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ABSTRACT

The cross-flow vortex-induced vibration (VIV) response of an elastically mounted idealized undulatory seal whisker (USW) shape is investi-
gated in a wide range of reduced velocity at angles of attack (AOAs) from 0� to 90� and a low Reynolds number of 300. The mass ratio is set
to 1.0 to represent the real seal whisker. Dynamic mode decomposition is used to investigate the vortex shedding mode in various cases. In
agreement with past studies, the VIV response of the USW is highly AOA-dependent because of the change in the underlying vortex dynam-
ics. At zero AOA, the undulatory shape leads to a hairpin vortex mode that results in extremely low lift force oscillation with a lowered fre-
quency. The frequency remains unaffected by VIV throughout the tested range of reduced velocity. As the AOA deviates from zero,
alternating shedding of spanwise vortices becomes dominant. A mixed vortex shedding mode is observed at AOA¼ 15� in the transition. As
the AOA deviated from zero, the VIV amplitude increases rapidly by two orders, reaching the maximum of about 3 times diameter at 90�.
An infinite lock-in branch is present for AOA from 60� to 90�, where the VIV amplitude remains high regardless of the increase in reduced
velocity.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0227544

INTRODUCTION

Whiskers, also known as vibrissae, are tactile sensory hairs ema-
nating from follicles. They are found in most terrestrial and aquatic
mammals (Grant and Goss, 2022). Since there are no nerves inside the
hair shaft, sensing is realized through the sensory receptors in the
highly innervated follicle-sinus complex (F-SC) that sense pressure
and distortion when the whiskers are bent by external loading
(Sofroniew and Svoboda, 2015). The follicle-sinus complexes of the
pinnipeds (commonly known as seals) are the most developed among
all mammals (Marshall et al., 2006). Compared to terrestrial mammals
like rats and beavers with only 100–120 nerves per whisker, pinnipeds
like ringed seals have astonishingly an order of magnitude more inner-
vation (Hyv€arinen and Katajisto, 1984). This remarkable difference in
innervation signifies the importance of the pinniped whiskers as a
sensing organ (Dehnhardt et al., 1999). Indeed, it translates to the
exquisite tactile sensitivity in pinniped whiskers. For example,
Dehnhardt et al.. (1998) showed that a harbor seal (stationary) can
detect dipole water movement as low as 245lm/s using its whiskers.

Murphy et al. (2015) reported a harbor seal responding to tactile stim-
uli to their whiskers as low as 0.09mm/s at 80Hz. Such sensitivity was
shown to be comparable to the touch of the human hand. Evidence
also showed that a California sea lion had comparable or even higher
tactile sensitivity than the harbor seals (Dehnhardt et al., 2008).

The hair shaft of the whiskers transfers external loading to the
sensory system. They are generally slender, tapered, and curved kerati-
nous structures that are arranged in groups most commonly around
the muzzle. Unlike terrestrial mammals whose whiskers are round in
cross section, the whiskers of the pinnipeds are flattened. This differen-
tiation of pinniped whiskers is likely the result of adaptation to their
aquatic lifestyle which requires sensing of the hydrodynamic environ-
ment. There are two major types of whisker morphology among the
pinnipeds (Dehnhardt et al., 2008; Ginter et al., 2012; Hanke et al.,
2010; and Murphy et al., 2013). The smooth seal whisker (SSW) repre-
sented by those of the California sea lion features a smooth surface
structure and has a slightly flattened oval cross section (aspect ratio
1:1.25). The undulatory seal whisker (USW) represented by those of
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the harbor seal features an undulated surface structure and is more
flattened in the cross section (aspect ratio 1:2–1:4) (Miersch et al.,
2011). While both harbor seals and California sea lions were found to
be capable of following hydrodynamic trails effectively using their
whiskers, experiments showed that the harbor seals can detect older
and weaker hydrodynamic trails than the California sea lion
(Dehnhardt et al., 2001; Gl€aser et al., 2011). The elevated sensitivity of
harbor seal whiskers is commonly attributed to the undulation feature,
which has been the focus of the research on flow past seal whiskers
and many seal whisker inspired sensor designs.

Hanke et al. (2010) parameterized the USW morphology using a
seven-parameter model [Fig. 1(a)], which has since been widely
adopted in seal whisker models. Neglecting the tapering and curvature
of the whisker, the shape of USWs is roughly a slender cylinder featur-
ing an elliptical cross section and undulation along the shaft. The
undulation of the major axis (chord length) and minor axis (thickness)
of the elliptical cross section has a 180� phase difference. The cross sec-
tions are not perpendicular to the whisker shaft. Instead, they have var-
ious offset angles with respect to the longitudinal hair shaft axis, which
is referred to as the offset angle or angle of incidence (Rinehart et al.,
2017).

The specialized shape of USWs has been shown to suppress
hydrodynamic force oscillation, and consequently vortex induced
vibration (VIV), by breaking the coherence of the K�arm�an vortices
when the narrow side faces the flow. The lift force oscillation is more
than one order of magnitude smaller compared to elliptical cylinders
(Hanke et al., 2010; Kim and Yoon, 2017; and Liu et al., 2019b). By
eliminating the offset angles in the whisker and using periodic bound-
ary conditions in their simulations, Liu et al. (2019b) observed highly

organized streamwise wake structures with interlocked vortex tubes
shaped like a hairpin, hence the term “hairpin vortex” [Fig. 1(b)]. Such
wake structure was caused by the 180� phase difference in the undula-
tion of the chord length and the thickness and was found to exist in
wide ranges of shape parameters and Re. The suppression of lift oscil-
lation by the undulation is hypothesized to reduce the self-induced
noise in the sensory system for the seals during forward swimming,
making the USWs more sensitive to wakes left behind by other swim-
ming objects (Hanke et al., 2010; Miersch et al., 2011). However, this
understanding of the role of the undulation in the USWs is based on
the zero angle of attack (AOA) orientation only with a few flow speeds.
The hydrodynamic conditions real seal whiskers are subjected to can
be much more complex.

The effect of AOA is important since a wide range of AOAs could
occur as the animal navigates through the water. First, seals have an
array of whiskers with a wide distribution of orientation (Graff, 2016).
While the pinnipeds lack the musculature for individual whisker con-
trol like the rat or the mouse, they can protract their array of whiskers
through the mystacial pad (Miersch et al., 2011; Sofroniew and
Svoboda, 2015). Second, navigation underwater involves both forward
swimming and turning. The AOA of the whisker can also be affected
by the head movement, which is typical as the animal actively searches
for trails (Dehnhardt et al., 2001; Gl€aser et al., 2011). Finally, the
hydrodynamic environment could have complex flows that pose a
large range of AOAs to the whiskers.

Another parameter of importance is the reduced velocity, which
measures the flow speed in relation to the natural frequency and diam-
eter of the whiskers. Since the whiskers in the array varies greatly in
length, their natural frequency also varies greatly [see a summary in

FIG. 1. (a) The undulation feature of the undulatory seal whiskers, following the seven-parameter model by Hanke et al.(2010). The parameters are as follows: the semi-major
and semi-minor axis length at the node (a and b) and saddle (k and l) planes; the offset angles at the two planes (a and b); and the undulation wavelength (k). (b) Highly orga-
nized hairpin vortex generated by USWs at zero AOA.
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Zheng et al. (2021)], leading to a wide range of reduced velocity even
at the same swimming speed. The number of studies investigating the
effect of these two parameters is limited.

Kim and Yoon (2017) used large eddy simulation to study the
effect of AOA on flow characteristics around a stationary USW at the
Reynolds number of 500. They showed that for small AOAs (<15�),
the lift force oscillation of the USW was almost negligible. When AOA
increased beyond 15�, the amplitude of the lift force oscillation
increased, reached a plateau around 50�, and then remained almost
constant up to 90�. The authors concluded that as AOA increases, the
bluff body flow overcomes the flow induced by the USW shape, result-
ing in almost the same flow and magnitude of forces as the elliptic
cylinder.

Murphy et al. (2013) tested VIV responses of real seal whiskers
oriented at 0�, 45�, and 90� against an incoming flow of 0.5m/s. The
whiskers were mounted as cantilever beams. Vibration velocity was up
to 60 times higher when AOA was 90� compared to 0�. A particular
interesting finding in this study was that the SSWs of the California
sea lion showed close VIV response amplitude to that of the USWs
under the tested AOAs, raising questions on the role of the undulation
in seal whisker sensing.

Beem (2015) studied the VIV responses of scaled up whisker
models (mass ratio from 0.5 to 1.1) using a forced vibration setup, in
which the responses can be regarded as representative of free vibration
if the energy transfer is from the flow to the whisker model. The ampli-
tude and frequency of the forced vibration and the AOA were para-
metrically varied, and the wake structures were studied using PIV. It
was found that VIV reduction diminished when flow approached the
whisker from larger AOAs. Beyond 45�, the whisker responded simi-
larly to a smooth elliptical cylinder with similar wake structures con-
sisting of strong coherent vortices. One limitation of this study was
that the vibration frequency and reduced velocity were not varied
independently.

Wang and Liu (2017) investigated the effect of AOA and reduced
velocity on the VIV response of the USW using a scaled-up model at a
Reynolds number of 1800. The in-air experimental results showed that
the USW began to have appreciable oscillation amplitude at 45� AOA.
The maximum oscillation amplitude increased with AOA from about
0.06D (measure of whisker diameter) at 45� to 0.35D at 90�. The
reduced velocity for significant oscillation was between 5 and 8. The
VIV amplitude of the USWwas in contrast with the 0.03D of a circular
counterpart. Due to the experiment being conducted in air, the mass
ratio was 500, which was significantly higher than that of a seal
whisker.

Similar model experiments have also been conducted in water
(Song et al., 2022; Wei et al., 2023) with a much lower mass ratio of 10.
The USW model started to show significant VIV when AOA reached
30� and reached a peak amplitude as high as 3D at 90�. In these two
studies, the performance of the USW model was compared to that of
an equivalent elliptical cylinder, which showed similar VIV response
across the AOA and reduced velocity, except for a narrow lock-in
region at small, reduced velocity and zero AOA.

Despite previous research on the VIV of USWs, there lacks a sys-
tematic investigation of this problem at the mass ratio of 1.0, which is
the realistic value since the seal whisker density is close to water density
(Kamat et al., 2023; Shatz and de Groot, 2013). Mass ratio is a key
parameter affecting the nature of VIV of a system (see Williamson and

Govardhan, 2004, for a review). Two distinct types of VIV response
exist for the circular cylinder depending on the mass ratio. For high
mass ratio systems, the amplitude response curve has two branches: an
initial branch and a lower branch; whereas for low mass ratio systems,
there exists an additional higher branch with elevated amplitude. The
range of reduced velocity for synchronization between vortex shedding
and structure oscillation also increases as the mass ratio becomes
lower. Furthermore, when the mass ratio is lower than a critical mass
ratio, the range of reduced velocity of resonant oscillation extends to
infinite, which is termed the infinite lock-in regime/branch. For circu-
lar cylinders, the critical mass ratio was found to be 0.54 (Govardhan
andWilliamson, 2002). This value is shape dependent. Previously, infi-
nite lock-in was observed for an elliptical cylinder with a mass ratio of
1.0 (Leontini et al., 2018).

This study aims to quantify the single DOF VIV response of
undulatory seal whiskers with a mass ratio of 1.0 under low Reynolds
number. This is an effort toward providing normative data for seal-
whisker inspired sensor designs. By systematically comparing the VIV
characteristics of circular cylinders, elliptic cylinders, and USWs, a bet-
ter understanding of the role of the undulation and the sensing mecha-
nisms in pinnipeds could be derived.

SIMULATION SETUP

The flow field was simulated using an in-house incompressible
Navier–Stokes solver, which employs a sharp-interfaced immersed-
boundary-method to accurately resolve the immersed structure. The
vibration of the whisker was computed using the average acceleration
Newark scheme. The interaction between the flow and whisker vibra-
tion was modeled using an implicit coupling scheme. The implementa-
tion of this solver setup has been validated previously (Liu et al.,
2019a) for canonical flow–structure interaction (FSI) problems with
solid/fluid density ratios of 1 and 10. For brevity, details of the numeri-
cal algorithm are not included here; interested readers can find further
information in Liu et al. (2019a).

The whisker geometry [depicted in Fig. 2(a)] was adopted from a
previous study (Liu et al., 2019b), which employed a further idealized
version of the seven-parameter model proposed by Hanke et al.
(2010). The rostral-caudal slant angle (the offset angle) was not consid-
ered. The exclusion is based on the observation that the offset angle
displays a rough Gaussian distribution centered around zero, sugges-
ting that the offset angle is not an optimized feature (Kamat et al.,
2023; Rinehart et al., 2017). Specifically, the whisker is represented as a
straight elliptical cylinder with undulating major and minor axis in the
cross-sectional ellipse. Its shape is defined by five parameters: the
semi-major axis a and semi-minor axis b at the node plane, the semi-
major axis k and semi-minor axis l at the saddle plane, and the wave-
length k of the undulation. The undulation of the semi-major (m) and
semi-minor (n) axes along the shaft (z) are given by sinusoidal func-
tions as follows:

m zð Þ ¼ aþ k
2

þ a� k
2

cos
2pz
k

� �
;

n zð Þ ¼ bþ l
2

þ b� l
2

cos
2pz
k

� �
:

The mean hydraulic diameter, denoted as D, is used as the char-
acteristic length. It is the mean of the hydraulic diameters at the saddle
and node planes. The hydraulic diameter is defined as D¼ 4S/C, where
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D, S, and C are the hydraulic diameter, area, and circumference of an
ellipse, respectively. The feature dimensions were based on measure-
ments reported in Rinehart et al. (2017) and is listed in Table I. The
aspect ratio of the elliptical cross section (chord/thickness) varies from
2.95 at the node plane to 1.89 at the saddle plane. Like the seven-
parameter model adopted in many previous studies, the model did not
include tapering.

The simulation domain is represented by a 60� 30� 6D rectan-
gular box [Fig. 2(b)]. The domain is discretized using a Cartesian
mesh. 256 non-uniform grid intervals were used along the X and Y
directions with a 3� 5D region enclosing the whisker, where a uni-
form high resolution of 0.025D was used to resolve the whisker geom-
etry. A uniform grid was used in the Z direction with a resolution of
0.093 85k. The details of the employed grid and a grid independence
study can be found in the Appendix.

The whisker geometry was discretized using a structural triangu-
lar mesh with 52 intervals along the circumference and 50 intervals
along one wavelength. Due to the slender structure of real whiskers, it
is computationally too expensive to include the whole hair shaft while
resolving the undulation feature. Instead, segments of a few wave-
lengths with periodic boundary conditions have been used in previous
simulations (Dunt et al., 2024; Kim and Yoon, 2017; Liu et al., 2019b;
and Witte et al., 2012). Kim and Yoon (2017) compared simulation
results using segments of 2, 3, and 4 wavelengths for 0� and 90� angles
of attack. They found that both the mean amplitude and the frequency
of lift force oscillation were captured accurately by the two-wavelength
cases under both AOAs. Moreover, the wake structure showed
repeated one-wavelength patterns along the whisker. Similar periodic
flow features were more recently reported by Dunt et al. under 0�

AOA for wavelengths between 5 and 6.86. This range covers the wave-
length of 6 used in the current study. These previous results show that
the main periodic flow feature of the USW is recurring at one wave-
length. Therefore, a good representation of the flow features and VIV
characteristics can be expected from simulations using a one-
wavelength segment. Changing from two wavelengths to one wave-
length also substantially reduces the computational cost. With these
considerations, a segment of one wavelength of the idealized whisker is
placed along Z direction, along which the periodic boundary condition
is applied at the top and bottom of the domain. For velocity, a constant
inflow velocity is applied to the upstream boundary. The downstream
boundary is free outflow. Zero-gradient condition is applied to the lat-
eral boundaries. Zero-gradient condition is employed for the pressure
at all the boundaries. All boundary conditions are homogeneous.

The whisker is modeled as a single DOF rigid body connected
with a spring and a damper [Fig. 2(c)]. AOA is defined as the angle
between the uniform incoming flow and the major axis of the whisker
cross section.

In this study, the density ratio, m�, is set to 1.0 due to the close
proximity of the density of seal whiskers and water. The damping
ratio, n, is chosen as 0.02 to match the structural damping of seal
whiskers (Hans et al., 2014). To explore the influence of the reduced
velocity,Ur, defined as Ur ¼ U1

fnvD
, we adjusted the stiffness of the spring

(and thus, the in vacuo natural frequency fnvÞ while maintaining a
fixed incoming flow speed of U1 ¼ 0.57m/s. Based on the typical
seal’s swimming speed and range of natural frequencies of seal
whiskers, Ur was varied from 2 to 15 with an increment of 1. The
AOA is varied from 0� to 90� with an increment of 15�. Each case in
the parametric space is defined by the AOA and Ur. To test the exis-
tence of the infinite lock-in branch, larger Ur (up to 50) was simulated
for AOA from 60� to 90�. The simulation setup parameters are sum-
marized in Table I.

With this setup, it is worth noting that the reduced velocity and
Reynolds number are defined based on the hydraulic diameter of the
whisker, and thus remains constant regardless of the AOA. However,
as AOA changes, it affects the projected frontal diameter, resulting in
variation in the effective reduced velocity and Reynolds number for
different AOAs.

FIG. 2. Simulation setup. (a) Whisker geometry. (b) Simulation domain and boundary conditions. All dimensions are normalized by D. The grid lines show the non-uniform distri-
bution of the Cartesian grid (plotted at a coarser level). (c) Single degree-of-freedom whisker setup from the top view.

TABLE I. Simulation parameters (length normalized by D¼0.533mm).

FSI parameter Re m� m�n Ur AOA
300 1 0.02 2–15 (50) 0��90�

Whisker parameter k a b k l
6 0.985 0.334 0.778 0.411
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RESULTS AND DISCUSSION
Flow past stationary whiskers

To facilitate the analysis of VIV cases, flow past stationary whis-
ker simulations were also conducted, capturing the flow characteristics
at different AOAs. These simulations utilized the same setup as the
VIV cases with the exception of the fixed whisker. Figure 3 illustrates
wake patterns observed for non-zero AOAs. Vortex structures are
visualized by the iso-surface of the imaginary part of the complex
eigenvalue derived from the instantaneous velocity gradient tensor,
which quantifies the local rotation of the flow (Mittal and
Balachandar, 1995). The color of the iso-surfaces represents spanwise
vorticity. Across all the illustrated cases, the wake structures exhibited
characteristics of a typical Karman vortex street, featuring alternating
blue-red pairs of spanwise vortices, which leads to lift oscillation. This
contrasts with the hairpin vortex mode at zero AOA [see Fig. 1(b)].

The lift force spectra for these cases were computed as references
for analyzing the VIV results. The dominant frequencies of lift force
for these cases are plotted in Fig. 4(a) (triangles), revealing a nonlinear
trend with AOA. Upon normalization with respect to D, the dominant
nondimensional frequency, St ¼ f D

U1
starts approximately from 0.184

at AOA¼ 0�, then slightly increases to 0.190 at AOA¼ 15� where a
second prominent frequency of 0.255 is also present. The correspond-
ing spectrum for the lift force at AOA¼ 15� is shown in Fig. 4(c),

where a smaller third peak is also observable, representing the beat fre-
quency (0.065) of the two higher peaks. Beyond AOA¼ 30�, a gradual
decrease in St is observed, reaching approximately 0.1 at AOA¼ 90�.
The frequency-AOA relation of the USW is compared to that of an
equivalent elliptic cylinder with the same hydraulic diameter [Fig. 4(a)
crosses]. The two trends converge for AOA beyond 30�. For smaller
AOAs, especially zero AOA, the frequency of the USW is significantly
lower than that of the elliptic cylinder. The comparison is consistent
with previous findings using large eddy simulations at Re¼ 500 (Kim
and Yoon, 2017), suggesting that the undulatory shape loses its effect
as the AOA increases. The overall upward offset in Kim and Yoon’s
result could be due to a shorter undulation wavelength (k¼ 2.65D)
used in their study (Dunt et al., 2024).

Since the frontal dimension facing the flow increases with AOA,
it is more appropriate to consider a nondimensional frequency

St� ¼ f D f

U1
; where Df denotes mean frontal diameter. It is the mean of

the projected width Df of the elliptic cross sections at the saddle and
node plane on the Y–Z plane. Df can be calculated as

Df ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m sin AOAð Þ½ �2 þ n cos AOAð Þ½ �2

q
. The result is plotted in

Fig. 4(b). For the USW, at AOA¼ 0�, St� is the lowest (�0.14),
whereas at AOA	 60�, St� is relatively constant (�0.18), a value con-
sistent with elliptical cylinders of comparable aspect ratios and

FIG. 3. Top view of the wake structures of flow past a stationary USW at non-zero AOAs.

FIG. 4. Dominant lift force frequencies for flow past stationary whiskers at various AOAs, normalized based on D (a) and mean frontal dimension D f (b), respectively. The
dashed line with crosses is for an elliptical cylinder of the same hydraulic diameter as the whisker. USW K&Y is from Kim and Yoon (2017). The overall upward offset could be
due to a shorter undulation wavelength used in their study. (c) Lift force spectrum of the AOA¼ 15� case.
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Reynolds number (Radi et al., 2013). For the elliptic cylinder, St�

remains relatively constant regardless of AOA. The change of St� with
AOA is through multiple factors. First, the effect of the shape change
must be considered. Second, the Re based on Df changes with AOA
from 220 at AOA¼ 0� to 530 at AOA¼ 90�, and its effect on the
Strouhal number must be considered. It has been observed in the low
Re range (from Re¼ 200 up to Re¼ 1000) in experiments on elliptic
cylinders that the Strouhal number increases with Re and with the
stream-wise to cross-flow dimension ratio (Kurtulmuş, 2022; Radi
et al., 2013). For the elliptic cylinder in Fig. 4(b), the St� at AOA¼ 0�

(0.190) and 90� (0.186) are very close, which could be the combinatory
effect of both Re and aspect ratio. This suggests that for the elliptic cyl-
inder and for the USW at AOA	 30�, the frequency decrease with
AOA in Fig. 4(a) is mainly due to the increase in frontal dimension
with AOA. The lower frequency of the USW at zero AOA, on the
other hand, arises from the lower St�, which is related to the hairpin
vortex shedding mode.

The above comparison with the elliptic cylinder shows that in
addition to the suppression of lift oscillation, the hairpin vortex shed-
ding also significantly lowers the oscillation frequency compared to
vortex shedding frequency of an elliptical cylinder of similar aspect
ratio (�30% reduction). The frequency lowering effect of the undula-
tion was also observed in previous simulations and experiments of
whisker-like cylinders at higher Reynolds numbers (Hans et al., 2013;
Kim and Yoon, 2017). Hans et al. (2013) suggested that the lowered
frequency could contribute to longer structural life. Lyons et al. (2020)
showed a similar observation with DNS simulation, which was later
confirmed in an experimental study (Fer�c�ak et al., 2023).

The existence of more than one vortex shedding frequency in
flow past modified cylinders have been reported in the literature in
various settings (Gaster, 1969; Papangelou, 1992; and Tombazis and
Bearman, 1997). For example, Tombazis and Bearman (1997) showed,
for cylinders with a half-elliptic nose and a sinusoidal trailing edge, a
dual frequency characteristic where two vortex shedding frequencies
coexist and alternate along the span. The phenomenon was confirmed
to exist robustly in a wide range of Re from 2500 to 60 000. In our
AOA¼ 15� case, the lower vortex shedding frequency, as will be
shown in a later section, corresponded to wake structures at the saddle
plane, similar to where the hairpin vortices form; this is referred to as
the saddle mode hereafter. The St� is higher than that of the hairpin
vortex shedding. The higher prominent frequency corresponded to a
mode resembling the classic Karman vortex shedding near the node
plane, referred to as the node mode hereafter. The deviation of St�

from the elliptic cylinder suggests that it is influenced by the saddle
mode due to their coexistence and interaction. Some related discussion
can be found in Tombazis and Bearman (1997).

A similar dual frequency characteristic has also been previously
observed in flow past USWs at 0� AOA (Chu et al., 2021; Fer�c�ak et al.,
2023; Lyons et al., 2020; and Wang and Liu, 2016). It was shown spe-
cifically that the node mode has the higher frequency (Chu et al., 2021;
Fer�c�ak et al., 2023; Jie and Liu, 2017; and Wang and Liu, 2016). While
it was not explicitly pointed out in an earlier study (Liu et al., 2019b),
mixed vortex shedding modes were also present (see Fig. 13 in the ref-
erence). At 0� AOA, the emergence of the dual frequency vortex shed-
ding appears to occur when the wavelength is too larger than the
realistic value, which is confirmed through revisiting the data. This
also appeared to be the case in the trend reported in Fer�c�ak et al.

(2023). Reduction in the undulation amplitude of the minor axis could
also lead to emergence of the dual frequency(Lyons et al., 2020). In the
current case (AOA¼ 15�), the emergence of the dual frequency was
due to the deviation from zero AOA.

In summary, the frequency trends converge in current simulations
with literature data on the vortex shedding frequency of elliptical cylin-
ders and USWs. The current data highlight the frequency lowering effect
of the USWs at low AOA and low Re. Deviation from such flow condi-
tions or deviation from the realistic USW morphology diminishes or
breaks this effect, leading to higher shedding frequencies or the emer-
gence of dual frequencies. While the lower frequency was observed pre-
viously in several studies, its implication was not brought to attention.
Given that this effect is a deviation from the circular to elliptical cylinder
trend (unlike the lift oscillation suppression, which continues the
improvement from circular to elliptical cylinders), it merits more
research to understand whether the lower frequency plays some roles in
the optimization of the undulatory whisker shape through evolution or
it is just a by-product of the suppression of lift oscillation.

VIV response

VIV simulations were conducted until a stable limited-cycle
vibration was achieved, usually spanning 10–20 cycles. In some cases,
steady vibration was not achieved even after prolonged simulation
duration. These cases were not pursued further. Representative cases
are shown in Fig. 5, where the curves represent the time history of the
displacement. The segments used for analysis are denoted. For the
cases exhibiting steady vibration, the transient stage was carefully iden-
tified and subsequently excluded from the data analysis. For the cases
without steady vibration, the initial developing stage where the ampli-
tude was significantly different from the rest of the curve was excluded
from data analysis.

Oscillation amplitude

The overall amplitude A was calculated as the root mean square

value multiplied by
ffiffiffi
2

p
, given by A ¼ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN
i¼1 yi � yð Þ2

q
; where i

is the sample index, N is the total number of samples, and y is the
mean y coordinate. For a sinusoidal signal, the overall amplitude
equals the amplitude of the dominant frequency component.

Figure 6(a) depicts the contour of VIV amplitude. The vertical axis
represents the AOA. The horizontal axis represents the effective reduced
velocity, Ur

�, defined as Ur
�¼U1/(fnvD f ). It is evident that the VIV

amplitude increases substantially as AOA increases from 0� to 90�.
Figures 6(b) and 6(c) are the line plots of VIV amplitude for

AOAs> 0� and AOA¼ 0�, respectively. At AOA¼ 0�, the amplitude
curve resembles typical amplitude response of a forced system going
through resonance, reaching a peak amplitude �0.002D at Ur

��5.4.
However, due to the small amplitude, the response at AOA¼�0 was
often imperceptible in experimental measurements conducted on
scaled-up whisker models (Wang and Liu, 2017; Wei et al., 2023).
Murphy et al. (2017; 2013) reported the vibrational velocity at this
AOA from experiments on cantilevered real whiskers around 0.007
m/s, the converted order of magnitude of displacement is comparable
to the current simulation results.

At AOA¼ 15�, the VIV amplitude remains relatively small
(�0.02D) except for the Ur

�¼2.3 where a strong resonance occurred
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at the node mode frequency, resulting in an amplitude of �0.05D.
The overall VIV amplitude becomes significantly more pronounced at
30� AOA (�0.2D), and it continues to increase with AOA [Figs. 6(b)
and 6(d)]. Several trends can be observed including the Ur

� corre-
sponding to the peak VIV amplitude slightly increases with AOA; the
Ur

� at which VIV starts to occur decreases with AOA; for AOA	 60�,
the VIV persists even for high Ur

�, which is different from cases with a
mass ratio of �10 (Wei et al., 2023) where the response diminishes

after the peak response. However, the peak amplitude at higher AOAs
are comparable [Fig. 6(d)].

Different from the distinct amplitude branches observed for cir-
cular cylinders with low mass ratio and damping (Govardhan and
Williamson, 2000), the change of the VIV amplitude of the USWs
appears to be more gradual. However, the gradualness might not solely
be attributed to the undulatory shape. Factors such as Reynolds num-
ber, mass ratio, and their combined effects could also play a role in

FIG. 5. Representative examples of the
displacement history in VIV cases. The
segments used for analysis are different
and denoted for each case.

FIG. 6. (a) Contour plot of VIV amplitude, A. (b) Line plots of VIV amplitude for AOAs> 0�. (c) Line plot of VIV amplitude for AOA¼ 0�. (d) Amax – AOA curve. Crosses in
(a)–(c) indicate data points.
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such changes, as reported in studies involving cylinders with various
cross-sectional aspect ratios (Khalak and Williamson, 1996; Leontini
et al., 2006; Vijay et al., 2020; and Willden and Graham, 2006).
Identifying the underlying mechanism and parameters affecting this
aspect of the VIV is beyond the scope of this study.

Force amplitude and phases

The total lift force, FL, is obtained by integrating the surface pres-
sure and shear force from the flow. The amplitude of the lift force
oscillation is computed in the same way as the displacement. To clearly
demonstrate the trend of FL oscillation amplitude with varying Ur

across different AOAs, it is normalized by its maximum value at each
given AOA and plotted in Fig. 7(a). Figure 7(b) plots the maximum
amplitude of FL oscillation at each AOA. From Fig. 7(a), one feature
becomes immediately apparent: the lift force peaks just before the Ur

�

where the vortex shedding frequency intersects with the in-water natu-
ral frequency, fnw (as indicated by the dashed black line), especially for
AOA 45� and above. This trend was previously reported in
Govardhan and Williamson (2000) for VIV of low mass-damping cir-
cular cylinders.

Due to the added mass effect underwater, a significant compo-
nent of the total lift force is the added-mass force, Fam, computed as
Fam ¼ �camm€y , where cam is the added-mass coefficient (details of its
calculation can be found in the Appendix) and y is the cross-flow dis-
placement. When the added-mass force is subtracted from the total lift
force, the remainder can be called the vortex force for convenience, i.e.,
Fvor ¼ FL � Fam. While it is not exclusively due to vortex, the vortex
force is intricately linked to vortex dynamics and to the convection of
vorticity. Similar decomposition has been used in analysis of VIV cir-
cular cylinders (Govardhan and Williamson, 2000). Based on this
decomposition, the VIV system can be formulated in two slightly dif-
ferent ways:

m€y þ c _y þ ky ¼ FL;

or

mþmAð Þ€y þ c _y þ ky ¼ Fvor :

Here; m, c, and k denote the mass, damping, and stiffness of the
system, respectively. mA ¼ camm is the added mass. The two

formulations provide distinct perspectives on the VIV responses, offer-
ing a comprehensive understanding of the system dynamics. In the
first formulation, resonance coincides with the lift force frequency
aligning closely with the in vacuo natural frequency, while in the sec-
ond formulation, resonance coincides with the vortex shedding fre-
quency closely matching the in-water natural frequency. The phases of
the vortex force and total lift force in relation to displacement, denoted
by /vor and /tot, respectively, were computed for further analysis.
These phases were calculated for dominant frequencies and are plotted
separately in Figs. 8(a) and 8(b). Specifically, the phase angles were cal-
culated from the complex frequency spectrum for displacement, vortex
force, and lift. Since the data correspond to the same time period, the
difference between the phase angles computed this way is the phase
difference. In cases with multiple frequency components, the phases
were calculated independently for each frequency component.
However, only the phase of the frequency following the trend from sta-
tionary whisker vortex shedding is shown in the contour plots. For
AOA¼ 15�, the phases of the saddle mode frequency are shown.

In Fig. 8(a), the black dash-dot line with cross symbols indicates
the Ur

� where the vortex shedding frequency intersects with the in-
water natural frequency, while in Fig. 8(b), the black dash line with cir-
cle symbols indicates the Ur

� where the vortex shedding frequency
intersects with the in vacuo natural frequency. Studies on the VIV of a
circular cylinder revealed that the typical three-branch amplitude
response is closely linked to the phases of these forces (Govardhan and
Williamson, 2000). Although the three-branch amplitude response is
not observed in the USWs, both the vortex force and total lift force
phases exhibit 180� shifts. At AOA¼ 30� and below, the 180� vortex
force phase jump occurs around the intersection of the vortex shed-
ding frequency and the in-water natural frequency, while the 180�

jump of the total lift force phase occurs around the intersection of the
vortex shedding frequency and the in vacuo natural frequency. This
suggests that in-water resonance causes the phase jump of the vortex
force, while in vacuo resonance causes the phase jump of the total
force. A similar behavior was observed in the response of elastically
mounted circular cylinders with low mass ratios (Govardhan and
Williamson, 2000). For AOA above 30�, both the vortex force phase
and total lift force phase change gradually with Ur

� around in-water
resonance and in vacuo resonance, respectively. At those high AOAs,
the presence of multiple frequency components indicates a complex

FIG. 7. (a) Contour plot of the lift force normalized by its maximum value at each given AOA. The dashed line indicates the Ur
� where the vortex shedding frequency intersects

with the in-water natural frequency. (b) The maximum value of the lift force at each AOA.
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interplay between the structure and the wake flow. The nonlinear
dynamics involved may lead to a transition from a sharp alternation to
a more gradual modulation in force phases upon encountering reso-
nance conditions.

Frequency response

The spectra of the displacement, lift force and vortex force at
AOA¼ 0� are assembled in Fig. 9. The dominant VIV frequency for
AOA¼ 0� remains a constant of �0.19 across the range of Ur

�, which
is the vortex shedding frequency of the stationary whisker. It is mostly
unaffected by either the in-water natural frequency or the in vacuo natu-
ral frequency. Only a small influence is seen at Ur

�¼ 2.7, where a sec-
ondary component appears near fnw. The phase shifts in the vortex force
and total lift force discussed in the section “Force amplitude and phases”
appear not to change the frequency response. This is because the ampli-
tude of oscillation is so small (O(10�3)) that it has negligible effect on
the wake dynamics. It should be noted that the incoming flow speed is a
constant in the current study. If the swimming speed were to change, the
frequency response at AOA¼ 0� would adhere to the Strouhal law,
establishing a linear relationship between the frequency and swimming

speed. Miersch et al. (2011) also reported the existence of a dominant
frequency in the VIV response at zero AOA for harbor seal whiskers,
with this frequency positively scaling with swimming speed.

The frequency responses for AOAs> 0� cases are compiled in
Fig. 10. The frequency is normalized by fnw. It should be noted that in
these figures, only dominant frequencies of VIV (highest spectral
peak) are plotted against reduced velocity. While significant harmonics
or noises are present in some cases, for clarity, the following discus-
sions focuses solely on those dominant frequencies. Solid marker
points indicate the dominant VIV frequency, while larger hollow
square boxes indicate the dominant vortex force frequency, represent-
ing the vortex shedding dynamics. Several straight lines are also
included to elucidate the frequency relationships: a solid horizontal
line denotes fnw, while a dash-dot horizontal line denotes the ratio of
fnv to fnw, which varies with AOA. Oblique lines depict constant
Strouhal numbers derived from the vortex shedding frequencies in the
stationary cases [see Fig. 4(b)]. In cases where multiple shedding fre-
quencies are observed, such as AOA¼ 15� and AOA¼ 30�, multiple
oblique lines are plotted accordingly.

From these plots, it is evident that VIV constantly initiates at the
stationary vortex shedding frequency across all AOAs. This is indi-
cated by the alignment of the displacement frequency and vortex force
frequency, which coincide with the constant stationary Strouhal lines.
As the reduced velocity Ur

� increases, the phenomenon of lock-in
becomes observable across all cases, as indicated by both displacement
frequency and vortex force frequency aligning with the in-water natu-
ral frequency. However, the characteristics of lock-in vary greatly with
AOA.

At AOA¼ 15�, the dominant frequency response initially begins
with the saddle mode (St�¼ 0.162). As Ur

� increases to around 2.3, a
lock-in phenomenon between the node mode (St�¼ 0.217) and the in-
water natural frequency occurs due to their close proximity.
Subsequently, as Ur

� continues to increase, the dominant frequency
responses revert back to the saddle mode, with another lock-in
observed between the saddle mode and the in-water natural frequency
at approximately Ur

�¼ 5.9. Notably, after these transitions, the domi-
nant frequency of the vortex force consistently follows the saddle
mode. Interestingly, at Ur

� where the dominant vortex force frequency
surpasses the in vacuo natural frequency, the dominant frequency of

FIG. 8. (a) Contour plot of the vortex force phase in relation to the displacement. The black dash-dot line with cross symbols indicates the Ur
� where the vortex shedding fre-

quency intersects with the in-water natural frequency. (b) Contour plot of the total lift force phase in relation to the displacement. The black dash line with circle symbols indi-
cates the Ur

�, where the vortex shedding frequency intersects with the in vacuo natural frequency.

FIG. 9. Frequency spectra of the displacement, lift force and vortex force at
AOA¼ 0�. The spectrum is represented by color saturation where more saturated
color stripes represent higher amplitude for the corresponding frequency compo-
nent. Spectra of the three variables for the same reduced velocity are grouped and
centered on the corresponding reduced velocity. The width of the stripes is chosen
to be enough to show the spectra. fv0 is the vortex shedding frequency of the sta-
tionary whisker.
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displacement abruptly shifts to the beating mode (St�¼ 0.055), diverg-
ing from the response of vortex force. This divergence is likely attrib-
uted to the proximity of the beating mode to the in-water natural
frequency.

At AOA¼ 30�, the dominant frequency response initially follows
the stationary vortex shedding (St�¼ 0.193). Lock-in occurs between
Ur

�¼ 2.7 and 4.6 with elevated frequencies. When the dominant fre-
quency of the vortex force surpasses the in vacuo natural frequency at
Ur

�¼ 5.5, while itself still adhering to St�¼ 0.193, the dominant fre-
quency response of displacement abruptly shifts to its 1/2 subharmonic
(St�¼ 0.096). This shift is likely attributable to the proximity of the

subharmonic to the in-water natural frequency. This transition to 1/2
subharmonic has also been observed for an elliptical cylinder of the
same mass ratio (Leontini et al., 2018). At Ur

�¼ 9.1, as the subhar-
monic frequency further deviates from the in-water natural frequency,
a very low-frequency component emerges in the oscillation, becoming
a prominent feature in the displacement frequency response.

For AOA	 45�, the dominant frequency response initially
adheres to the static wake Strouhal number, and a more prominent
lock-in phenomenon is observed across a wider range of Ur

�. One par-
ticularly interesting observation in these cases is the behavior of the
vortex force frequency. It suddenly jumps to a superharmonic of the

FIG. 10. Frequency response for AOA from 15� to 90�. Only the most dominant frequency component for each reduced velocity is included in the plots.
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displacement frequency when the constant Strouhal line crosses the
in-water natural frequency. Then, as the Strouhal line crosses the in
vacuo natural frequency, it jumps back to the displacement frequency.
The low dominant frequencies in displacement observed when AOA is
below 30� only appear in AOA¼ 45� when Ur

� exceeds 8.8. However,
significant low frequency components in displacement are observed
for AOA ranging from 60� to 90�.

Similarly, a low frequency component with significant amplitude
was observed in the experiment study by Wei et al. (2023), where it
was more pronounced in the intermediate AOAs, particularly at 30�

and 45�. In their study, the authors attributed this frequency to the
beating vibration of the whisker model. However, in our study, unlike
the beating frequency observed in the AOA¼ 15� cases, there appears
to be no occurrence of two frequencies for the beat to occur. Here we
use one case (Ur

�¼ 10.9 at AOA¼ 30�) to investigate the nature of the
low frequency component of the VIV, since the low frequency oscilla-
tion was not only dominant but also contributed significantly to the
large VIV amplitude [see Fig. 6(b)]. A spectrogram analysis
[Fig. 11(a)] of the lift force history unveils further insights. The three

frequency bands are the low frequency (�0.015), the vortex shedding
frequency (�0.2), and the harmonic of the vortex shedding frequency.

It is clear, especially from the superharmonic, that the vortex
shedding frequency (�0.2) is modulated. The frequency of this modu-
lation is found to be the same as the low frequency. In Fig. 11(b), the
displacement history and the vortex shedding frequency are aligned to
illustrate the mechanism of the modulation. Specifically, when the
whisker is at the extreme locations of the low frequency oscillation
[e.g., t1 and t3 in Fig. 11(b)], the frequency is very close to the mean
value [horizontal dashed line Fig. 11(b)]. This is because the whisker
velocity is zero and the effective AOA remains unchanged. At the mid
positions [e.g., t2 and t4 in Fig. 11(b)], the supposition of the whisker
motion and the incoming flow changes the effective AOA and conse-
quently the shedding frequency following the trend of the static vortex
frequency with respect to AOA (see Fig. 4). There is a roughly 90�

phase difference between the low frequency oscillation and the vortex
shedding frequency.

The origin of this low frequency oscillation was initially suspected
to be related to the computational domain length since the non-

FIG. 11. (a) Spectrogram of the lift force
for AOA¼ 30�, Ur

� ¼ 10.9. (b) Schematic
illustrating the mechanism of the modula-
tion of the vortex shedding frequency. The
red arrows indicate the vector sum of the
velocity of the incoming flow and of
the whisker (black arrows). In both plots,
the frequency is nondimensional.
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dimensional time it took for the inflow to travel through the domain
was 60, which corresponded to a frequency of �0.017. A cursory test
was carried out for the Ur

�¼ 10.9 AOA¼ 30� case, in which the
domain length was extended by adding 256 uniform grid intervals
beyond the original domain. The same phenomena persisted. Further
analysis also reveals that this low frequency oscillation was not a tran-
sient phenomenon resulting from the initial condition either, because
it could develop at later stages in the simulation and did not die out
over time. In fact, in the demonstration case [Fig. 11(b)], it appeared to
be getting stronger over time. An extremely low frequency, large-scale,
and almost periodic component corresponding to an St of 0.0064 was
elaborated in Lehmkuhl et al. (2013) for flow past a stationary circular
cylinder. The low frequency arises from the periodic shrinkage and
enlargement of the recirculation region. The low frequency oscillation
here could be introduced through similar mechanisms.

Wake structure and DMD analysis

Model reduction techniques such as proper orthogonal decompo-
sition (POD) and dynamic mode decomposition (DMD) have been
used extensively in past studies (Chu et al., 2021; Wang and Liu, 2016,
2017; and Witte et al., 2012) to extract principal modes of flow field

around the USWs. Such decompositions have proven to be instrumen-
tal in understanding the complex vortex shedding patterns of the
USWs, especially when the flow contains multiple frequency compo-
nents. So far, it has been limited to analysis of flow past stationary seal
whiskers. Here, we extend its usage to the flow around oscillating
whiskers. Although DMD was carried out for all simulated cases, only
results for several representative cases are reported here with the focus
on understanding the VIV response of USWs.

Figure 12 shows the wake structure and dominant DMD modes
at AOA¼ 0� for two specific reduced velocity values, one correspond-
ing to the maximum amplitude at this AOA and the other being the
largest Ur tested. As demonstrated in the wake structures [Fig. 12(a)],
the hairpin vortex is undisturbed by the VIV throughout the range of
reduced velocity. DMD decomposition of the flow field reveals highly
organized dominant modes at the fundamental frequency and super-
harmonics [Fig. 12(b)], with the first two modes of Ur¼ 2 plotted in
Fig. 12(c).

Figure 13 shows the wake structure and dominant DMD modes
of the flow past a stationary USW at AOA¼ 15�. The wake structure
[depicted in Fig. 13(a)] reveals a strong alternating shedding of a span-
wise vortex tube, which becomes distorted at the saddle region.
Secondary streamwise vortex tubes are also observed at the further

FIG. 12. Wake structure and DMD modes at AOA¼ 0�. (a) Wake structure at two reduced velocities. (b) The corresponding DMD mode spectrum. (c) The first two dominant
modes visualized by the iso-surface of X velocity (streamwise).
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downstream of saddle region. Figure 13(b) illustrates the two DMD
modes corresponding to the two dominant frequencies observed in the
lift force spectrum. Both modes exhibit alternating patterns, indicating
the alternating shedding of spanwise vortices. Two modes are confined
to two different spanwise regions: saddle region and node region. The
saddle mode has a frequency close to that of the hairpin vortex
(f¼ 0.19), while the node mode has a higher frequency (f¼ 0.25).

Figure 14 shows the change of DMD modes with three different
reduced velocity for AOA¼ 15�, which is best illustrated from the side
view. Ur¼ 2 is the case where resonant oscillation occurs due to prox-
imity of the in-water natural frequency and the node plane vortex
mode. In this case, the node mode is strengthened, as evidenced by the
extension of vortex tube into the saddle plane. Conversely, the

coherence of saddle mode is disrupted, despite the persistence of the
saddle mode frequency. As the reduced velocity increases, the modes
gradually revert to the stationary pattern. Notably, the Ur¼ 10 case
exhibits essentially identical dominant DMD modes as the stationary
case.

Figure 15 shows the wake structure and the dominant DMD
modes for the case AOA¼ 30, Ur

�¼ 10.9. The previously discussed
low frequency mode was also successfully captured by the DMD analy-
sis. Figure 15(c) illustrates the mode structure, which is characterized
by very long, streamwise stretched wake structures spanning the whole
domain. The same type of low frequency DMD mode was consistently
observed across various AOA and Ur cases. Interestingly, a similar
low-frequency mode was reported in Govardhan and Williamson

FIG. 13. Wake structure (a) and the dominant DMD modes (b) and (c) of the flow past stationary USW at AOA¼ 15�. The top row is from the top view. The bottom row is from
the side view.

FIG. 14. Change of dominant DMD mode
with reduced velocity for AOA¼ 15�. All
subfigures are from side view.
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(2005) for VIV of a sphere, which “represents a low-oscillation fre-
quency relative to the frequency of vortex formation for the static
sphere.”

Representative DMD modes at high AOAs are plotted in
Fig. 16. Generally, the most dominant DMD mode corresponds to
the K�am�an vortex shedding of the wake. For small Ur

�, both the
wake and the DMD mode appear similar to the stationary counter-
parts. The VIV tends to strengthen the spanwise coherence of the
K�am�an vortices, as seen in AOA¼ 60�, Ur

�¼ 1.27 and AOA¼ 90�,
Ur

�¼ 2.27. As the VIV amplitude increases, the vortices shed at each
half cycle become more separated. Correspondingly, the DMD mode

shows two streaks of alternating iso-velocity pairs. This is most evi-
dent in AOA¼ 90�, Ur

�¼ 2.27. As the Ur
� further increases (close to

and beyond the maximum VIV amplitude), the spanwise vortices
become less coherent. This can be seen from the lack of continuous
spanwise structure in the dominant DMD modes in cases
AOA¼ 60�, Ur

�¼ 5.08 and AOA¼ 90�, Ur
�¼ 8.49. It would be

interesting if the DMD modes could reveal the subtle differences
between the vortex shedding patterns associated with the jumps of
the dominant vortex shedding frequency shown in Fig. 10. However,
the attempt at this was not fruitful and is therefore not included
here.

FIG. 15. Wake structure [(a) top view] and the dominant DMD modes [(b) top view and side view; and (c) top view] for AOA¼ 30�, Ur
�¼ 10.9.

FIG. 16. Wake structure and dominant DMD mode of some high AOA cases. For AOA¼ 60�, Ur
�¼ 5.08, the iso-value is slightly smaller than the rest to reveal the structure.
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Regimes of response

Given the analysis of various aspects of VIV response, we have
undertaken the task of partitioning the space into distinct response
regimes. While it could be conceivable to categorize these regimes
based on wake patterns—specifically, the number of vortices shed dur-
ing each cycle, as commonly practiced in VIV systems—we opted
against this approach for several reasons: the wake structure exhibits
complexity, including spanwise variation, making it challenging to pre-
cisely determine the number of vortices, particularly for cases beyond
the rising side of the amplitude curves. Conventional labels commonly
used to describe vortex patterns may not suffice to capture the intrica-
cies observed in our analysis. Instead, the division of regions primarily
relies on the frequency response observed in our analysis.

Based on the flow characteristics of the stationary cases, the entire
space can be divided into three regions based on AOAs: the hairpin
vortex region, the mixed vortex region, and the Karman vortex region.
This reflects the change of driving force with AOA. The approximate
boundaries of the three regions lie between 0� and 15�, and 15� and
30�, respectively. In the hairpin vortex region, the vortex dynamics
remain essentially unaffected by the oscillation. For the other two
regions, the vortex dynamics change with reduced velocity, and this
change also depends on AOA. Consequently, we further partitioned

the mixed vortex and Karman vortex regions into five subregions, as
illustrated in Fig. 17.

In region I, the oscillation follows the vortex shedding frequency,
and while the amplitude increases with reduced velocity, it is not sig-
nificant enough to alter the vortex dynamics.

Region II is characterized by both vortex shedding and oscillation
locking to the in-water natural frequency. The response amplitude
gradually increases and the vortex shedding pattern is similar to the 2S
mode (two single vortex in one oscillation cycle) commonly observed
in VIV of circular cylinders.

In region II-b, the vortex force exhibits dominant superharmonics
while the dominant oscillation frequency corresponds to in-water natu-
ral frequency of the system. This region bears some similarity to the
high branch of low mass-damping circular cylinders where the vortex
phase has a 180� to the displacement. The appearance of superhar-
monics suggests vortex modes similar to the 2P mode (two pairs of vor-
tices in one oscillation cycle contributing to the superharmonic in the
vortex force spectrum). The appearance of region II-b might be related
to change in added mass with AOA. The driving vortex force increases
with AOA, while the total mass (material and added) decreases with
AOA. Indeed, the transition from the I–II–III response type to the I–II–
IIb–III response type resembles the two branch and three branch
response types as the mass ratio decreases. The increase in effective Re
with AOA could contribute to the occurrence of the II-b region as well.
Govardhan and Williamson (2006) showed that for Re< 500, only two
branches exist even for low mass ratio circular cylinders.

In region III, both the oscillation and vortex shedding align with
the stationary vortex shedding frequency. For AOA 15�–45�, oscilla-
tion amplitude decreases in this region. For AOA>¼ 60, the oscilla-
tion amplitude remains high in this region, which is also commonly
observed in both circular and elliptical cylinders with mass ratio lower
than the critical value, termed infinite lock-in regime.

Region IV is characterized by the vortex shedding frequency fol-
lowing a constant Strouhal number while low frequency oscillation
dominates. For AOA>¼ 60�, while low frequency oscillation compo-
nent is also present, the dominant oscillation frequency is the vortex
shedding frequency. Thus, region IV does not appear. For AOA 15�–
45�, there are several special subregions in this regime. At 15�, the low
frequency is the beat frequency of the two vortex shedding frequencies.
At AOA¼ 30�, oscillation first locks to the 1/2 subharmonic of the
vortex shedding, then is modulated by a low frequency. At 45�, the
oscillation desynchronizes, leading to a very low amplitude. However,

TABLE II. Summary of grid study.

Number of grid points Minimum grid interval VIV results

Label X Y Z X Y Z Amplitude Error% Frequency Error%

Baseline 257 257 97 0.025 0.025 0.0625 1.676 0.0 0.1148 0.0
Coarse X 129 257 97 0.05 0.025 0.0625 1.858 9.8 0.1152 0.3
Fine X 513 257 97 0.015 0.025 0.0625 1.726 2.9 0.1145 �0.3
coarse Y 257 257 97 0.025 0.035 0.0625 1.584 �5.8 0.1142 �0.5
Fine Y 257 513 97 0.025 0.015 0.0625 1.872 10.5 0.1150 0.2
Coarse Z 257 257 65 0.025 0.025 0.0938 1.705 1.7 0.1145 �0.3
Fine Z 257 257 129 0.025 0.025 0.0469 1.710 2.0 0.1148 0.0

FIG. 17. VIV response regimes of the USW. The two dashed gray lines are from
Fig. 8, indicating the Ur

� where the vortex shedding frequency crosses fnw and fnv,
respectively.
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the boundaries between these subregions cannot be determined from
current simulations.

CONCLUSION

The VIV of the USW was investigated in the full range of AOA
and a wide range of reduced velocity at a low Reynolds number of
300. The vortex shedding of the whisker undergoes a transition from
hairpin vortex mode at zero AOA to the classic K�arm�an vortex
mode as the AOA increases. Through dynamic mode decomposi-
tion, a mixture of the two mode was found at the AOA of 15�. Along
with this transition, the amplitude of the VIV increased by three
orders of magnitude to up to three diameters at 90� AOA. At high

AOAs, the VIV response of the whisker shows many characteristics
typical of circular and elliptical cylinders of a mass ratio close to 1,
such as frequency lock-in and infinite lock-in branch. The results
corroborate previous findings that the VIV suppression by the undu-
latory whisker morphology is only effective around zero AOA. This
suggests that the seals adopt a zero angle of attack as the working
condition and deviation from this condition caused by the external
flow may be interpreted by its sensory system as signals. In addition
to amplitude reduction of the lift force oscillation, the undulatory
seal geometry also significantly reduces its frequency, which could be
an optimization in regard to the frequency sensitivity of the seal’s
sensory system.

FIG. 18. Displacement history of case
AOA¼ 60�, Ur¼ 8 using different girds.
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One limitation of the current study is that the Reynolds number
is fixed at 300. The effect of Reynolds number on the hairpin vortex
shedding merits further investigation to cover the full range of seal
swimming speed.
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APPENDIX: TECHNICAL INFORMATION

Grid study

Previous static flow past whisker simulations using the same
flow solver showed that a resolution of 0.025D was adequate to
resolve the geometric features of the whisker (Liu et al., 2019b).
Further grid study were carried out to test the effect of VIV. The
grid study was carried out using a test case (AOA¼ 60� and
Ur¼ 8), which had a large VIV amplitude in preliminary simula-
tions. Due to the parallel algorithm of the flow solver, the number
of grid intervals must be an integer power of 2, which limits the
flexibility in grid refinement. The effect of grid resolution on the
VIV was tested for each direction separately using a coarse and a
fine grid. The configuration and results are summarized in Table
II. Change of grid with respect to the baseline case are bolded.
Figure 18 compares the VIV displacement history of the grid study
cases. Generally, the baseline case has small errors in VIV ampli-
tude and frequency compared to the fine grids except for the
amplitude of the fine Y case where the error is 10.5%. However,
the fine Y grid was not used to reduce the computational cost to
make the parametric simulation feasible. For cases with large VIV
amplitude, the grid number in the transverse direction is doubled
to increase the size of the high resolution region to cover the range
of VIV.

Added mass

Some numerical experiments were carried out to calculate in
water natural frequency and the added mass of the whisker at differ-
ent AOAs. For these experiments, the same setup described above
was used. The difference was that no incoming flow was prescribed
at the inlet. Instead, the whisker was first displaced from equilib-
rium position by a small displacement (0.2D). It was then released
to undergo damped free vibration. With the displacement history in
these experiments, it was possible to calculate the natural frequency
and thus the added mass coefficient (cam). The results are plotted in
Fig. 19. Theoretical estimates using added mass for elliptical cylin-
ders in planar potential flow (Limacher, 2021) are also included for
comparison. There was a weak dependence on the stiffness of the
spring. The actual added mass coefficient for the VIV cases are
expected to slightly deviate from these values due to the incoming
flow and change of oscillation amplitude. Nevertheless, they should
give good enough estimates of the in water natural frequency during
VIV.

With the estimated added mass coefficient for each AOA, the

in water natural frequency was calculated as fnw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
1þcamð ÞM

q
, given

that the density ratio is 1.

Dynamic mode decomposition

DMD was used to extract the spatial flow modes correspond-
ing to each frequency component. For this purpose, the algorithm
proposed by Schmid (2010) and implemented in the open source
DMD package PyDMD (Demo et al., 2018) was used. The flow field
was sampled at about 50 snapshots per oscillation cycle for two to
three cycles. The velocity field is arranged as a time sequence of col-
umn vectors that is input to the DMD algorithm. The real part of
the DMD mode are used for visualization.
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