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1. Introduction

This paper is part of a series [FL22, FL24, FL23] investigating the deformation theory of singular
Calabi-Yau varieties, i.e. compact analytic spaces Y with isolated Gorenstein canonical singularities
such that wy = Oy, building on and generalizing previously known results due to Kawamata,
Namikawa, Namikawa-Steenbrink, and others; see [Fri86, Kaw92, NS95, Nam94, Nam02]. The
deformation theory of Y as studied in [FL22] has both a local and a global aspect. Locally, if x € Y is
a singular point, we can study the deformation functor Def(y , of the germ (Y, x). In particular, the
tangent space to this functor, or equivalently the “first-order deformations,” i.e. the deformations over
the dual numbers Spec C|[¢], are classified by a finite-dimensional vector space Tl,x’ or equivalently
by the corresponding skyscraper sheaf supported at x. Globally, for a compact analytic space Y, there
is the deformation functor Defy, whose tangent space is a finite-dimensional vector space that we
denote by rIF}l,. There is a corresponding sheaf T.}, which is supported on the singular locus of Y. In
case the singularities of Y are isolated, "Ifll, is a skyscraper sheaf supported at the singular points and
the stalk of 'Il"llf at x is the vector space T;’x. There is a natural morphism of deformation functors
Defy — nxGYsmg Def(y ,). Note that Defy and Def(y ) are pro-represented by germs of analytic
spaces and the morphism of functors corresponds to a morphism of germs of analytic spaces. On
Zariski tangent spaces, the differential of this morphism of functors or germs of spaces becomes a
homomorphism "Il"ll, — HO(Y;T;) =P

<Y, T;’x. For dimY > 3, this morphism is almost never

sing

surjective. It is thus important to identify interesting tangent directions in @x ey T; X and try to lift

sing
these to rll"ll,. If the deformations of Y are unobstructed, such first-order deformations of Y will come
from actual deformations.

Taking a local point of view, let (X, x) be the germ of an isolated Gorenstein canonical singularity
(or equivalently an isolated rational Gorenstein singularity; see [KM98], [Kol97, Section 11.1]). We
will usually take X to be a good Stein representative for the germ (X, x), i.e. a contractible Stein
representative with a unique singular point x. Let 70: X — X be a good resolution or a log resolution,
i.e. m1(x) = E is a divisor with simple normal crossings. The assumption of Gorenstein canonical
singularities means that Ky = n*wx ® O%(D) for some effective divisor D on X. If D=0, we say
that 7t is a good crepant resolution of X. Typical examples of singularities that admit good crepant
resolutions are the O ¢ singularities, i.e. affine cones over a smooth cubic surface in IP3. More general

examples are singularities which are analytically isomorphic to cones over Fano manifolds embedded
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via the anticanonical line bundle, for example the cone over a smooth hypersurface of degree n in
IP". A related case is that where there exists a small resolution 77": X’ — X, i.e. a resolution where
the fiber of 7t” over x has dimension 1 (more generally, one could also consider the case where the
exceptional set has dimension less that dim X — 1). However, at least when X is a local complete
intersection and dim X > 3, such resolutions can only exist for dim X = 3 (see Remark 5.1). Note that
small resolutions 7’: X’ — X are automatically crepant, in the sense that Ky, = Ox,. Examples of
such singularities are A,;_; singularities in dimension 3: these are locally defined by the equation
x? +y2 +z2+w?k A singularity X admitting a small resolution is terminal but not (locally) Q-factorial.
However, most canonical singularities do not admit good crepant or small resolutions. For instance,
terminal Q-factorial singularities, such as the Ay singularities in dimension 3 (i.e. those given by
x% + 92+ 22 + w?*1 k> 1), do not have either a good crepant or a small resolution.

There is a natural subspace of H*(X; T)%) defined as follows: Let U = X — {x} = X — E, where as
above 7: X > X is a good resolution and E = 7t} (x). In case dim X > 3, a theorem of Schlessinger
implies that HO(X; T}}) =~ HY(U; Ty), where Ty is the tangent bundle of Uj; see [Sch71, Theorem 2].
By Wahl’s theory, see [Wah76], there is a morphism of functors Defy — Defx where the induced map
on tangent spaces is the natural restriction map

H'(X;Tg) — H' (U; Ty) = HO(X; Ty ).

Informally, we can think of the image of Defy as the simultaneous resolution locus, i.e. as the
deformations of X which lift to deformations of the resolution X. If 7: X — X is a good crepant
resolution, then Defy is unobstructed by a theorem of Gross; ¢f. [Gro97, Proposition 3.4]. If
7': X’ — X is a small resolution, then Defy- is unobstructed by [Fri86, Proposition 2.1]. If X is a
local complete intersection singularity, then Defy is always unobstructed (¢f [Loo84, Section 6]).

In trying to understand the image of the morphism Defy — Defy, and more concretely the image

of HY(X; Ty) in H O(X; T)%), and their relevance in the Calabi-Yau case, there are two major obstacles:

(1) In the local setting, the image of Hl()?; Ty) in HO(X;T)}) is not a birational invariant, i.e.
is not independent of the choice of a good resolution. The possible naturally occurring
birationally invariant subspaces of H(X;Ty) are rather the images of Hl(}?;Q’;{l(logE))
or Hl()?;le(:l(logE)(—E)). These images are studied in [FL22, Theorem 2.1(iii)], where
we prove that the image of Hl()/(\;Q';?_l) is the same as that of HI(Y;Q%_l(logE)(—E)), at
least in the local complete intersection case or if dim X = 3, and is thus independent of the
choice of resolution. However, this image does not seem to have an obvious deformation-

theoretic interpretation. One important case where such an interpretation exists is when
X is a good crepant resolution of X: In this case le(il = Ty, and hence the image of

HI(X\;Q’;{I(Iog E)(-E)) agrees with that of HY(X; Tx). A similar result holds in the case of a
small resolution (Proposition 5.13(i)).

(2) In the global setting, where Y is a Calabi-Yau variety, it seems difficult to lift deformations
arising in this manner to global deformations of Y. For example, in dimension 3 and for small
resolutions Y, this issue is connected with Clemens’ conjecture about smooth rational curves
in Y’ in the case where Y’ is a quintic threefold, see [Cle87], which is still open and where
we have nothing new to add. For another example, the deformations of a quintic threefold Y
with an Oq¢ singularity x € Y are versal for the deformations of the isolated singularity at x;
i.e. the map T}l, — HO(Y; T;) is surjective. Hence, if Y — Y is the natural crepant resolution
and X is a good Stein representative of the germ (Y, x) with crepant resolution X, the image
of rll"%, — HO(Y; T}}) contains the image of H 1()? ; Ty). However, the analogous result fails for
hypersurfaces of degree n+ 2 in IP"*! containing an isolated singularity isomorphic to the

cone over a hypersurface of degree n in IP"” for n > 4, and in this case “most” of the image of
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H(X; Tx) fails to lift to T,. Thus, the strategy of [FL22] is to work modulo the deformations
induced from a resolution, i.e. with K = Coker(Hl(X\;Q?{l(logE)(—E)) —>HO(X;T§)) =
Hf(X;Q;f(fl(logE)) (see [FL22, Theorem 2.1(v)]). This has the virtue of globalizing well in the
Calabi-Yau and Fano case; see [FL22, Sections 4 and 5.

Nonetheless, the study of Defs; and of H 1(X; Ty) involves a lot of interesting geometry, and the
goal of this paper is to investigate some of this geometry. For the reasons outlined above, we restrict
to the local case and (mostly) either to the good crepant case or to the case of a small resolution.
Finally, for most of our results, we restrict to dimension n = 3. For a general n > 3, by a theorem of
Reid [Rei80, Theorem 2.6], a canonical Gorenstein singularity, not necessarily admitting a crepant
resolution, can be realized as the total space of a one-parameter deformation of a Gorenstein rational
or elliptic singularity of dimension 7 —1. In dimension 2, Gorenstein rational singularities are rational
double points, and this case does not arise if X isa good crepant resolution. As for Gorenstein
elliptic (minimally elliptic) singularities, the most well-studied classes of such singularities are the
simple elliptic and cusp singularities, and their deformation theory has been studied extensively. In
particular, as discussed below, semistable models for deformations of cusp singularities are a plentiful
source of examples of good crepant resolutions and can be obtained systematically by the methods of
[FM83, Engl8, EF21].

The contents of this paper are as follows. Section 2 analyzes the deformation theory of good crepant
resolutions 70: X — X, where dim X > 3. The main result is Theorem 2.6, which gives some very
general results about the first-order deformations of X and their relation to first-order deformations
of E. In this case, the tangent space to the deformation functor Defy, is the vector space T}, and
there is a corresponding sheaf T2. Then Theorem 2.6 relates the tangent space to Defy and the
corresponding obstruction space to the cohomology of the exceptional divisor E and its components
E;. Among other things, we show the following.

Theorem L1. Let t: X — X be a good crepant resolution of the isolated rational singularity X, with
n=dimX > 3, and let E = \J;_, E; be the exceptional divisor of 7. Then the maps 11% — HY(E; Tb])
and HY(X; Ty) — HO(E;T}) are surjective. In particular, all first-order smoothing directions for E
are realized via first-order deformations of X. The map H(X; T;) — ”ﬂ% is surjective if and only if
H3(X; T5:(=E)) = 0. In this case, all first-order locally trivial deformations of E are realized by first-order
deformations of X and the divisors Ey,...,E,.

More precise results require better control of the structure of E, which in turn leads to restricting to
the case dim X = 3, the running assumption starting with Section 3.

In dimension 2, Gorenstein canonical singularities are du Val singularities, also called rational
double point (RDP), simple, or ADE singularities. Their structure is well understood, as is their
deformation theory. The purpose of Sections 3 and 4 is to give a partial classification of the isolated
Gorenstein canonical threefold singularities (X, x) which admit good crepant resolutions, 3-dimensional
analogues of the ADE case, and to discuss their associated deformation theory. As noted above, there
is a close connection between isolated threefold canonical Gorenstein singularities and one-parameter
smoothings of minimally elliptic singularities. In the case of simple elliptic and cusp singularities, such
smoothings are in turn closely related to degenerations of K3 surfaces (¢f. for example [FM83]). This
leads us to define divisors of Type II, Type III,, and Type III, (Definition 3.6 and Figures 1, 2, 3). We then
obtain a partial classification of the threefold singularities admitting good crepant resolutions in the
special case of the total space of a one-parameter smoothing of a simple elliptic or cusp singularity, as
follows.



Theorem 1.2 (= Theorems 4.1 and 4.6). Let (X, x) be an isolated Gorenstein canonical singularity of
dimension 3 with a good crepant resolution : X — X, and let E = 10"\ (x) be the reduced exceptional
divisor.

(i) If the general hypersurface section of X passing through x is a simple elliptic singularity, then E is of
Type 11
(i) If the general hypersurface section of X passing through x is a cusp and wgl is nef and big, then E
is of Type 111, or Type III,.
(ii)" If the general hypersurface section S of X passing through x is a cusp and the full inverse image
7 1(S) has normal crossings, then after a sequence of flops (elementary modifications of type 2),
wg' becomes nef and big, hence E is of Type III; or Type IIL,.

Combining Theorem 1.2 with Theorem 2.6, we are able to obtain a deeper understanding of various
deformation-theoretic invariants, especially in the Type II and Type III; cases. In particular, the
following is a somewhat less precise formulation of Proposition 3.12, Proposition 3.15, and Remark 3.16.

Theorem 1.3. If E is of Type II and irreducible or if E is of Type III;, then H*(X; T(-E)) = 0 and
hence the map H' (X; Tx) — T} is surjective. However, if E is of Type II and reducible, then the map
HY(X; Tg) — Tp is never surjective, and if E is of Type IIL, then the map HY(X; T) — Tp is not in
general surjective.

In Section 5, we switch our attention to the case of singularities which admit small resolutions
p: X’ — X, technically a much simpler case. Here, we relate H!(X’; Tx) to the birational invariants
HI(X\;Q%(logE)(—E)), HI(X\;Q%), and Hl(j(\;Q%(logE)) arising from a good resolution; these
invariants are controlled by the Du Bois invariants b”9 and link invariants €79 introduced by
Steenbrink; see [Ste97]. In particular, we recover some results of Steenbrink regarding the dimension
of the versal deformation spaces for such singularities (Remark 5.16) and discuss some interesting
examples (Examples 5.17 and 5.18). After the first version of this paper was posted, Sz-Sheng Wang
sent us a preprint (now [Wan22]) which has substantial overlap with the material in Section 5.

In the final Section 6, we discuss a noncrepant example of a very special type, the blowup X of a
smooth curve C which is the exceptional set of a small resolution 77: X’ — X. In this case, X is a
threefold A,,_; singularity, i.e. defined locally by the equation x? + y? + z? + w?", where we assume
n > 2. The question here is to relate the deformations of X to those of X" and X. In particular, we
show the following (Theorem 6.7).

Theorem 1.4. For the above example, let (S, 0) and (Sx-,0) be the germs prorepresenting the functors Def
and Defy, respectively. Then the induced morphism Sz — Sx- is finite of degree n, and its differential at
the origin has a 1-dimensional kernel and cokernel.

This kind of example is also relevant to the study of deformations of Q-factorial terminal threefold
singularities such as the A,, singularities in dimension 3. While this example is very specific, it
helps to illustrate the difference between the image of H I(X; Ty) and the birationally invariant
image of H!(X’;Tx/). It is also interesting from the perspective of the minimal model program.
Generally speaking, the analysis of this paper shadows the steps of the minimal program. Namely,
Sections 2-4 roughly parallel the fact that a canonical threefold singularity has a partial crepant
(divisorial) resolution with terminal singularities (¢f [KM98, Theorem 6.23]). Similarly, Section 5 is the
deformation-theoretic counterpart of the statement that a terminal singularity admits a small partial
resolution to a terminal Q-factorial singularity (¢f [KM98, Theorem 6.25]), which cannot be further
improved. There is however an important difference between the deformation-theoretic point of view
and that of the minimal model program: In our arguments we need the partial resolutions to be
actual resolutions; i.e. we only consider crepant partial resolutions of a canonical singularity which are

smooth, not just terminal. Nonetheless, we believe that the discussion here captures some important
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general phenomena for these classes of singularities, which in turn will help to better understand the
geometry of the moduli spaces of Calabi-Yau varieties, especially in dimension 3.

Notation and conventions

Throughout the paper, we work with the notation and assumptions made above: (X, x) denotes the
germ of an isolated singularity, X is a good Stein representative for the germ (X, x), i.e. a contractible
Stein representative with a unique singular point x (¢f [Loo84, Section 2]), and 7: X—>Xisa good
resolution; i.e. 7 '(x) = E is a divisor with simple normal crossings. Unless otherwise specified, all
singular cohomology (including local cohomology) is with C-coefficients.

Acknowledgement

We would like to thank the referee for a careful reading of our paper, and for extensive comments
which helped us to improve it. We would also like to thank Paul Hacking for pointing out an error in a
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2. Deformation theory in the good crepant case

We begin with a general definition.

Definition 2.1. Let 71: X — X be a resolution of X. Then 7 is equivariant if Ron*TY =~ T)g. By e.g.
[Fri86, Lemma 3.1], a small resolution is equivariant. Note that, for g > 0, R77, Ty is a torsion sheaf
supported on x.

The resolution 70: X — X is

(1) a good resolution (sometimes called a log resolution) if 7~ (x) = E is a divisor with simple normal
crossings;

(2) a good equivariant resolution if 1 is good and equivariant (by resolution of singularities, good
equivariant resolutions always exist);

(3) crepant if Ky = m*wy and hence Ky = Oy, and is a good crepant resolution if 7 is also a
good resolution. Thus, with these definitions, a small resolution is crepant but not a good
crepant resolution. (Note: If the isolated normal singularity (X, x) admits a not necessarily
good resolution 7t: X — X with K¢ = Oy, then (X, x) is automatically a rational Gorenstein
singularity; cf. [Kol97, Corollary 11.9]).

Given a good resolution 7t: X > X, let E= wl(x) = Ui_; E;, where the E; are smooth divisors
in X.

Proposition 2.2. A crepant resolution is equivariant.
Proof. We begin by showing the following.

Lemma 2.3. Lett: X — X bea crepant resolution, and let 7’0 X' — X be an arbitrary resolution. Then
there exist a closed analytic subset V of X of codimension at least 2 and a proper analytic subset V' of X’
such that the birational map X’ --> X restricts on X' =V’ to a surjective morphismv: X' -V’ - X - V.

Proof. By Hironaka’s theorem, there is a blowup f: X — X which dominates X’. We can further
assume that all centers of blowups lie over the inverse image of the singular point x. Let V be the
image in X of the centers of the blowups; hence f is an isomorphism from X - f_l(V) to X - V.
Moreover, K = O%(G), where G =} ; n;G; is a divisor with n; > 0 for all 7 such that f(G) C V. Since
Kx = Ox/(D) for an effective divisor D whose image in X is the point x, it follows easily that all of

the exceptional divisors for the morphism X — X’ are of the form G, for some i. Thus, if V’ is the
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closure of the union of the images of the G; which are exceptional for the morphism X — X', there is
a surjective morphism X' -V’ — X - V. O

Remark 2.4. The argument of Lemma 2.3 proves the standard fact that if in addition X’ is also a
crepant resolution of X, then X" and X are isomorphic outside a set of codimension 2.

Continuing with the proof of Proposition 2.2, we must show that the natural injective map
R, Ty — T)(() is surjective. Choose an equivariant resolution 7t": X’ — X. If £ is a local section of
T)((), then ¢ lifts to a section of T over the inverse image of the open set and thus defines a section of
Ty over the complement of V in the notation of Lemma 2.3. By Hartogs, this section extends to a
section EA of Ts. The image of:f in T)(() is then &. Thus ROTC*TY - T)(() is surjective and therefore an
isomorphism. (]

Now suppose that Xisa good, not necessarily crepant resolution of X. There is an exact sequence

0 — Tg(-logE) — Ty — EBNE'/??_) 0.
i

Here H'(X; Ts(~logE)) is the tangent space to the functor of deformations of X keeping the divisors
E;. Let D® be the complex given by

T — Npjx

(in degrees 0, 1, respectively). Then H! (X;D*®) is the tangent space to deformations of X keeping the
divisor E (as an effective Cartier divisor). Also, let C* be the complex

T{|E — Ng /%

Thus C* is the dual complex to the complex Ip/I7 — Q;?|E , which is quasi-isomorphic to Q1, the sheaf
of Kzhler differentials on E. It follows that H!(C®) = Té, i=0,1,and H (E;C®) = Exti(Qlls,OE) = T}é.

There is a commutative diagram

0 —— Tx(-logE) — Ty —— @iNEi/f(\ — 0

0— T} —— TRHE —— Ngg T, 0

0 0.

In particular, there is always an exact sequence
_ _ 1
0— PN 5 — Nz — T —0.
i

Moreover, H%(D*) = Ts(-logE) and HYD*) = H'(C®) = Tb}. Also, from the hypercohomology
spectral sequences, there are exact sequences

HO ()?, Tg) — HO° (E;NE/)?) — H! (X\;D') — H! (5(\, TX) — H! (E;NE/}?),
H'(X; T (-logE)) — H' (X;D*) — H° (E; T} ) — H?(X; T (- log E))

7



as well as the usual exact sequences
HO(E; TglE) — H°(E;Np5) — T} — H' (E; TRlE) — H' (E;Ny %),
0— H'(E;T) — T — H°(E; T} ) — H?(E;TY) — T — H' (E; T ) — 0
Most of the homomorphisms in the above exact sequences have a geometric meaning.
Now suppose X is a good crepant resolution of (X,x). Then Ty(-logE) is isomorphic to

Q;‘{l(logE )(=E), so, by the vanishing theorem of Guillén, Navarro Aznar, Pascual Gainza, Puerta,
and Steenbrink (see ¢.g. [PS08, Proof of Proposition 7.30 (b”), p. 181]), for p > 2,

HP (X; Tg(~log E)) = H? (}?;Q%_l(logE)(—E)) =0.

Also, Ng 5 = wg, = K, and Ng 5z = wg. Moreover, as previously noted, Defy is unobstructed.
Finally, we have the following result of Steenbrink; see [Ste83, Lemma 2.14].

Theorem 2.5 (Steenbrink). In the above notation, if X has an isolated rational singularity, then
H(E;Op) =0 fori>0.

With these preliminaries, we turn now to the main result of this section.

Theorem 2.6. Let 70: X — X be a good crepant resolution of the isolated rational singularity X, with
n=dimX > 3.

(i) We have H'(X;D*) = H'(X; T5;). In other words, the first-order deformations of X are exactly the
first-order deformations keeping the effective divisor E.

(ii) We have HO(E;T3) = . H'( (Ei;Ng z) = D; H'(Ej;w,). Thus HO(E;T}) = 0 if and only
if h%"=2(E;) = 0 for every i. (The condition H'(E;T}) = 0 is the condition that all first-
order deformatwns of X induce locally trivial first-order deformations of E.) More generally,
dimHO(E; T}) = Y ; hO""2(E;).

(iii) Zfdim X = 3, then HY(E; T#) has dimension r — 1, where r is the number of components of E, and
is more intrinsz'cally dual to the cokernel of H°(E;Of) — @iHO(E,-;(’)Ei). Ifdim X > 3, then
dimHY(E; T} )=L, dimHH(BZ,OE)

(iv) We have H*(X; Ty) = EB H*(E Ng %), and if H3(X; T:(=E)) = 0 (which is always satisfied
if dimX = 3), then HZ(E,TS) =0, ie. all locally trivial first-order deformations of E are
unobstructed. Thus, in this case,

dimT? = dim H' (E;Tg):{r_l. , YdimX =3,
Y ;dimH">(E;Of,) ifdimX > 3.
(v) The maps T} — H(E;T2) and H'(X; T) — HY(E; T3) are surjective. In particular, all first-

order smoothing directions for E are realized via first-order deformations of X.

(vi) The map H'(X; Ty) — Té is surjective if and only if H' (X; T (-logE)) — Hl(E;T}?) is sur-
jective, which holds if and only if H*(X; T:(=E)) = 0. In this case, all first-order locally trivial

deformations of E are realized by firsi-order deformations of X and the divisors Ey, ..., E,.

Proof. (i) By adjunction and Serre duality, H(E; Npx) = HY(E;wg) is dual to H"(E;Of) = 0.
Likewise, H!(E; Ny ) = H!(E; wg) is dual to H"2(E;Of) = 0. Hence H'(X;D*) = H(X; Ty).
(ii) There is an exact sequence

H®(E;Ng /) — H°(E; T}) @Hl Ng z) — H! (E; Ng/z)-

As in (i), H'(E; Ny ) = H'(E; Ny ) = 0. Thus H0 E;Tg) = (D, H' (E;Ng z). But H'(E;;Ng z) =
Hl(Ei;a)Ei) is Serre dual to H"~ 2(E,,OE) and therefore has d1mens1on h%"=2(E;). In particular,

HO(E; T}) = 0 if and only if h%"~2(E;) = 0 for all i.
8



(iii) Continuing with the above exact sequence, we have

0=H"(E;Nyz) — H' (E;T}) @H Ng ) — H?(E;Ng/g) — 0.

If dim X = 3, then Hl(E;Th}) is dual to the cokernel of H(E;Of) — EBiHO(Ei?OEi) and hence
has dimension r — 1. If dim X > 3, then H*(E;; Ny 5) = H*(Ej;; wg,) is Serre dual to H""*(E;; Of,)
and Hz(E;NE/Y) is Serre dual to H"3(E;Og) = 0. Thus dimHl(E;Tb}) = ZidimHH_3(Ei§OEi) if
dim X > 3.

(iv) The statement about H2(X; Ty;) follows from the exact sequence

H? (X; Tg(~logE)) = 0 — H?(X; Tg) — @HZ N ) — H*(X; Tg(-log E)) =

The long exact sequence associated to
0 — Ty(~E) — Tg(-logE) — T2 — 0
gives rise to an exact sequence
H?(X; Tg(-log E)) — H*(E; T¢ ) — H? (X; Tg(-E)).
As we have seen, HQ(X\; T (~logE)) = 0, and H3(5(\; T(~E)) = 0 if dim X = 3 for dimension reasons.
Thus H*(E; T) = 0.
(v) There is a commutative diagram

0 —— H! (X\;TX\(—logE)) —s HI ()?;Ty) - @iHl (NE,/X) - 0

l l I

0 —  HYET)) —— T —— HYET) —— HX(ETY).
(Here, the top right arrow is surjective because H2(X; T (~logE)) = 0.) Thus the induced map
HY(X; Ty) — HO(E; Tg) is surjective, and therefore the map rll% — HO(E; Tb}) is surjective as well.

(vi) From the diagram in (v), the map H 1()/(\; Ty) — Té is surjective if and only if the map
HY(X; Tx(-logE)) — HI(E;TI:Q) is surjective. Since HX(X; Tx(-logE)) = 0, the cokernel of
HY(X; T (-logE)) — HY(E; T]:Q) is HX(X; T (=E)). Thus HY(X; Tx) — "ﬂ% is surjective if and only if
H*(X; Tg(~E)) = 0. O
Remark 2.7.

(i) In the situation of (v), it follows from [FL22, Theorem 2.1(iii)] that, for a crepant isolated rational
singularity,

1.\l (.01~ gl (Y. 11 _ 1(yv.n-1
H'(X;Tg) = H (X,QA )=H (X;Q% " (log E)( E))®Hj (X,Q}? ).
Moreover, H! (X Q” Y(logE)(-E)) = H'(X; Ts;(~logE)). The induced map

H} (X;Q%‘l) — H' (X;Q;L_l) — H'! (E;Qg_l/q’g_l) = @Hl (Ei;wEi),

is an isomorphism, and thus by (v) there is a splitting

H! ()/(\, TX\) ~H! (5(\, Tg(—logE))EBHO (E; TEl)
Note that, while H(X; Ty (~logE)) and HY(X; Ty) have the same image in HO(X; T§), this is just a
statement about the differential of the corresponding morphism of deformation functors Defy; — Defy,

and it is reasonable to ask if the actual morphism of deformation functors is finite (meaning that the

corresponding morphism of the analytic germs which prorepresent them is finite).
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(ii) If dimX = 3 and E is smooth, we will show in the next section that H 1()?; Ty) — "ﬂ% is
surjective. However, it is not in general an isomorphism, for example in case X is an O;¢4 singularity,
the cone over a smooth cubic surface E. In this case, a calculation shows that dim H%(X; T)}) =16 and
that £ = 6, where £ = €] is the link invariant of [Ste97]. By [Wah76], H(X;R' 7, Ty) = Hl()/(\,sz?) is
the nonnegative part of the deformations of O;¢ and is easily computed to have dimension 5. But
dim H!(E; Tg) = 4, so that HO(X;leT}?) — H'(E; Tg) is not injective. Here, the weight zero piece
of HO(X; T)}) has dimension 4 and corresponds to deformations of the cubic surface, hence gives all
of the first-order deformations of E. However, there is also a weight 1 piece of dimension 1. Starting
with the cone over the Fermat cubic surface E, for example, the general weight 1 deformation is
given by f; = x> + 93 + 2% + w® + txyzw, defining the singularity X,. A calculation shows that, for
t#0,dimH(X; T)%t) =15, and hence that the invariant a of [FL22, Theorem 2.1(iv)] is not 0 in this
case. In fact, a = 1, and the spectral sequence with E; page Ef’q = Hg()’(\t;Q%) = ng(f(\t) does not
degenerate at E, for t = 0. t

Finally, if E is not smooth, then H 1()/(\ ;Tx) — "ﬂ% typically fails to be surjective. We will give a
geometric explanation for this failure in the next section.

3. The good crepant case: Some classes of examples

In this section, 7: X — X denotes a good crepant resolution of the rational, Gorenstein, isolated
singularity X, with dim X = 3. Denote the exceptional divisor by E = 17! (x) = Ui>1 Ei. We fix the
following notation: D;; = E; NE;, D; =E; N (Uj;ci E]-) = Uj::i D;j, and D = {J; D; = Egjpg. Our goal
is to describe in more detail the case where E looks like a K-trivial semistable degeneration of K3
surfaces with one component supporting a negative-definite anticanonical divisor removed, or more
generally a K-trivial semistable resolution of a one-parameter smoothing of a simple elliptic or cusp
singularity, minus the component containing the resolution of the germ of the singularity. Note that
by [FM83, Engl8, EF21], there is a procedure for generating all such examples. There is also an easy
criterion for determining the multiplicity and hence for deciding when such examples are good crepant
resolutions of complete intersection or even hypersurface singularities.

Before we begin our discussion, we record the following, which holds for an isolated rational
singularity X of dimension 3, not necessarily crepant.

Proposition 3.1 Let 71: X — X be a good resolution of the isolated rational singularity (X,x) of
dimension 3, with exceptional divisor E = 71! (x) = Uis1 Eis Dij = E; N Ej, and triple points t;jy.
(i) Fori>0, HY(E;Og) =0 and H (IT]) = 0 fori >0, wherel is the dual complex of E.
(ii) The two homomorphisms @iHl(Ei}OE,.) - @i<]-H1(DijZOD,~j) and @iHO(EiiQh) -
@iq‘ HO(DZ-j;Q})Z_J_) are isomorphisms.
(i) Let Q} be the sheaf of Kihler differentials and T} the subsheaf of torsion differentials. Then
H%E;Q}/t}) =0 and HY(E) = 0.
(iv) The map @in(E,-) - @K]. H2(DZ-]-) is surjective, and its kernel is H?>(E). Hence b,(E) =
i_1 ba(E;) — #{double curves}.
(v) Let L be the link of the singularity (X,x), and let € be the dimension of H*(L) or equivalently
H3(L). Then H*(L) is a pure Hodge structure and H*(L) = HV'(L), so that € = £, where £ is
the link invariant of [Ste97]. Finally,

C=by(E)-r= sz(Ei) — r— #{double curves) = Z(bz(Ei) —1) - #{double curves}.

1

Proof We shall just sketch the proof. By Theorem 2.5, H(E;Og) = 0 for i > 0. The weight spectral

sequence for E degenerates at E;, and hence so does the Mayer-Vietoris spectral sequence for Og.
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This degeneration, along with the fact that H'(E Op) =0, i = 1,2, implies that H'(|T|) = 0 for
i >0 and that EB H( (Ei;Og,) — @ OD ) is an isomorphism. Then @ HO El,Ql ) —

@l < HO(D, Q) ) is an isomorphism as well, as follows by taking complex conjugation. This proves

1<] 1]’

(i) and (ii). There 1s an exact sequence

1 1

oyt — oy — Doy, o

i<j
Thus, by (ii), HO(E;Q}S/TE) = 0. There is a spectral sequence converging to HP*1(E) with Ef’q =
H‘I(E;QIE/TS). As HO(E;Q}E/TE) = HY(E;O) = 0, H'(E) = 0, proving (iii). The semipurity theorem
(see e.g. [Ste83, Corollary 112]) implies that the mixed Hodge structure on H¥(E) is pure for k > 3.
An examination of the weight spectral sequence shows that this forces the map @iH 2(E;) —
@Kj Hz(Dij) to be surjective and identifies H?(E) with its kernel. Thus by(E) = Y.I_, by(E;) —
#{double curves}, which is (iv). By the link exact sequence and semipurity (see [Ste83, Corollary 1.12]
again), there is an exact sequence of mixed Hodge structures

0 — HE(X) — H*(E) — H*(L) — 0,

where as in the statement of (v), L is the link of the isolated singularity. By duality, dim H§ (5(\ )=
dimH*(E) = Y ; H*(E;) = r. Thus

¢=dimH(L) = by(E —r_sz #{double curves) — 7,

using (iv). The above exact sequence also shows that H?(L) is a pure Hodge structure and that
H?(L) = H"'(L), hence ¢ = £'"1. This establishes all of the statements of (v). O

Remark 3.2. Kawamata [Kaw88, Section 1, p. 97] introduced an invariant o(Y'), the defect of Y, for
a normal projective variety measuring the failure of Q-factoriality for Y. For a rational singularity
(X, x) in dimension 3, there is a local analogue o(x) = dim H%(X)/ Y ; C[E;] defined by Namikawa-
Steenbrink; c¢f. [NS95, Equation (3.9)]. It is immediate to see that o(x) = ¢ via the link exact
sequence

0 —— H}X) —— H*E) — H}L) —— 0

l; lg

B, Ha(E;) —— H*(X).
The relationship between the local and global invariants is as follows. If Y is a compact complex

threefold with isolated rational singularities, for each y € Y,,, we have the link L, and the local
invariant ¢, = dim H 2(L y) =dimH 3(L ). Let T be the kernel of the natural map EB H3(L
erSmg

H*(Y), and let o(Y) be the dimension of the image of o 3(Ly) — H*(Y). Thus clearly

y) =

ersm
dim T = Z 6, —o(Y
yEYsmg

A straightforward argument with Mayer-Vietoris and semipurity shows that

o (Y) = ba(Y) = bo(Y).

Thus the defect measures the extent to which Poincaré duality fails on Y.

For the remainder of this section, we return to the case where X has a crepant resolution 7t: X - X.

Following Reid [Rei80, Definition 2.5], we make the following definition.
1



Definition 3.3. Let (X, x) be the germ of an isolated singularity. We say that Property P holds for a
general t € My, or for the general hypersurface section of X defined by t, if there exists a finite-dimensional
subspace V of my,, mapping surjectively onto m,/m2, such that Property P holds for all t in a
nonempty Zariski open subset of V.

With that said, we have the following, due to Reid; see [Rei80, Theorem 2.6], [KM98, Lemma 5.30].

Theorem 3.4. Let (X, x) be an isolated rational Gorenstein singularity of dimension 3, and let S be a
hypersurface section of X passing through x defined by a general t € m, in the sense of Definition 3.3. Then
S has a du Val or a minimally elliptic singularity. O

Remark 3.5.

(i) Since an isolated compound du Val singularity is terminal, the du Val case is excluded if X has
a crepant resolution.

(ii) In an earlier version of this paper, we incorrectly stated that S has either a du Val, a simple
elliptic, or a cusp singularity. However, Paul Hacking communicated to us an example where the
general hypersurface section has a Dolgachev (triangle) singularity. This example has a partial
(singular) crepant resolution. It is possible that the existence of a good crepant resolution imposes
additional constraints on general hypersurface sections.

In the above situation, fix a general hypersurface section S of X, and define E to be the proper
transform of S on X. Thus Ej — S is birational, but the inverse image of the singular point is
Uis1(Eg NE;). If S is defined by the function t € my , then as divisors (71*¢) = Eg + )_; 4;E;, where

a; is an integer > 1. Hence
OX\[EO + ZﬂiEi] = OX\

i>1
By the crepant assumption, Kg, = Ox(E;)|E; = O, (E;), including the case i = 0 where we might have
to replace K, by wg,, and wp = O3(E)|E = Og(E).
Motivated by the description of semistable smoothings of simple elliptic and cusp singularities (¢f-
[FM83] and Remark 3.7 below), we make the following definition.

Definition 3.6. A compact analytic surface E = | J;»; E; with simple normal crossings is of Zjpe II
(Figure 1) if, after relabeling, E = | J;_ E;, where the following hold:

(i) E1,...,E;_1 are elliptic ruled (not necessarily minimally ruled), and E, is rational, with —K§g,
nef and big. (Here a smooth surface S is a not necessarily minimally ruled surface over a base
curve D if there exists a morphism S — D whose generic fiber is P!, and it is elliptic ruled if
D is an elliptic curve.)

(ii) The dual complex is a line segment with adjacent vertices Ey, ..., E,, or a single point if r = 1.

(iii) With D; ;;1 = E;NE;;1, 1 <i <r—1 as above, D; ;,; is a smooth elliptic curve.

(iv) There exists a smooth elliptic curve Dy C E;, disjoint from D;;, such that, in case r > 1,
Kg, = Og,(=Do = D12), Kg, = Og,(=Dj-1,i = Dj j41) for 1 <i <r -1, and Kg, = O (-D,_1,,),
and Kg, = O (=Dy) in case r = 1.

(v) Ok(E) = wg = Op(=Dy).

Note that (v) implies that Op . (E) = Op,

i,i+1 i,i+1°
r—1 _
Ui:l Di,i+1 - Esing-

The compact analytic surface E = | J;_, E; with simple normal crossings is of Tjpe III (Figure 2) if,

and thus TE1 =~ @iOX(E”Di,iH =~ Op, where D =

possibly after relabeling, the following hold:

(i) All of the E; are smooth rational.
12



E,
Ey

M’

Figure 1. Exceptional divisor E of Type I1

(i) E;NE; =0 unless j = +i. In particular, the dual complex of E is a point (if r = 1) or a line
segment (if r > 2).

(iii) Assume that r > 2. Let D; ;.1 = E;NE;;;. Then D; ;,; is a smooth rational curve. For i = 1,7,
there exist connected curves Cy, C, on Eq, E, respectively, where C; and C, are chains of
smooth rational curves meeting transversally, with (C; - Dy5)g, = (C, - D,_1,,)g, = 2, and we
have Kg, = O, (-Cy — Dy;) and K¢, = O (-=C, = D,_y ;). For 2 <i <r~1, there exist two
curves C/ and C/, both chains of smooth rational curves, supporting effective divisors of
self-intersection 0, and not containing D;_; ; or D; ;.1, with

(C;'Difl,i)E_ = (C;"Difl,i)E. = (C{'Di,m)E = (Cf"Di,m)E_ =1,
such that
K, = O, (~Dio1,i = C/ = Djjiv1 = C7').

i
Moreover, C = C;+C,+C)/+---+C/_;+C,” | +C, is a Cartier divisor on E, where C" = ):Zr;% C!
and C” =Y 2] C/’ are connected.

(iv) In all cases, Og(E) = wg = Op(—C), where if r = 1, C is a cycle of smooth rational curves or
an irreducible nodal curve.

Cy Cry
e B B c,
Dy 2 Dy 3 D1,
By Es LRI E, E,
a o

Figure 2. Exceptional divisor E of Type I1I;

Note that (iv) implies that there exist points pj,p;” in D; ;. for 1 <i <r—1 which are smooth points
on D and such that TE1 =Op(-=Xi(p; +p))).

The compact analytic surface E = | Ji_; E; with simple normal crossings is of Tjpe III, (Figure 3) if
r > 2 and, possibly after relabeling, the following hold:

(i) All of the E; are smooth rational.
13



(ii) There are distinguished components Ej,..., Eg such that E; NE; = 0 unless j = +i mod s.
In particular, for s > 3, the dual complex of Ey,...,E; is a circle (and similarly for r = 2,
where the dual complex has two vertices joined by two edges). Moreover, there exist chains
of smooth rational curves C; on E;, 1 <i <s, such that C; and D; have no component in
common and C; N E; # 0 if and only if we have 1 < j <s and j = #1 mod s. In this case,
(C; - Di/,i+1)Ei =1 for every component Di,,i+1 of D; ;11 meeting E(, with the convention that
D; 541 = Dy 5. Moreover, C = C; +---+ C; is a Cartier divisor on E contained in [ J]_; E;; more
precisely, C;NE;,;1 =C;,1 NE;.

(ili) For 1 <i <s, C; + D; is a cycle of smooth rational curves, and K¢, = O, (=C; = D;). For i > s,
D; is a cycle of smooth rational curves, and Kg, = Og,(-D;).

(iv) The dual complex of E is a semisimplicial triangulation of the 2-disk, and Ej,...,E, are the
boundary vertices.

(v) Op(E) = wg = Op(=Xi_; Ci).

Figure 3. Exceptional divisor E of Type I1I,

Note that (v) implies the following (keeping the convention that D¢, = D;;): Suppose D;;,; is
irreducible. Then there exist points p; in D; ;1 for 1 <i <s, not in Dy, such that T) = Op(=Y;pi)

An analogous statement holds if D; ;,; is reducible, where such points exist in every component of
D; ;11 meeting C;.

Remark 3.7. The above terminology is modeled on the corresponding terminology for semistable
degenerations of K3 surfaces due to Persson, Kulikov, and others. More precisely, consider a smoothing
p: X — (A,0), where X = (X, x) is the germ of a simple elliptic or cusp singularity over the unit disk
(i.e. p is a flat morphism of germs, p~1(0) is a simple elliptic or cusp singularity, and p~!(¢) is smooth
for t # 0). By [FM83, Theorem 2.5], possibly after a base change, there exists a semistable crepant
resolution 7t: X — X. In other words, X is smooth and induces a minimal resolution of p~1(0) with
exceptional divisor Dy, Ky = Oy, and the induced morphism f = pom: X — A satisfies the following:

£71(0) is a reduced divisor with simple normal crossings. Then the dual complex of f~1(0) is a line
14



segment in the simple elliptic case (Type II) or a triangulation of S? in the cusp case (Type III). Thus,
the dual complex of E = 771(0) is again a line segment in the simple elliptic case, and hence is of
Type II in the sense of Definition 3.6, or it is obtained by deleting a vertex in a triangulation of S? and
hence is either a line segment or a disk, i.e. is of Type III; or Type III, in the sense of Definition 3.6.

See also Theorem 4.6 for a partial converse to this picture.

Remark 3.8. As noted in greater generality in [Kaw88], the number r of divisors in the exceptional
set E of the crepant resolution 7: X > X is independent of the choice of crepant resolution. This
follows easily from the fact that any two crepant resolutions are isomorphic in codimension 1 (see e.g.
Remark 2.4). The invariant £ = dim H?(L) defined in Proposition 3.1(v) can also be computed directly
in this case, at least for a semistable smoothing.

Proposition 3.9.
() Suppose that X is the semistable model for a smoothing of a simple elliptic singularity, of multiplicity
m = —Dg. Then
{=9-m.
(ii) Suppose that X is the semistable model for a smoothing of a cusp singularity, of multiplicity m = —Dg
and length s, the number of components of the cusp. Then

{=9—-m+s.

Proof. By Proposition 3.1(v), £ = Y '_; by(E;) — #{double curves} —r, where r is the number of compo-
nents of E. In the simple elliptic case, after standard birational operations (flops or Type II elementary
modifications), we can assume that Ej,...,E, ;| are minimal elliptic ruled surfaces and that E, is a
generalized del Pezzo surface of degree _(Dr—l,r)lz:“,_l = (Dr—l,r)%r = Kér = m. Thus there are r — 1
double curves, r — 1 elliptic ruled components E; with b,(E;) = 2r, and the remaining component E,
satisfies b, (E,) = 10 — m. Putting this together gives

C=2(r-1)+10-m-2r+1=9-m.

In the cusp case, we shall just write down the proof for E of Type III, (the proof in the Type III; case
is similar but simpler). Let e be the number of double curves of E, and let f be the number of triple
points. By taking Euler characteristics,
r—e+t=1.

Each surface E; satisfies —Kg, = Og,(D; + C;) or —Kg, = O (D;), depending on whether E; meets E,
and in this case C; is irreducible since by assumption X is semistable. Set 51‘ = D; if E; does not meet
Eq (i.e. i > s), and set 5, =D; +C; if E; meets Ej (i.e. 1 <i<5s). If s; is the number of components of
D;, then Y iSi = 2e+s. Every triple point is contained in three edges, and every edge contains two
triple points except for the edges corresponding to the double curves E; N E;,q, 1 <i <, which just
meet one triple point. Thus 2e = 3t +s.

The surfaces E;, i > 0, are rational surfaces with an anticanonical cycle ]31 Following [FM83,
Definition 3.1], define the charge Q(Ei,ﬁi) by

Q(Ei,ﬁi):w—(ﬁi)z—si.

Note that this definition makes sense for E; as well, where we set 50 =Dy =) i, C; and Q(E, 50) =
12+ m—s. For i > 0, by [Fril5, Lemma 1.2], b,(E;) = Q(Ei,ﬁi) —2+s;. Then

{= sz(Ei)—e—r: ZQ(Ei,ﬁi)—SrJrZsi—e

i>1 i>1 i>1
= ZQ(Ei;ﬁi)—?’(l +e—t)+2e+s—e
i>1
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= ZQ(Ei,ﬁi)—3+(3t—2e+s) = ZQ(Ei,ﬁ)—3.
i>1 i>1

The principle of “conservation of charge,” see [FM83, Proposition 3.7], implies that
ZQ(Ei,ﬁi) +Q(Eq, Do) = 24
i>1
Thus ) ;54 Q(E;,D;) =12 —m+s, and so finally
€:ZQ(Ei,ﬁ)—3:9—m+s. O

i>1

Remark 3.10. Proposition 3.9 implies the well-known results that m < 9 for a smoothable simple elliptic
singularity and m < 9 + s for a smoothable cusp singularity.

In the Type II and Type III; cases, TEl is uniquely specified as noted in the definition. For the Type
I, case, Th} is also uniquely specified by condition (v).

Lemma 3.11. Suppose that E is of Type III,. For everyi, 1 <i <s, and every component I;, of D; ;.1
meeting C;, choose points g;q € I;o, not in E; for j=1i. Then Op(—)_; 4 qia) = TEI.

Proof: Let D = D"UD”, where D” consists of the components of D; ;.1 meeting C;, 1 <i <s, with
the usual conventions, and D’ is the union of all of the other components. For simplicity, we just
consider the case where D; ;| = IP! is irreducible for every i and write g; instead of g;,. Let L be
a line bundle on D such that L|D” = Op, and L|D” = Op». We claim that L = Op. Applying this to
Op(-Y.;9:)® T! = Op(p; - Y i q;) then proves the lemma.

More precisely, we shall show that Pic D = Pic D’xPic D” = Pic D’ xZ°, and hence p,(D) = p,(D’).
We have an exact sequence

s
Sk % % *
O—)ODHOD,XOD,,—>| |Cp’,—>0,

i=1

where D’ND” ={py,...,p,} and C,, is the skyscraper sheaf at p; with stalk C*. But HO(D”;OB,,) ~
(C*)*, and the induced map

o ¢,

i=1

H°(D";0},) — H° =(C)

coming from the above exact sequence is an isomorphism. Thus
H'(D;0}) =PicD = H' (D;0},) x H' (D”;0},) = PicD’ x Pic D”,
completing the proof. (]

Next we describe the cokernel of H!(X; Ty) in Hl(E;T}g). As we have seen in the proof of
Theorem 2.6(vi), this cokernel is H2(X; T(—E)), and it measures the failure of a first-order locally
trivial deformation of E to be realized by a deformation of X and the divisors Eq,...,E,.

Proposition 3.12. Suppose that E is of Type II. Then dim H2(X; T (=E)) > r — 1, where r is the number
of components of E, and H*(X; T(=E)) =0 if r =1, i.e. E is irreducible.

Remark 3.13. The geometric interpretation of Proposition 3.12 is as follows. By Theorem 2.6,
H 2()/(\; T(=E)) is the obstruction to realizing all first-order locally trivial deformations of E by
deforming X. We have seen that, in the Type II case, where E C X, we have T} = Op, where D = Egp,.
For a general deformation of E, the line bundle T} on D has degree 0 but is not necessarily the trivial

line bundle. Here, r — 1 is the number of conditions on the deformation required to keep TI;} trivial.
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Proof of Proposition 3.12. By the formal functions theorem,

H?(X;Tg(-E)) = lim H’ (X; Tg(~E)InE).

n

Since H3(X; T(-2E)) =0, H2(X; T(-E)) — H?(E; T (=E)|E) is surjective. For n > 1, we have the

exact sequence
0 — Tx(~E)|[E ® Og(-nE) — Tx(=E)|(n+1)E — Tx(-E)InE — 0.
By duality (where we also allow the cases n = 0,-1), H*(E; T%|E ® O(—(n+1)E)) is dual to
HO(E;QLIE®Op((n+1)E)@wg ) = HY(E;QLIE® Op((n +2)E)).

By Theorem 4.1(i), Op(E) = Kg = Op(—Dy) for an effective nonzero divisor Dy on E, disjoint from
the singular locus, and similarly Og(mE) = Og(—mDy). In particular, for m > 0, there is an inclusion
Og(mE) — Og which only vanishes along the divisor D for m > 0. Now use the conormal sequence

0 — I/l — Q|E — Qp — 0.

Since I/I? = Op(~E), we have IE/II% ®Op((n+2)E) = Op((n+ 1)E). First assume r =1, i.e. E is
smooth. From the conormal sequence, we get an exact sequence

H°(E;Og((n+1)E)) — H° (E;Q%lE@OE((n +2)E)) — H(E;Qp @ Og((n+2)E)).
Since HY(E;Og((n+1)E)) = 0 for all n> 0, there is a sequence of inclusions
HO(E;QLIE @ Og((n+2)E)) — H°(E;Qp ® Op((n+2)E)) — HO (E;Qf ) =

Hence HO(E;Q;?UE ®Og((n+2)E)) =0 for all n > 0, and therefore Hz(}? T(-E)) = 0.
Now assume r > 2. With notation as in Definition 3.6, O(mE)|D; ;.1 = Op, . , Op(mE)|E; = O, if
i > 1, and Op(mE)|E; = O (-mDj). Using the exact sequence (from the normalization)

0 — Op(mE) —>@OE (mE)|E; —>@(9DM 50,

i,i+1°

we see that the map @iHO(Ei;OE(mEHEi) - @iH (Dj,i+1;0p,,,,) is an isomorphism. Thus, as in
the case r = 1, HY(E;Og(mE)) = 0 for all m > 0.
As in the case r = 1, we want to analyze HO(E;Q%E ®Og((n+ 2)E)). By the above,

HO(E;QLIE®@Og((n+2)E)) € HO (E;Qp @ Op((n + 2)E)).
Now we have the exact sequence
0— 1 — QF — Qp/1} — 0.
Also, HO(E;Q%/TE) = 0 by Proposition 3.1(iii). Since there is an inclusion
HO(E;(Q}/7)®Op((n+2)E)) € H (E;Qp/11),
we conclude that HO( ( E/TE) ®Og((n+ Z)E)) = 0. The remaining term is
H°(E; 1} ® Og((n + 2)E)).

As D is smooth and the curve D; ;.| appears twice in | |; E;, by [Fri83, Proposition 1.10(2)], there is an
exact sequence

0 — Ox( |D—>@ OA |D”+1) —>Té—>0.
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Since D is a disjoint union of the smooth components D; and Ox(-E)|D = Op, this says that
Té =0p = @:;i Op, .., Hence
HO(E; 14 ® Og((n+2)E)) = H(D;Op) =C".
In particular, taking 1 = 1, we get dim H?(E; Tg(—E)|E) = r—1. Thus dim H2(X; T¢(-E))>r-1. O
Remark 3.14. If we wanted to fully calculate dim H 2(X; T5(~E)), we would have to understand the
coboundary
H' (nE; Tg(~E)[nE) — H? (E; Tg(~E)|E ® Og(-nE)),
where the last part of the proof shows that
dim H? (E; Tg(-E)|E ® Op(-nE)) = r -1

for all n > 1. This seems difficult and most likely depends on the higher infinitesimal neighborhoods
of E in X.

In the Type III; case (and also the Type III, case if every component of D meets C), then in fact
H?(X; Tg(-E)) = 0.
Proposition 3.15. In the Type III; case, H(X; T(-E)) = 0.

Proof. The proof is similar to the proof of Proposition 3.12, but in this case Té ®Og((n+2)E) is a line
bundle of negative degree on every component of D = Eg,. Thus HO(E;Té ®Og((n+2)E))=0. O

Remark 3.16. A similar (but also ultimately inconclusive) analysis along the lines of Proposition 3.12 is
possible in the Type III, case: One can show that, in this case,

dim H°(E; 14 ® Op((n+2)E)) 2 py(D),

and in particular that dim Hz(j(\; T (=E)) = pa(D). It is easy to see that p,(D) is not 0 in general.
More precisely, using [EF21, Lemma 2.25(iv)], one can check that p,(D) = r —s, which is typically
nonzero.

4. The good crepant case: A partial classification

Let (X, x) be an isolated singularity of dimension 3 with a good crepant resolution 7t: X - X. It is
natural to ask if the (reduced) exceptional divisor E of 7 is of Type II, Type III;, or Type III,. We have
some partial results along these lines, inspired by the arguments of Shepherd-Barron [SB83a, SB83b].

Theorem 4.1. With notation and assumptions as above, let t be a general element of my , in the sense of
Definition 3.3, and assume that the divisor S = (t) defined by t has a simple elliptic or cusp singularity.

(i) With (1c"t) = Eg+ ) ;> a;E;, we have a; = 1 for all i. Hence

yo

i>1

05(‘ ~ O)?(—EO).

(i) If the hypersurface section of X defined by t is simple elliptic, then E is of Type II. In particular, all
components of E are rational or elliptic ruled.

(iii) If the hypersurface section of X defined by t is a cusp, then all components of E are rational and
every component of a double curve D;; is a smooth rational curve. (The proof gives much more detailed
information about this case.)

Proof- We begin with two lemmas.



Lemma 4.2. Let S be the germ of a simple elliptic singularity or a cusp singularity, with singular point x,
and let p: S — S be a birational morphism such that S is normal, p~1(x) is a curve, i.e. has dimension 1,
and Kg = Og(=Dy), where Dy is an effective nonzero Weil divisor whose support is contained in p~L(x).

(i) If S is simple elliptic, then Dy is a (reduced) smooth elliptic curve, S is Gorenstein, and Dy is a
Cartier divisor with DO2 <0.
(i) If' S is a cusp, then Dy is a reduced cycle of smooth rational curves or an irreducible nodal curve.

Proof. First consider the simple elliptic case. There exists a resolution of singularities T — S which
dominates S, and hence T is the blowup of a minimal resolution of singularities of S, say T with
K1, = O1,(=C). Thus T is obtained by successively blowing up points on Tj. All blowups at points
not on the proper transform of C correspond to components of K7 occurring with positive coefficients:
as Cartier divisors, Ky = —C’+} ;a;e;, where the e; are proper transforms of exceptional curves
corresponding to blowups at points not on the proper transform of C and a; > 0. Let D be the
nonzero effective Cartier divisor on T which is the proper transform of D;. Then

Kr=-C"+ Zaiei =-D{+ a sum of exceptional fibers of the morphism T — S.
i

The only way this is possible is if all of the e; are fibers of the morphism T — S and C’ is not an
exceptional fiber of the morphism. It follows that S is dominated by a surface T, a blowup of T
where all blowups are at points on the proper transform of C and C itself is not blown down. Hence
S has at worst A, singularities, so is Gorenstein, and Kg = wg = Og(-Dy), where D is the image of
the proper transform of C. Thus Dy is a (reduced) smooth elliptic curve and Dg <0.

A similar argument in the cusp case shows that if T is the minimal resolution and Ky, =
Or,(= 2L Ik), where } ;T is a cycle of rational curves on Ty, then S is dominated by a surface T, a
blowup of Ty where all blowups are at points on the proper transform of ) , I} and ) ; I} itself is not
entirely blown down. In particular, the image Dy of } ; I} is a reduced cycle of smooth rational curves
or an irreducible nodal curve. O

Lemma 4.3. Let T be a smooth algebraic surface such that —Kp =) ;a;D;, where the D; are irreducible
curves, a; > 0, and the sum is nonempty. Then either T is an elliptic ruled surface and —Kt = o’ +o”,
where o', 0" are disjoint smooth elliptic curves, or | J; D; is connected.

Proof. First, if p: T — T is the blowdown of an exceptional curve, so that T is smooth, then it is easy
to check that —K7 =) ; a;0.(D;) and that T is a blowup of T at a point of | J; p.(D;). Then | J; D; is
connected if and only if ( J; p.(D;) is connected. Thus, we may as well assume that T is minimal, and
hence is either P2, where the result is automatic, or the blowup of a ruled surface over a curve of
genus g. In this case, using [Har77| as a general reference, let e be the invariant of the ruled surface,
i.e. —e is the minimal self-intersection of a curve on T, and let oy be a curve of self-intersection —e. In
particular, oy is a section of the ruling, and

KT = —20'0 + (2g -2- e)f,

where f is the numerical equivalence class of a fiber. Also note that either e > 0 and oy is the
unique curve on T with negative self-intersection, or e < 0 and every curve on T has nonnegative
self-intersection.

If -K7 =D’ + D”, where D’ and D” are disjoint and nonempty effective divisors, then at most one
of D’, D” can have negative self-intersection. Thus we can assume that (D”)?> > 0. If (D”)? > 0, then
(D’)? < 0 by the Hodge index theorem; hence oy is a component of D’. Then every component of
D” is disjoint from 0y, hence is numerically equivalent to a positive multiple of oy + ef. It follows
that D” is numerically equivalent to oy +ef and D’ = 0. Moreover, —Kt = D"+ D” is a union of

two disjoint smooth sections. The argument also shows that if (D”)? = 0, then (D’)? = 0 as well, and
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hence D’ and D” are numerically equivalent. In particular, since Kp = —20g + (2¢ —2 —e)f, there
exist disjoint sections 0’ C Supp D’ and ¢” C Supp D”, and all remaining components of D’, D" are
fibers. Since D’ and D" are disjoint, we must have 6’ = D’ and ¢” = D”. In all cases, if | J; D; is not
connected, —Kt = 0"+ 0", where ¢’,0” are disjoint sections of T. Then

2¢(0’)-2=2g(c")-2=Kg-0"+(0")> ==(¢/)* +(¢’)* = 0.
Hence 0’,0” are disjoint smooth elliptic curves, and T is elliptic ruled. O

Returning to the proof of Theorem 4.1, let S be a general hypersurface section through x.

The case where (S, x) is simple elliptic.— Let E( be the proper transform of S. First we claim
that E is normal. In any case, E( is Gorenstein, and wg, = O (=Dy), where Dy =} ;5 a;(Eq N E;).
Let v: Ey — E( be the normalization (necessarily Cohen-Macaulay), and suppose that v is not an
isomorphism. Then WE, = WE /g, ® V'wg,. Since Ej is Gorenstein, it must fail to be normal in
codimension 1. Then w7, is an ideal sheaf (the conductor ideal sheaf) of Oz; hence wz ;. is a
Ey/Eq Ey g Ey/Eq
rank 1 reflexive sheaf and WE g, = OE;(_F) for some effective nonzero divisor F on E. Since the
set of nonnormal points of Ej is contained in Ey N E, every component of F is also a component of
v~ Dy. In particular, some component of —Kg; is nonreduced. But this contradicts Lemma 4.2.
Thus, Ej is normal. By Lemma 4.2, E is Gorenstein and wg, = Og (-Dy), where Dy is smooth
elliptic and (DO)%0 < 0. In particular,

Ok, (Eo) = Op,(=Dy) = O

- ZaiEi] |E0

i>1
Then Ej meets | ;5 E; for a unique i, say i = 1, and a; = 1. Thus

~Ey- ZuiEi]lEo.

i>2

Kg, = Og, (E1) = 0%

Moreover, (DO)%51 = —(D())}25O > 0. By Lemma 4.3, there are two possibilities:

i +) iond; N E;) is connected. en NE; =0 for1>1,sothat r =1, E = E{, an

(i) Do+ X_i>pai(E; NE;) d. Then E{NE; =0 fori>1 h 1, E = Eq, and
Kg, = O, (=Dy).

(ii) E; is elliptic ruled and Kg, = O, (~=Dg —I') for some smooth elliptic curve I' disjoint from D
with T2 < 0 by the Hodge index theorem.

In the first case, E; is rational since Kg, = (DO)}z51 > 0. In the second case, E; meets | J;», E; for

a unique 7, say i =2, a, = 1, and I' = Dy, with (D12)]232 = _(D12)1221 > 0. Then we can repeat this

analysis. Eventually, this process must terminate with a rational E,. Moreover, Kg = O (-D,_1 ,),
with (Drzfl,r)Er > 0, so that Kg_ is nef and big. Hence we have shown that E satisfies (i)-(iv) of the
Type II case of Definition 3.6. Condition (v) follows since } ;- E; = (7*t) is pulled back from X. Note
that 1 > 1,

1
T¢|Djiv1 = Np,,,,/E; ® Np, ., /E,,, = Ox(Ei + Ei11)ID; i1

yo

i>0

:OX\

D;i1 =0p

iivl”

as remarked after the definition of Type I
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The case where (S,x) is a cusp.— Let E; be the proper transform of S. By the same arguments
as in the simple elliptic case, E( is normal and Gorenstein, and wg, = Og (=) ;_; I}), where either
each Ij is smooth rational and the dual graph of the I} is a cycle, or n =1 and C =1 is irreducible.
Moreover, Eg is dominated by a smooth surface E; which is a blowup of a minimal resolution of the
cusp, and we can further assume that no fibers of Eo — L are exceptional curves, i.e. that EO — Ejis
a minimal resolution. Thus E is obtained from E, by contracting chains of curves of self-intersection

—2. We have .
- ka - ZaiEi]
k=1

i>1
After reindexing, we can assume that the components E; of E meeting E are E,..., E;, and the above
shows that a; = 1 for such i. Define E; N Ey = C;. Then E; N Ey = C; is a union of some of the I}, and
either the connected components of C; are chains of rational curves, or C; is a cycle of rational curves

OEO(EO) :OEO :(95{‘ Eo.

or an irreducible curve of arithmetic genus 1. By Lemma 4.3, the last two cases can only arise if r =1
and E = E; is irreducible, and necessarily a rational surface. If r > 2, then C; is a disjoint union of
chains of smooth rational curves, and each E; with 1 <i <s meets at least one other component E;
for which C; N C; # 0. In fact, we can reorder the E; so that, for 1 <i <s-1, E; meets E;;; with
E;NE;;1 NEy = 0. Note that, as C; is reduced, no component of C; is contained in E; for j = i, and
thus D;; is not contained in C; for j = i.

Taking for example i = 1, E; meets E, at a point of C; N C,. Then there exists a component G, of
Dy, meeting the chain Cj, necessarily at an end component of the chain. Now

_KE1 = Cl +Dqy + Z alej,
j#1,2

and the support C; U Dy U ;.12 D1j is connected by Lemma 4.3. Hence

(Kg, + G2)- G2 =—(C1 - Gy) - Z aj(Dyj- Gy) <O0.
j#1,2
Thus (Kg, +G,)- G, = -2, and G; is a smooth rational curve. Also, (C; - Gy) is either 1 or 2. If it is 2,
then G, = Dy, Cy is connected, and E; is a rational surface with (Dy;-Dy3) = 0 for j # 1,2. This
implies that E; NE; =0 for j # 1,2. Also, by the connectedness of Ci, it follows that E; N E; =0 for
j# 1,2, and we are in the case s = 2. So we can assume that (C; - G) = 1, there is a unique k # 1,2,
say k = 3, such that (D;3-G,)# 0, and (Dy3-G;) =1 and a3 = 1.

Let G3 be the unique component of D;3 meeting G,. Repeating this argument with G5, we see
that G3 is smooth rational and that (C; + Dy,) - G3 is either 1 or 2. If it is 2, then the only possibility
is that G3 meets C; at the other end of the chain from G,. In this case, E; NE; =0 for j = 1,2,3.
Otherwise, we can continue this process with an E; and with a smooth component G; of Dy; such
that G; - G3 # 0. Eventually the curves C; and the G; must close up (although it is possible for some
E; to be equal to E; at an intermediate stage). We can do this analysis for all E;, 1 <i <s: Every
component of D;; is a smooth rational curve, and a; = 1 for every j such that E; N E; # (). Moreover,
the scheme-theoretic intersection of Eg, E;, and E;,; is a reduced point and hence is a smooth point
of Eg. In particular, C = | J; C; is a cycle of smooth rational curves, hence has arithmetic genus 1.

Now let Ex be a component of E with k > s such that Ex N E; # (), say, and let G be a component
of Dyj. Then a; =1, and G is a smooth rational curve. Moreover, there exists an ¢ # i, j such that
GNEy#0 as well. Thus E; N Ex N Ep =0, say, and

_KEk = le + Dk€ + Z atDkt.
t#1,k,l

Let G” be a component of Dy, meeting G. Arguments as above show that G is smooth rational and

that a; = 1 for every t such that E; N G” = (. Continuing in this way and using the connectedness
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of E, it follows that 4; =1 for every i and that every component of D;; is a smooth rational curve.
Moreover, for every i, there exists a curve in |~ Kg | whose components are rational curves. Hence E;
is rational. Thus, E satisfies the conditions of the second statement in Theorem 4.1(iii). U

Remark 4.4. The proof shows that in case the hypersurface section S is a cusp and using the notation
of the proof, —KE, is effective and is a cycle of smooth rational curves which contains C; if E; N Eq = 0.

Remark 4.5.

(i) It seems quite possible that, in general, E might not be of Type III; or Type III,, even after
making some flops. In particular, from the point of view of the classification of algebraic varieties, it
is reasonable to allow E to have more complicated singularities than normal crossings, namely dlt
singularities.

(i) In the Type II case, dim HO(E; Tg) =r—1 is the number of elliptic ruled components. In the
Type III; or Type III, cases, HO(E; T{) = 0, so that all first-order deformations of E are locally trivial
in these cases. This follows more generally in case the general hypersurface section of X passing
through x is a cusp, by Theorem 4.1(iii) and Theorem 2.6(ii).

(iii) It is easy to see that if [T| is the dual complex of E, then H'(|T|) = 0 for i > 0, and indeed a
theorem of [dFKX17] says that |I'| is contractible. In the Type II and Type III; cases, || is a point or a
line segment, and in the Type III, case |I'| is a disk. However, in the general case, without making
flops, the topological type of the dual complex can be more complicated than a line segment or a disk.
For example, it can be a disk meeting a line segment at a point.

On the positive side, there is the following.

Theorem 4.6. Let (X,x) be an isolated singularity of dimension 3 with a good crepant resolution
n: X > X, and let E = 7 (x) be the reduced exceptional divisor.
(i) If the general hypersurface section of X passing through x is a cusp and wy' is nef and big, then E
is of Type 111, or Type III,.
(i) If the general hypersurface section S of X passing through x is a cusp and the full inverse image
7 1(S) has normal crossings, then after a sequence of flops (elementary modifications of type 2),
wg' becomes nef and big, hence E is of Type III; or Type III,.

Proof- First assume that a)JE1 is nef and big. In the notation of the proof of Theorem 4.1, C = | J;_, C; =
ENE, is a cycle of rational curves, and O (-C) = wg, = O (- )_; ;). Likewise, wg = Op(-C) =
Ok(E). Since (C)IzS = —(C)}%0 > 0, the total degree of O¢(C) = a)}51|C is positive. Then general results
on line bundles on cycles of rational curves (¢f. [Fril5, Lemma 1.7]) imply that either (C )]25 > 2 and
O¢(C) has no base points, or (C)]zE =1 and O¢(C) has a single base point at a smooth point of C.
From the exact sequence
0— O — Og(C) — O¢(C) — 0,

there exists a section of Op(C) vanishing at C*, where C* = [J;_; C} and C; is smooth for all i.
Since Og(—E)|C is nef and has nonnegative degree on every component and positive total degree,
H'(E;Op(~NE)) =0 for all N > 0. By induction, it is then easy to see that Hl(nE;O)?(—NE)lnE) =0
for all N > 0 and all n> 0. Thus R'7t,O%(—NE) = 0 for all N > 0 by the formal functions theorem.
In particular, Rln*Oi(—ZE ) = 0. By applying R'7, to the exact sequence

0 — Ox(=2E) — Ox(-E) — Og(C) — 0,
it follows that the natural map
R1,05(~E) — H°(E; Og(C))

is surjective. Hence, there exists an element ¢ € ROT[*O)?(—E ) C m, which lifts to a function 7t*t whose

restriction to E is C*. Thus S* = {t = 0} defines a cusp singularity on X, the proper transform Ej
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of S* is a resolution of singularities of S*, and E U Ejj has simple normal crossings. It follows from
the classification of Type III degenerations of K3 surfaces that E U Ej; is a Type III anticanonical
pair, i.e. which meets the description of [FM83, Lemma 2.14] or [EF21, Definition 2.1}, except that
the Hirzebruch-Inoue component has been replaced by the local surface Ej. The assumption that
wj' is nef and big is then equivalent to the assumption that (C/ )1251 > 0 for every component C; of
C: = ES NE;.

On the other hand, under the assumptions of (ii), E U E is again a Type III anticanonical pair

as above. Then every component C; of C; = Eg N E; is a smooth rational curve, and (C;)Eo <0 for

every i. By the triple point formula, (CZ')}Z5 > 0 unless (CZ')}ZSO = (C:)IZE = —1. In this case, the standard
flop (type 2 modification) eliminates C; but does not alter the assumption that 7771 (S) has normal

crossings. In this process, the total number i such that (Cl’)lz50 = —1 decreases, so it must ultimately

terminate at a stage where (C/)% < —2 for every i. Thus we can assume in (i) and in (ii) that (C/)2 >0
g i’E, y i)E

for every component C; of C; = Eg N E;.

In this case, suppose that there exists a component E; such that C; = EyNE; is disconnected. Then
every component of C; has nonnegative square on E;. By the Hodge index theorem, every component
of C; has square 0 on E;, and E; is a minimal rational ruled surface with the remaining double curves
sections of the ruling. If E, is a component meeting Ey and Eq, then the same analysis shows that
either every component of C, has square 0 on E, and E; is a minimal rational ruled surface with
the remaining double curves sections of the ruling, or C, is connected, hence an irreducible smooth
rational curve, and C; has just two components. Continuing in this way, we see that E is of Type
III;. In the remaining case, Ej meets every component of E in an irreducible smooth rational curve.
It is easy to see in this case that the dual complex of E triangulates a 2-disk and thus that E is of
Type III,. (]

5. The case of a small resolution

In this section, we consider the case of a small resolution 77": X’ — X; i.e. (X,x) is the germ of an
isolated Gorenstein singularity of dimension 3 with a good Stein representative X, and p: X’ — X is
a small resolution with exceptional set C.

Remark 5.1. There is no real limitation to restricting to dimension 3, at least in case the singularity
(X,x) is a local complete intersection. Indeed, such resolutions can only exist for dim X = 3: By
the Grothendieck-Lefschetz theorem, the local ring Oy , of an isolated local complete intersection
singularity is a UFD for dim X > 4. The proof of the “easy case” of Zariski’s Main Theorem shows
that in case Ox , is a UFD and 7: X — X is a resolution of singularities, there exists a divisor D on
X such that codim7t(D) > 2. Thus, if (X, x) is an isolated local complete intersection singularity, and
7’: X’ — X is a resolution such that the exceptional set (1)~ (x) has dimension < dim X — 2, then
dimX = 3.

Conversely, in dimension 3, suppose that (X, x) is the germ of an isolated singularity with a small
resolution 7': X’ — X. If X is Cohen-Macaulay, then it follows from results of Laufer, Reid, and
Pinkham (see for example [Pin83, Section 8]) that X is a compound du Val singularity, i.e. that the
general hyperplane section of X in the sense of Definition 3.3 is a rational double point. In particular,
X is a hypersurface singularity and (7’)~(x) = C = Ui_; C;, where the C; are smooth rational curves
meeting (pairwise) transversally (but three C; can meet at a point).

For the case of a small resolution, the functor Defy, has a more than purely formal meaning: By
[Lau80, Theorem 2], there is a deformation of a neighborhood of the exceptional curve C over the

smooth germ (H'(X’; Tx/),0) for which the Kodaira-Spencer map is an isomorphism. As previously
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noted, X’ is a crepant resolution of X, and hence Ky = Ox.,. Also, the resolution p: X’ — X is
equivariant (¢f Definition 2.1).
We will use the following standard fact about local cohomology.

Lemma 5.2. If F is a locally free sheaf on X', then Hé(X’;]:) =0.
Proof- Using the Mayer-Vietoris sequence, see [Har77, Exercise I1I1.2.4, p. 212], it suffices to show that
Hér_(X';]:) = 0 for every irreducible component C; of C and that Hg(X’;]:) = 0 for every point
p € X’. By [Har67, Proposition 1.4], there is a spectral sequence with E; term Ef'q = HP(X; H‘é(]:))
converging to ngq(X';}"), where Hqc_(]:) is the associated local cohomology sheaf. Since C; is
smooth, it is a local complete intersection. Hence, by [Har67, Proposition 3.7 and Theorem 3.8],
Hcéi (F)=0fori=0,1. Thus Héz_ (X’; F) = 0. The vanishing of Hg(X’;}-) is similar. O

Since the fibers of p have dimension 1, R?p,Tx, = 0 and hence HO(X;R?p,Tx) = 0. Applying the
Leray spectral in local cohomology to the morphism p and the sheaf Ty, and using Lemma 5.2 to see
that Hé(X’; Tx’) = 0 gives the following.
Lemma 5.3. There is an exact sequence

0 — H°(X;R'p,Ty) — H°(X; T ) — HZ (X'; Ty)) — 0.

Note that H)(X;R1p, Tx/) = H(X;R'p,Tx ) and that HX(X; TY) = HY(X; Ty). Since Ky is trivial,
Ty = Q%, and hence Hé(X’; Tx)) = Hé(X’;Qg(,).

The (singular) local cohomology groups Hé(X ') can be described via duality:

0 if k = 4,6,
HE(X) = He (€)= { D, Ho(Ci) ik =4,
C if k=6.

Moreover, there is a spectral sequence
EYT = HE(x50k) = HE(X50%) = HEY(X).
Many of the terms in the E; page of the spectral sequence are zero.
Lemma 5.4. Ifq=0,1, then Hg(X’;Qi,) =0 forall p and Hé(X’;Qg(,) = Hé(X’;OXf) =0.
Proof. The first statement follows from Lemma 5.2. The second follows by considering the Leray

spectral sequence with Eg'q = HE(X;qu*OXf) = HgHI(X’;OX/). Here, R7p,Ox, = 0 for g > 0 since
(X, x) is a rational singularity and

ot (X;Rop*OX») =HY (X;05)=0
for p < 3 because depth Ox , = 3. g
Thus we have the following picture for the Ef’q page of the spectral sequence converging to
H(X;Q%) = HE(X):
HZ(X';0x) | HY(X3Q) | HE(X5Q%,) | HE(X5Q%)
HZ(X;Q5%.) | HZ(X;0%)

Lemma 5.5. The differential d: Hé(X’;Q%(,) - Hé(X’;Qg(,) is injective.

Proof This is clear since the kernel of d: Hé(X’;Q%(,) — Hé(X’;Qi,) would inject into Hg(X’) =0.
U
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By examining the above spectral sequence, we see that there is a homomorphism Hé(X 50%) -
HA(X)).
C

Proposition 5.6. The map Hé(X’;Qi,) — Hé(X’) is surjective and split by the fundamental class map.
Thus, if K, denotes the kernel of Hé(X’;Qg(,) — Hé(X’), we have a direct sum decomposition

@C[Ci]
i=1

Proof. First note that the fundamental classes of the C; are a basis for Hé(X’) =~ H,(C). On the
other hand, for every i one can construct a fundamental class [C;] € H(Z:(X ’;Q%,) which maps to the

HZ(X;Q% ) =K @ H (X)) =K@

fundamental class [C;] € Hé(X ’). We also have the Mayer-Vietoris sequence

0= P HZ(X;50%) — EPHE (X30%) - H2(X50%.),
i

zeC

sing
and hence we can view the [C;] as linearly independent elements of Hé(X’;Qg(,). The image of
Hé(X’ ;Q)z(,) in Hé(X’ ) therefore contains the vector space spanned by the fundamental classes of
the components of C, and hence is equal to Hé(X’). Thus Hé(X’;Qg(,) — Hé(X’) is surjective, and
the subspace spanned by the fundamental classes of the components of C is a complement to the

O

kernel.

Define S, = C" C Hé(Qg(,) to be the image of the fundamental class map. Thus Hé(X’;Qg(,) =
K, @ Sy. By Proposition 5.6, we can identify S, with Hé(X’). It can also be identified with H3(L),
where L = X —{x} = X" — C is the link of the singularity. This follows from the exact sequence

0=H3X') — H*(U) — HX(X') — H*X') = 0.

In particular, the mixed Hodge structure on S, = H3(L) is of pure weight 4 and of type (2, 2).
To say more about K, we have the following.

Lemma 5.7. Let A, be the kernel of d: Hg(X’;OXf) — Hé(X’;Q%C), and let a =dim A,. Then there is
an exact sequence
0 — HZ (X';Q}(,) — K, — A, —0.
Thus dimK;, = dimHé(X’;Q%(,) +a.IfA, =0, then d: Hé(X’;Q%,) — K is an isomorphism.
Proof By examining the spectral sequence, we see that d,: A, — Hé(X’;Qi,)/d(Hé(X’;Q}(,)) is
injective and that its image is K;/d(Hé(X’;Q;,)). Hence A, = K,’C/d(Hé(X';Q}(,)). The remaining
statements of the lemma are clear. (]
Corollary 5.8. In the above notation, there is an exact sequence
0 — (Ky)Y/AY — H(X; T ) — K @S, —> 0.
Proof. By duality, arguing as in [Kar86],
’ \ ’
HO(X;R'p. Ty ) = HE (X3 Q). ) = (K;)"/AY.
The proof then follows from Proposition 5.6 and Lemma 5.7. (]
Corollary 5.9. Let b =dimK;. Then
(i) dimHé(X’;Qg(,) =b+r,
(i) dimHZ(X;Q),) =dimH(X;R!p,Tx) =b-a;
(i) dimHO(X; Ty) =2b—a+r; thusb+r <dimH(X; Ty) < 2b +r.

Proof- These follow from Proposition 5.6, Lemma 5.7, and Corollary 5.8 (and its proof). U
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Theorem 5.10. In the above situation, the following are equivalent:

(i) C is smooth, i.e. r =1, and the normal bundle satisfies Nc/x» = Opi1(—1) ® Opi(—1). In other
words, (X, x) is the germ of an ordinary double point.
(ii) dim Hé(X’;Q%,) =7, i.e. K =0, or equivalently b = 0.
(iti) R'p,Tx: = 0, or equivalently b = a.

Proof. (i) = (i) In this case, dimH%(X;Ty) = 1 =2b-a+1. Since b >0 and b—a =
dimHé(X’;Q}@) > 0, we must have b = 0, and hence K, = 0.

(ii) = (iii) By Corollary 5.9(ii), dim H*(X;R!p,Tx/) = b —a. If K] = 0, then b = dim K}, = 0, hence
a=0and R!p, Ty =0.

(iif) = (i) Following the discussion in [Fri86, Section 2, pp. 678-679], there exists a small deformation
of X’ to X/ where the exceptional curve C splits up into a union of & disjoint copies of IP! with normal
bundle Opi1(—1)®Opi(—1), and such a deformation blows down to a deformation of X to a union
of & ordinary double points. But if R!p, Ty, = 0, then the only deformations of X’ are locally trivial.
Hence the exceptional curve C on X’ is already a single IP! with normal bundle Opi(-1) ® Op1(-1),
and (X, x) is the germ of an ordinary double point. O

Proposition 5.11. Suppose that there is a small deformation of X’ to a space with exactly & compact curves
and that all of these have normal bundle Op1(—1) ® Op1(—1). Then dimHé(X’;Qg(,) =90.

Proof Let (S,s9) be the germ of a smooth analytic space prorepresenting Defy, and let (S’,s()
prorepresent Defy . The morphism of functors Defy, — Defy then induces a morphism of germs
S’ — S which is an immersion by [Fri86, Proposition 2.1]. By Lemma 5.3, Hé(X’;Q}zg,) is the normal
bundle to this immersion, so it will suffice to prove that the image of S’ has codimension 0. As noted
in the proof of Theorem 5.10, there is an open dense subset of S” corresponding to a germ with exactly
o singularities, all of which are ordinary double points. By the openness of versality, the image of S’
in S then has codimension 0 as claimed. g

Corollary 5.12 (¢f. [Nam02, Lemma 1.9]). We have b +r = 6. Thus 6 > r, with equality if and only if
(X, x) is an ordinary double point. 0

We now compare the above discussion with the case of a good resolution, as described in [FL22,
Theorem 2.1]. By successively blowing up the curves C; in some order, we obtain a good resolution
7t: X — X which is an iterated blowup of X’. Let p: X — X’ be the blowup morphism and E = | J; E;
the exceptional divisor of p or of 7. To distinguish groups on X’ and on X, we denote the latter with
a “7.” Then we have the group K defined in [FL22, Theorem 2.1(vi)]:

7’ _ 2(v.02 2(yv.02

K, =Ker{H} (X;02) — H?(X;02)}.
We also have GrIZ: H3(L)=H3(L) and A\x = Ker{d: H3()?;O§) - HS(X\,Q%)} (In [FL22, Corollary
18], :‘l\x is defined to be the kernel of d: H3(5(\;OX~) - Hg()?;()%(log E))}, but it is easy to check that
in our case HS(J?,Q%(\) — Hg()?;()%(\(log E)) is injective.) By [FL22, Theorem 2.1(v), (vi)], there is an
exact sequence

0— H' (X;Q%(log E)(-E)) — H(X; Ty ) — K; @ H*(L) — 0
with H'(X;Q2(log E)(-E))" = H{(X;Q%(logE)), and by [FL22, Corollary 1.8 and Theorem 2.1(v)],
there is an exact sequence
0— Hf (X\;Q%(logE)) — K, — A, — 0.

Hence H'(X; Q2 (log E)(-E)) = (KL)V/AY.
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Proposition 5.13. Let p: X — X be a good resolution of X which is obtained by successively blowing up
the curves C; in some order.

(i) There are isomorphisms Hl(X\;Q%) = Hl(X’;Q)Z(,) =~ HY(X'; Tx), compatible with the natural
homomorphisms to H' (U; Tyy) = H(X; T)})

(ii) Let k\;, H3(L), and ;\\x be the groups described above. Then K, = K], H3(L) = S,, and A\x ~A,,
so that the following diagram commutes:

0 —— (k\,’c)v/ﬁ\x — HO(X;T)%) —— KleH3*L) —— 0

| || |

0 —— (K)V/AY —— HO(X;T)%) — K;®S, —— 0.

Proof. (i) By standard results, Rop*Ql}% = Q];(,, Rip,Ox =0 for i >0, and R"p*Q% =0fori>2. As
for Rlp*Q%, first suppose that C is smooth. Then, by a standard argument (¢f [Gro85, IV(1.2.1)]),
Rlp*Q% = O¢ and Rlp,,Q% = Q}: In the general case, a successive application of the Leray
spectral sequence for the iterated blowup shows that Rlp*Q% has a filtration whose successive
quotients are Oc,, 1 <i < r, and similarly Rlp*Qi\ has a filtration whose successive quotients
are Qa, 1 <i <r. In particular, HO(X';Rlp*Q)%) = 0. Thus, by the Leray spectral sequence,
Hl(X;Q%) ~HY(X’; Rop*Qg(,) = Hl(X';Qg(,), and the remaining statements in (i) are clear.

(i) By the proof of (i), H}:(X';Rlp@;() = Hg(X’;Rlp*Qi?) =0, and dimHg(X’;Rlp*Q%) -
dimHé(X’;Rlp*.Q%) = r. Similarly, Rop*CY =Cy, Rzp*Cg is a successive extension of the Cc,
and otherwise R'p,Cx = 0. In particular, Hé(X';Rlp*Q%) ~ Hé(X’;Rzp*C)?).

The Leray spectral sequence in local cohomology gives a spectral sequence with

ES" = HE (X3 RPp.0%) = HEY (X;02).
The only nonzero terms are Hé(X’;Rlp*Q)z?) and Hé(X’;ROp*Qi?) = Hé(X’;Qg(,). It follows that

H é()’(\ ,Q%) = 0 and there is a commutative diagram
2 NeY 2(.02 1 /. Rl 2
0 —— HZ(X50Q}%) — HE(X;0%) —— HE(X;R'p.0%) —— 0
Ko —— KQoH!(X) —  C
Here, we use the Leray spectral sequence to also conclude that there is an exact sequence

0 — HAX') —— HE(X) — HZ(X;R%p.Cg) —— 0

|| I

P, clc] Hé(X’;Rlp*Qi?).

Tracing through the identifications gives K, = K}. By definition, H3(L) = P, CICi] = Sy. The
remaining identification of A, with A, is similar, using the Leray spectral sequence to conclude that
H3(X;0%) = HX(X';Ox) and HE(X;Q%Z) = H).(X’;Q},), compatibly with d. O

Recall that a C* action on the germ of an analytic space (X, x) is good if the weights of the induced
action on the Zariski tangent space of the fixed point x are all positive. Applying the case of a
good (divisorial) resolution, ¢f. [FL22, Theorem 2.1(iv)], and using the fact that X is a hypersurface

singularity, hence a local complete intersection singularity, we have the following corollary.
27



Corollary 5.14. The germ (X, x) has a good C* action if and only if A, = 0, which holds if and only ifa = 0,
which holds if and only if the spectral sequence with Ef’q = Hg(X’;QI;(,) = II—I’grq(X’;Q;(,) = Hg+q(X’)
degenerates at E,.

The invariants b and a can also be described in terms of the Du Bois invariants b”9(X, x) of the
singularity X, using [FL22, Theorem 2.1(iv), (vi)].

Corollary 5.15. We have b = b (X,x) and b—a = b>1(X, x).

Remark 5.16. In particular, by Corollary 5.9(iii) and the fact that £ =¢ 21 = ¢ we recover the result of
Steenbrink, cf. [Ste97, Theorem 4], that

dim H° (X; T)}) = b (X, x) + b¥H(X, x) + €2,
the inequalities due to Namikawa, ¢f. [Nam97, Theorem 1],
b (X, x) + (> <dim H®(X; Ty ) < 2611 (X, x) + €21,

as well as the statement that dim H°(X; T)}) = 2b"1(X,x) + > if and only if (X,x) is weighted
homogeneous (since (X, x) is a local complete intersection). As shown in the papers of Steenbrink
and Namikawa cited above and [FL22, Theorem 2.1(iv)], these results hold more generally for isolated
rational Gorenstein singularities of dimension 3.

Example 5.17. Consider the A,,_; singularity x> + y% + z2 + w?" (a compound A; singularity). Here,
T)} =~ C[w]/(w?""!) has dimension 21— 1 and 7 = 1. A calculation shows that dim H*(X;R!p,Tx) =
n—1. Hence dimHé(X’;Q%,) = n by Lemma 5.3. Also note that we can deform X so that the
exceptional curve C breaks up into a union of 1 curves with normal bundle Op:(—1) ® Op:1(—1). This
deformation then blows down to a deformation of X to the union of n ordinary double points; i.e.
0 = n in the notation of Proposition 5.11.

Example 5.18. Consider the compound A,,_; singularity x2+9%+ f (z,w), where f(z,w) = [T (z+Ajw)
defines a plane curve which is the union of # distinct lines meeting at the origin. An easily computable
example is f(z,w)=z" —w". Thus

Ty = C[z,w]/(z"‘l,w”_l).

A calculation shows that dim T)% = (n—1)?. Note that, for n > 4, (X,0) has nontrivial equisingular
deformations (there are local moduli). This is also reflected in the fact that there are nontrivial weight
zero deformations for n > 4 (and nontrivial positive weight deformations for n > 5). By Corollary 5.9,
sincea=0and r=n—-1,dimH"(X;R!'p,Tx') = (n—1)(n—2)/2 and dimHé(X’;Qg(,) =n(n-1)/2.

The surface X, defined by w = 0 is an A,_; singularity, and the inverse image X in X’ is a
resolution of singularities. Moreover, all of the components C; in X’ have normal bundle Op:(—1) &
Op1(—1). By general results (e.g. [Bri7l], [Art74], or the paper by Pinkham [Pin80]), there is a morphism
of functors Defxé — Defy with the following property: If T is the analytic germ prorepresenting
the functor Defy and T is the germ prorepresenting DefX(r), then the induced morphism To>Tisa
Galois cover of smooth germs with Galois group the Weyl group of the corresponding root system,
in this case A,_;. The inverse image in T of the discriminant locus in T consists of & hyperplanes,
corresponding to keeping one of the 0 positive roots the class of an irreducible effective curve.

This is in agreement with Proposition 5.11 because in this case 6 = () (one can deform the union of
n concurrent lines to a union of 7 lines meeting transversally).

Specializing to the case 7 = 5, and hence r = 4, we have dim H(X; Ty{) = 16. We can deform the
singularity x% + 92 +z°> — w" in the weight 1 direction to X, which is defined by

x? +y2 +2° —w’ +t22wd,
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A calculation shows that dim H%(X,; T)%t) =15 if t # 0. In particular, a # 0 in this case (in fact a = 1),

and the spectral sequence with E; page Hg(X[;Qg(,) = Hg+q(Xt') does not degenerate at E, for t = 0.
t

6. A noncrepant example

In this final section, we consider a noncrepant example X, the blowup of a small resolution with
exceptional set a smooth curve C along the curve C. Following the discussion of the introduction,

there are homomorphisms Hl()?;T)?) — HY(U, Ty) = HO(X;T)%) and Hl(f(\;Q%) — HY(U, Ty) =
HO(X; Ty). The image of H I(X, ,Q%) is a birational invariant, i.e. is independent of the choice of a
good resolution, and is identified with the image of H'(X’; Tx-) by Proposition 5.13(i). On the other
hand, the image of H' ()/(\ ; Ty) also has geometric meaning (it is the tangent space to the “simultaneous
resolution locus” for the resolution 7: X — X), and the map Hl()/(\; Tz) — HO(X; T)%) factors through
the natural map H 1(5(\ ;Tg) > H 1()? ,Q%) Our goal in this section is to explicitly compare the image
of Hl()/(\; Tx) in HO(X; T)%) with that of Hl(X\;Q%) =~ H'(X’; Tx’). More generally we compare Defy
and Defy . While this example is somewhat special, similar techniques will handle other examples,
such as the natural good resolution of the A, singularity defined by x2 +p? + 22 + w?.
We begin with a general result.

Lemma 6.1. Let g: X — X’ be the blowup of a smooth threefold X’ along a smooth compact curve C, with
exceptional divisor E. Then R'g, Ty = R' ¢, Tg(—E) = 0, and there is an exact sequence

00— Rog*TX\ —> TX’ —> NC/X’ —> 0.

Proof. For the first statement, we must show that (R!g,Tg); = 0 for all t € X’, and we may as well
assume that t € C. By the formal functions theorem, it suffices to show that

; 1 ST —
limH' (nf; Tglnf) = 0,
n
where f is a fiber of g: X — X’ over a point t € C, Iy is the ideal sheaf defining the reduced scheme
f,and nf is the scheme defined by 1}1. From the exact sequence
0— Ny/p _>Nf/)?_>NE/)?|f —0
and the fact that N¢/p = Oy and Ng 5|f = Of(-1), we see that
Nf/}/(\ E’Of @Of(—l).
Because f is a local complete intersection, there is an exact sequence
0 — Sym" (If/I]%) — Ous1)f — Onr — 0,
where I¢/I ]% is the conormal bundle. Hence
Sym" (I;/17) = O5 ®Of(1) @+ ® Oy (n).
Then from the normal bundle sequence
0—Tr— TX\|f—>Nf/X~—>O

and the fact that Ty = Of(2), it follows easily that H(nf;Tglnf) = 0 for all n > 1, hence that
ng*T)? = 0. The proof that ng*T)?(—E) = 0 is similar, using Ox(=E)|f = O(1).
To see the statement about R° 8. Tx, there is an exact sequence

0— TY_) ¢ Txr — i, Tg/c(E) — 0,
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where i: E — X is the inclusion. Hence there is an exact sequence
(*) O—>g*T§—>g*g*TX,—>g*i*TE/C(E)—>R1g*T§:O.
Then g.g*Tx = Ty’ and g.i,Tg/c(E) = 1. Tg/c(E), where r: E — C is the projection. Also, we have
the Euler exact sequence
0— O — 1"N¢/x/(1) — Tgc — 0.
Thus, using Og(E) = Og(-1), we get
0 — Op(E) — 1"N¢yx» — Tg/c(E) — 0.
Taking , and using R'7,Op(E) = 0 gives ,Tg,c(E) = N¢/x . Thus (*) becomes
0— g.Tx — Tx, — N¢g/xr — 0,

as claimed. O

Corollary 6.2. Suppose as above that g: X — X’ is the blowup of a smooth threefold along a smooth
compact curve C and that moreover p: X' — X is a resolution of an isolated singular point x, with
C C p~Y(x). Suppose in addition either that p: X’ — X is a small resolution of X or that it is a good
resolution with deg Nc/g, < 0 for every component E; of E = p~Y(x) containing C. Then there is an exact
sequence

0 — H°(C;N¢/x/) — H* (}?; Tg) — HY(X’;Tx)) — HY(C;N¢)x).

Hence, if p: X" — X is an equivariant resolution of X, for example if p is a small resolution, then so is
n=pog: X —>X.

Proof- By the Leray spectral sequence and Lemma 6.1, H{(X; Ty) = Hi(X’;ROg*TX) for all i. The
exact sequence of the statement then follows from the exact sequence for R° 8T in Lemma 6.1,
except for the injectivity on the left. If HO(C;N¢/x/) — HY(X; Ty) is not injective, then the map
HY%(X’; Tx') — H°(C; N¢/x/) is nonzero. Thus there exists a nonzero element of H°(C;N¢,x) which
lifts to 6 € H°(X’; Tx). Exponentiating the vector field 6, we see that C moves in a one-parameter
family in X’. However, given the contraction p: X’ — X, every such family must be contained in
the exceptional set of p. This is clearly impossible if p is a small resolution or if C does not move
in a family in some component E; of the exceptional set E. In particular, if deg Nc/g, <0 for every
component E; of E containing C, then C does not move inside any E;.

To see the last statement, the above shows that the map H 0(5(\ ;Ty) > H O(X’; Tx') is surjective.
Equivalently, ROR*T)? — RO, Ty is surjective, and it is clearly injective, hence an isomorphism. Since
by assumption Rop*TX/ = T;g, this says that RO, Tz = T)((), i.e. T is equivariant. O

For the rest of this section, (X, x) is a threefold A,,_; singularity, p: X" — X is a small resolution
with exceptional curve C, and g: X — X is the blowup of the curve C, with exceptional divisor E.
Then 771 = pog: X — X is a noncrepant resolution of X, and it is equivariant by Corollary 6.2. If n =1,
then H'(X; Ty) = H(X’;Tx/) =0 for i = 1,2, and both Defy; and Defy: are (represented by) a single
point. Thus, we shall always assume that n > 2, so that N¢/x» = Oc @ O¢(-2) and E = [F,. Note that
K5 = Ox(E) and Kg = Ky ® Ox(E)|E = Ox(2E)|E. As Kg = Og(~20 —4f), where o is the negative
section on E and f is the class of a fiber, Ox(E)|E = Op(~0 - 2f). In particular, Ng//)? = Ox(=E)|E is
effective, nef, and big, and H I(E ;Ng ) = 0 for all i since

0.

H?(E;Nyz) = H(E;Kp ® Og(~E)E) = HY(E; O (0 — 2f )
Corollary 6.3. Under the above assumptions, the following hold:
(i) We have H(X; Ty) = H(X; T(—=E)) = 0. In particular, Defy is unobstructed of dimension
dim H(X; Ty).
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(ii) We have Hl()?; T (-logE)) = Hl()/(\; Tx), and the natural map
HY(X; Tg(~logE)) — H'(E; Tg)

is surjective. Hence E is a stable submanifold of X, deformations of X are versal for deformations of
E, and there exist small deformations of X for which E deforms to IF.
(iii) For all 1, Hi(X; Ty) = Hi(X’; Rog*T)?), and there is an exact sequence

0— C€=H"(C;N¢/x) — H' (X;Tg) — H' (X; Tx') — H' (C;Ngyxr) — 0.
Thus dim H'(X; Tg) = dim HY(X'; Ty)) = n - 1.

Proof- (i) To see that Hz()?; TY) = 0, it suffices to show that RZTC*TY = 0. In the Leray spectral
sequence with E;'b = R%,R? &Tx = R‘”mei, all possible terms contributing to RZTZ*TX\ are 0,
either for dimension reasons or because R'p,R! ¢, T = 0 by Lemma 6.1. Thus R?7, Tz = 0. The proof
for H2(X; Ts(—E)) is similar.

(i) From the exact sequence

0 — Tx(~logE) — Ty —> Ng /i — 0

and the fact that Hi(E;NE/)?) = 0 for all i (apply Leray to the morphism r: E — C), we

have Hi(f(\; Tx(-logkE)) = H (X; Ty) for all i. Thus in particular Hz(f(\; T (-logE)) = 0 and
Hl()/(\; T (-logE)) = Hl(}f(\; Tx). Finally, from the exact sequence

0 — Tg(~E) — Tx(-logE) — T — 0
and the vanishing of H2(§(\; T (=E)), we see that Hl(f(\; T (-logE)) — HY(E; Tg) is surjective.
(iii) This follows from Corollary 6.2 and the fact that H 2(5(\ ;T) = 0. ]

Remark 6.4.

(i) By (iii) above, the images of H'(X; Ty) and Hl()/(\;Q%) in H(X;Ty) are different since by
Proposition 5.13, the image of Hl(f(\,Q%) is that of Hl(X’;Qgc) = HY(X’; Tx’), and this image is
strictly larger than that of H'(X; Ty).

(ii) The functors Defy and Defy, are both smooth of dimension 7 — 1, but the differential of
the corresponding morphism of functors Defy; — Defy, i.e. the induced map on Zariski tangent
spaces, is not an isomorphism at 0: It has a 1-dimensional kernel and cokernel. We will describe the
morphism Defy — Defy explicitly.

First, let Defg . denote the functor of deformations of the pair (X,E): For a germ (S,5p), an
element of Defs (S, sg) consists of a deformation X of X over S, together with an effective Cartier

divisor € of X, flat over S and restricting to E over sy. The functor Defy ¢ is defined similarly; the
objects over S are pairs (X’,C), where C is flat over S and restricts to the reduced subscheme C of X’.
In particular, as we are only considering germs of spaces, C is smooth over S with all fibers irreducible.

Proposition 6.5. We have Defs = Defy = Defy c, and the morphism Def; — Defy is the same
under the above identification as the forgetful morphism Defy, - — Defy .

Proof: 1t is a standard result that the tangent space to Defg p is H'(X; T;(~logE)) (¢f. Section 1)
and the obstruction space is H2(X; T(-logE)) = 0. Thus, Defg ; is smooth by Corollary 6.3(ii),
and the first statement of the proposition is the isomorphism HY(X; Tx(-logE)) = Hl()/(\; Tx). For
the second, given a pair (X,&) in Defg (S, 59), it is easy to check that the morphism r: E — C
extends to a morphism €& — C = C x S (note that C = P! is rigid) and that £ can be blown down to a

subspace C = C x S C X”. Conversely, given a pair (X’,C) over S, let X’ be the blowup of X’ along C,
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and let £ be the exceptional divisor. This gives two morphisms of functors Def . — Defy/ ¢ and
Defy - — Defy . which are clearly inverses. Hence Defs; , = Defy c. O

To put the above in more manageable form, we give an explicit description of Defy . First, we
recall the basics about deformations of X and X’. Let Z be the germ of the standard ordinary double
point in dimension 2, given by x>+ y2 + 22 = 0, and let Z’ be the resolution of singularities of Z,
with C C Z’ the exceptional set. Then Def is represented by the germ (C, 0), with coordinate ¢ and
universal family Z — (C,0) given by x>+ y% + 2% + t = 0. Likewise, Def, is represented by the germ
(C,0), with coordinate # and universal family Z” — (C, 0) given by a choice for a small resolution
of x2+y? +2z%+u? = 0. The threefold X’ is isomorphic in a neighborhood of C to f*Z’, where
f:(C,0)— (C,0)is given by u = f(w) = w". A deformation X’ of X’ over a germ (S,s() corresponds
to a morphism F: (C,0)x S — (C,0) with F(w,sg) = f(w) = w", with X’ = F*Z’. A polynomial F
restricting to w” is analytically equivalent to one of the form w" +b,,_,(s)w" ! +---+bg(s). In particular,
Defy; is represented by the germ of the affine space (C"~!,0), with coordinates (b,,_,,...,by). Also
note that F~1(0) — S is a finite cover of degree .

Lemma 6.6. There is an isomorphism of functors from Defx, o to F, where, for (S,sq) the germ of an
analytic space, F(S) is the set of pairs (F, o), where as above F: (C,0)x S — (C,0) is a morphism such
that F(w,sq) = f(w) = w" and 0 C F~1(0) is a section of the finite cover F~1(0) — S, or equivalently a
morphism A: S — (C,0) such that F(A(s),s) is identically 0. Moreover, via this isomorphism, the morphism
Defy ¢ — Defy: corresponds the forgetful map (F,o) € F(S) — F.

Proof. Given an object (F,0) of F(S), the morphism F defines X’ in Defy/(S) corresponding to the
morphism F: (C,0)x S — (C,0) as above, and a Cartesian diagram

X’ e

| |

(C,0)xS —— (C,0).
Note that X’|F~1(0) = Z’ x F71(0) C &”, and thus
CxFH0)ca|F o) ca’,
compatibly with the projection to S. Given the section o C F~1(0), define
C=CxoCCxFl0)cx

Thus the pair (F, o) defines a deformation of (X', C) over S, and hence an element of Defy .
Conversely, suppose that we are given a pair (X”,C) € Defx (S), and let F: (C,0) xS — (C,0)
be the morphism corresponding to X” in Defy/(S). Note that C does not deform in Z’, even to
first order. Thus C = C x S C C x F~1(0), compatibly with the projection to S, so that the projection
of C onto the second factor F~!(0) defines a section o of the morphism F~1(0) — S. Clearly, the
two constructions F(S) — Defy, -(S) and Defy, -(S) — F(S) are mutual inverses and are functorial
under pullback. This defines the isomorphism of functors, and the final statement is clear from the
construction. (]

Explicitly, with P(w;b) = w" + Z:I:_(f b;w', where b = (b,,_,,...,bp), the universal deformation I/’ of
X’ is given as a small resolution of x? + 92 + z? + (P(w; b))? = 0. Consider

{(A,by_s,...,bg) : P(A;b) = 0} C(Cx C"L,0).
Note that if w — A is a factor of P(w;b), then

Pw;b) = (w- )" L+ w2 4 t, 3w 3+ hw+ ) = (w—A)Q(w; A, t),
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say, where Q(w; A, t) = w1 + Aw" 2

b;, we see

+t,_3w" 3+ + tjw + t;. Solving explicitly for the coefficients

byy==A>+t, 3,

b, =-At;+t;_1, 1<i<n-3,

by = —Aty.
If A,t,_3,...,to are coordinates on C" 1, this defines a morphism P: cl > ! by

DAty s, t0) = (=A% + tyz,—Atyg + tyar...,—Atg) = (by_a,..., b).
Solving for t; in terms of A and the b; gives
= A" b, AT kb, 1<i<n-3,
—bop=A"+b, ) A2+ + ADy,
recovering the fact that A is a root of P(w;b) (and there are exactly n such roots). Thus the morphism
mx®: C"! — CxC"! defined by
(M ty_zs..ntg) — (A, D(A t,3,..., 1))

is an isomorphism from C"~! to {(A,b,_,,...,bo) : P(A;b) = 0}. The germ (C"~1,0), with coordinates
A ty_3,...,to, together with the family which is a small resolution of ®*U/’, represents Defy ¢,
and hence after blowing up represents Defy;. Moreover, ® corresponds to the forgetful morphism
Defy ¢ — Defy.

By the above, @ is finite of degree n and surjective, and is ramified exactly where Q(A; A,t) =0, i.e.
where P(w;b) has A as a double root (or where the discriminant of P(w;b) vanishes). In fact,

s . Iy
oA oA
abn—2 e abO
det| 73 s [ = 2Q(A;A,t).
L S )

Summarizing the above discussion, then, we have the following.

Theorem 6.7. Let (S¢,0) and (Sx/,0) be the germs prorepresenting the functors Defs; and Defy.
respectively. Then the induced morphism S — Sx is finite of degree n, and its differential at the origin
has a 1-dimensional kernel and cokernel.
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