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Abstract—Quantum illumination (QI) is the task of querying a
scene using a transmitter probe whose quantum state is entangled
with a reference beam retained in ideal storage, followed by
optimally detecting the target-returned light together with the
stored reference, to make decisions on characteristics of targets
at stand-off range, at precision that exceeds what is achievable
with a classical transmitter of the same brightness and otherwise
identical conditions. Using tools from perturbation theory, we
show that in the limit of low transmitter brightness, high
loss, and high thermal background, there is a factor of four
improvement in the Chernoff exponent of the error probability
in discriminating any number of apriori-known reflective targets
when using a Gaussian-state entangled QI probe, over using
classical coherent-state illumination (CI). While this advantage
was known for detecting the presence or absence of a target, it
had not been proven for the generalized task of discriminating
between arbitrary target libraries. In proving our result, we
derive simple general analytic expressions for the lowest-order
asymptotic expansions of the quantum Chernoff exponents for
QI and CI in terms of the signal brightness, loss, thermal noise,
and the modal expansion coefficients of the target-reflected light’s
radiant exitance profiles when separated by a spatial mode sorter
after entering the entrance pupil of the receiver’s aperture.

I. INTRODUCTION

There has been considerable interest in the performance

advantage (measured by the quantum Chernoff exponent)

under a signal mean photon number constraint of illumination

using a signal-idler pair excited in an entangled Gaussian

state over illumination using a signal excited in a classical

coherent state. The literature investigating this advantage of

Gaussian quantum illumination (GQI) over classical coherent

illumination (CI) started in 2008 when it was shown [1] that

using GQI over CI results in a significant performance boost,

for the simplest form of stand-off discrimination: determining

the presence or absence of a target expected to be in a known

region of space with a high amount of thermal background

noise and high round-trip loss. In the extreme limit of high

loss, high noise and weak signal brightness, the quantum

Chernoff exponent under GQI was shown to be exactly 4 times

greater that under CI. Structured receiver proposals followed

[2], [3] that strived to achieve this full factor of 4 improvement

over the best possible receiver for coherent state illumination,

but the proposed designs only promised to achieve half of this

advantage.

It wasn’t until 2017, when a receiver was proposed [4]

capable of fully closing the gap between CI and GQI per-

formance. This receiver requires using a complicated non-

Gaussian operation to convert target-presence information

encoded in the correlation of the return-idler radiation fields

into a displacement of an auxiliary sum-frequency mode. A

more simple method based on Heterodyne detection was only

recently proposed [5] to perform the same correlation-to-

displacement conversion to achieve the 4-fold advantage of

GQI.

With the exception of a numerical exploration in a simple

one-dimensional setting of discriminating between one or two

point targets [6], and a quantum ranging study [7], where

the correct target range is encoded in only one of many

possible target return signal modes, the existing literature on

the topic of quantum illumination has exclusively focused on

the advantage of GQI over CI for determining the presence

or absence of a target. In this paper, we take on the most

general task of discriminating among a known set of targets of

arbitrary shapes and multiplicity. We show analytically that in

the extreme limit of high thermal background noise, high loss

and low signal brightness, the four-fold gain in the quantum

Chernoff exponent afforded by GQI over CI extends into this

generalized setting of multiple arbitrary targets.

In deriving this result, we provide a necessary scaling

relation among the loss, thermal noise and signal brightness in

the regime where the advantage occurs, and derive asymptotic

approximations of the quantum Chernoff exponents for GQI

and CI in terms of the decomposition coefficients of the target

return light into the fixed spatial mode basis on which an

optimal receiver operates. Such a proof is normally compli-

cated by the highly multi-modal representation of the state

of the target return light in order to accurately capture the

shape-information that uniquely characterizes each target in

the library. Although the target return light is excited in a

Gaussian state (in the case of CI and GQI alike), for which

the quantum Chernoff bound is known to be computable

[8], an analytical evaluation remains out of reach due to the

intractability of analytic symplectic diagonalization (required

by the Gassian quantum Chernoff exponent formula) of a large

covariance matrix for multi-modal states. To overcome this

challenge, we take advantage of the high-loss, high noise and

weak signal regime to approximate the return state as a fixed

zeroth order state Ä̂(0) plus a small traceless target-dependent

perturbation ¿̂(i) proportional to the product of loss and signal-

to-noise ratio. We then apply perturbation theoretic methods

from [9] to obtain an asymptotic expansion of the quantum
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Chernoff bounds in the regime of interest.

II. PROBLEM SETUP

In the general version of the stand-off discrimination prob-

lem, which is depicted in Fig. 1, the goal is to successfully

identify one of arbitrarily many and arbitrarily shaped non-

radiating, matte, and reflective linear material targets drawn

from a set S by shining an electromagnetic (EM) radiation

signal from a source of bandwidth W and duration T onto

the target. The reflected EM field is collected through an

iris, behind which there is an image plane where the light

is detected by an optimal receiver. The targets are placed in

a uniform thermal background, which contributes on average

NB photons to the EM modes of the image plane in the

spectral range of the signal. Let »(i) be the probability that

a photon emitted from the source makes it to the image plane

after reflecting off of target i. Each target takes up space

in the receiver’s field of view, obscuring part of the thermal

background. Since the targets are matte, reflective, and non-

radiating, the probability that target i blocks or redirects an

environmental thermal photon exciting its target-return mode

is proportional to »(i), casting a thermal shadow even without

active illumination. For simplicity, we take this probability

to be equal to »(i). We assume the targets appear spectrally

uniform, so that »(i) is independent of the signal mode’s

frequency, depending only on the target’s spatial configuration.

Then the channel corresponding to the journey undergone

by a signal mode from source to target i and back to the

image plane can be described by a single beam splitter of

transmissivity »(i), serving also to couple in thermal light from

an environment mode of mean photon number NB .
Reflective, for a target composed of a linear material,

implies that the frequency range of width W of the source is

far off-resonance, so that the real index of refraction is mostly

constant across the band, and hence the polarization of the

reflected light is also frequency-independent.

The source signal is an EM field with a frequency support

in range É ∈ (¿0−W/2, ¿0+W/2). It is modified by abruptly

being turned on at a time t0, and abruptly turned off at time

t0 + T. In the limit of T → ∞, such a signal is known,

per[10], to contain at most +WT , independent degrees of

freedom, saturated by the special basis of prolate spheroidal

wave functions. In this case, we choose the signal to consist of

the maximum number M f +WT , of orthogonalized narrow-

frequency pulses that fit into the time-bandwidth product of

the signal. By choosing such quasi-monochromatic modes, we

ensure that a signal excited in a tensor product of states across

the M frequency modes results in a product of M states on

the image plane on which the receiver acts. We label these

frequency modes {fm}Mm=1, and denote the space-polarization

component of the source signal by È⃗0(x, y), and the space

polarization component of the signal reflected from target i

by È⃗
(i)
1 (x, y). We take all modes to have unit L2-norm.

We can now describe the difference between the two

types of illumination whose performance we seek to com-

pare, namely GQI and CI. In CI, the signal modes
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Fig. 1: Diagram illustrating the stand-off target

discrimination task for a set of known targets S. The light

emitted from the source is a signal of duration T and

bandwidth W , supporting M < TW quasi-monochromatic

frequency modes, which are initiated in a product of M
identical states of mean photon number NS , leading to a

product of M identical states exciting M orthonormal

target-dependent spatiotemporal-polarization modes

{È⃗(i)
1 (x, y)fm(t)}Mm=1 defined on the image plane. The

targets are placed in a thermal background characterized by

an approximately fixed Planck-law-governed mean photon

number per mode NB over the spectral profile of the signal,

and target i is known to induce a round-trip transmissivity

»(i). The target dependence of the image plane modes is

reflected in the spatial component È
(i)
1 , which decomposes

into a fixed orthonomal spatial mode set {·k(x, y)}nk=1 via

the coefficient vector
−→
C (i). The identical states comprising

the target return product state, when represented in the

n-mode ·- basis, are denoted Ä̂(i), with a one-to-one

correspondence with
−→
C (i). The receiver performs a collective

measurement on the product
(
Ä̂(i)

)¹M
, the outcome on

which a guess ĩ of the true hypothesis Hi ∈ S is based.

{È⃗0(x, y)fm(t)}m are excited in an M-fold tensor prod-

uct of coherent states, each of mean photon number

NS . In GQI, these same signal modes are paired with

a complementary set {·⃗I(x, y)fm(t)}m of idler modes

that are retained at the receiver, and the mode pairs

{(È⃗0(x, y)fm(t), (·⃗I(x, y)fm(t))}Mm=1, with ·⃗I spatially sep-

arated from È⃗0 (and hence orthogonal to È⃗0), are excited

in an M -fold tensor product of two-mode-squeezed-vacuum

(TMSV) with mean photon number per mode NS . Both

receivers employ mode sorting of the image plane light

into a fixed, target-independent space-polarization mode basis

{·⃗j(x, y)}∞j=1. For target i, the state exciting the fixed sorted

modes in CI is denoted Ä̂
(i)
C , and in GQI, is denoted Ä̂

(i)
Q .

Assuming 1) the targets are sufficiently far from the source,

and 2) the iris opening is much larger than the distance

from the iris to the image plane, È⃗
(i)
1 can be taken approxi-

mately parallel to the image plane, so the space-polarization

basis elements can be chosen to be separable as a product

·⃗j(x, y) = ·j(x, y)ϵ̂ where ϵ̂ ∈ {x̂, ŷ}, and the spatial Fourier

transforms {·̃j(kx, ky)}j of {·(x, y)j}j form any orthonormal

basis of L2(R) where R is a disk of radius kmax j ¿0/c. So

the target return light for CI is excited in a tensor product



of M copies of an n-mode state Ä̂
(i)
C , for a total of Mn

spatiotemporal-polarization modes, and for GQI, the target

return light, together with the light retained in the idler mode,

is excited in M copies of a (n+1)-mode state Ä̂Q, for a total

of M(n+1) spatiotemporal-polarization modes, as compared

in Figs. 2. We can take n to be as large as needed to span the

Signal modes 
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state; mean 

photon # per 

mode 끫殂끫殌
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끫殀끫殀 orthogonal 

spatiotemporal
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CI 
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(a) Classical illumination (CI)

끫殀(끫殶 + 1)
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modes in state�끫欘끫殈(끫殬) ⊗끫殀
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mode-squeezed-
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signal mean 
photon # per 
mode 끫殂끫殌

QI 
ReceiverIdler 

modes

(b) Quantum Illumination (QI)

Fig. 2: Comparison of the form of the target return light for

CI and QI. For each frequency mode m, the corresponding

signal mode at the source is excited in (a) a coherent state

with real displacement
√
NS , resulting in the n receiver

modes {·⃗k(x, y)fm(t)}nk=1 being excited in the state Ä̂
(i)
C ,

and (b) a signal-idler mode pair emitted from a SPDC

source, excited in a two-mode-squeezed-vacuum of signal

mean photon number NS , resulting in the n+ 1 orthonormal

receiver modes {·⃗k(x, y)fm(t)}nk=1 ∪ {·⃗I(x, y)fm(t)} being

excited in the state Ä̂
(i)
Q .

set of spatial modes excited by the target return light under all

hypotheses. We arrange the fixed space-polarization modes of

the receiver in a sequence
(

·⃗j

)

j
consisting of the ·j paired

with alternating horizontal and vertical polarization modes:

·⃗j(x, y) :=

{

x̂·j/2(x, y), j even

ŷ·+j/2,(x, y), j odd

for all j ∈ {1, . . . , n}. The image plane space-temporal modes

cast by target i can therefore be expanded as:

È⃗
(i)
1 (x, y) =

n∑

j=1

C
(i)
j ·⃗j(x, y), (1)

where the expansion coefficients C
(i)
j ∈ C for all i, j have

unit norm, i.e.
∑n

j=1 |C
(i)
j |2 = 1, ∀i. Since the fixed spatio-

polarization modes of the receiver form an orthonormal basis,

the expansion coefficients C
(i)
j can be evaluated as

C
(i)
j = ïÈ⃗(i)

1 , ·⃗jð =

∫

R2

È⃗
(i)
1 (x, y) · ·⃗j(x, y)dxdy, (2)

where the bar denotes complex conjugation.

Let
−→
C (i) denote the vector {C(i)

1 , C
(i)
2 , · · · , C(i)

n }. Note that−→
C (i) contains all information about target i, since n is large

enough such that È
(i)
1 is in Sp

(
{·j}nj=1

)
. Thus, the Chernoff

exponents ÀC and ÀQ describing the decay rate of the minimum

error probability using CI and GQI respectively, are purely a

function of the set {−→C (i)}|S|i=1.
Since it was shown in [11] that the Chernoff exponent for

hypothesis testing with |S| > 2 is equal to the Chernoff

exponent for hypothesis testing between the most difficult to

distinguish pair in S, we let |S| = 2 without loss of generality.

III. STATE OF LIGHT IN THE SORTED MODES

We start by setting the notation for the case of quantum

illumination. Let j, k ∈ {1, 2, . . . , 2(n + 1)} and i ∈ {1, 2},

and fix m ∈ {1, . . . ,M}. With the convention that [âj , â
 
k] =

¶jk, for the annihilation operators associated with the spatio-

temporal polarization modes {·⃗jfm}j , we define the position

and momentum quadratures as q̂j = 1
2 (âj + â j) and p̂j =

1
2i (âj − â j) for j ∈ {1, 2, . . . , n}∪ {I}. We further define the

phase-space coordinate vector as

⃗̂r := (q̂1q̂2, . . . , q̂n, q̂I , p̂1, p̂2, . . . , p̂n, p̂I),

so that [⃗̂r, ⃗̂r] = i
2Ωn+1 where Ωn :=

(
0 1
−1 0

)
¹ In. The mean

vector components and Wigner covariance matrix elements for

the states of the two objects is then given by

(µ
(i)
Q )k =ïr̂kði (3)

(V
(i)
Q )jk =

1

2
ï{r̂j , r̂k}ði − ïr̂jðiïr̂kði. (4)

where j, k ∈ {1, 2, . . . , 2(n + 1)}. The subscripted mean ï·ði
refers to taking the mean over the state in the sorted and idler

modes for target i - we denote this state by Ä̂
(i)
Q .

The same conventions are followed for the case of classical

illumination, with the only difference being the lack of the

idler mode quadratures, so that j and k only runs from

{1, 2, . . . , 2n} in Eqs. (4) and (3). In this case, we denote

the mean vector, covariance matrix, and state of the light

in the sorted modes for the ith object as µ⃗
(i)
C , V

(i)
C , and Ä̂

(i)
C

respectively.

For arbitrary n, the mean vector and covariance matrices

corresponding to quantum and classical illumination can be

written compactly as

2V
(i)
C =

(

NB +
1

2

)

I2n − »(i)NB I2 ¹
−→
C (i)(

−→
C (i))T (5)

µ
(i)
C =

√

»(i)NS(
−→
C (i), 0⃗n) (6)

2V
(i)
Q =

1

2
I2(n+1) +

D
︷ ︸︸ ︷

diag(NB , . . .
︸ ︷︷ ︸
n many

, NS , NB , . . .
︸ ︷︷ ︸
n many

, NS)

−»(i)(NB −NS)

A(i)

︷ ︸︸ ︷

I2 ¹
(

(
−→
C (i), 0)(

−→
C (i), 0)T

)

+Cq

(
¶⃗n+1(

−→
C (i) ,⃗0n+2)

T+(
−→
C (i) ,⃗0n+2)¶⃗

T
n+1

−¶⃗2(n+1) (⃗0n+1,
−→
C (i),0)T−(⃗0n+1,

−→
C (i),0)¶⃗T2(n+1)

)

︸ ︷︷ ︸

B(i)

(7)

µ
(i)
Q =0⃗2(n+1) (8)

where Ik for k ∈ N denotes the k×k identity matrix; diag(. . . )

denotes a diagonal matrix whose diagonal entries are given (in

order from top left to bottom right) by the arguments; 0⃗n is

the vector of n zeros; ¶⃗k is defined as a 2(n+1)-dimensional

vector with all entries zero except for the kth entry, which

is 1; the notation (v⃗, u⃗) for respectively n and m-dimensional



vectors v⃗ and u⃗ represents the vector (v1, . . . , vn, u1, . . . , um);
all vectors are simultaneously treated as column matrices, and

¹ denotes the Kronecker product of matrices. The groupings

D,A(i) and B(i) in Eq. (7) are for ease of perturbative analysis

going forward.

We wish to examine the asymptotic behavior of the Chernoff

exponents when NS → 0 in the regime where »(i) j
NS j 1 j NB . Note that in this regime, the state of

light in the sorted modes is classical and admits a P -function

representation. This can be seen by verifying that V
(i)
Q − I/4

and V
(i)
C − I/4 are positive definite, and hence the functions

fQ : R
2(n+1) → R and fC : R

2n → R defined by

fQ(r⃗) = e−r⃗T(V
(i)
Q

−I/4)−1r⃗ and fC(r⃗) = e−r⃗T(V
(i)
C

−I/4)−1r⃗

are normalizable. The states of the sorted modes corresponding

to the ith target can then be written as

Ä̂
(i)
C =

∫

R2n

P
(i)
C (r⃗C) Ä̂coh(x⃗C , p⃗C)

n∏

k=1

dxkdpk (9)

Ä̂
(i)
Q =

∫

R2(n+1)

P
(i)
Q (r⃗Q) Ä̂coh(x⃗Q, p⃗Q) dxIdpI

n∏

k=1

dxkdpk.

(10)

The P -functions appearing in the integrands of Eq. (9)

and (10) are given by

P
(i)
C (r⃗C) =

e
− 1

2 (r⃗C−µ⃗
(i)
C

)T
(

V
(i)
C

−I/4
)−1

(r⃗C−µ⃗
(i)
C

)

(2Ã)n
√

det(V
(i)
C − I/4)

(11)

P
(i)
Q (r⃗Q) =

e
− 1

2 (r⃗Q−µ⃗
(i)
C

)T
(

V
(i)
Q

−I/4
)−1

(r⃗Q−µ⃗
(i)
C

)

(2Ã)n+1

√

det(V
(i)
Q − I/4)

, (12)

where r⃗C/Q =
(
x⃗C/Q, p⃗C/Q

)
, with x⃗C , p⃗C ∈ R

n and

x⃗Q, p⃗Q ∈ R
n+1 such that the (n + 1)th component of x⃗Q

and p⃗Q correspond to the idler mode, and are labeled xI
and pI respectively. Ä̂coh(x⃗C/Q, p⃗C/Q) in Eqs. (9) and (10)

represents the density matrix of a product of coherent states

(|xk+
√
−1pkð)k where xk+

√
−1pk is the complex amplitude

of a coherent state in the kth mode.

IV. PERTURBATIVE ANALYSIS OF THE CHERNOFF

EXPONENTS

In the high loss and low signal brightness regime »(i) j
NS j NB , the Chernoff exponents for classical and quantum

illumination governing the error probabilities of distinguishing

target 1 from target 2 become close to zero, since the mean

vectors and covariance matrices given by Eqs. (5)-(8) show

very weak dependence on the target index i. In this section,

we aim to obtain asymptotic expressions for ÀQ and ÀC for

the quantum and classical Chernoff exponents respectively in

terms of »(i), NS and NB such that ÀQ = ÀC = 0 when

»(i) = NS = 0 for all i ∈ {1, 2}.

To do this, we choose a restricted direction of approach to

the limit »(i), NS → 0 and NB → ∞, namely1

»(i) ∈ o(NS/NB)

NS ∈ O(exp(−NB))

1 ∈ o(NB),

(13)

where »(i), NS , and NB are taken to be functions of a path

parameter t, and start with an expansion of the states given

by Eqs. (9) and (10) in the form

Ä̂
(i)
C ≈ Ä̂

(0)
C + ¿̂

(i)
C (14)

Ä̂
(i)
Q ≈ Ä̂

(0)
Q + ¿̂

(i)
Q , (15)

such that Ä
(0)
C/Q is a product of thermal states and the target

dependence is only on the traceless operators ¿̂
(i)
C/Q, which

are the lowest-order terms perturbing Ä̂
(i)
C and Ä̂

(i)
Q , and which

vanish in the limit of »(i), NS → 0. The expansions (14) and

(15) can be used in a perturbative formula for the Chernoff

exponents from [9]:

ÀC/Q ≈ 1

2
Tr

[

L√
x

(

Ä̂
(0)
C/Q, ¿̂

(1)
C/Q − ¿̂

(2)
C/Q

)2
]

(16)

where L√
x(A,B) denotes the operator-valued Frechet deriva-

tive of the function
√
x for a perturbation B around A.

Ä̂(0), ¿̂
(1)
C/Q, and ¿̂

(2)
C/Q in Eq. (16) can be obtained by expand-

ing the P -functions given by Eqs. (11) and (12) in the high loss

and low signal brightness regime. It can be shown, by recursive

use of the determinant property det(I + v⃗u⃗¦) = 1 + u⃗¦v⃗ for

real vectors v⃗ and u⃗, that that

det (VQ − I/4)
−1/2

= 2n+1 det(D)−1/2

(

1 + »(i) +O
(
»(i)NS

NB

))

, (17)

and by a Neumann series expansion,

1

2
(r⃗Q − µ⃗

(i)
Q )T (VQ − I/4)

−1
(r⃗Q − µ⃗

(i)
Q )

=
∥r⃗C∥2
NB

+
x2I + p2I
NS

− 2

√

»(i)/NS

NB
(xI x⃗C − pI p⃗C) ·

−→
C (i)

+O
(

»(i)

NSNB

)

. (18)

Then, using the Taylor series expansion ex+ε = ex(1 + ε +
O(ε2)),

P
(i)
Q (r⃗Q) =

e
− |x⃗C |2+|p⃗C |2

NB
− x2

I
+p2

I
NS

Ãn+1
√
detD

×


1−

√

»(i)

NS

2

NB

−→
C (i) · (xI x⃗C − pI p⃗C) +O

(
»(i)

NSNB

)


 .

(19)

1We use asymptotic notation for positive arguments of functions approach-
ing zero rather than positive infinity, so f ∈ O(g) if ∃c ∈ R+ such that
∃x0 ∈ R+ for which f(x) < cg(x) for all positive x ≤ x0, and f ∈ o(g)
if ∀c ∈ R+, ∃x0 ∈ R+ such that f(x) < cg(x) for all positive x ≤ x0.



Similarly, the P -function for the classical illumination task

can be expanded starting from Eqs.(5) and (6), and applying

the Neumann series expansion to obtain

(VC − I/4)
−1

=
2

NB

(

I2n + »(i)I2 ¹
−→
C (i)(

−→
C (i))T +O

((

»(i)
)2

)

R

)

,

(20)

where R is a residual matrix in which each entry is −1, 0, or

1. Then

1

2
(r⃗C − µ⃗

(i)
C )T (VC − I/4)

−1
(r⃗C − µ⃗

(i)
C )

=
∥r⃗∥2C
NB

− 2

√

»(i)NS

NB
x⃗C · −→C (i) +O

(

»(i)/NB

)

, (21)

and the P -function normalization factor can be expanded as

det (VC − I/4)
−1/2

= 2nN−n
B

(

1 +O(»(i)/NB)
)

. (22)

Once again using the Taylor series expansion ex+ε = ex(1 +
ε+O(ε2)), the P-function of the received state of light for CI

expands as

P
(i)
C (r⃗C) =

e
− ∥r⃗C∥2

NB

ÃnNn
B

×
(

1−
√

»(i)NS
2

NB

−→
C (i) · x⃗C +O(»(i)/NB)

)

. (23)

Comparing the form given by Eq. (14) with Eq. (23), and the

form given by Eq. (15) with Eq. (19), we identify:

Ä̂
(0)
C =

1

ÃnNn
B

∫

R2n

e
− ∥r⃗C∥2

NB Ä̂coh(x⃗C , p⃗C)

n∏

k=1

dxkdpk (24a)

¿̂
(i)
C =

−2

ÃnNn
B

∫

R2n

e
− ∥r⃗C∥2

NB

√

»(i)NS

NB

× x⃗C · −→C (i)Ä̂coh(x⃗C , p⃗C)

n∏

k=1

dxkdpk (24b)

Ä̂
(0)
Q =

1

Ãn+1
√

|D|

∫

R2(n+1)

e
− ∥r⃗C∥2

NB
− x2

I
+p2

I
NS

× Ä̂coh(x⃗Q, p⃗Q)dxIdpI

n∏

k=1

dxkdpk (24c)

¿̂
(i)
Q =

∫

R2(n+1)

e
− ∥r⃗C∥2

NB
− x2

I
+p2

I
NS

Ãn+1
√

|D|



−

√

»(i)

NS

2

NB




−→
C (i)

· (xI x⃗C − pI p⃗C)Ä̂coh(x⃗Q, p⃗Q)dxIdpI

n∏

k=1

dxkdpk. (24d)

Asymptotic expansions of the quantum Chernoff exponents

can now be evaluated using Eq. (16). In the eigensystem of

Ä̂
(0)
C/Q, consisting of eigenvalues {¼m⃗}m⃗ (denoted collectively

by vector ¼⃗) corresponding to Fock product states {|m⃗ð}m⃗,
the first Frechet derivative is represented as

L√
x

(

Ä̂
(0)
C/Q, ¿̂

(1)
C/Q − ¿̂

(2)
C/Q

)

=
∑

m⃗,m⃗′

[
√
x, ¼⃗]

m⃗,m⃗′

ïm⃗|¿̂(1)C/Q − ¿̂
(2)
C/Q|m⃗

′ð|m⃗ðïm⃗′|, (25)

where [
√
x, ¼⃗] denotes the first divided difference of

√
x at

Ä̂
(0)
C/Q, given by

[
√
x, ¼⃗]

m⃗,m⃗′

=







√
¼m⃗−

√
¼m⃗′

(¼m⃗−¼m⃗′ )
, ¼m⃗ ̸= ¼m⃗′

d
dx

√
x
∣
∣
x=¼m⃗

, otherwise.
(26)

Eq. (16), evaluated by squaring, tracing and simplifying

Eq. (25), gives

ÀC ≈ NS

4NB

∥
∥
∥

√

»(2)
−→
C (2) −

√

»(1)
−→
C (1)

∥
∥
∥

2

. (27)

Similarly, ÀQ ≈NS

NB

∥
∥
∥

√

»(2)
−→
C (2) −

√

»(1)
−→
C (1)

∥
∥
∥

2

. (28)

Eqs. (27) and (28) prove that in the regime of »(i) ∈
o(NS/NB), NS ∈ O(exp(−NB)), and 1 ∈ o(NB),

lim
t→0

ÀQ
ÀC

= 4. (29)

The norms appearing Eq. (28) and (27) can be promoted

to the general case of
−→
C (i) ∈ C

n by noting that a unitary

transformation of the sorting coefficients
−→
C (i) implies a target-

independent unitary transformation of Ä̂
(i)
C/Q, and that[9] the

optimal exponent appearing in the general quantum chernoff

exponent formula À = sup
s

− logTr
((
Ä̂(1)

)s (
Ä̂(2)

)(1−s)
)

reduces to the Bhattacharya exponent when Ä̂(i) for i ∈ {1, 2}
is described by a small perturbation of a common ground state.

V. CONCLUSION

We have shown that for the task of discriminating among

a set of apriori known yet arbitrary reflective objects us-

ing an active-illumination radar at stand-off range, Gaus-

sian quantum illumination—using an entangled spontaneous-

parametric downconversion (SPDC) source—offers a factor-

of-four advantage in the quantum Chernoff exponent over that

of classical coherent-state illumination, in an appropriate limit

of high return-path loss, low mean signal photon number per

mode, and high mean thermal noise photon number per mode.

To derive this result, we expressed a multi-spatial-mode span

of the received light and the retained idler as a target-profile

independent multi-mode thermal state perturbed by a traceless

operator with a small norm, and that in the aforesaid regime

the return-path channel is entanglement breaking, rendering

the target-return plus idler joint state expressible using P

functions. Our analysis reaffirms that a quantum illumination

radar for use in large stand-off range has limited use due

to the restrictive regime where there is a benefit over a

classical alternative. Despite being entanglement breaking, that

an entangled probe outperforms all classical probes, makes it

an intriguing problem. The optimal receiver design is left open.
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