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Abstract—We explore covert communication of qubits over
the lossy thermal-noise bosonic channel, which is a quantum-
mechanical model of many practical channels, including optical.
Covert communication ensures that an adversary is unable to
detect the presence of transmissions, which are concealed in
channel noise. We show a square root law (SRL) for quantum
covert communication similar to that for classical: ∝

√
n qubits

can be transmitted covertly and reliably over n uses of an optical
channel. Our achievability proof uses photonic dual-rail qubit
encoding, which has been proposed for long-range repeater-
based quantum communication and entanglement distribution.
Our converse employs prior covert signal power limit results and
adapts well-known methods to upper bound quantum capacity
of optical channels. Finally, we believe that the gap between our
lower and upper bounds for the number of reliable covert qubits
can be mitigated by improving the quantum error correction
codes and quantum channel capacity bounds.

Index Terms—covert quantum communication, quantum com-
munication, bosonic quantum channel

I. INTRODUCTION

Covert, or low probability of detection/intercept (LPD/LPI)

communication renders adversaries unaware of the presence

of transmission between two or more parties. The last decade

saw much exploration of the fundamental limits of covert

communication over classical channels, with [1]–[4] leading

to many follow-on works. However, the physics which under-

pins these channels is quantum. This motivated recent work

on covert classical-quantum channels [5]–[9]. For all these

channels, covert communication is fundamentally governed by

the square root law (SRL) which limits communication that

is both covert and reliable to ∝ √
n bits over n channel uses.

In this paper, we extend these results to quantum covert com-

munication over lossy thermal-noise bosonic channels. Such

channels model optical fiber, and free space communication in
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the optical, microwave, and radio-frequency regimes. Here, we

study the achievability of quantum covert communication over

such a channel utilizing dual-rail photonic qubits, as well as

the converse using well-known upper bounds on the quantum

capacity of a lossy thermal-noise bosonic channel.

Dual-rail qubits apply to many quantum information pro-

cessing tasks. They are used in cluster-state generation [10],

which, e.g., can enable one-way quantum computing. Addi-

tionally, the dual-rail encoding is convenient for entanglement

distribution in quantum networks. Indeed, it was used to

demonstrate a loophole-free Bell inequality violation [11], and

to entangle trapped-ion qubits spatially separated by 230 m

[12]. Furthermore, dual-rail qubits have been proposed to

transmit quantum information over long-range repeater-based

quantum networks [13]–[16]. The dual-rail encoding is also

commonly used in quantum key distribution (QKD) [17], [18].

Covert quantum communication has been previously ex-

plored in the context of QKD [19]–[22]. Here, however, we

take a direct approach and use dual-rail encoding to address

quantum covert communication over the lossy thermal-noise

bosonic channel. Specifically, we adapt the analysis from

covert classical-quantum channels [5]–[9]. We believe that this

approach extends naturally to other quantum encodings and

channels. Analogous to the
√
n scaling for bits in the classical-

classical and classical-quantum channels, we find achievability

of the SRL, where one can transmit reliably at least ∝ √
n

covert qubits with the dual-rail encoding over n uses of a

lossy thermal-noise bosonic channel.

In the converse, we use the upper bound on the number

of photons per mode that is covertly transmissible over a

lossy thermal-noise bosonic channel [6]. Adapting the upper

bound on the energy-constrained quantum capacity of lossy

thermal-noise bosonic channel [23] shows that at most ∝ √
n

covert qubits can be reliably sent over n uses of this channel,

matching the achievable lower bound scaling. However, the



gap between the achievability and the converse remains open.

The rest of this paper is organized as follows: in Section II

we provide the mathematical preliminaries as well as the

system and channel models. In Section III we describe the

mathematical formalism underpinning covert communication

and provide our results. Finally, we wrap up in Section IV

with a discussion of our results and future research.

II. PRELIMINARIES

A. Dual-rail Qubits

The dual-rail qubit is a well-known encoding of qubits into

single photons in linear-optical quantum computing [24] and

quantum communication [13]. With dual-rail encoding, a qubit

is represented by the presence of a single photon in one of two

optical modes. The logical states are physically represented

using two-mode Fock (photon number) states: |0ðL = |01ð
and |1ðL = |10ð. The general logical qubit state |Èð is then a

superposition of the two states:

|Èð = ³|0ðL + ´|1ðL = ³|01ð+ ´|10ð (1)

and Ä̂³,´ = |ÈðïÈ| is the state’s density operator with ³, ´ ∈ C

normalized such that |³|2 + |´|2 = 1.

We call our fundamental transmission unit a round. We

transmit one qubit per round, occupying two optical modes.

B. System and Channel Model

Alice employs blocks of n two-mode rounds to encode each

covert quantum message |mð using dual-rail qubits described

in Section II-A and vacuum states |00ðï00|. Thus, she employs

a total of 2n optical modes. Utilizing the pre-shared classical

secret as described in Section III, she either sends a dual-

rail qubit or vacuum |00ðï00| through the lossy thermal-noise

bosonic channel, as detailed in Fig. 1. The channel acts on

each optical mode independently. Bob attempts to decode his

received state utilizing the shared secret to obtain an estimate

|m̌ð of the message, while the adversary warden Willie tries

to detect Alice’s transmission.

Consider a channel, E(¸,n̄B)
A→BW , in Fig. 1 that is described by

a beamsplitter with transmittance ¸ ∈ [0, 1], two input modes

(Alice and the environment), and two output modes (Bob and

Willie). These modes are labeled by their modal annihilation

operators â, ê, b̂, and ŵ respectively. Their input-output modal

relationships are:

b̂ =
√
¸â+

√

1− ¸ê and ŵ =
√

1− ¸â−√
¸ê. (2)

For the lossy thermal-noise bosonic channel, the input state of

mode ê is Ä̂n̄B
, a zero-mean thermal state with mean photon

number n̄B expressed by the following sum over the diagonal

elements in the Fock (photon number) basis |kð:

Ä̂n̄B
≡

∞
∑

k=0

tk(n̄B)|kðïk|, where tk(n̄B) =
n̄kB

(1 + n̄B)k+1
. (3)

A pure-loss bosonic channel has n̄B = 0 and mixes the input

with vacuum rather than thermal noise. Finally, we note that

the lossy thermal-noise bosonic channel belongs to a well-

studied class of bosonic Gaussian channels [26].

C. Entanglement-Breaking Channel

An entanglement-breaking channel breaks entanglement be-

tween input quantum states at the channel’s output. Entan-

glement is broken in a lossy thermal-noise bosonic channel

if n̄ > » where n̄ > 0 is the mean photon number of the

thermal noise added by the channel and » is the fraction of

the input photon number at the output [27]. In the following

analysis, we assume that the Alice-to-Willie channel is natu-

rally entanglement breaking, corresponding to ¸n̄B > 1 − ¸,

as is typical in optical communication systems. It is unknown

whether the channel to the adversary must be entanglement

breaking for covert quantum communication, and is a subject

of ongoing investigation. However, if the physical channel

does not break entanglement, Alice may introduce additional

loss or noise after encoding to ensure entanglement is broken,

per the following two lemmas:

Lemma 1: Entanglement is broken in the Alice-to-Willie

channel by passing Alice’s signal through a pure-loss channel

with transmittance Ä < ¸
1−¸ n̄B prior to transmission, meeting

the entanglement-breaking condition ¸n̄B > Ä(1− ¸).
Lemma 2: Entanglement is broken in the Alice-to-Willie

channel by passing Alice’s signal through a quantum-limited

amplifier with gain coefficient Geb = 2(1 − ¸)/(2(1 − ¸) −
¸n̄′B) and n̄′B > ¸

1−¸ − n̄B, followed by a pure loss channel

with transmittance Ä = 1/Geb. This meets the entanglement-

breaking condition ¸(n̄B + n̄′B) > (1− ¸).
Proofs of both lemmas are in [28, Appendix A]. Enforcing

the entanglement-breaking condition via either lemma reduces

the number of qubits transmitted reliably and covertly without

affecting the achievable SRL scaling. In Lemma 1 attenuation

of Alice’s signal breaks entanglement, while in Lemma 2

additional noise is used. Intuitively, Lemma 1 holds because

a lossy thermal-noise bosonic channel decomposes into a

pure-loss channel followed by a quantum-limited amplifier

[29]–[31]. We combine the pure-loss component with Alice’s

additional pure-loss channel. The resulting transmittance is the

fraction of Alice’s input photon number delivered to Willie,

while the amplifier gain determines the thermal noise added

by the channel. Proof of Lemma 2 is not as intuitive.

III. COVERT COMMUNICATION

A. Covertness Analysis

Denote Ä̂W
n

0 and Ä̂W
n

1 as the respective states Willie

observes when Alice is quiet or transmitting. Since two-

mode vacuum |00ðï00| is input when Alice is quiet, Ä̂W
n

0 =
(

Ä̂W0
)¹n

, where Ä̂W0 = Ä̂¸n̄B
¹ Ä̂¸n̄B

is a two-mode thermal

product state [26]. Willie desires to determine if Alice and

Bob are communicating; ergo, in n rounds (uses of the two-

mode bosonic channel), he tries to distinguish between Ä̂W
n

1

and
(

Ä̂W0
)¹n

. The null and alternate hypotheses H0 and H1

correspond to Alice being quiet and transmitting, respectively.

Willie collects all the photons that do not reach Bob, as shown

in Fig. 1.

Willie can make two types of errors: a false alarm, where

he decides that Alice is transmitting when she is not (choosing





Lemma 3: When Alice transmits an arbitrary quantum state

with the following density operator in the logical basis

Ä̂A =

(

|³|2 µ
µ∗ |´|2

)

(12)

that is encoded in dual-rail qubit basis, the corresponding

output at Willie Ä̂W satisfies:

DÇ2

(

Ä̂W
∥

∥

∥

(

Ä̂W0
)¹2

)

f (1− ¸)2

¸n̄B(1 + ¸n̄B)
. (13)

Here we provide a proof sketch, with the full proof deferred

to [28, Appendix B].

Proof (sketch): Our first challenge is to determine Ä̂W .

First, we find its density-operator representation. The anti-

normally ordered characteristic function completely defines a

quantum state Ä̂, and, for a two-mode state, is given by:

ÇÄ̂
A(·1, ·2) = tr

[

Ä̂e−·∗
1
â1e·1â

 
1e−·∗

2
â2e·2â

 
2

]

, (14)

where ·i ∈ C and âi, â
 
i are modal annihilation and creation

operators for i = 1, 2 [26]. Using the expression for ŵ in (2),

ÇÄ̂W

A (·1, ·2) = ÇÄ̂A

A

(

√

1− ¸·1,
√

1− ¸·2

)

× ÇÄ̂E

A (
√
¸·1,

√
¸·2) , (15)

where ÇÄ̂A

A (·) and ÇÄ̂E

A (·) are the characteristic functions for

Alice’s input state (12) and the thermal state. The expression

for ÇÄ̂E

A (·) is well known [33, Sec. 7.4.3.2]. ÇÄ̂A

A (·) is derived

by using (12) in (14) and expanding the exponentials:

ÇÄ̂W

A (·1, ·2) = e−(1+¸n̄B)(|·1|2+|·2|2) [1− (1− ¸)
(

|³|2||·2|2

+ |´|2|·1|2 + µ·1·
∗
2 + µ∗·∗1 ·2

)]

. (16)

A quantum state Ä̂W and its characteristic function ÇÄ̂W

A (·)
are related via the operator Fourier transform [26]:

Ä̂W =

∫∫

d2·1
Ã

d2·2
Ã

ÇÄ̂W

A e·2ŵ
 
2e·1ŵ

 
1e−·∗

1
ŵ1e−·∗

2
ŵ2 , (17)

where the integrals are over the complex planes for ·1 and ·2.

This allows Ä̂W to be expressed in the Fock basis with the

elements pf,g,f ′,g′ = ïfg|Ä̂W |f ′g′ð for f, g, f ′, g′ ∈ N0.

The integrals in (17) are evaluated in polar coordinates with

expansions of the exponentials that include annihilation and

creation operators. Details are deferred to [28, Appendix B].

Due to the orthogonality of Fock states for the |³|2 and |´|2
contributions, the only non-zero terms occur when f = f ′ and

g = g′, defining the main diagonal of the density operator. The

µ-contribution terms are non-zero when f ′ = f + 1 and g′ =
g − 1 from an off-by-one exponential in integration over the

corresponding polar coordinates. The µ∗-contributions follow

similarly for f ′ = f−1 and g′ = g+1. The Fourier transform

in (17) yields:

Ä̂W =

∞
∑

g=0

∞
∑

f=0

(

|³|2W1(f, g) + |´|2W1(g, f)
)

|fgðïfg|

+ µW2(g, f)|fgðïf + 1, g − 1|
+ µ∗W2(f, g)|fgðïf − 1, g + 1| (18)

where

W1(f, g) =

(

(¸n̄B)
g

(1 + ¸n̄B)g+1
− (1− ¸)(¸n̄B − g)(¸n̄B)

g−1

(1 + ¸n̄B)g+2

)

× (¸n̄B)
f

(1 + ¸n̄B)f+1
,

W2(f, g) =
(1− ¸)(¸n̄B)

g+f−1

(1 + ¸n̄B)g+f+3

√

f(g + 1). (19)

Thus, Ä̂W is a tri-diagonal operator as it is defined by |fgðïfg|,
|fgðïf−1, g+1|, and |fgðïf+1, g−1|. We obtain (Ä̂W )2 by

assigning each diagonal to operators Â, B̂, Ĉ and computing

(Ä̂W )2 =
(

Â+ B̂ + Ĉ
)2

.

Now, the density operator for the two-mode thermal state
(

Ä̂W0
)¹2

received by Willie when Alice is silent is [26]:

(

Ä̂W0
)¹2

=

∞
∑

f=0

∞
∑

g=0

tg(¸n̄B)tf (¸n̄B)|fgðïfg|, (20)

where tf (¸n̄B) and tg(¸n̄B) are defined in (3). Since (20)

is a diagonal operator, its inverse is also diagonal. Calcu-

lating DÇ2

(

Ä̂W
∥

∥

∥

(

Ä̂W0
)¹2

)

= tr
[

(Ä̂W )2
(

(Ä̂W0 )−1
)¹2

]

− 1

reduces to multiplying the diagonal elements of (Ä̂W )2 and
(

(Ä̂W0 )−1
)¹2

, and summing the results. This yields:

tr
[

(Ä̂W )2
(

(Ä̂W0 )−1
)¹2

]

=
[(

(1− ¸)2 + ¸n̄B(1 + ¸n̄B)
)

× (|³|4 + |´|4) + 2
(

|³|2|´|2¸n̄B(1 + ¸n̄B)

+(1− ¸)2|µ|4
)]

/(¸n̄B(1 + ¸n̄B)). (21)

A pure-state logical qubit input with |µ| = |³´| maximizes

(21), yielding the lemma.

Lemma 3 upper-bounds DÇ2

(

Ä̂Wi,m
∥

∥Ä̂W0
)

independently of

³, ´, and µ. Combining it with (4) and (10) yields:
√

1

8
D

(

Ä̂W
n

1 ||
(

Ä̂W0
)¹n

)

f q(1− ¸)
√
n

2
√

2¸n̄B(1 + ¸n̄B)
. (22)

Therefore, the covertness requirement is maintained if q f
2ccov¶√

n
, where the covertness constant is:

ccov =

√

2¸n̄B(1 + ¸n̄B)

(1− ¸)
. (23)

Note that we employ the same constant ccov as in [6, Eq. (2)].

B. Reliability Analysis and Achievability

Let M(n) be the number of qubits transmitted covertly in

n channel uses. Denote by [x]+ = max(x, 0). The following

theorem characterizes the lower bound on E[M(n)], where

the expectation is over the biased random coin flips used to

select the dual-rail systems in Section III-A:

Theorem 1 (Achievability): E[M(n)] g 2
√
nccovR¶ qubits

can be transmitted reliably and covertly over n uses of the

lossy thermal-noise bosonic channel, where ccov is in (23), and

¶ is the covertness constraint. R g [1−H(p⃗)]
+

is the constant

achievable rate of reliable qubit transmission per round, where

p⃗ =
[

1− 3p
4 ,

p
4 ,

p
4 ,

p
4

]

, p = 1 − ¸
(1+(1−¸)n̄B)4 , and H(p⃗) =

−∑

pi∈p⃗ pi log(pi) is the Shannon entropy.



Proof: Alice and Bob pre-share a secret, determining the

rounds to be used for transmission. Alice employs a random

code from [25, Secs. 23.3 and 24.4] to encode the message.

The expected number of rounds selected is qn = 2ccov¶
√
n,

per Section III-A.

Bob projects the two-mode systems in each of the selected

rounds into the subspace spanned by the dual-rail basis states

in (1). The probability of projection failure is pfail = 1 −
ï01|Ä̂B |01ð+ ï10|Ä̂B |10ð = 1− 2n̄B(1+n̄B)(1−¸)2+¸

(1+(1−¸)n̄B)4 where Ä̂B

is described by (18) with ¸ swapped for 1− ¸ and vice versa,

and arbitrary ³, ´, and µ. When the projection is unsuccessful,

Bob replaces the state with the maximally mixed state Ã̂
2 . This

mimics a depolarizing channel Ä̂B → Ä̂Bproj = (1− pfail)Ä̂
B +

pfail
Ã̂
2 parameterized by pfail.

Furthermore, this projection allows one to treat the lossy

thermal-noise channel as a depolarizing channel acting on

Ä̂Bproj and parameterized by p′ = 2(1−¸)2n̄B(1+n̄B)
¸+2(1−¸)2n̄B(1+n̄B)

[34,

Appendix B]. Then Bob’s state, Ä̂′B , prior to decoding is given

by Ä̂Bproj → Ä̂′B = (1− p′)Ä̂Bproj + p′ Ã̂2 , where

Ä̂′B = (1− p′)

(

(1− pfail)Ä̂
B + pfail

Ã̂

2

)

+ p′
Ã̂

2
(24)

= (1− p′)(1− pfail)Ä̂
B + (p′ + (1− p′)pfail)

Ã̂

2
(25)

= (1− p)Ä̂B + p
Ã̂

2
, (26)

with p = p′ + (1 − p′)pfail = 1 − ¸
(1+(1−¸)n̄B)4 in (26).

Thus, in each round, Bob’s state is equivalent to Alice’s

state transmitted through a depolarizing channel parameterized

by p. This channel is a Pauli channel parameterized by

p⃗ =
[

1− 3p
4 ,

p
4 ,

p
4 ,

p
4

]

[25, Ex. 4.7.4]. We complete the proof

using the hashing bound [25, Sec. 24.6.3].

The following remarks are in order:

1) Entanglement-breaking condition: If the Alice-to-Willie

channel is not naturally entanglement breaking, Alice may use

Lemmas 1 or 2 to break it. Using Lemma 1 replaces (1− ¸)
with Ä(1−¸) in the expressions for ccov and ¸ by 1−Ä(1−¸)
in R. Using Lemma 2 replaces n̄B with n̄B + n̄′B in ccov and

n̄B + n̄′′B in R where n̄′′B = 2(1−1/G)¸
1−¸ .

2) Use of auxiliary covert classical channel: Suppose that

Alice and Bob have a covert full-duplex classical communi-

cation link. Let Alice prepare Bell states, sending one qubit

of each state to Bob using the dual-rail basis on the rounds

selected for transmission. Bob’s projection of his received

state to the smaller dual-rail subspace in (1) is probabilistic,

with outcomes known to Bob. Bob communicates to Alice

the indices of successful rounds over the covert classical full-

duplex link, allowing hashing-based entanglement distillation

[35] on these rounds. Alice can then teleport qubits to Bob

using this distributed entanglement and the covert classical

link, achieving R′ = (1 − pfail)
(

1−H(p⃗′)
)

where p⃗′ =
[

1− 3p′

4 ,
p′

4 ,
p′

4 ,
p′

4

]

and p′ is the same as that in the proof

of Theorem 1. The resulting expected number of reliably-

transmissible covert qubits is plotted in Fig. 2. The average

number of classical bits that need to be covertly exchanged

is ∝ √
n, making this scheme feasible under certain channel

conditions. However, we defer the characterization of covert

classical communication link requirements to future work.

3) Potential improvement of the bound on R without clas-

sical communication: When Bob fails to project a state to the

basis defined by (1), he replaces it with a maximally mixed

state. Hence, instead of an erasure error, it is treated as a

random Pauli error and Bob throws away useful information

that may aid in decoding. Indeed, it is known that any stabilizer

code can correct up to twice as many erasure errors as Pauli

errors [36, Sec. III.A]. Although the use of random codes and

their analytical achievable rate R has only been established for

Pauli errors, the rates for large codes correcting erasure errors

(such as the tree code [37]) can be computed numerically.

Finally, here, we restrict encoding to the finite-dimensional

subspace spanned by dual-rail basis in (1). Bosonic codes

may improve the rate R, as they take advantage of the

entire infinite-dimensional space. However, the covertness

requirement may diminish this advantage. For example, ideal

Gottesman-Kitaev-Preskill (GKP) states require infinite en-

ergy, conflicting with covertness. Nevertheless, the trade-off

should be studied.

C. Converse

The following provides an upper bound on M(n):
Theorem 2 (Converse): M(n) f 2nC where

C =

[

g

(

(G+ 1)n̄S + Ḡ

2

)

− g

(

Ḡ(1 + n̄S)

2

)]+

, (27)

with g(x) ≡ (1+x) log(1+x)−x log(x), G = ¸
¸−(1−¸)n̄B/2 ,

Ḡ = G − 1, and the mean photon number of Alice’s input

state for ccov defined in (23) is constrained by n̄S f 2ccov¶√
n

.

Proof: In Theorem 1, we use the total of 2n modes of

lossy thermal-noise bosonic channel, since we transmit dual-

rail qubits. Hence, we employ the standard arguments from

[25, Sec. 24.5] to obtain M(n) f C ′
2n, where C ′

2n is the

channel quantum capacity (regularized coherent information)

over these 2n uses. Any lossy thermal-noise channel with

transmittance ¸ and mean thermal photon number n̄B can

be decomposed into a quantum-limited amplifier with gain

coefficient G = ¸
¸−(1−¸)n̄B/2 followed by a pure-loss channel

with transmittance ¸′ = ¸/G [29], [30]. Discarding one of

these channels and applying the data-processing inequality

upper bounds C ′
2n f C2n, where C2n is the quantum capacity

of the remaining channel over 2n uses. Since both pure-

loss and pure-input quantum-limited amplifier channels are

degradable [38], their coherent information is additive, and

C2n = 2nC, where C is the single-channel-use quantum

capacity. Usually, the amplifier channel is discarded (see,

e.g., [23, Th. 16]), since the resulting bound is tighter unless

n̄S → 0. Here, due to constraint on n̄S, we obtain a tighter

bound by discarding the pure-loss1 channel: C in (27) is an

upper bound on the quantum capacity of the amplifier channel

1Discarding the amplifier instead yields a poor bound that is ∝
√
n log(n).



with gain G assisted by the arbitrary local operations and

classical communication (LOCC) [39, Eqs. (115), (172)] [40].

The energy-constrained capacity is required, as bounding

the QRE on the r.h.s. of (4) limits Alice’s input state mean

photon number n̄S per [6, Thm. 1]. While this result2 is applied

to the classical-quantum capacity in [6], the theorem is general

for any quantum state.

Fig. 2. Log-log plot for upper (solid blue line) and lower (dot-dashed red line)
bounds given by Theorem 2 and Theorem 1 respectively for the total number
of covert bits reliably transferred vs time in seconds. The orange dotted line is
the lower bound discussed in remark 2 of Section III-B enabled by a two-way
classical communication link. Here, transmittance η = 0.9, the mean thermal
photon number n̄B = 0.12, and the covertness parameter δ = 0.05.

Taylor series expansion of (27) around n̄S = 0 yields the

SRL scaling of the upper bound in Theorem 2, matching that

of the lower bound in Theorem 1. However, a multiplicative

gap exists between these bounds, as shown in Fig. 2, where

we set the channel transmittance to ¸ = 0.9, and n̄B = 0.12.

These parameters ensure that the Alice-to-Willie channel is

entanglement breaking. Furthermore, we employ a modulation

frequency of 100 MHz or 108 modes/second with a covertness

criterion of ¶ = 0.05. We suspect the looseness of the upper

bound is due to the data processing argument, insofar as we

disregard the pure-loss channel in the decomposition of the

original channel. Indeed, a tighter bound may exist. However,

deriving such a bound remains a difficult open problem as it

requires analysis of the regularized coherent information of

the channel [25, Th. 24.3.1] [41].

IV. CONCLUSION AND DISCUSSION

We develop an achievable lower bound on the expected

number E[M(n)] of qubits that are covertly and reliably trans-

missible using dual-rail qubit encoding over the lossy thermal-

noise bosonic channel (we defer removing the expectation

to future work). We also provide a converse. Although we

specifically address quantum communication rather than QKD,

we expect our work to provide insight into the open questions

in covert QKD [19]–[22].

While both the upper and lower bounds in the converse and

the achievability scale ∝ √
n, the gap between them is fairly

large. This motivates improvement of the QECC capabilities

2There is a typo in the short paragraph between Criterion 2 and Eq. (4) in

[6]: δ =
√

δQRE should be
√
8δ =

√

δQRE. We apply this correction in
deriving the constraint on n̄S in the statement of Theorem 2.

and the upper bounds of the quantum capacity of the lossy

thermal-noise bosonic channel, as noted in Sections III-B and

III-C. Furthermore, in our achievability analysis, we require

that the Alice-to-Willie channel is entanglement breaking to

simplify the mathematics. While Lemmas 1 and 2 may be

employed to ensure this condition, for atmospheric models

such as MODTRAN [42], R = 0 in Theorem 1. However,

using classical covert channel can yield R > 0. Further inves-

tigation of the necessity of entanglement-breaking condition

is needed. Other covertness criteria, including bounding the

trace norm on the l.h.s. of (4) directly (as done in [43] for

classical-quantum channels), also need to be studied.

Practical aspects of achieving covert quantum communica-

tion have to be considered. Our covertness scheme requires a

substantial number of classical pre-shared secret bits; resolv-

ability techniques from [3], [9] should be adapted to reduce

this burden. Additionally, here we assume that quantum states

are generated for transmission on demand. However, quantum

processes are inherently random. This stochasticity needs to

be included in the calculation of channel use selection prob-

ability q. Moreover, although randomness in state generation

is generally considered an undesired characteristic of quan-

tum information processing, here it might be exploited. For

example, the quasi-probabilistic nature of heralded entangled

photonic Einstein-Podolsky-Rosen (EPR) pair generation [44]

could be used to select a random subset of channel uses.

Finally, the framework provided in this manuscript can

be applied to other qubit encodings and quantum channels.

Encodings such as single-rail and GKP are enticing candidates

due to their prevalence in the literature and error-correcting

properties of the latter. In fact, it has been shown [45] that

GKP qubits allow reliable quantum communication rates that

differ only by a constant factor from the known upper bound

on the quantum capacity of the pure-loss bosonic channel

and perform well in the lossy thermal-noise bosonic channel

setting. However, their energy requirements negatively impact

covertness. Indeed, practical codes enabling a physical realiza-

tion of covert quantum communication should be investigated.
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