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Understanding the structural dynamics of many-particle glassy systems remains a key challenge in
statistical physics. Over the last decade, glassy dynamics has also been reported in biological tissues,
but is far from being understood. It was recently shown that vertex models of dense biological tissue
exhibit very atypical, sub-Arrhenius dynamics, and here we ask whether such atypical structural
dynamics of vertex models are related to unusual elastic properties. It is known that at zero tem-
perature these models have an elasticity controlled by their under-constrained or isostatic nature,
but little is known about how their elasticity varies with temperature. To address this question we
investigate the 2D Voronoi model and measure the temperature dependence of the intermediate-
time plateau shear modulus and the bulk modulus. We find that unlike in conventional glassformers,
these moduli increase monotonically with temperature until the system fluidizes. We further show
that the structural relaxation time can be quantitatively linked to the plateau shear modulus Gp,
i.e. Gp modulates the typical energy barrier scale for cell rearrangements. This suggests that the
anomalous, structural dynamics of the 2D Voronoi model originates in its unusual elastic properties.
Based on our results, we hypothesize that under-constrained systems might more generally give rise

Connecting anomalous elasticity and sub-Arrhenius structural dynamics in a

to a new class of “ultra-strong” glassformers.

The rheological behavior of disordered materials, in
particular in the presence of thermal fluctuations, is still
not fully understood. In the athermal (zero-temperature)
limit, it depends strongly on the precise disordered geom-
etry and on the Maxwell constraint-counting criterion [1-
5], which distinguishes three classes of systems. Roughly,
“over-constrained” systems have more constraints than
degrees of freedom and are generally rigid. Conversely,
“under-constrained” systems have fewer constraints than
degrees of freedom and are generally mechanically un-
stable. Finally, “isostatic” systems have balanced con-
straints and degrees of freedom, and often behave as weak
solids.

Over-constrained systems, which typically show glassy
behavior, are the most well-understood. Increasing tem-
perature T above the dynamical glass transition temper-
ature T, facilitates particle rearrangements, which oc-
cur on a structural relaxation time scale 7,. A simple
picture of structural relaxation based on temperature-
independent energy barriers of order AE would predict
that 7, ~ exp(BAE), where 3 = (kgT)~! is the in-
verse temperature. Such an exponential scaling of 7,
with inverse temperature is called Arrhenius scaling, and
standard particulate glasses display Arrhenius scaling or
super-Arrhenius scaling (in which 7, grows faster than
exponentially with the inverse temperature, c.f. the red
dots in Fig. 1) [7]. A long-standing idea is that since par-
ticle rearrangements require local elastic deformations of
the material AE, and thus 7, should be connected to
elasticity [8-10]. Above T, at long times the shear relax-
ation modulus G(t) vanishes and glasses are fluid, but
this is often preceded by an intermediate-time plateau

with value G,. Because transient deformations cost en-
ergy, the prediction of the elastic or “shoving” models is
that AE ~ G, i.e. [9, 10]:

Ta ~ exp (BCG), (1)

where C' is a constant. In particulate glasses and other
over-constrained systems G, typically varies extremely
modestly with temperature, which would be consistent
with Arrhenius behavior. Super-Arrhenius behavior can
arise from a slightly larger temperature dependence of
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FIG. 1. Structural relaxation in the 2D Voronoi model.
Scaling of 7, of the 2D Voronoi model in the weak solid regime
(light blue) and deeper in the solid regime (black), along with
data from Ref. [6] for a standard 2D Kob-Andersen glass-
former (red dots). Open symbols show the stress relaxation
time, 7s. Both 7, and 7s were quantified using standard ap-
proaches (see End Matter).



G,(T') which can in turn originate from subtle changes
to the inherent states sampled as T' changes.

Under-constrained systems are less well understood.
The most commonly studied under-constrained systems
have fixed connectivity, such as spring or fiber networks
[11-13]. While generally floppy at T = 0, these sys-
tems can be rigidified through external strain or by vary-
ing model parameters in a way that introduces geomet-
ric incompatibility and prestresses. These prestresses in
turn govern elastic properties such as the shear modulus.
There is relatively little work on the thermal behavior of
such systems. A few specific networks have been stud-
ied, where the shear modulus was found to scale as a
power law with temperature, G ~ T, for 0.5 < a <1
[14, 15]. Recent analytical work by one of us on generic
under-constrained networks found that for small temper-
atures there are three regimes; an energetically domi-
nated regime with a = 0 close to the athermal rigid
regime, an entropically dominated regime with a@ = 1
close to the athermal floppy regime, and a cross-over
regime with o = 0.5 [16, 17]. Thus, the shear modulus
generally increases with temperature. However, because
these models have fixed connectivity, no structural relax-
ation takes place.

There are also under-constrained models whose con-
nectivity is not fixed, for instance “vertex models” of
dense biological tissue. These models describe a mono-
layer of cells as a tiling of polygonal cells [18-20], in which
the degrees of freedom are the positions of the polygon
corners (i.e., the polygonal vertices). In a standard im-
plementation of the model, the forces on the vertices are
given by the negative gradient of an energy functional
with dimensionless form [18]:

E =" [(ai~ 1)+ (b — po)?]. (2)

i=1

Here N is the total number of cells, and a; and p; are
the area and perimeter of cell i. The model parameter pg
corresponds to the target cell perimeter. For simplicity,
parameters corresponding to the preferred cell area, and
the area and perimeter stiffness of the cells, have been
set to unity. This form is often motivated biologically
— the area term represents the resistance of the cells to
volumetric changes, and the perimeter term represents a
competition between active cellular tensions and inter-
cellular adhesion [18, 20] — but it can also be viewed
more generically as a low-order expansion in simple ge-
ometric quantities [21]. Vertex models have been used
to describe many experiments on biological tissues, in-
cluding observations of cellular jamming transitions and
glassy dynamics [22-31].

Like under-constrained systems with fixed connectiv-
ity, athermal vertex models have a rigidity transition
[11, 18, 32-35]. Specifically, vertex models are floppy with
a vanishing shear modulus for py > p§ and rigid with a

finite shear modulus for pg < pg, where the precise value
of the transition point (usually quoted as p§ ~ 3.81) can
depend on the network structure [36]. There are also iso-
static variants of vertex models, such as the 2D Voronoi
model [37-39], where the cell shapes are defined by a
Voronoi tessellation, and the degrees of freedom are the
Voronoi centers r; of the cells. There is no floppy regime
in this model, but its shear modulus strongly decreases
with increasing pg, especially in the weakly solid regime
po 2 3.8 [38]. That is, at T = 0, the Voronoi model’s
behavior seems strongly affected by the transition in
the standard vertex model. Importantly, in vertex and
Voronoi models structural rearrangements occur as cells
are allowed to change their local connectivity, and one of
us showed that in the floppy or weak solid regimes, the
structural dynamics of these models are of the atypical
sub-Arrhenius type (blue solid curve in Fig. 1) [40]. In
the athermal solid regime, on the other hand, they show
a more normal Arrhenius or super-Arrhenius behavior
with temperature (black solid curve in Fig. 1) [41, 42].

Are the atypical structural dynamics of these shape-
based models of cells related to the unusual elastic prop-
erties of under-constrained systems? Due to its simplicity,
we focus on addressing this question for the 2D Voronoi
model. We first measure its plateau shear modulus G,
and its bulk modulus K. In the weakly solid regime, we
find that both moduli monotonically increase with tem-
perature at small T'. In contrast, deep in the solid regime
we find that G, is T-independent for T' < 1 and decreases
slightly for larger T. We then compare this elastic behav-
ior to the shoving model, Eq. (1), and find data collapse
when using a slightly modified form. Our findings suggest
that the anomalous structural dynamics of the Voronoi
model originate in the unusual temperature dependence
of its elastic properties. This also explains why tuning the
model from its weak to its deep solid regime leads to a
change from sub- to super-Arrhenius structural dynamics
[41]. Based on this, we expect to more generally observe
sub-Arrhenius structural dynamics in under-constrained
systems close to the athermal floppy regime.

We perform standard NVT simulations of the 2D
Voronoi model with periodic boundary conditions. The
Voronoi centers r; are subject to forces f; = —0F/0r;,
where E is the energy functional in Eq. (2). We use the
deterministic Nosé-Hoover algorithm to control the tem-
perature; in this setting inertia is present and there is no
viscous damping that acts on the cell velocities (see End
Matter for details).

We first quantify the plateau shear modulus G),. To
this end, we compute G(t) via the shear stress auto-
correlation function (see End Matter). Figure 2(a) shows
sample G(t) curves across a range of T for pg = 3.825.
We independently verified these results by measuring
G(t) from the stress response to a small shear step
(Fig. 2(a) inset). We find that the magnitude of G(t)
is strongly temperature-dependent at almost all time
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FIG. 2. Stress relaxation and static structure are
strongly temperature-dependent. (a) Shear relaxation
modulus as a function of time for po = 3.825 and T =
[0.063 — 0.0005], decreasing from dark red to light blue.
Dashed lines are stretched exponential fits. Inset: G(T') at
T = 0.0025 computed via stress autocorrelations (Gs) or
a small step strain (Gy). (b) The isotropic static struc-
ture factor S(gq) for po = 3.825 and the same range of
temperatures as in (a). Inset: S(q) for po = 3.8 at T =
0.00385,0.0031, 0.0028, 0.0025, 0.0022.

scales (Fig. 2(a)). As T decreases, similar to other glassy
systems [10, 43], an intermediate-time plateau gradu-
ally emerges, followed by a final decay. We quantify G,
and the duration 75 of the intermediate-time plateau
by fitting our G(t) data to a stretched exponential
form, G(t) ~ Gpe_(t/Ts)B at intermediate and late times
(dashed curves in Fig. 2(a), see End Matter). We find
that 7, is typically several times smaller than 7, (Fig. 1),
suggesting that in this model stress-bearing structures
can dissipate before individual cells move a substantial
amount.

In Fig. 3, we plot the plateau shear modulus G, for
po = (3.8,3.825,3.85) as a function of T'/Ty, with T
defined by 7,(T,) = 10*. In contrast to particulate glass-
formers [10, 43, 44], in the Voronoi model G, strongly
increases upon increasing 1" until at high enough temper-
atures we find a pure exponential decay of G(t), which
we associate with a fluid phase (Fig. 3). At low tem-

peratures the system enters a hexatic phase (hexagons
in Fig. 3), as measured by a peak in the susceptibility
of the bond-orientational order parameter [45] — this is
consistent with earlier hexatic-phase observations in ver-
tex models [46]. Finally, we note that the G(¢) data for
po = 3.85 at the lowest temperatures was both noisy and
poorly fit by a stretched exponential (red dots in Fig. 3),
as we begin to hit the floor associated with the statistical
error of our autocorrelator. We have ignored this data in
our subsequent analysis.

As shown in Fig. 3, for py 2 3.8 G, monotonically in-
creases with temperature. In the lower inset we rescale
G, by its value in our highest-7" simulations — we find
excellent collapse of our data, with scaling that is consis-
tent with G, crossing over between T and T°-5 power
laws. Although our data cover a numerical range some-
what too limited to be fully conclusive, we note that these
results are consistent with observations in various fixed-
connectivity spring-network models [14, 15, 47] and those
predicted in generic under-constrained systems [16, 17].

Previous work suggests an intuitive explanation for
the increase of G in under-constrained systems [16, 17].
Specifically, in the athermal floppy regime of the 2D ver-
tex model, the accessible phase space volume increases
as the cell perimeters increase above pg. This pushes the
cell perimeters to higher values for larger temperatures,
leading to higher isotropic tensions and, consequentially,
a higher plateau shear modulus G,. Hence, the increase
of G, with T is created by a form of entropic elasticity.
Indeed, in our isostatic 2D Voronoi simulations we clearly
observe such an increase of cell perimeters and isotropic
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FIG. 3. The plateau shear modulus G, is strongly
temperature-dependent. Here state points corresponding
to the hexatic phase are plotted by shown with a hexagon. At
the lowest temperatures for po = 3.85, the tail of G(t) is both
noisy and poorly fit by a stretched exponential; we consider
these measurements less reliable and note them with red open
circles. Lower Inset: G, = G/Gp(T = 0.039) for each po as
a function of T. Dashed lines are guides to the eye of slope
1 and 1/2. Upper Inset: T-dependence of a po = 3.0 Voronoi
model whose structural relaxation is super-Arrhenius [41].
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FIG. 4. The bulk modulus K is strongly temperature-
dependent. The bulk modulus as calculated from the statis
structure factor (open symbols) and the response to isotropic
compression (closed symbols). Inset: Contributions to K from
area (K,) and perimeter (K,) terms in the energy.

tension with temperature, consistent with the predicted
scaling exponents (Fig. 7, End Matter).

Given that the Voronoi model shows super-Arrhenius
behavior deeper in the solid regime, we also measured the
plateau shear modulus for the pg = 3.0 model studied in
[41] (Fig. 3, upper inset). We find that G, is roughly
constant at small temperatures and decreases for larger
temperatures. That is, in the regime in which the model’s
dynamics mirror those of a more typical glassformer, so
too does its elasticity.

We also characterize the temperature dependence of
the bulk modulus K from the low-wavevector behavior
of the static structure factor (Fig. 2(b)), which we also
verified by measuring the system response to an isotropic
compression strain (see End Matter). In Fig. 4, we plot
the bulk moduli obtained through both methods, K and
Ky, as a function of T'/T, for py = (3.8,3.825,3.85).
Again in contrast to typical glassy systems, we find
that K increases monotonically with 7: as the system
is heated it becomes more resistant to isotropic defor-
mations. As shown in the inset to Fig. 4, this tempera-
ture dependence of K comes entirely from cell perimeter
contributions to the energy, consistent with work on the
athermal transition in vertex models [11, 38].

Given the unusual temperature dependence of the
Voronoi model’s elastic moduli, does a shoving model
such as Eq. (1) explain the anomalous structural dynam-
ics? In Fig. 5 we plot log(7,) vs. G,,/T for the weak solid
regime and find neither a linear scaling nor a compelling
collapse of the data. However, the inset shows excellent
collapse by instead scaling G, by T'2. This deviation
from the typical elastic model suggests the presence of
some other very modestly temperature-dependent fea-
ture contributes to the energy barrier AFE.

In summary, we have shown that the atypical sub-
Arrhenius structural dynamics in the 2D Voronoi model
is directly correlated to the unusual temperature de-
pendence of its elastic moduli. We specifically found

that in the weak solid regime the plateau shear modu-
lus monotonically increases with temperature, in a way
which is qualitatively consistent with analytical results
on fixed connectivity under-constrained systems [16, 17].
Although the 2D Voronoi model is isostatic rather than
under-constrained, we note that at T = 0 the elastic
moduli of the Voronoi model have been shown to be gov-
erned by the rigidity transition of the vertex model [38].
Additionally, we note that the structural dynamics of the
2D vertex model is known to be similar to that of the 2D
Voronoi model [40], and the finite-temperature elastic be-
havior is expected to be extremely similar to what we re-
port here for the Voronoi model [16, 17]. Taken together,
we expect that the reported sub-Arrhenius structural dy-
namics of the 2D vertex model is also explained by its
elastic properties in the large-py regime. In the small-
Ppo regime, in contrast, the more conventional structural
dynamics [42] are likely related to the predicted more
conventional elastic properties [16, 17].

More generally, we expect this scenario — unusual
elasticity connected to anomalous structural dynamics
close to the athermal fluid regime, and more conven-
tional elasticity and structural dynamics in other parts of
parameter space — to appear in any under-constrained
system that is allowed to dynamically change its con-
nectivity. To our knowledge the only class of systems
with glassy behavior similar to the vertex model are
low-density vitrimeric polymers [48], where a network
of covalently bonded under-constrained monomers can
change its connectivity on long time scales via bond-
exchange reactions. We suggest that models with simi-
lar thermally dependent elasticity may all form a class of
“ultra-strong” glasses, complementing the currently clas-
sification of “fragile” and “strong” glassformers. If true,
our findings may help to develop new materials with such
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FIG. 5. The mechanics and dynamics are directly con-
nected. In the main plot we show log(7.) vs G, /T; the inset
shows log(7a) vs Gp/T"2. As in plots above, state points cor-
responding to hexatic phases or unreliable measurements of
G(t — o00) are noted.



an ultra-strong glass-forming ability.

Finally, our results have implications for the model-
ing of biological tissues. Some modeling of dense tissue
uses not shape-based under-constrained models but more
typical particle-based models [49, 50]. Given the differ-
ences in elastic and structural properties between partic-
ulate glasses and vertex models, our work shows how this
choice can lead to fundamentally different tissue-scale be-
havior. For instance, under certain conditions, e.g., when
the auto-correlation time of cell motile forces are smaller
than any other relevant time scale of the system, cell
motility may be approximated by thermal noise. For such
systems, our findings suggest that an increase in cellular
motility would not only fluidify the tissue on long times
[37], but may also increase the intermediate-time, tissue-
scale rigidity (Gp). It would be interesting to test this
experimentally.
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End Matter

Simulation details

We perform standard NVT simulations [51, 52] of the
2D Voronoi model under periodic boundary conditions
using the open-source cellGPU package [53]. Temper-
ature is controlled by coupling the system to a Nosé-
Hoover thermostat with fictitious degrees of freedom (;.
The equations of motion of the standard Nosé-Hoover
thermostat are

mT; = fi — (m;v; (3)

N
{=Q ") miv} — NykpT, (4)

where m; and v; are the mass and velocity of particle 1,
Ny is the number of degrees of freedom in the system, T’
is the target temperature, and @ is the thermostat pa-
rameter that determines its relaxational dynamics. This
non-Hamiltonian scheme is one of the most accurate and
efficient ways of simulating a constant-temperature en-
semble, and we further make use of a formulation with
a short chain of fictitious thermostat variables [51]. We
then employ for each timestep a standard update of the
equations of motion based on a Trotter factorization [52].

We measure the characteristic relaxation time, 7, by
measuring the decay of the cage-relative self-intermediate
scattering function FEF [54, 55]. We ensure that all simu-
lations have been equilibrated for at least 10 times longer
than the measured 7,. We report results for systems of
N = 4096 cells, and have checked that increasing this to
N = 32768 does not change our results.

Quantification of the plateau shear modulus G,

At each simulation step we analytically calculate the
shear stress o,, = (dE/dv)/A, where v is the shear
strain deforming the periodic box, and A is the total
system area. We then compute G(t) via the stress auto-
correlation function

G(t) = ]%%@w(to)azy(to + t)>, (5)

where (...) represents an average over to for each simu-
lation, with statistics accumulated using a multiple-tau
correlator method [56].

We verified these results by independently measuring
G(t) from the response to a small shear step Ay at ¢t =0
via G(t) = Aogy(t)/A~y. Specifically, we imposed a pure

shear deformation on the orthonormal shape of the pri-
mary unit cell, numerically measured the derivative of
energy with respect to this pure shear deformation, and
converted the pure shear modulus to the simple shear
modulus, G.

We obtain G, and 7, by fitting G(t) to a stretched ex-
ponential form, G(t) ~ Gpe’(t/“)ﬁ at intermediate and
late times. More precisely, we fit data from 10 simula-
tions for ¢ € [t;,tf] for each set of parameters (pg, T); t;
is chosen as the earliest time that an approximate plateau
appears. If there is no such plateau, we vary t; across a
range to ensure a qualitatively good fit encompassing as
many data points as possible. We choose t; as the time
at which the magnitude of G(t) is comparable to either
the thermal fluctuations or the statistical error of our
autocorrelation method [56].

Unusual cage dynamics at short times

We note that the shear relaxation modulus G(t) shown
in Fig. 2 has substantially more structure at short times
t than is usually seen in glassforming systems. This is a
direct reflection of the unusually large cage fluctuations,
in which cells undergo surprisingly large displacements
without exchanging neighbors, that characterize single-
particle motion in these models. This can also be seen in
the unusual behavior of the scattering function itself. As
shown in Fig. 6, one sees that the initial plateau of F¢%
is itself substantially lower than in particulate systems,
indicating that a large number of cells move substantially
but not so far that they escape their cage and keep dif-
fusing. Furthermore, there is evidence of a secondary re-
laxation process (the minima and non-monotonicity after
the initial decay) indicative of “cage-rebounding” dynam-
ics. This process itself has a characteristic temperature
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FIG. 6. The cage-relative scattering function FSF
shows unusual cage dynamics. Curves correspond to the
same systems (po and T') as in Fig. 2, and the scattering func-
tion is measured at a wavevector corresponding to the first
peak of the structure factore.
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FIG. 7. Scaling of perimeter-related contributions to
the energy with temperature. The main plot shows the
behavior of X7 (the isotropic cell tensions) and X, (the aver-
age deviation of cell perimeters from their preferred value) at
different values of po. The inset shows the probability density
function of standardized cell perimeters (i.e., z = (p — p) /o)
— as shown, these distributions are extremely close to Gaus-
sian.

dependence.

Quantification of the bulk modulus K

We quantify the bulk modulus K by measuring the
low-wavevector behavior of the static structure factor,
S(q) = & ;\/:1 Zszl e~ @ (i —r%) where j,k index the
cells. The bulk modulus is K; = NkgT/AS(¢ — 0)
[57, 58]. Fig. 2(b) shows representative plots of S(q)
across a range of T for py = 3.825. For most of our sys-
tems there is an unambiguous low-q plateau, although

for the lowest temperatures for py = 3.8 there is a non-
monotonicity at small ¢ (Fig. 2(b)). We thus use the min-
imum value attained by the structure factor, S(gmin), as
a lower bound for S(¢ — 0) at those temperatures.

We verified these results by directly measuring K from
the response to an isotropic compression strain of 1073,
computing the bulk modulus as Ky = —AdP/dA, for
P = —(04s + 0yy)/2. The greatest deviations between
these two measures are in the regime where S(gq) has
these low-wavevector non-monotonicities and the struc-
ture begins hexatically ordering.

Temperature dependence of cell perimeters and
isotropic tension

Intuitively, previous work by one of us suggests that
the “entropic elasticity” behavior of the shear modulus
stems from changes in the accessible volume of phase
space as the perimeter increases above pg. In this regime,
higher temperatures favor larger mean values of the ac-
tual cell perimeters, which in turn imply monotonically
increasing perimeter tensions. These tensions are in turn
what rigidifies the system. We present data for this in
Fig. 7, which shows the scaling of both X = (p) — po
and the isotropic cell tensions, X, = (044 + 0yy)/2 as a
function of temperature. We find good agreement with
the theoretical expectations based on generic undercon-
strained systems [16, 17], and a high correlation between
this measurement and the data on G,(T') itself presented
in Fig. 3. Although the plateau shear modulus is dom-
inated by perimeter contributions, we note that we do
measure non-zero contributions from the area elasticity
to the stress autocorrelation function.
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