hotspots of structural overshoot®”’, That is, periods
with favourable climates could temporarily enhance growth, leading
it to surpass the longer-term environmental carrying capacity, thus
making the ecosystem more vulnerable to climate stresses. Future work
is required to assess the spatial correspondence of resilience decline
withstructural overshoot. Collectively, assessing future Arctic-boreal
vegetation change and itsimplications on carbon budget requires con-
sidering both the transient trends of greening/browning and the likeli-
hood of abrupt biome shifts reflected by resilience to perturbations.
Several types of climate-driven LCCs were preceded by
reduced resilience, an early warning of vegetation shifts (Fig. 4a and
Extended Data Fig. 7a). More often than not, forests that experienced
climate-driven loss exhibited abnormally low resilience 1-5 years
before, particularly in the southern boreal forests, alead time compa-
rable to that identified for drought-induced temperate forest loss™,
Given that multiple ecosystem regimes varying from treeless to for-
est co-exist under similar boreal climate, reduced resilience offers a
promising tool to predict abrupt biome transitions™. The occurrence
of early warning requires long legacy effects of acute stress or chronic
stress which slowly impairs ecophysiological functions, supported
by multiscale studies in high-latitude ecosystems™ . For example,
measurements of southern Eurasian boreal forest species suggested
that short-term exposure to extreme heat during summer could cause
long-term damage to plant photosynthetic apparatus, which may
trigger large-scale forest loss in succeeding years™. Warming experi-
ments further suggested that even modest warming could substantially
limit boreal species recruitment and survival, indicating potential
warming-induced biome transition under chronic warming”. Unlike
chronicclimate stresses, fires are acute disturbances and thus are less
likely to be preceded by reduced resilience”. While our results support
this expectation in most non-woody ecosystems, reduced resilience
was also detected before fires, especially indeciduous forests (Fig. 4¢).
This pattern could result from fire occurrence being coupled with
chronic stress in woody ecosystems, such as low fuel moisture due
to long-term climate stress™. The long ecological memory and fire-
climate coupling in Arctic-boreal ecosystems highlight the potential of
leveraging remotely sensed resilience to monitor and predict abrupt
vegetation changes. Nonetheless, resilience did not always reduce
and did not reduce with consistent lead times and magnitude before
allabrupt changes. Possible reasons include that different ecosystems
could have varying capacities to operate under low resilience and
experienced different perturbations which eventually contributed
to vegetation changes. Additionally, remotely sensed LCCs may not
necessarily be regime shifts but could result from gradual fractional
changes of co-existing vegetation types. Thus, decreased resilience
across ecosystems may not indicate the same risk of vegetation loss.
Future work is needed to assess the impacts of these factors and quan-
tify the capacity of using reduced resilience to predict vegetation shifts.
Although the estimated resilience changes are robust with respect
to model uncertainty, we note that further uncertainty still remains
due to challenges in high-latitude optical remote sensing that could
undermine data quality, such as low sun angle, cloud cover, snow
and standing water®. Greenness as an optical property does not
capture multiple ecological and biophysical aspects of vegetation
states such as signals from mixed canopy layers and species. Thus,
the ecosystem-scale resilience of greenness estimated here may dif-
fer from the resilience of photosynthetic capacity, biomass, commu-
nity composition and structure”. Nevertheless, opportunities exist
in leveraging satellite-detected areas of low resilience to diagnose
its implications on reduced growth and productivity. Moreover, the
post-disturbance resilience quantified here measures the recovery
rate to the new equilibrium states which may be different from the
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prechange states (Extended Data Fig. 5). It offers a starting point to
address the challenge of monitoring ecosystem recovery at a large
scale™ ™, assess discrepancies with the recovery of ecosystem com-
position and carbon sink' and identify ecological and environmental
factors that could contribute to bridging the gaps. Doing so will con-
tribute to providing operational indicators of Arctic-boreal ecosystem
change and functions™.

In summary, our results reveal that vegetation resilience mostly
increased intundra ecosystems butsignificantly decreased in southern
boreal forestsin northwestern North America, particularly in warmer
and drier areas, and further diminished along with LCCs and fires.
The declining resilience, including that in greening areas, indicates
thatimpaired ecosystemstability could potentially dampen expected
increase of the Arctic-boreal carbon sink strength under future climate.
Given the expected increase of climate variability and disturbances,
reduced resilience in southern boreal forests implies a higher risk
of biome transitions. Our findings motivate further modelling
and observational research to better characterize the roles of eco-
system resilience in predicting vegetation shifts and carbon budgets
of Arctic-boreal ecosystems.

Methods

The area of interest is the vegetated area within the NASA ABoVE core
domain. Vegetated area refers to areas with land-cover type as ever-
green forest, deciduous forest, shrubland, herbaceous, sparsely vege-
tated, barren, fen and bog in 2000%. The 3.6 M km? region spans over
Alaska and northwestern Canada, where the ecosystems are facing
rapid climate change and increasing disturbances. Rich datasets on
LCC, disturbance and environmental conditions have been developed
for the domain, allowing anindepthinvestigation of vegetation resili-
ence change andits driving factors. We estimated vegetation resilience
foreach 300 m pixel within the domain from the temporal variation of
the EVI witha16-day interval. Following established studies?**°*?, we
used the negativelag-1autocorrelation of EVI as a proxy of vegetation
resilience. That is, a high autocorrelation indicates low resilience.
Here, we considered the temporal variation of EVI to be simultaneously
driven by trend, seasonality, climate forcing and autocorrelation. To
disentangle autocorrelation from the blended signal, we used a Bayes-
ian time-series model. The model estimated time-varying resilience
(negative lag-1autocorrelation of EVI) for every 16-day interval for each
pixel, which was then analysed to (1) quantify the long-term trend of
resilience using a simple linear regression; (2) for areas unaffected by
LCCs or disturbances, identify critical environmental controls on the
sign of resilience trend using random forest classification models®;
and (3) for areas experiencing LCC or disturbed by fire, investigate
resilience change before and after the change/disturbance. Next, we
describe the datasets, the Bayesian model setup and the specifics in
addressing each of the three objectives.

EVI, land cover, disturbance and environment datasets

To characterize the variation of vegetation state, we collected 250 m,
16-day EVIrepresenting greenness from the MOD13Q1v061 for 2000-
2019*, Observations affected by snow, ice or cloud according to the
quality-control band and EVI values <0.1 were treated as missing data.
Areas with >75% missing data amongall 16-day time steps were excluded
from the analyses. The polar orbit and short revisit time of MODIS
provide valid observations more frequently in Arctic-boreal regions,
whichis essential for effectively detecting the autocorrelation signal.
Vegetation state variables used in previous large-scale studies included
the NDVIand its derivative and the VOD*****?_EVIwas used here because
it incorporates atmospheric corrections and subdues canopy back-
ground noises and s less susceptible tosaturationin boreal forests than
is NDVI**. Unlike VOD which requires merging records from multiple
instruments to obtain sufficiently long time series, making the esti-
mated resilience unreliable®, MODIS EVlis consistent across the record.

Land-cover and annual changes were characterized usinga30m
Landsat-based annualland-cover productacross the ABoVE core domain
from 2000 to 2014 Disturbances were identified from two datasets:
(1) Landsat-based annual disturbance agents of fire, insects and logging
ata30 mresolution across the ABoVE core domain from 2000 to 2012°
and (2) MODIS-based annual fire locations at a 500 m spatial resolution
for Alaska and Canada from 2001 to 2019°2. Because the former under-
estimated disturbance occurrences at the end of the time frame (2011
and 2012) asitsalgorithmrequires sufficient consecutive observationsto
detectadisturbance’, we combined the Landsat-based disturbance maps
during 2000-2010 and the MODIS-based fire maps during 2011-2019.

Dataonenvironmental characteristics include climate, ALT, topo-
graphy, soil moisture and soil nitrogen content. Monthly climate data
from2001t02019 ata 4 kmresolution were obtained from ClimateNA,
aregionally downscaled product from the gridded Climatic Research
Unit time-series data v.4.02 (ref. 86). Climate conditions considered
here included multiple variables of temperature, humidity, climate
dryness, precipitation and snow (Supplementary Table 1). The monthly
climate variables were linearly interpolated to the 16-day timestamps
consistent withthose of EVI. The annual ALT datawere froman-900 m
re-analysis product from the Climate Change Initiative (CCI) of the
European Space Agency (ESA) v.3.0 (ref. 87). We used elevationdataata
30 mresolution from the advanced spaceborne thermal emission and
reflection radiometer digital elevation model v.3 (ref. 88). Slope and
aspect were derived from elevation using the Python package RichDEM
(v.0.3.4)*”. Long-term averages of summer soil moisture were obtained
from the 25 km ESA CCl product v.07.1 (ref. 90). In addition, we used
250 msoil nitrogen content from the SoilGrids v.2 product, integrated
over 0-30 cmdepths”. All datasets were resampled toa 300 m spatial
resolution under the Canadian Albers Equal Area projection using
the nearest-neighbour method.

Bayesian DLM for resilience estimation
We used a DLM to estimate the time-varying vegetation resilience
(negative lag-1 autocorrelation of EVI) with a 16-day interval for each
pixel with Bayesian inference. The model jointly estimates lag-1auto-
correlation and other components including mean and trend, season-
ality, climate impact and observational noise which simultaneously
affect the observed EVI. Unlike the commonly used moving window
approachwhichis sensitive to the window length of choice and climate
variations**”?, DLM showed robustnessin disentangling resilience sig-
nalsintemperate forests*, The autocorrelation of climate and ashort-
or long-term trend of greenness are unlikely to cause a false signal of
resilience change (Supplementary Method 1and Extended DataFig. 1).
To build an effective and parsimonious DLM, we needed to deter-
mine which climate variables to include for characterizing the impact
of climate on EVI. However, the computational cost prohibited us from
performing model selection using the Bayesian DLM. Therefore, we
first selected the most informative climate variables using multilinear
regressions and the Bayesian information criterion (BIC). Specifically,
we classified 12 candidate climate variables (Supplementary Table 1)
into a temperature group and a moisture group. The former includes
the mean, maximum and minimum temperatures, the degree days<0 °C
(DD_0) and>5 °C (DDS5), the number of frost-free days and the reference
evaporation. The latter includes climate moisture deficit (CMD), relative
humidity, vapour pressure deficit (VPD), precipitation and precipitation
as snow (PAS). Climate conditions at t — 1 were used to model the EVIl at
tto allow EV1to exhibit lagged responses to climate®™ **. We generated
48 combinations by choosing up to one variable from each group and
fitted 48 linear models, regressing the EVI at time t with climate and the
EVlattimet - 1for each pixel. Ranked by BIC, the model that exclusively
included mean temperature ranks among the best ten models for 67%
of the pixels across the domain (Supplementary Table 2). The mean
temperature was therefore consistently used across the domain to
characterize the climateimpacton EVIvariationin DLM, as detailed next.
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The DLM model setup was adapted fromref. 28 as follows:

Ve = Frraf + U (1)

0, =GO, + W, (2)

where y, is the observed EVI at each 16-day time step ¢ after removing
the long-term mean at a pixel. The model disentangles the temporal
variation of y,into aGaussian observational noise (v,) and three compo-
nents: the mean and trend component y,,, the seasonality component
¥s. and the regression component y, ., 8iViNg ¥, = Y + Yoo +Vre + Ur-
Correspondingly, F, (equation (3)) is a vector consisting of known
constants and regressors used to aggregate the three componentsin
thestate vector 0, (equation (4)). Specifically, F,, aggregates the mean
and trend component 8,,, where 8, ,and 8,,, describe the mean of y;,
anditschange fromt—-1to¢t, respectively, representing the equilibrium
state that could adapt to observations to account for shifted equili-
brium regime after vegetation changes; F, . aggregates the seasonal
cycle 0, described by two Fourier components with periods of one
year and a half year; and F, includes the EVI (y,_;) and the z-score of
mean air temperature (7,,) at the previous time step, whichyields y,,
when multiplied with the regression coefficients 0,,= (6, 87y,
We were particularly interested in the lag-1autocorrelation of EVI(8,4,)
and used -6,,, . to measureresilience. The state vector 8, evolves from
t—-1to tbased on an evolution matrix G = diag(G, G, G,), where the
mean and trend (G,), seasonality (G,) and regression (G,) components
consist of known constants (equation (5)).

T
F = [LFLL L0.1,0,yr1.Try] (3)
Le Fsr F.
T
0, = [0, O, Octrps Os1a.60 021,65 O522, 15 Oragn > Oy, ] 4)
o, 8, 0.,
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sin w; ]

&)
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N E]

We used Bayesian inference to estimate theresilience embedded
in @, at each time step. Specifically, 8, was assumed to follow a multi-
variate Gaussian distribution. The same non-informative priors as
describedinref. 28 were used for 8,_, and the noise. At each time step
t, the posterior distribution of 0,, p(8| y,, ..., y,_;,¥,) was estimated
based on the Bayes theorem by combining the prior of 8,, that is,
p(@,| y1, ..., ¥,-1), derived from historical observations (y,, ..., y,_;) and
thelikelihood of observing y,, thatis, p( y,|0,yi, ..., ¥,—1) (equation (6)).
When y, was missing because of snow, ice, cloud or invalid values,
the prior p(0,| y,, ..., ¥,_;) was used to estimate 0.. In this case, due to
the stochastic noise W,, the missing data would increase the variance
of 8,and thus the uncertainty of the estimated resilience:

PO Y1, s Yeer, ¥e) < (O Yy, oo, Yee1)P( VO, Y1, vy Ye1) (6)

To estimate the temporal variation of resilience, amoving window
approachuses only datawithinatime length to the target step without
accounting for data at earlier times. Likewise, here, we applied a dis-
counting factor § thatreduces the weight of the prior derived fromthe
historical data, allowing the posterior to be updated to the current
observation, that is, a forgetting process. Reducing the weight of the
prior was achieved by inflating the prior variance of 8,by 1/6 — 1 from
t-1to ¢t (refs. 28,49). Specifically, denoting the variance of @,_; as
Var(0,_;ly.. ..., ¥,-1) = C,_;. Onthebasis of equation (2), the prior variance

of @,is var(®,ly,, ..., ¥,_,) = GC,_.;,G” + W,, where W, is the covariance of
the evolution noise. Because W, was unknown, it was assumed to be
proportional to GC,_,G", that s, Var(8|y,, ..., ¥.—1) = GC.,G"/6 . A dis-
counting factor of 1 represents no forgetting and a § closer to1repre-
sents slower forgetting and, expectedly, smaller temporal variability
(similar to a larger moving window size). Among the tested range of
0.97-0.99, a discounting factor of 0.98 yielded the highest average
modellikelihood across the domain, indicating that we have the highest
confidence in the estimated resilience and its trend with this factor.
Thus, 0.98 was used in the main analyses. Sensitivity analysis using
other & values was shown in Extended Data Fig. 10.

Further mathematical details of the model setup were described
inref. 28. Robustness tests can be found in Supplementary Methods
and Extended Data Fig. 1, which demonstrated the effectiveness of
DLM in disentangling resilience from blended signals mimicking
multiple scenarios of vegetation change using synthetic data.

Calculation of the long-term resilience trend

At each 16-day time step, we tracked the estimated resilience and its
uncertainty using the mean and standard deviation of the negative lag-1
autocorrelation of EVI from the posterior distribution of 8,. Because
non-informative priors were used, the model required a spin-up period
before enough historical datawereaccumulated to constrain the uncer-
tainty of resilience estimates (Extended DataFig. 2). Thus, theresilience
estimates within the first 3 years, which typically have large uncertainty,
were excluded from the following analyses. The trend of the 16-day
posterior mean resilience for each pixel was calculated using the 391
resilience estimates (23 values per year times 17 years, from 2003 to
2019) based on asimple linear regression. We further compared resil-
ience trendsin greening and browning areas, defined as pixels showing
significant (a = 0.05) linear trends in summer EVI from 2000 to 2019.
Summer EVIwas calculated as the average of values for June, July and
August. Trend analyses were conducted in Python using the package
statsmodels (v.0.12.2).

Tomeasuretheuncertaintyin the estimated resilience trend propa-
gated from the uncertainty in estimated resilience, instead of using the
posterior mean, we randomly sampled 100 resilience values from the
posterior distribution at each time step. The samples yielded 100 sets
of resilience trends. The 5th percentile and the 95th percentile of the
100 resilience trends exhibited similar spatial patterns to those using
the posterior mean resilience: Arctic tundra and boreal forest showed
consistently divergent trends (Extended Data Fig. 9). The similar spatial
patterns indicated that the spatial pattern of resilience change using
the posterior mean, as presented in the main text, is robust.

Random forests for identifying critical environmental
controls

To evaluate what environmental conditions contribute to a high likeli-
hood of resilience reduction, we built a random forest classification
model® to predict the sign of the resilience trend across space, using
factors describedinthe ‘EVI, land cover, disturbance and environment
datasets’section. We focused only on areas without LCCs or recorded
disturbances to diagnose the influence of environmental conditions
ontransientresilience change. The environmental conditionsincluded
long-term averages of summer mean temperature, annual PAS, summer
mean VPD, summer mean CMD, summer mean soil moisture, annual
maximum permafrost extent, annual maximum ALT and time-invariant
land-cover type, elevation, slope and aspect. Additionally, we included
the standard deviation and the trend of summer temperature, as well
as the trend of summer EVI, to capture the effect of temporal varia-
tion. Among the total 16 variables considered, we identified highly
correlated (r> 0.75) pairs and removed one variable in each pair, retain-
ing the variables that were important in explaining EVI dynamics as
described above. The resulting 14 variables were used as predictors
in the random forest model. We focused on the 31.0 M pixels without
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recorded LCCs and disturbances, of which nearly 28.4 M pixels showed
significantresilience trends. To reduce the computational load of the
random forest model, we randomly sampled100 sets from those 28.4 M
pixels, with each set consisting of 56.7 K pixels. Each set included an
equal number of pixels with increasing and decreasing resilience to
balance the sample size for each category. We randomly partitioned
each sample set into the training (75%) and testing (25%) subsets and
optimized the number of variables used at each tree node to achieve
the highest out-of-bag classification accuracy on the training subset.
The resulting optimal random forest model was used to evaluate the
classification accuracy onthe testing subset and diagnose the impact of
each environmental variable. The relative importance of each variable
was ranked by the mean decreaseinaccuracy. Tounderstand theimpact
of each environmental variable on the resilience trend, we calculated
the partial dependence of the classification probability with respect
to arange of values for each variable while holding other variables at
their mean values. We repeated the above analyses for the 100 sets to
quantify the uncertainty (95% confidence interval) associated with the
selection of samples. The random forest analyses were conducted in
R using the packages of randomForest (v.4.7-1.1)*, caret (v.6.0-92)
and pdp (v.0.8.0)".

Resilience variation before and after LCCs or fire disturbances
Toinvestigateresilience trajectories before and after abrupt changes,
we analysed pixels that experienced two types of abrupt changes:
LCC without recorded disturbance (that s, climate-driven LCC) and
fire disturbance. We only focused on pixels with a single LCC event
and/or disturbance event. For climate-driven LCC, we focused on
three types of vegetation loss and four types of vegetation gain
following ref. 11. Evergreen (deciduous) forest loss was defined
as transitions from evergreen (deciduous) forest to shrublands
or any non-woody land cover. Evergreen (deciduous) forest gain
was defined as transitions from deciduous (evergreen) forest, shrub-
land or non-woody land cover to evergreen (deciduous) forest. Shrub
loss (gain) was defined as transitions to (from) any non-woody land
cover. Herbaceous gain was defined as transitions to herbaceous
land from sparsely vegetated, barren, fen, bog, shallows or water.
Fire-disturbed areas were identified on the basis of products from
refs. 7,52. We noted that these two products may omit small fires.
Nonetheless, locations with recorded fires still provided a sufficient
sample size to diagnose resilience variation. For the same reason,
the LCC may not be exclusively driven by climate but could also
include changes driven by small disturbances that are omittedin the
disturbance products™,

We analysed resilience change before and after LCC and fires at
an annual scale, specifically focusing on resilience during the sum-
mer, defined as the average of the 16-day resilience values for June,
July and August. Between 5 years before and 5 years after the abrupt
change, we compared the summer resilience of the target pixel to a
baseline. The baseline was determined using two approaches. Thefirst
was a temporal baseline, calculated as the averaged resilience from
2003 up to 5 years before the abrupt change for the same pixel. The
second was a spatial baseline, calculated as the averaged resilience
across control pixels in the year of the abrupt change, adjusted for
the spatial differences in initial resilience conditions. The control
pixels were selected as nearby (<9 km) pixels with the same initial
land cover in 2003 and a similar environment to the target pixel but
without any abrupt changes. The environment was considered similar
ifthe Euclideandistance in the space for the z-scores of summer mean
temperature, ALT and elevation—the top three factors explaining the
resilience trend (Fig. 3a)—between the target and candidate control
pixels was less than the 10th percentile. Specifically, the impact of
climate-driven LCC or fire on the resilience in pixel j was calculated as
follows, with respect to the temporal baseline (equation (7)) and the
spatial baseline (equation (8)), respectively.

AR = R;y — R;,init (7)

AR = (Rj 0 J,) = (Rj,2003 *Rsctrl,zoos) ®)

where AR! is resilience change with respect to the temporal baseline,
R, is the summer resilience of pixelj in year y and R;,ini[ is the average
summer resilience from 2003 up to 5 years before the abrupt change;
AR}% is resilience change with respect to the spatial baseline, Rﬁmd is
the average summer resilience across control pixels in year y, R; 5003 is
the summer resilience of pixeljin2003 and Rz[rl,zom istheaverage sum-
mer resilience across control pixelsin 2003. The spatial and temporal
baselines provided controls of resilience unaffected by LCC or fire
under different assumptions, thereby allowing us to examine resilience
variations impacted by the corresponding abrupt changes. We sampled
10 K pixels for each of the seven LCC types from 2.6 M pixels with LCC
and 10 K pixels for each of the five prefire land-cover types from 2.9 M
pixels with fire. The resilience variations were grouped by LCC types
for LCC pixels and by the prefire land-cover type for fire-disturbed
pixels. At each target year (for example, 5 years before LCC), the frac-
tion of pixels with negative ARin each group was calculated to quantify
the likelihood of decreasing resilience associated with LCC or fire. We
repeated the sampling with replacement 100 times to quantify
uncertainty.

To account for different ecosystem dynamics after LCC and
fires, we also set up an alternative version of the Bayesian DLM with
interventionatthe time of LCC or fire. This was achieved by inflating
the covariance matrix of the prior (C,_, in the Methods) for the state
variables by a factor of 2, as recommended by ref. 49. Inflating the
covariance matrix of the prior distribution is equivalent to reducing
the weight of historical information on the inference at the current
time step, of which the imprint is carried afterwards. The posterior
estimates of resilience and other state variables thus rely more on
new observations after the intervention. Compared to the default
version without intervention, this alternative model version relies
more heavily onand adapts more quickly to new observations shortly
after the change. However, the alternative model is more susceptible
to observational noise and bias due to the limited number of obser-
vations shortly after disturbance. Thus, the Bayesian model with
intervention is more representative of severe disturbances which
reset the ecosystem dynamics while yielding excessive estimates of
resilience uncertainty. In contrast, the model withoutintervention is
better suited for climate-driven LCC and provides a more conserva-
tive estimate of uncertainty. We analysed the resilience trajectories
inall pixels that experienced LCC and fires using two versions of the
Bayesian DLM with and without intervention. This approach helped
assess the uncertainty and robustness of resilience trajectories fol-
lowing these changes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The annual resilience maps produced in this study are archived and
freely available at the NASA ORNL Active Archive Center (DAAC)
(https://doi.org/10.3334/ORNLDAAC/2374)%,. All datasets used
in this study are publicly available. The MODIS EVI dataset is avail-
able at https://Ipdaac.usgs.gov/products/mod13qlv061/. The annual
land-cover productis available at https://daac.ornl.gov/ABOVE/guides/
Annual_Landcover ABoVE.html. The climate conditions and the appli-
cation to downscale (ClimateNA) are available at https://climatena.
ca/. The disturbances datasets are available at https://daac.ornl.
gov/ABOVE/guides/ABoVE_ForestDisturbance_Agents.html and
https://daac.ornl.gov/ABOVE/guides/Burned_Area_Depth_AK_CA.html.
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ALT dataareavailable at https://catalogue.ceda.ac.uk/uuid/67a3f8c8
dc914ef99f7f08eb0d997e23. The ASTER DEM is available at https://
Ipdaac.usgs.gov/products/astgtmv003/. The soil moisture data are
from https://catalogue.ceda.ac.uk/uuid/43d73291472444e6b9c2d2
420dbad7dé6. The soil nitrogen data are from https://www.isric.org/
explore/soilgrids.

Code availability

Codes and data for the Bayesian dynamic linear model, the random
forest model and the main figures are available via Zenodo at https://
doi.org/10.5281/zenodo.10719618 (ref. 99).
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Extended DataFig.1| Theoretical experiments showing the detected
resilience change is unlikely a false signal due to autocorrelated climate,
EVItrend, abruptdrop, or localized postfire recovery. The three colours
represent synthetic series generated using different random noises. The detailed
experimental setup is described in the Supplementary Information. (a) High
climate autocorrelation after the time step 600 does not cause a false signal of
low vegetationresilience estimated by DLM. (b) Prescribed resilience decline
canbe captured by estimates of DLM. (¢) A browning trend does not raise a false
signal of decreasing resilience but is captured by the local mean component in
DLM. (d) Reduced resilience blended with abrowning trend can be disentangled
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using DLM. (e) Abrupt EVI drop, for example, after forest loss or fire, does not
cause afalse signal of decreasing resilience. Rather, the shifted equilibrium
state is captured by the local mean componentin DLM. (f) Reduced resilience
blended withabrupt EVIdrop can be disentangled using DLM. (g) Abrupt EVI
drop followed by a localized recovery trend, representing postfire recovery, does
not cause a false signal of decreasing vegetation resilience but is captured by the
local mean component in DLM. In the DLM resilience panels from (a) to (g), the
lines denote the mean, and the shaded bands denote the mid-80th percentile of

the uncertainty range of the estimated resilience.
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Extended DataFig. 2| Three example time series of greenness and vegetation
resilience. a-c, The temporal variation of Enhanced Vegetation Index (EVI)
inagreening shrubland pixel in southwestern Northwest Territories (62.2°N,
124.1°W) (a), a greening sparsely vegetated pixel in southwestern Alaska (59.7°N,
156.0°W) (b), and abrowning evergreen forest pixel in northeastern British
Columbia (58.5°N, 123.3°W) (c). The gray and black dotted lines are 16-day EVIand
summer (June, July, August) averages, respectively; the red dashed lines show the

T T
2000 2008

T T T T
2016 2000 2008 2016

linear trends. d-f, The temporal variation of vegetation resilience (negative lag-1
autocorrelation of 16-day EVIshown in a-c). The blue lines denote the mean, and
thelight and dark gray bands denote the mid-80th and mid-70th percentile of the
uncertainty ranges of the estimated resilience, respectively. The red dashed lines
are the linear trends of the mean from 2003 onward after discarding the three-
year spin-up period. The x-axis labels represent January 1st of each year.
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Extended DataFig. 3 | Boreal forests with high tree cover experienced
extensive resilience declines. (a) Land cover across the ABoVE core domain
in2000. (b) Tree cover fraction across the ABoVE core domainin 2003 from
MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid
(MOD44B v006). The year 2003 instead of 2000 is used for better data quality as
MODIS/Terrabegan broadcasting datain April 2000. (c) Tree cover across pixels
where vegetation resilience significantly increased (R + ), decreased (R-), or did

Tree cover (%)

not show asignificant trend (R-NS) during 2000-2019. The green dots indicate
mean values, and the error bars indicate standard deviations of tree cover across
pixels showing R+ (n =22,090,216), R-NS (n = 3,469,461), and R- (n = 14,079,533).
(d) Therelative frequency of reduced and enhanced resilience across pixels with
tree cover binned at 1% increments, with blue and red lines showing R+ and R-,
respectively.
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Extended DataFig. 4| Greening is not always associated with enhanced
vegetationresilience. (a) Statistically significant (two-sided ¢ test & = 0.05)
greening and browning locations. (b) Greening areas with decreasing resilience.
Colours represent long-termresilience (negative lag-1 autocorrelation) trends.
(c) The spatial pattern of vegetation resilience averaged from 2003 to 2019 across
the ABoVE core domain. (d) Similar to Fig. 1in the main text, the map shows the
trend of resilience for areas without land cover change or fire disturbances.

The inset shows the latitudinal variation of resilience trend with a bin size of
0.75°, where the line and gray band denote the mean and the standard variation,

Greening Browning EVI-NS

respectively. (e)-(j) Similar to Fig. 2 in the main text, the outer pie shows the areal
fractions of significantly (two-sided ¢ test & = 0.05) increased (R + ), significantly
decreased (R-), and non-significant (R-NS) resilience trend among all vegetated
areas without land cover change or fire disturbances (e) and the major land
cover types, including evergreen forest (f), deciduous forest (g), shrubland

(h), herbaceous (i) and sparsely vegetated (j). The nested inner pie shows the
areal fractions of significant greening, browning, and non-significant (EVI-NS)
greenness trend within each resilience trend group (outer pie). The number of
pixels in each panel is noted in round brackets.
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Extended DataFig. 5| Heterogeneous changes of EVI equilibrium after the equilibrium before fire to that five years after, grouped by land cover types.
land cover changes and fires. (a) Probability distributions of EVI equilibrium The equilibrium state is quantified by the local mean component in the Bayesian
change (A EVI) from the equilibrium before land cover change (LCC) to that five dynamic linear model. The equilibrium before LCC and fire is quantified using the
yearsafter, grouped by LCC types. (b) Probability distributions of AEVI from averaged local mean from 2003 till five years prior to LCC or fire.
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Extended DataFig. 6 | Uncertainty of resilience change after land cover
changes and fires. Same as Fig. 4 in the main text, except that results are froman
alternative version of the Bayesian dynamic linear model with intervention at the
time of climate-driven land cover change (LCC) or fire (Methods). (a) The fraction
ofresilience lower than the baseline (F(R-)) between five years before and after
LCC, grouped by LCC types, that is evergreen forest loss (EF.loss), deciduous
forestloss (DF.loss), shrub loss (SHB.loss), deciduous forest gain (DF.gain), ever-
green forest gain (EF.gain), herbaceous gain (HB.gain) and shrub gain (SHB.gain).
AnF(R-) >0.5indicates that most pixelsin this group experienced reduced
resilience. (b) The latitudinal variation of F(R-) grouped by a bin size of 0.75° for
each LCC type. (¢) F(R-) before and after fires grouped by the pre-fire land cover
types and (d) the corresponding latitudinal variation, similar to (a) and (b). The

L] +1 [0 +3 [ +5years

colours represent five years before (-5) and after (+5) the land cover change or
fire, and so forth. F(R-) was calculated by comparing resilience (posterior mean)
inthe target year to the temporal baseline, that is, the resilience at the same
location averaged between 2003 to five years before changes. The bar height
in(a) and (c) is the mean F(R-) across 100 sets of bootstrapping pixels for each
group (n=10,000 for each set). The thick black vertical line shows the standard
deviation, suggesting robust estimates across sampled pixels. The lower/upper
end of the thin grey vertical line is F(R-) quantified by comparing the upper/lower
boundary of resilience (posterior mean plus/minus posterior standard deviation)
to the abovementioned baseline, indicating large posterior range of resilience
estimates post changes. The lines and shaded bands in (b) and (d) show the mean
and standard deviation of F(R-) from 100 bootstrap resampling,.
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Extended DataFig. 7| Changes of resilience before and after land cover
changes and fire with respect to the spatial baseline. (a) The fraction of
resilience lower than the baseline (F(R-)) between five years before and after
climate-driven land cover change (LCC), grouped by LCC types, thatis evergreen
forest loss (EF.loss), deciduous forest loss (DF.loss), shrub loss (SHB.loss),
deciduous forest gain (DF.gain), evergreen forest gain (EF.gain), herbaceous
gain (HB.gain) and shrub gain (SHB.gain). An F(R-) > 0.5 indicates that most
pixels in this group experienced reduced resilience. (b) The latitudinal variation
of F(R-) grouped by a bin size of 0.75° for each LCC type. (c) F(R-) before and
after fires grouped by the pre-fire land cover types and (d) the corresponding
latitudinal variation, similar to (a) and (b). The colours represent five years
before (-5) and after (+5) the land cover change or fire, and so forth. F(R-) was

1 I I I |
05 08 02 05 08 02 05 0.8
F(R-) F(R-) F(R-)
L] +1 [0 +3 [ +5years

calculated by comparing resilience (posterior mean) in the target year to the
spatial baseline, that is, the spatially averaged resilience (posterior mean) across
nearby similar pixels in the same year of the abrupt change, corrected by the
spatial difference between the initial resilience conditions. The bar heightin

(a) and (c) is the mean F(R-) across 100 sets of bootstrapping pixels for each
group (n=10,000 for each set). The thick black vertical line shows the standard
deviation, suggesting robust estimates across sampled pixels. The lower/upper
end of the thin grey vertical line is F(R-) quantified by comparing the upper/lower
boundary of resilience (posterior mean plus/minus posterior standard deviation)
tothe abovementioned baseline, indicating large posterior range of resilience
estimates post changes. The lines and shaded bands in (b) and (d) show the mean
and standard deviation of F(R-) from 100 bootstrap resampling,.
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Extended DataFig. 8 | Resilience trend calculated using a moving window
approach exhibits large uncertainties. (a) The vegetation resilience trend
calculated by replicating the method as described in ref. 41 using the EVI data
same as in this work during 2000-2019 across the ABoVE core domain. Key steps
include deseasonalizing and detrending the 16-day EVI time series, calculating
the long-term lag-1autocorrelation of EVI (TAC), using long-term average forest
density, background climate, climate variability and autocorrelation in climate
as predictors (X) of a Random Forest regression model to model TAC, calculating
annual lag-1autocorrelation of EVI (TAC") and predictors (X') withina 3-year
moving window, calculating the impact of autocorrelationin climate on the lag-1
autocorrelation of EVI(TAC'|X,.) using the Random Forest regression model
(RF(XY)-RF(X.,.', X,.2%°%), factoring out the impact of autocorrelation in climate
from the annual lag-1autocorrelation of EVI(TAC-TAC'/X,.), and computing

the linear trend of the resulting enhanced annual autocorrelation of EVI.

(b)-(c), The 5th percentile (b) and 95th percentile (c) of vegetation resilience
trend from 100 times of pairwise bootstrapping the raw annual time series of
lag-1autocorrelation of EVI(TAC") with replacement. (d)-(e),The 5th percentile
(d) and 95th percentile (e) of vegetation resilience trend from sampling the
impact of autocorrelation in climate on the autocorrelation of EVI(TAC'[X,.) 100
times from a Gaussian distribution centered around the prediction of the random
forest regression model with a standard deviation calculated from the regression
residuals. The difference between (b) and (c) indicates a large uncertainty of
resilience trend arising from estimates of annual lag-1 autocorrelation, likely
caused by a large fraction of missing data in high latitude regions. The difference
between (d) and (e) indicates a large uncertainty due to a much lower explicative
power of the Random Forest regression model in this region (30%) compared to
thatin the original global scale study (87%).
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Extended DataFig. 9 | The uncertainty of resilience trend due to the

uncertainty of posterior estimates of autocorrelation using the Bayesian
dynamiclinear model. The 5th percentile (a) and 95th percentile (b) of

vegetation resilience (negative lag-1 EVl autocorrelation) trend during
2000-2019 across the ABoVE core domain with a discounting parameter of 0.98.
Legends and abbreviations are the same as in Fig. 1.
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Extended DataFig. 10 | The uncertainty of resilience trend due to the choice (60950097 1N €; O 95-0 90 i d). The model performs the best using &, 4, according
ofthe discounting parameter controlling the information decay rate. Spatial tothe average log-likelihood, which is used as the default in Fig. 1. All three
patterns of resilience trend, same as Fig. 1 (default discounting parameter &,g), discounting parameters result in consistent trend directions in southern boreal
but with alternative discounting parameters of §,,; (a) and §, . (b), respectively. forests, supporting the robustness of reduced resilience in boreal forests. The
Model performances are measured by log-likelihoods and compared between model suggests relatively lower confidence in the increasing resilience in the
the alternative parameters and the default, shown as differenced maps and Arctic tundragiven 8, yields reverse trends from &, and 6,5, in despite ofa
density plots, the black dashed line shows the average log-likelihood difference similar model likelihood as that using &4 (d).
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Confirmed

>
~
[\

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex technigues in the Methods section.
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Maonte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.

Data analysis The Python package statsmodels (version 0.12.2) was used in linear regression. The python package RichDEM (0.3.4) was used to derive slope
and aspect from elevation. The R packages randomForest (version 4.7-1.1) , caret (version 6.0-92), and pdp (version 0.8.0) were used to
identify critical environmental controls on resilience trend. Codes are available at Zenodo (http://doi.org/10.5281/zenodo.10719618)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The annual resilience maps produced in this study are archived and freely available at the NASA ORNL Active Archive Center (DAAC) (https://doi.org/10.3334/
ORNLDAAC/2374)
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All datasets used in this study are publicly available.

The MODIS EVI dataset is available at https://Ipdaac.usgs.gov/products/mod13qlv061/.

The annual land-cover product is available at https://daac.ornl.gov/ABOVE/guides/Annual_Landcover_ABoVE.html.

The climate conditions and the application to downscale (ClimateNA) is available at https://climatena.ca/.

The disturbances datasets are available at https://daac.ornl.gov/ABOVE/guides/ABoVE ForestDisturbance Agents.html, and https://daac.ornl.gov/ABOVE/guides/
Burned_Area_Depth_AK_CA.html.

Active layer thickness data are
The ASTER DEM is available at

available at https://catalogue.ceda.ac.uk/uuid/67a3f8c8dc914efa9f7f08eb0d997e23.
https://Ipdaac.usgs.gov/products/astgtmv003/.

The soil moisture data are from https://catalogue.ceda.ac.uk/uuid/43d73291472444e6b9c2d2420dbad7d6.
The soil nitrogen data are from https://www.isric.org/explore/soilgrids.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A

other socially relevant
groupings

Population characteristics
Recruitment

Ethics oversight

N/A
N/A

N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on

Study description

Research sample

Sampling strategy

Data collection

Timing and spatial scale

Data exclusions

these points even when the disclosure is negative.

We quantified time-varying vegetation resilience using temporal autocorrelation of remotely sensed greenness during 2000-2019
across Alaska and Western Canada. We further studied the critical environmental controls of resilience trend and temporal trajectory
of vegetation resilience before/after land cover changes or fire disturbances.

We analyzed the entire vegetated region with valid values in necessary datasets in the ABoVE core study domain. The area of interest
includes 39.6M 300 m by 300 m pixels.

For selecting informative climate variables using multivariate regression and resilience estimation using Bayesian dynamic linear
model, all available pixels are used. For identifying critical environmental controls on resilience trend, 100 datasets (each with 56.7K
pixels) were randomly selected from all 31.0M vegetated pixels without recorded land cover change or disturbance. For
investigating resilience variation before/after land cover change or fire disturbances, 700 datasets (each with 10K pixels for each of
the seven land cover change groups) were sampled from 2.6M pixels with climate-driven land cover change, and 500 datasets (each
with 10K pixels for each of the five land cover types) were sampled from 2.8 million pixels with fire.

All datasets described in the data availability statement were downloaded from the URL sources by Yue Zhang.

The EVI data have a spatial resolution of 250 m and a temporal resolution of 16-day span across 2000-2019.
The annual land cover data have a spatial resolution of 30 m span across 2000-2019.

The annual disturbance agents data have a spatial resolution of 30 m span across 2000-2012.

The annual burned area and depth data have a spatial resolution of 500 m span across 2001-2019.

The time-invariant elevation data have a spatial resolution of 30 m.

The time-invariant SoilGrids data have a spatial resolution of 250 m.

The annual active layer thickness have a spatial resolution of 900 m.

The daily soil moisture data have a spatial resolution of 25 km.

The annual land cover data have a spatial resolution of 30 m.

The monthly ClimateNA data have a spatial resolution of 4 km.

Non-vegetated areas and vegetated areas with low valid data availability were excluded from analysis.
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Reproducibility All attempts to repeat the analysis were successful.
Randomization Randomization was achieved through setting random seeds in the Python coding environment.

Blinding Blinding was not relevant.

Did the study involve field work? D Yes X No
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