ROOT: Requirements Organization and
Optimization Tool

Katherine R. Dearstyne
Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
kdearsty @nd.edu

Abstract—Software engineering practices such as constructing
requirements and establishing traceability help ensure systems
are safe, reliable, and maintainable. However, they can be
resource-intensive and are frequently underutilized. To alleviate
the burden of these essential processes, we developed the Require-
ments Organization and Optimization Tool (ROOT). ROOT cen-
tralizes project information and offers project visualizations and
Al-based tools designed to streamline engineering processes. With
ROOT’s assistance, engineers benefit from improved oversight
and early error detection, leading to the successful development
of software systems.

Link to screen cast: https://youtu.be/3rtMYRnsu24

Index Terms—Requirements Management, Documentation,

Software Engineering

I. INTRODUCTION

Collaboration is critical to the success of building any
complex software system, yet the coordination of individuals
from different backgrounds and expertise presents challenges
of its own [1], [2]. Practices such as constructing requirements,
establishing traceability, and performing validation and testing
are designed to mitigate potential issues earlier and facilitate
better communication across individuals and groups [3], [4].
Despite the usefulness of these practices, they are often
difficult to build into the process due to the additional time and
resources required to properly implement them [5], [6], [7].
As a result, they are often ignored, delayed, or inadequately
sustained [8], [9], especially in startups and small compa-
nies where speed is often prioritized over comprehensive
requirements engineering processes [10], [11]. Furthermore,
even when these practices are implemented, collaboration
between groups can introduce inconsistencies or confusion that
ultimately results in failures down the road [12]. Therefore,
easing the burden of these processes on engineers is paramount
to ensure systems are safe, reliable, and maintainable.

To ease the burden of requirements and software en-
gineering processes, we developed ROOT (Requirements
Organization and Optimization Tool). ROOT serves as the
hub of all project information, organized into a hierarchical
artifact tree (Figure 1) that allows users to easily navigate their
projects. Additionally, ROOT offers a range of tools designed
to expedite engineering processes and provide engineers with
an additional layer of oversight to catch mistakes early, acting

Alberto D. Rodriguez
Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
arodri39@nd.edu

Jane Cleland-Huang
Computer Science and Engineering
University of Notre Dame
Notre Dame, IN, USA
JaneClelandHuang @nd.edu

as an assistant rather than a replacement for human engineers.
These tools encompass the following core features:

« Integration Across Knowledge Sources: ROOT inte-
grates seamlessly with GitHub, Jira, and other project
knowledge sources, centralizing all project information
within the platform.

o Project Summarization: ROOT automatically generates
a summary of the software project, highlighting sub-
systems and project features. It also offers summaries of
individual source code files to accelerate project under-
standing.

o Artifact Creation/Generation: Engineers can load ex-
isting artifacts into ROOT or create new ones through a
user-friendly interface. When documentation is lacking,
ROOT automatically generates hierarchical layers of doc-
umentation from source code.

« Project Visualization Users can visualize their project
in multiple ways, including an artifact tree or a table. To
focus on a specific aspect at at time, they can select a
subset of their project and create a view of it.

« Al-based Project Chat: ROOT provides a chat interface
for project-specific queries, which references any perti-
nent artifacts in its responses, enabling users to verify
information easily.

o Trace-link Generation: ROOT predicts trace links be-
tween related artifacts, providing explanations for each
link. Reviewers can easily accept or reject predicted links
and create new ones.

« Project Vocabulary: To encourage consistent terminol-
ogy across the project, ROOT automatically extracts
project concepts and vocabulary and links them to the
relevant artifacts.

« Requirements Assessment: ROOT automatically checks
requirements for inconsistencies or ambiguities. Review-
ers can also manually flag requirements to alert the
relevant parties.

The remainder of this paper is organized as follows: Section
IT presents previous work that ROOT builds upon. Section III
outlines the technical details of the tool. Section IV performs a
walk through of each features in more detail. Finally, Section
V contains future work and Section VI concludes our paper.

B Feature

[Feature56]
Precise Trajectory
Following

B Functional
Requirement

[FR103] Estimate
Steering Offset

Code

@ Code Segment @ Code Segment

mpc_lateral_controller.cpp=213

steering_offset.hp
p MpcLateralContro

ller::createSteerOf

SteeringOffsetEsti
mator::SteeringOf

B Code Segment

SteeringOffsetEsti
mator::getOffset

@ Code Segment B Code Segment @ Code Segment

ControlPerforman
ceAnalysisCore::se

Y s

SteeringOffsetEsti ControlPerforman
mator::updateOffs ceAnalysisCore::c

= alend =R ien

Code

mpc_lateral_contr
oller.cpp p

Code

on/autoware

steering_offset.cp

e

@ Code

autowarefoundation/autoware.

control_performa
nce_analysis_cor
e.cpp

Fig. 1. Slice of documentation and links generated for Autoware [13] open source project.

II. RELATED WORK

Early management systems like DOORs focused on artifact
management and trace link organization, laying the ground-
work for representing engineering processes in software. Over
time, tools like JIRA and Siemens’s Polarion expanded their
roles, with JIRA evolving from issue tracking to managing the
entire software development process, and Polarion addressing
system requirements. While these tools were manual and
labor-intensive, modern alternatives like JAMA, Visure Solu-
tions, Osseno, and SpiraTeam have begun integrating Al for
enhancements such as quality checks, onboarding assistance,
and the generation of user stories and test cases, though they
primarily augment existing processes rather than creating new
ones. ROOT distinguishes itself by catering to startups and
small companies that often lack rigorous software management
in the early stages of product development. Its documentation
generation pipeline produces an initial draft of system require-
ments linked to source code, significantly reducing the effort
of documentation creation and allowing teams to focus on
refinement. Furthermore, through collaborations with NASA’s
Goddard and Jet Propulsion Laboratories, ROOT has identified
additional features that can help multi-team organizations
detect conflicts early and stay aligned throughout the project
life-cycle. These include identifying inconsistencies across an
entire project’s requirements and maintaining a centralized
graph of project concepts. Collectively, these capabilities en-
able ROOT to support organizations at all stages of maturity.

III. ARCHITECTURE AND PROCESSES
A. Architecture

The ROOT system consists of three key components: a
front-end application (FEND), a back-end server (BEND),
and a generation server (GEN). FEND, built with Vue.js and
Cytoscape, visualizes projects, artifacts, and trace links as in-
teractive graphs, with options to view these elements in tables
or query them via a chat interface. BEND, implemented in Java
with Spring Boot, manages user interactions, data retrieval,
and job execution through a REST API, using a MySQL
database to store all project-related data. GEN, a Python-based
Django application with Celery for job management, handles
Al-driven tasks like documentation generation and chat fea-
tures, leveraging advanced language models and providing
updates on job status and results. Together, these components
create a scalable system for managing and generating project
documentation and traceability.

B. Job-Execution

In ROOT, job execution begins when a user initiates a job
through the front-end client, prompting the back-end server to
create a job entry, start execution, and provide a job ID for
tracking. The back end then asynchronously retrieves project
data and sends it to the generation server (GEN), which
processes the job and returns its ID for progress updates.
Throughout the job, the back end polls GEN for updates, logs
progress, and, upon completion, retrieves and processes results
from an S3 bucket. The back end then saves new artifacts and
trace links, marks the job as complete, and notifies the user

via email and WebSockets, ensuring efficient and automated
requirements engineering tasks.

C. Al-based Features

ROQOT’s value lies in its comprehensive feature set, built
upon existing research which we link in case more details are
wanted. For tasks like summarization, document generation,
chat, and explanations, ROOT leverages Anthropic’s LLMs
[14], known for their large context windows, and enhances
their output with techniques such as Retrieval-Augmented
Generation (RAG [15]), Chain-of-Thought Reasoning [16],
and the ReAct approach [17]. For example, ROOT’s chat
and inconsistency detection methodologies are similar to those
described in [18], while our trace-link explanations are based
on methods used in [19]. Additionally, ROOT employs cross-
encoder and embedding models, including BERT variants
[20], [21] and Sentence-BERT [22], for tasks like trace-
link prediction and clustering artifacts in the documentation
generation pipeline.

IV. WALK THROUGH

This section provides a graphical walkthrough of ROOT, il-
lustrating the user experience and interactions with the system
for each of the core features outlined in Section I. Throughout
our walkthrough, we use a subset of the Autoware Foundation
open-source project [23] as a running example.

A. On-boarding:

Upon entering the tool, users are encouraged to go through
an on-boarding process to help them import their project in the
platform. We have observed that many users possess only code
and want to take advantage of ROOT’s features designed to
address gaps in their software engineering practices. Therefore,
this initial on-boarding is specifically tailored for users whose
primary data source is GitHub. Users with different needs can
opt out of this workflow and start from the project import
screen which allows for more flexibility.

During on-boarding, users are prompted to import their
project codebase, generate a project summary, and create any
missing documentation.

B. Integration Across Knowledge Sources

From the project import screen, users are given three ways
to import a project: via GitHub, Jira, or flat files. If a user
is beginning a new project, they may choose to begin with a
blank project.

If a user opts to import an existing project, they are
prompted to connect their GitHub or Jira account, or to upload
the required files. Once this is done, an import job is initiated,
allowing the user to monitor its progress.

For the remainder of the walk-through, we will assume that
the user is connecting their Git-hub account and move through
the remaining on-boarding steps.

C. Project Summarization

Once a user has imported their project, a summary of the
project will be automatically generated, along with summaries
for all code files. The project summary includes an overview
of the system and sections detailing sub-systems, entities,
features, and data flow.

D. Artifact Generation

The on-boarding process also allows users to generate
two new layers of documentation for their project. If they
choose to do so, the system initiates a multi-step pipeline
that was developed and evaluated in previous work [24].
This pipeline first identifies groups of related code based on
common functionality, then uses a LLM to generate Functional
Requirements and then repeats the process to generate higher-
level Features for them. While ROOT can also generate various
document formats, such as user stories or design documents,
we found that Functional Requirements and Features are
particularly beneficial for users when they are first starting out.
However, once the users enter the platform, they can generate
additional types of documentation at any time.

E. Project Visualization

After onboarding, users are directed to the project home
page (as shown in Figure 2), which displays the project’s
Traceability Information Model (TIM), a generated project
summary, and graph controls. This overview helps users
quickly grasp the project’s structure and key features. ROOT
offers two primary methods for viewing artifacts: a tree view
(Figure 4) and a table view (Figure 5) . For large projects, the
tree visualization is disabled by default to avoid overwhelming
users, though they can target a single artifact to view in
the graph. The tree view also allows for expanding and
collapsing branches to manage complexity. The table view,
suitable for handling numerous artifacts, enables filtering,
sorting, and fuzzy searching, with an additional tab for viewing
and managing trace links, including their review status.

When users click on an artifact in either view, a side
panel opens with more detailed information (Figure 3), and
double-clicking allows them to create a focused view centered
on the selected artifact and its relationships. This setup is
demonstrated using the Autoware project example, where users
can efficiently locate and explore specific features, such as the
braking functionality, and visualize its parent and children. A
video walkthrough provides further details on these visualiza-
tion capabilities, offering users a practical guide to navigating
their projects within ROOT.

F. Al-based Project Chat:

Alongside the tree and table view buttons, users can access
the chat interface. From this screen, users can ask questions
about their project and receive responses generated by a LLM,
as shown in Figure 6. To encourage accurate responses, the
LLM is provided with related project artifacts. These artifacts
are displayed to the user as clickable buttons beneath the
LLM’s response. Clicking on one of these artifacts opens a
detailed view of that artifact.

7 Project Version View
LB pitowarecontrolmodute-asT,... ~ /100 / Aihstitacts

B TvPEs g3 TREE (BB TABLE W] DELTA

[

Create

8 Feature

8
Projects 73 Artifacts

View 203 Links

8 B Functional
Settings Requirement

178 Artifacts
1345 Links
@ Code Segment
637 Artifacts
<]
o

i Code

B 242 Artifacts

()

+
()

Search Mode

ot v Search current artifacts... Q-
[~
Q x
[}
Autoware Control Module - AST, Docs Version 1.0.0

[
&

¢ Overview

The autonomous vehicle control software enables precise trajectory tracking to guide the vehicle along a
planned route. At the core are lateral and longitudinal motion controllers that generate low-level control
commands to match a reference trajectory from the high-level motion planner.

The lateral controller uses a model predictive control (MPC) algorithm that predicts the vehicle’s future
path based on steering inputs and a configured vehicle model. By optimizing over a time horizon, it
calculates the ideal steering angle to minimize deviation from the desired trajectory. The longitudinal
controller regulates speed using a PID algorithm to achieve the velocity profile defined by the trajectory
waypoints.

These controllers run in separate nodes, coordinated by a higher-level trajectory follower module. This
module passes the trajectory and current vehicle state data to the controllers and syncs their output
commands. Additional nodes monitor the control performance and check commands for safety.
Parameters allow tuning aspects like controller gains and vehicle models. Further nodes enable critical
safety capabilities like emergency braking, lane keeping, and collision avoidance. Together, these
modules achieve smooth, precise driving along the planned route. Diagnostic data and visualizations
assist in debugging the system.

Features

* The system shall implement lateral and longitudinal control algorithms to generate steering and
acceleration/braking commands for the vehicle to precisely follow a reference trajectory generated
by the planning module. The controllers shall coordinate to achieve smooth, stable tracking of the
planned trajectory.

Fig. 2. Project overview screen containing Traceability Information Model (TIM) and graph controls. Project summary excluded for display purposes.

B fEEY x

&3 TREE {.} EXPAND ° EDIT W DELETE
& (@) Feature Y . .
% | | “[Featuress] safe [Feature48] Safe Stopping Trajectory @ Feature
I Stopping Q Planning
Trajectory
1 Planning . Body
Name: Emergency Braking
c
. User Role: Autonomous Vehicle System
Functional
M Description: The autonomous vehicle system shall continuously generate
[FR146] emergency braking trajectories and collision boundaries based on current
Autonomous vehicle state and dynamics. The emergency trajectories will cover a minimum
Emergency time horizon to ensure the vehicle can be safely stopped in hazardous

— 4+

situations. This allows the system to trigger rapid emergency stops when
needed to avoid collisions.

SEELESS

Related Context 1 eent] cae @ v A

Functional Requirement ~

~ode

] [(@ Code Segment] [[@ Code Segment] [[@ Code Segment]

stowarefoundation/autoware.

Fig. 3. Selected artifact view of generated feature containing description and further details.

G. Trace-link Generation:

To capture any potentially missed relationships, ROOT
provides automatic trace-link generation. Users can select
the child type(s) and parent type(s) for which trace-links
will be predicted. Once the predictions are completed, all
generated links will be added to the project as dotted lines for
user review. Additionally, a confidence score and an LLM-
generated explanation will be provided to elaborate on the
potential relationship between the artifacts as can be seen in
Figure 7.

H. Project Vocabulary:

ROOT also assists users in maintaining a project vocabulary
to facilitate better alignment among different experts involved
in a project. Terminology is automatically identified during
health checks, as detailed in the following section. Addition-
ally, users can manually add new concepts at any time, similar
to adding a traditional artifact. These concepts are then utilized
as context when viewing artifacts, querying in the chat, or
evaluating other requirements.

B tvees g3 TRee (B TasLe BJ oewta B cHar o~
i Feature [£ @@ Y_‘
[Feature48] Safe :
Stopping Q
Trajectory
Planning) Q
o
5 Functional 5 Functional 5 _Functional 5 Functional 5 Functional c
[FR10] Emergency [FR112] Validate [FR146] [FR16] Trim [FR352]
Braking Trajectory Safe Trajectory Autonomous Predicted Emergency Stop
, Generation Emergency Trajectory Braking Diagnostic

T I

N R N T R

)

Fig. 4. Tree view of generated feature from Autoware Project.

braking Q
=S BRI - | visole ypes - | [pamtesetacs [currentview | AL arTIFACTS
ame 1 b o

« [FR10] Emergency Braking Trajectory Generation (F rocuona a1l 1l rsu

v [FR146] Autonomous Emergency Braking Node sl 1l rsa

v [FR16] Trim Predicted Trajectory Braking (F_rontons seqremen) allsa

v [FR352] Emergency Stop Diagnostic Message (F_runctons mecurement) sl 1l rsra
Type: ([Feature) 1

v [Feature4s] Safe Stopping Trajectory Planning Feature sl 1l rsra

Fig. 5. Table view of search results for query ’braking’.

1. Requirements Assessment:

Users can perform a health check on any of their natural
language documents to identify potential issues with require-
ments. During the health check, the system flags inconsis-
tencies with other requirements and highlights undefined or
ambiguous concepts within the current project vocabulary. If
any terminology in the artifact is undefined, users can address
the warning by adding the term to the project vocabulary.
Furthermore, the system identifies any existing project termi-
nology that is referenced in the artifact, with automatic links
created between those concepts and the current artifact.

To illustrate these health checks, we have constructed a
small project containing 4 requirements and 2 project concepts
(Job and Database Entity) [25]. For illustration, two of the
requirements are shown below:

R1: The system shall be able to save some entities to the database,
perform a job, and return the result of the job to the user in under
1 minute.

R4: Saving entities to the database shall take between 0.5 seconds
to 5 seconds to complete.

If we run a health check on Requirement R/, ROOT
identifies several issues and display them for resolution (Figure
8). The term system has been flagged as a missing concept in
the project vocabulary. An existing concept, Job, is directly
cited in the artifact, so the system creates a link between
them. Additionally, the concept Database Entity, although
not directly cited, is predicted to be used in R/. Finally, a
contradiction is detected between R/ and R4 (see below) and
an explanation is provided.

Explanation of Autoware's Autonomous Braking System

O alberto@safa.ai

How does the braking system work?

+, SAFA

Based on the provided information, the Autoware

driving system several comp! related to

braking and stopping the vehicle
1. Autonomous Emergency Braking (AEB) Node:

o This node continuously menitors sensor data (lidar point clouds, velocity, IMU, predicted trajectory) to detect
potential abstacles in the vehicle’s path
o It calculates the minimum braking distance required to avoid a collision with detected obstacles based on relative
velocities.
o Ifan imminent collision is predicted where the obstacle is within the minimum braking distance, the node triggers
an emergency stop by publishing a diagnostic message.
2. Predicted Path Checker Node:

® Manitors the vehicle's predicted trajectory against detected dynamic objects around it.

o Checks for intersections between the trajectory polygon and object polygons to identify potential collisions

& Ifa collision is detected within the braking distance, it publishes an emergency stop diagnostic message

o Itcan alsc request the vehicle to pause and stop if the collision paint is not already a planned stop in the trajectory.

3. Longitudinal Mation Control

o The PID longitudinal contraller computes the required acceleration/deceleration to follow the target trajectory.
@ Ituses different cantral states (DRIVE, STOPFING, EMERGENCY) based on distance to stops and trajectory
deviations.
 Applies techniques like smooth stopping profiles with gradual deceleration to ensure comfortable stops
= Dutputs the longitudinal acceleration command to control the vehicle’s speed.
4. Vehicle Command Gate:

o The maderate stop interface aggregates stop requests from various sources and determines the overall stop state.
= The pause interface enables pausing/unpausing of autonomous contral, effectively allowing stopping the vehicle
th and di of

o Theseinterfaces control for safe

5 Emergency Stap Override

s The system has the capability to trigger an emergency stop override that brings the vehicle to a safe stop by
disengaging autonomous control in case of failures or dangerous conditions.

In summary, the braking system continuously manitars the environment and vehicle state through sensor fusion. It predicts
potential collisions and calculates the braking requirements. If a collision is imminent, emergency braking is automatically
triggered by publishing commands that are handled by the longitudinal controller ta decelerate the vehicle. The system also

manages smoath stopping far regular maneuvers and provides emergency stop overrides as a safety mechanism.

\ ‘L

cker_node.cpp

README.md

s 2
rerse/con |\ F [FR16] Trim Predicted Trajectory ... |
(g TR e)

node.cpp

N ™
au towa || # [FR421] State Transition Contral |
=st_smooth_stop.cpp <\ <

.
efcan... |\ F [FR136] Autonomous Vehicle Sto...
he

- ~ ~
| F IFR352] Emergency Stop Diagnos... | [F [FR10] Emergency Braking Trajec... |
AN J

\

Fig. 6. Example chat response for Autoware project braking sub-system.

V. FUTURE WORK

Our ultimate vision for ROOT is to support all aspects of
the software engineering process comprehensively. To achieve
this, we anticipate several future enhancements to ROOT.
Firstly, we plan to integrate additional data sources, such as
DOORs and PDFs, allowing engineers to connect all elements
of their projects seamlessly. Additionally, we aim to enable
users to link back to other tools, such as opening a code
artifact in their preferred IDE. We also seek to improve
artifact maintenance by identifying outdated documentation
and updating it automatically. Finally, we intend to implement
more health checks, such as flagging incomplete or unver-
ifiable requirements. With these enhancements, ROOT will
be better positioned to streamline software workflows and
enhance overall project quality.

VI. CONCLUSION

In this paper, we introduce ROOT, a tool designed to en-
hance collaboration and requirements management in software
development. By automatically generating documentation and
trace-links from the ground up, ROOT makes robust require-
ments engineering processes accessible even to startups and
small companies. Through its visualizations and Al-based
features, ROOT promotes more effective collaboration and

[£ [@ IEE X @ ® A EDT W DELETE

Functional
Requirement

[FR146)
Autonomous
Emergency

[@ Code Segment

AEB:onVelocity

& Generated Link G 67%
L Explanation

el

GO While the artifacts share similarities through their relationship to the AEB
c subsystem and references to sensor data, they describe different levels of

technical detail with the code providing an implementation of
functionality specified at a higher level in the requirement. However, a
change in one artifact could necessitate a change in the other. Therefore,
there appears to be a possible but uncertain trace link between them,
though some aspects align more closely than others

¢ The artifacts belong to the autonomous emergency braking (AEB)
subsystem. Specifically, the code artifact implements an AEB node
while the functional requirement specifies the AEB node. Therefore,
they both reference the AEB subsystem.

The code artifact references velocity data from sensor messages as an

input. The functional requirement specifies that sensor data is used to
detect potential collisions. Therefore, both artifacts reference sensor
data as an input.

o The primary function of the code artifact is to process incoming

Fig. 7. Detailed view of generated link between generated documentation and a code segment.

Artifact Health 8 HEALTH -

The “system” refers to the entire software application or
platform that needs to meet the specified requirement of
saving entities to a database, performing a job, and
returning the result to the user within 1 minute.

system

a was cited in artifact.

(@ Job |

The concept |Database Entity|was predicted to be

used within the artifact.
Database Entity

Hj The requirement R1 states that the system should be able to
save some entities to the database, perform a job, and return
the result of the job to the user in under 1 minute. However,
according to R4, saving entities to the database can take
between 0.5 seconds to 5 seconds. If multiple entities need to
be saved, the time required for saving entities alone could
exceed 1 minute, making it impossible to meet the
requirement R1.

(Br1|[BRs |

Fig. 8. Artifact health checks showing cited concept, undefined concept,
predicted concept, and contradiction in artifact ‘R1°.

early problem detection. Ultimately, ROOT aims to ease the
burden of engineering processes and aid in developing safer,
more reliable systems faster.

VII. ACKNOWLEDGEMENTS

The research described in this paper was partially supported
by the USA National Science Foundation (NSF) under grant
numbers 1909007 and 1901059.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

REFERENCES

D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
Collaboration, and Bugs: The Social Nature of Issue Tracking in Small,
Collocated Teams.”

R. Yasrab, J. Ferzund, and S. Razzaq, “Challenges and issues in
collaborative software developments,” Mar. 2019, arXiv:1904.00721
[cs]. [Online]. Available: http://arxiv.org/abs/1904.00721

J. Whitehead, “Collaboration in Software Engineering: A Roadmap,”
Future of Software Engineering (FOSE ’07), pp. 214-225, May
2007, conference Name: Future of Software Engineering ISBN:
9780769528298 Place: Minneapolis, MN, USA Publisher: IEEE.
[Online]. Available: http://ieeexplore.ieee.org/document/4221622/

M. M. Lehman, “Software engineering, the software process and
their support,” Software Engineering Journal, vol. 6, no. 5, pp. 243—
258, Sep. 1991, publisher: IET Digital Library. [Online]. Available:
https://digital-library.theiet.org/content/journals/10.1049/sej.1991.0028
J. Bayer and D. Muthig, “A view-based approach for improving software
documentation practices,” Apr. 2006, p. 10 pp.

J. Ahonen and T. Junttila, “A case study on quality-affecting problems
in software engineering projects,” Dec. 2003, pp. 145-153.

E. Lim, N. Taksande, and C. Seaman, “A Balancing Act: What Software
Practitioners Have to Say about Technical Debt,” Software, IEEE,
vol. 29, pp. 22-27, Nov. 2012.

P. Rempel, P. Mider, T. Kuschke, and J. Cleland-Huang, “Mind the
gap: assessing the conformance of software traceability to relevant
guidelines,” in 36th International Conference on Software Engineering,
ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, P. Jalote,
L. C. Briand, and A. van der Hoek, Eds. ACM, 2014, pp. 943-954.
[Online]. Available: https://doi.org/10.1145/2568225.2568290
GhanbariHadi, VartiainenTero, and SiponenMikko, “Omission of
Quality Software Development Practices,” ACM Computing Surveys
(CSUR), Feb. 2018, publisher: ACMPUB27New York, NY, USA.
[Online]. Available: https://dl.acm.org/doi/10.1145/3177746

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

N. Paternoster, C. Giardino, M. Unterkalmsteiner, T. Gorschek, and
P. Abrahamsson, “Software development in startup companies: A
systematic mapping study,” Information and Software Technology,
vol. 56, no. 10, pp. 1200-1218, Oct. 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584914000950
C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek,
and P. Abrahamsson, “Software Development in Startup Companies:
The Greenfield Startup Model,” [IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 585-604, Jun. 2016, conference Name:
IEEE Transactions on Software Engineering. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7360225

B. Curtis, H. Krasner, and N. Iscoe, “A field study of the
software design process for large systems,” Commun. ACM, vol. 31,

no. 11, pp. 1268-1287, Nov. 1988. [Online]. Available: https:
//dl.acm.org/doi/10.1145/50087.50089

Autowarefoundation, “Autowarefoundation/autoware.universe.” [On-
line]. Available: https://github.com/autowarefoundation/autoware.
universe

A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli, T. Henighan, A. Jones,
N. Joseph, B. Mann, N. DasSarma, N. Elhage, Z. Hatfield-Dodds,
D. Hernandez, J. Kernion, K. Ndousse, C. Olsson, D. Amodei, T. Brown,
J. Clark, S. McCandlish, C. Olah, and J. Kaplan, “A general language
assistant as a laboratory for alignment,” 2021.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Kiittler, M. Lewis, W.-t. Yih, T. Rocktidschel, S. Riedel, and
D. Kiela, “Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks,” Apr. 2021, arXiv:2005.11401 [cs]. [Online]. Available:
http://arxiv.org/abs/2005.11401

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi,
Q. Le, and D. Zhou, “Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models,” Jan. 2023, arXiv:2201.11903 [cs]. [Online].
Available: http://arxiv.org/abs/2201.11903

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Y. Cao, “ReAct: Synergizing Reasoning and Acting in Language
Models,” Mar. 2023, arXiv:2210.03629 [cs]. [Online]. Available:
http://arxiv.org/abs/2210.03629

S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh, “Al-
based Question Answering Assistance for Analyzing Natural-language
Requirements,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), May 2023, pp. 1277-1289, iSSN:
1558-1225. [Online]. Available: https://ieeexplore.ieee.org/document/
10172663

A. D. Rodriguez, K. R. Dearstyne, and J. Cleland-Huang, “Prompts
Matter: Insights and Strategies for Prompt Engineering in Automated
Software Traceability,” Aug. 2023. [Online]. Available: https://arxiv.
org/abs/2308.00229v 1

J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained bert
models,” arXiv:2102.04411 [cs], Feb 2021, arXiv: 2102.04411.
[Online]. Available: http://arxiv.org/abs/2102.04411

J. Lin, A. Poudel, W. Yu, Q. Zeng, M. Jiang, and J. Cleland-Huang,
“Enhancing automated software traceability by transfer learning from
open-world data,” no. arXiv:2207.01084, Jul 2022, arXiv:2207.01084
[cs]. [Online]. Available: http://arxiv.org/abs/2207.01084

N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks,” Aug. 2019, arXiv:1908.10084 [cs].
[Online]. Available: http://arxiv.org/abs/1908.10084

“GitHub - autowarefoundation/autoware.universe — github.com,” https:
//github.com/autowarefoundation/autoware.universe, [Accessed 27-06-
2024].

K. R. Dearstyne, A. D. Rodriguez, and J. Cleland-Huang,
“Supporting Software Maintenance with Dynamically Generated
Document Hierarchies,” Aug. 2024, arXiv:2408.05829 [cs]. [Online].
Available: http://arxiv.org/abs/2408.05829

A. Rodriguez, “Requirement set with defects,” Jun. 2024. [Online].
Available: https://doi.org/10.5281/zenodo.12574870

