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Abstract—AI and reinforcement learning (RL) have attracted
great attention in the study of multiplayer systems over the past
decade. Despite the advances, most of the studies are focused
on synchronized decision-making to attain Nash equilibrium,
where all the players take actions simultaneously. On the other
hand, however, in complex applications, certain players may have
an advantage in making sequential decisions and this situation
introduces a hierarchical structure and influences how other
players respond. The control design for such system is challenging
since it relies on solving the coupled Hamilton-Jacobi equation.
The situation becomes more difficult when the learning process
is exposed to complex uncertainties with unreliable data being
exchanged. Therefore, in this paper, we develop a new learning-
based control approach for a class of nonlinear hierarchical mul-
tiplayer systems subject to mismatched uncertainties. Specifically,
we first formulate this new problem as a multiplayer Stackelberg-
Nash game in conjunction with the hierarchical robust-optimal
transformation. Theoretical analysis confirms the equivalence of
this transformation and ensures that the designed control policies
can achieve stable equilibrium. Then, a two-level neural-RL-
based approach is developed to automatically and adaptively
learn the solutions. The stability of this online learning process
is also provided. Finally, two numerical examples are presented
to demonstrate the effectiveness of the developed learning-based
robust control design.

Impact Statement—The integration of AI into game theory
has revolutionized the analysis and resolution of interactions
among players. Particularly, the adoption of reinforcement
learning (RL), a powerful AI learning paradigm, has attracted
increasing attention in recent years. While RL has achieved
many success in multiplayer games, existing studies primarily
focus on synchronized decision-making to achieve Nash equilib-
rium, overlooking the existing of hierarchical optimization and
asymmetric decision-making in some practical scenarios. The
challenges of control design in such systems are illuminated
in this research, characterized by coupled relationship among
players and nonlinear system evolution. The complexity is further
exacerbated by uncertain situations, which introduce additional
hurdles to the learning process. To bridge this gap, this paper
develops a two-level neural-RL-based approach for hierarchical
multiplayer systems under mismatched uncertainties. This work
facilitates the development of more sophisticated and adaptive
control approaches and enables AI players to efficiently navigate
hierarchical multiplayer environments.
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I. INTRODUCTION

Artificial intelligence (AI) plays a crucial role in multiplayer
games, which revolutionize the way strategic interactions are
analyzed, understood, and even played out in practice. The
applications of multiplayer AI systems are in diverse fields,
including autonomous vehicles [1], [2], robotics [3], [4],
economics [5], computer gaming [6], [7], and more. Among
the current successful AI-based stories, many of them are
centered by reinforcement learning (RL) [8]–[15], a learning
mechanism which mimics human learning through exploration
and interaction with the environment.

In recent years, many efforts have been dedicated in the
development of RL-based control and decision-making for
multiplayer systems [16]–[23]. Despite the success, most of
the studies were focused on synchronized decision-making to
achieve Nash equilibrium, where all the players take actions
simultaneously. However, this design limits the strategic depth
since there is little room for hierarchical or sequential decision-
making strategies. It is important to note that hierarchical
optimization and asymmetric decision-making widely exist,
and are usually the essential concepts in reflecting the complex
interactions among players in real-world scenarios [24]–[26].
For example, in energy management and demand reduction ap-
plications, power utility companies typically issue a load shed-
ding command during peak periods to avoid the excessive costs
of purchasing electricity at high prices. Local manufacturers
and residential communities then respond by adjusting their
energy consumption to fulfill individual requirements while
complying with the utility’s directives [27]. Such hierarchical
optimization is also commonly seen in smart grid [28] and
transportation [29], where the low-level optimization is based
on a consequence of high-level decision. A valuable mech-
anism to model such process is the Stackelberg game [30]–
[32], which is a strategic interaction between the dominant
player (leader) and the subordinates (followers). Specifically,
the leader aims to optimize its control performance first, taking
into account the anticipated responses of the followers, while
the followers aim to react optimally later given the leader’s
decisions. Particularly, for the scenario with one leader hierar-
chy and multiple followers making decisions simultaneously,
it can be formulated as a Stackelberg-Nash game [33].

It is noteworthy that the learning-based control design for
such hierarchical multiplayer systems is more challenging
than the conventional multiplayer systems with simultaneous
decision-making process. This is because the equilibrium in
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the corresponding formulated multiplayer Stackelberg-Nash
game relies on solving a coupled Hamilton-Jacobi (HJ) equa-
tion, which captures the interdependence among players’
strategies and the system’s dynamics. Obtaining the solution
of such equation is difficult due to the high nonlinearity
and couplings. In [34], RL algorithms were developed to
address the Stackelberg game for a two-player linear-quadratic
continuous-time system. The two-player nonlinear hierarchical
control problem was investigated in [35] and a learning-based
algorithm was developed with two parametric HJ equations
and a costate equation to obtain the Stackelberg equilibrium.
The authors in [36] considered the multiplayer Stackelberg-
Nash game for a nonlinear hierarchical system. The value-
iteration-based integral RL algorithm was developed to asymp-
totically converge the hierarchical system to the equilibrium
strategies under the weak coupling conditions.

However, the above research results are built on the secure
interaction experience. If the communication network is vul-
nerable to noise and/or malicious attacks, the learning systems
will suffer from uncertainties or perturbations, which makes
the received data unreliable [37]. Therefore, the RL methods
can not be applied directly. In [38], the disturbance in the
hierarchical system was considered as an additional player,
and the relationship between the disturbance and other players
in the game was formulated as the zero-sum game. RL method
was designed for the game to achieve Stackelberg-Nash-Saddle
equilibrium. The authors in [39] developed the robust approach
through the corresponding optimal control for Stackelberg-
Nash game with matched uncertainties in the event-triggered
mechanism. The sliding mode control technique was integrated
in the learning-based design to enhance the robustness for
matched uncertain Stackelberg-Nash game in [40]. However,
it is worth noting that in multiplayer systems and complex
applications, there often exist mismatched uncertainties [41],
which can be more general and widespread.

Motivated by the above observations and literature studies,
this paper develops a learning-based control approach for a
class of continuous-time nonlinear hierarchical multiplayer
systems subject to mismatched uncertainties. By optimizing
the strategies of the leader and followers, this approach can
lead to more effective and stable decision-making in dynamic
hierarchical multiplayer environments. The major contribu-
tions are summarized as follows:

(i) This paper considers a new class of problems which
involve a strategic decision-making process with mis-
matched uncertainties. Particularly, the leader in this type
of problem has a distinct advantage to make the decisions
ahead of the followers, in contrast to the simultaneous-
move multiplayer decision-making process [18], [20],
[23], [41]. Furthermore, we formulate this robust hier-
archical control problem as a Stackelberg-Nash game
integrated with the hierarchical robust-optimal trans-
formation to facilitate the learning-based design. The
equivalence of the developed transformation is discussed
explicitly. Compared to the two-player Stackelberg game
problems [34], [35], this work is more complex since
it involves one leader and multiple followers whose
interactions lead to increased coupling relationships.

(ii) The robust controller is designed with assistance from
the transformed hierarchical multiplayer system. The the-
oretical analysis ensures that the derived control policies
can achieve Stackelberg-Nash equilibrium which also
serves as the solution of the original robust problem.
Comparing with the existing works [36], [39], [40], this
paper focuses on the design with mismatched uncertain-
ties, which is more challenging due to the increased diffi-
culties in predicting system dynamics and the additional
couplings among players introduced by the auxiliary
inputs.

(iii) A two-level neural-RL-based method is developed to
automatically learn the solution. Specifically, a critic
network is established for each player, i.e., the leader
at the high level and each follower at the low level, to
estimate the performance index and assist in calculating
the control policies. The designed critic networks are
updated in a hierarchical fashion. The stability of the
developed online learning process is also provided to
ensure the learning performance.

The rest of this paper is organized as follows. In Section II,
the problem of hierarchical multiplayer decision-making with
mismatched uncertainties is formulated. Section III provides
the development of the robust control process with theoretical
proof. A two-level neural-RL-based design is presented in
Section IV to update the performance index and calculate the
control policy for each player. In Section V, the numerical
examples are given to demonstrate the effectiveness of the
developed approach. Finally, Section VI concludes this paper.

II. MISMATCHED UNCERTAINTIES IN HIERARCHICAL
MULTIPLAYER SYSTEMS

Consider the continuous-time nonlinear differential game
with a group of N + 1 players P = {0,1,⋯,N}, where player
0 is the leader and other players F = {1,2,⋯,N} are the
followers. We assume that the players take different hierar-
chical roles in the decision-making process. Specifically, the
leader is in a dominant position and can determine the policy
first in the hierarchy, while the followers have equal status and
determine their responses simultaneously. The system function
of this hierarchical multiplayer system can be described as

ẋ = f(x) + h0(x)u0 + ε0(x) +
N

∑
i=1

hi(x)ui +
N

∑
i=1

εi(x) (1)

where x ∈ Rn is the state vector, u0 ∈ Rp0 and ui ∈ Rpi are the
policies controlled by the leader and ith follower respectively,
f(x) ∈ Rn is the system drift dynamics, h0(x) ∈ Rn×p0

and hi(x) ∈ Rn×pi are the input dynamics of the leader and
ith follower respectively, and ε0(x) ∈ Rn and εi(x) ∈ Rn

are the unknown uncertainties applied on the leader and ith
follower respectively with ε0(x) = d0(x)ξ0(x) and εi(x) =

di(x)ξi(x). Assume that each unknown uncertainty is upper
bounded by a known function, that is, ∣∣ε0(x)∣∣ ≤ εM,0(x) and
∣∣εi(x)∣∣ ≤ εM,i(x). Therefore, considering all the uncertainties
applied on the system, we define A2

ε(x) ≜ ∑
N
j=0 ε

2
M,j(x). In

this paper, we consider the mismatched uncertainties for all
the players, i.e., hj(x) ≠ dj(x),∀j ∈ P .
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Note that, comparing with the multiplayer consensus prob-
lem [20], the hierarchical multiplayer system (1) is more
complex and attains coupling information. This is because the
state x in (1) is determined by the policies of all players
uj , j ∈ P , which leads to interdependence between their
decisions and the resulting state. In contrast, the player in the
conventional consensus problem operates with its own state,
and each player’s state evolves independently based on its
policy.

Therefore, the leader-follower relationship in this paper is
substantially different from that in the consensus problem. In
particular, we define the leader as the dominant player who
has a distinct advantage of determining its policy first, and
the follower as the subordinate player who responds to the
leader’s decisions. The dynamic system (1) considered in this
paper is commonly employed in control theory and game
theory to model the interactions between a leader and multiple
followers. This framework is particularly relevant in engineer-
ing fields where hierarchical decision-making and strategic
interactions are crucial. In this setup, the leader’s control input
directly affects the system dynamics, while each follower’s
control input contributes to the system’s overall behavior.
Hence, equation (1) encapsulates the natural dynamics of the
system, the influence of the leader, and the collective impact
of the followers in a mismatched uncertain environment.

Because of the existence of unknown uncertainties in system
(1), the communication data can not be trusted. This makes the
traditional RL method hard to be applied directly. Therefore,
we transform this robust control problem into an equivalent
optimal stabilization design. In order to achieve this goal, we
decompose the uncertain term for each player j ∈ P into two
parts as the matched and mismatched elements,

dj(x)ξj(x) =hj(x)h
+
j (x)dj(x)ξj(x)

+ (In − hj(x)h
+
j (x))dj(x)ξj(x) (2)

where h+j (x) is the Moore-Penrose pseudoinverse matrix of
hj(x).

By constructing the auxiliary inputs v0 ∈ Rm0 and vi ∈ Rmi

for the leader and ith follower, respectively, we obtain the
following nominal plant as

ẋ = f(x) + h0(x)u0 + G0(x)v0 +
N

∑
i=1

hi(x)ui +
N

∑
i=1
Gi(x)vi

(3)

where G0(x) = (In − h0(x)h
+
0(x))d0(x) and Gi(x) = (In −

hi(x)h
+
i (x))di(x). Comparing with (1), the transformed sys-

tem (3) also involves multiple players in hierarchy, that is,
the player 0 as the leader and the other players i ∈ F as
the followers. In this paper, we will demonstrate that this
transformation is equivalent when an appropriate cost function
is established for each player (see Theorem 1).

Assume the system (3) is controllable. Construct the aug-
ment control policy as Uj = [uT

j , v
T
j ]

T ,∀j ∈ P . Then, we
design the cost function associated to player j as

Jj(x,Uj ,U−j) = ∫
∞

0
{T

2
j (x(τ)) +A2

ε(x(τ))

+Λj(x(τ),Uj(τ),U−j(τ))}dτ (4)

where Tj(x) is the design parameter, U−j = [uT
−j , v

T
−j]

T with
u−j = {uk ∣ k ∈ P, k ≠ j} and v−j = {vk ∣ k ∈ P, k ≠ j} are
the sets of control policies from the neighbors of agent j,
and Λj(x,Uj ,U−j) is the utility function. Note that the cost
function (4) contains coupling information since the system
state x is driven by the control policies of all the players.

Since the leader makes its decision with consideration of
responses of all the followers, we define

Λ0(x,U0,U−0)

= xTQ0x + ∥u0 +
N

∑
i=1

αi1ui∥

2

R0

+ ∥v0 +
N

∑
i=1

αi2vi∥

2

Y0

(5)

where Q0 > 0, R0 > 0, and Y0 > 0 are the symmetric matrices
with appropriate dimensions, and αi1 ∈ Rp0×pi , αi2 ∈ Rm0×mi

denote the coupling coefficients of follower i to the leader.
For follower i ∈ F , we define

Λi(x,Ui,U−i)

= xTQix + ∥ui + βi1u0∥
2

Ri

+ ∥vi + βi2v0∥
2

Yi

(6)

where Qi > 0, Ri > 0, and Yi > 0 are the symmetric matrices
with appropriate dimensions, and βi1 ∈ Rpi×p0 , βi2 ∈ Rmi×m0

denote the coupling coefficients of the leader to the ith
follower.

Definition 1 (Stackelberg-Nash Equilibrium): If there exists
a mapping M̄i ∶ U0 → Ui, i ∈ F , such that for a given
control policy of the leader U0, Ūi = M̄i(U0) is the optimal
control policy for the ith follower. The set {Ū0, Ū1,⋯, ŪN} is
considered to constitute the Stackelberg-Nash equilibrium, if,
for any U0 and Ui, i ∈ F ,

Ji(x,M̄i(U0),M̄−i(U0)) ≤ Ji(x,Ui,M̄−i(U0)) (7)
J0(x, Ū0,M̄−0(Ū0)) ≤ J0(x,U0,M̄−0(U0)) (8)

where M̄−i(⋅) = {M̄k(⋅)∣ k ∈ F , k ≠ i} and M̄−0(⋅) =

{M̄k(⋅)∣ k ∈ F}.
Condition (7) indicates that the ith follower observes the

leader’s policy U0 and reacts optimally to it, assuming that
all other followers choose the control policies M̄−i(U0). This
implies that the set {M̄1(U0),M̄2(U0),⋯,M̄N(U0)} for all
the followers achieve a Nash equilibrium. On the other hand,
condition (8) characterizes the Stackelberg equilibrium for
the leader who is desired to find a policy Ū0 such that the
followers’ best responses to this given Ū0 result in the minimal
cost function J0. Therefore, the Stackelberg equilibrium for
the leader and the Nash equilibrium for the followers are
interdependent.

In this way, by establishing an auxiliary input and devel-
oping the appropriate cost function for leader and follow-
ers respectively, we formulate the hierarchical multiplayer
decision-making problem with mismatched uncertainties into
a Stackelberg-Nash game in conjunction with a hierarchical
robust-optimal transformation.
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III. ROBUST CONTROL DESIGN

A. Equivalent Analysis of the Developed Hierarchical Robust-
Optimal Transformation

Define the performance index for each player j ∈ P as

Vj(x) = ∫
∞

0
{T

2
j (x(τ)) +A2

ε(x(τ))

+Λj(x(τ),Uj(τ),U−j(τ))}dτ. (9)

Comparing with the cost function (4), we have Vj(x) =

Jj(x,Uj ,U−j). Therefore, considering the coupling relation-
ship between the leader and followers, the Hamiltonian for
each player can be provided as

Hj(x,∇Vj ,Uj ,U−j) = T 2
j (x) +A2

ε(x) +Λj(x,Uj ,U−j)

+ ∇V T
j (x)(f(x) +

N

∑
k=0

hk(x)uk +
N

∑
k=0
Gk(x)vk) (10)

where ∇Vj(x) = ∂Vj(x)/∂x. Then, we have the optimal
performance index as

V ∗
j (x) =min

Uj
∫

∞

0
{T

2
j (x(τ)) +A2

ε(x(τ))

+Λj(x(τ),Uj(τ),U−j(τ))}dτ (11)

which satisfies the coupled HJ equation

Hj(x,∇V
∗
j ,U

∗
j ,U

∗
−j) = 0 (12)

where ∇V ∗
j = ∂V ∗

j (x)/∂x.
Define UU0

i as the optimal control action of follower i given
U0, and U

U0

−i = {U
U0

k ∣k ∈ F , k ≠ i}. Assume ∇V U0

i is the
performance index of follower i given control actions U0 and
U
U0

−i . Hence, UU0

i can be provided as

U
U0

i = argmin
Ui

Hi(x,∇V
U0

i ,Ui,U−i). (13)

Substitute (6) into (10) for follower i ∈ F , and follow the first-
order optimality condition. We have ∂Hi/∂Ui = 0(pi+mi), that
is,

U
U0

i =

⎡
⎢
⎢
⎢
⎢
⎣

uU0

i

vU0

i

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−βi1u0 −
1
2
R−1i hT

i (x)∇V
U0

i (x)

−βi2v0 −
1
2
Y −1
i GT

i (x)∇V U0

i (x)

⎤
⎥
⎥
⎥
⎥
⎦

. (14)

Note that if U0 = [uT
0 , v

T
0 ]

T = [u∗T0 , v∗T0 ]T = U∗0 , we have
V
U∗0
i = V ∗

i and UU
∗

0

i = U∗i .
In the Stackelberg-Nash game, the leader makes its decision

first with the consideration of all the followers’ responses.
Therefore, the control policy of leader can be provided as

U
∗
0 = argmin

U0

H0(x,∇V
∗
0 ,U0,U−0) (15)

where U−0 represents the control policy from all the followers.
Substitute (5) into (10), and notice the fact that UU0

i is provided
in (14). Then, the first-order optimality condition ∂H0/∂U0 =

0(p0+m0) yields that

U
∗
0 =

⎡
⎢
⎢
⎢
⎢
⎣

u∗0

v∗0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

− 1
2
C1∇V

∗
0 (x) + 1

2
F1∑

N
i=1 αi1R

−1
i hT

i (x)∇V
∗
i (x)

− 1
2
C2∇V

∗
0 (x) + 1

2
F2∑

N
i=1 αi2Y

−1
i GT

i (x)∇V ∗
i (x)

⎤
⎥
⎥
⎥
⎥
⎦

(16)

where

F1 = Ip0 −
N

∑
i=1

αi1βi1, F2 = Im0 −
N

∑
i=1

αi2βi2,

C1 = (F
T
1 R0F1)

−1
(h0(x) −

N

∑
i=1

hi(x)βi1)

T

,

C1 = (F
T
2 Y0F2)

−1
(G0(x) −

N

∑
i=1
Gi(x)βi2)

T

.

Note that, by choosing appropriate αi1, αi2, βi1 and βi2, we
have ∑N

i=1 αi1βi1 ≠ Ip0 and ∑N
i=1 αi2βi2 ≠ Im0 . Substituting

U∗0 = [u∗T0 , v∗T0 ]T into (14), we obtain the optimal response
for follower i ∈ F under the optimal policy U∗0 of the leader
and U∗−i of the other followers as

U
∗
i =

⎡
⎢
⎢
⎢
⎢
⎣

u∗i

v∗i

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

−βi1u
∗
0 −

1
2
R−1i hT

i (x)∇V
∗
i (x)

−βi2v
∗
0 −

1
2
Y −1
i GT

i (x)∇V ∗
i (x)

⎤
⎥
⎥
⎥
⎥
⎦

. (17)

Furthermore, by substituting (16) and (17) into (12), we obtain
the coupled HJ equation for the leader and ith follower,
respectively.

Note that this design is fundamentally different from the
conventional simultaneous-move multiplayer game. Here, we
consider a hierarchical decision-making process which attains
coupling information: the control policy (16) of the leader
involves the responses of all the followers and can make the
decision first, while the control policy (17) of the ith follower
also exists an additional term related to the leader.

Now, we provide that the control policies (16) and (17)
are the results of the hierarchical multiplayer system (1)
with mismatched uncertainties, which means the developed
hierarchical robust-optimal transformation from (1) to (3) is
equivalent.

Theorem 1: Consider the auxiliary nominal system (3) with
the designed performance index (9) for each player j ∈ P . Let
V ∗
j (x) be a solution of the coupled HJ equation (12) with the

parameter T 2
j (x) chosen as

T
2
j (x) =

1

2
∇V ∗T

j (x)∇V ∗
j (x) + K2

vj
(x) (18)

where K2
vj
(x) is an upper bound as K2

vj
(x) ≥

∣∣∑
N
k=0 Gk(x)v

∗
k ∣∣

2

. The optimal control policy U∗0 is
given as (16) for the leader and U∗i as (17) for the follower
i ∈ F . Then, we have that the control policies U∗0 and U∗i can
asymptotically stabilize the hierarchical multiplayer system
(1) with mismatched uncertainties.

Proof: Consider the Lyapunov function for each player j ∈
P as Lj(x) = V ∗

j (x). Taking the derivative of Lj(x) along
the hierarchical system trajectory, we obtain

L̇j(x) = ∇L
T
j (x)(f(x) +

N

∑
k=0

hk(x)u
∗
k +

N

∑
k=0

dk(x)ξk(x)).

(19)
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Based on the transformation design, we have

L̇j(x) =∇L
T
j (x)(f(x) +

N

∑
k=0

hk(x)u
∗
k +

N

∑
k=0

(In − hk(x)

⋅ h+k(x))dk(x)v
∗
k) +∇L

T
j (x)(

N

∑
k=0

dk(x)ξk(x)

−
N

∑
k=0

(In − hk(x)h
+
k(x))dk(x)v

∗
k). (20)

From (12), we get

L̇j(x) = −
1

2
∇LT

j (x)∇Lj(x) − K
2
vj
(x) −A2

ε(x)

−Λj(x,U
∗
j ,U

∗
−j) + ∇L

T
j (x)

N

∑
k=0

dk(x)ξk(x)

− ∇LT
j (x)

N

∑
k=0
Gk(x)v

∗
k . (21)

We can further rewrite (21) as

L̇j(x) = −K
2
vj
(x) −Λj(x,U

∗
j ,U

∗
−j) −A

2
ε(x)

− ∥
1

2
∇Lj(x) −

N

∑
k=0

dk(x)ξk(x)∥

2

+ ∥
N

∑
k=0

dk(x)ξk(x)∥

2

− ∥
1

2
∇Lj(x) +

N

∑
k=0
Gj(x)v

∗
j ∥

2

+ ∥
N

∑
k=0
Gk(x)v

∗
k∥

2

≤ −Λj(x,U
∗
j ,U

∗
−j) −

⎛

⎝
K

2
vj
(x) − ∥

N

∑
k=0
Gk(x)v

∗
k∥

2
⎞

⎠

−
⎛

⎝
A

2
ε(x) − ∥

N

∑
k=0

dk(x)ξk(x)∥

2
⎞

⎠
. (22)

Based on the bound conditions ∣∣∑N
k=0 dk(x)ξk(x)∣∣

2

≤ A2
ε(x)

and ∣∣∑
N
k=0 Gk(x)v

∗
k ∣∣

2

≤ K2
vj
(x), we can obtain L̇j(x) ≤

−Λj(x,U
∗
j ,U

∗
−j) < 0,∀x ≠ 0. Therefore, the designed con-

trol policies U∗j can asymptotically stabilize the hierarchical
multiplayer system (1) with mismatched uncertainties, which
demonstrates the equivalence of the developed hierarchical
robust-optimal transformation. ∎

Note that by integrating (18) into (9), we observe that the
performance index for each player j requires the information
of vk, k ∈ P . However, only the leader can access the inputs
from all the followers. In this design, we assume each follower
transmits ϑ2

i (x) = Gi(x)v
∗
i , i ∈ F , to the leader, and then the

leader sends back K2
vj
= ∑

N
k=0 ϑ

2
k to each follower.

B. Stackelberg-Nash Equilibrium of the Designed Policies

Now, we show that the designed control policies
{U∗0 ,U

∗
1 ,⋯,U∗N} can achieve Stackelberg-Nash equilibrium.

Theorem 2: Assume V ∗
j (x) as the solution of the cou-

pled HJ equation (12) with the parameter T 2
j (x) defined in

(18). Then the designed control policies {U∗0 ,U
∗
1 ,⋯,U∗N} can

achieve Stackelberg-Nash equilibrium.
Proof: According to Theorem 1, the system (1) under the

developed control policies U∗j is asymptotically stable. Set

Ej(x) = V ∗
j (x). The cost function (4) for each player j ∈ P

can be rewritten as

Jj(x,Uj ,U−j) =∫
∞

0
{T

2
j (x) +A2

ε(x) +Λj(x,Uj ,U−j)}dτ

+ Ej(x(0)) + ∫
∞

0
Ėj(x)dτ

= ∫

∞

0
Hj(x,∇Ej ,Uj ,U−j)dτ + Ej(x(0)). (23)

For the leader, assume all the followers choose the opti-
mal control action U

U0

−0 given U0, where U
U0

−0 = {U
U0

k ∣k ∈

F}. Based on (12), we have H0(x,∇E0,U
∗
0 ,U

∗
−0) =

H0(x,∇V
∗
0 ,U

∗
0 ,U

∗
−0) = 0. Therefore, we can further rewrite

(23) for the leader as

J0(x,U0,U
U0

−0 ) =E0(x) + ∫
∞

0
{H0(x,∇E0,U0,U

U0

−0 )

−H0(x,∇E0,U
∗
0 ,U

∗
−0)}dτ. (24)

Since the goal of the control policy U0 is to minimize H0,
we have H0(x,∇E0,U0,U

U0

−0 ) ≥ H0(x,∇E0,U
∗
0 ,U

∗
−0), which

means

J0(x,U0,U
U0

−0 ) ≥ E0(x). (25)

According to the definition of E0(x), we can easily obtain that
E0(x) = V ∗

0 (x) = J0(x,U
∗
0 ,U

∗
−0). Therefore, it follows

J0(x,U0,U
U0

−0 ) ≥ J0(x,U
∗
0 ,U

∗
−0). (26)

This proves that the Stackelberg equilibrium holds for the
leader in this hierarchical multiplayer decision-making design.

The reminding provides the Nash equilibrium of the follow-
ers’ policies {U∗1 ,U

∗
2 ,⋯,U∗N}. Considering (23), the first term

can be further derived as

Hj(x,∇Ej ,Uj ,U−j) = Hj(x,∇Ej ,U
∗
j ,U

∗
−j) +Λj(x,Uj ,U−j)

−Λj(x,U
∗
j ,U

∗
−j) + ∇E

T
j (x)

N

∑
k=0

hk(x)(uk − u∗k)

+ ∇E
T
j (x)

N

∑
k=0
Gk(x)(vk − v∗k). (27)

For follower i ∈ F , assume that the transition of the control
policy Ui given U0 can be provided as Ui = µi(U0). Hence,
substituting (27) into (23), we obtain

Ji(x,µi(U
∗
0 ), µ

∗
−i(U

∗
0 )) = Ei(x) + ∫

∞

0
{∥ui + βiu

∗
0∥

2

Ri

+ ∥vi + βiv
∗
0∥

2

Yi

− ∥u∗i + βiu
∗
0∥

2

Ri

− ∥v∗i + βiv
∗
0∥

2

Yi

+∇E
T
i (x)hi(x)(ui − u∗i ) + ∇E

T
i (x)Gi(x)(vi − v∗i )}dτ.

(28)

Note that, comparing with (27), the last two terms in (28) only
include the control policy Ui = [uT

i , v
T
i ]

T . This is because
we consider the other followers choose the optimal control
policies µ∗−i(U

∗
0 ) = {U∗k ∣k ∈ F , k ≠ i}.

Based on (17), we have

∇E
T
i (x)hi(x) = −2(u

∗
i + βiu

∗
0)

TRi, (29)
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∇E
T
i (x)Gi(x) = −2(v

∗
i + βiv

∗
0)

TYi. (30)

Substituting (29) and (30) into (28), we obtain

Ji(x,µi(U
∗
0 ), µ

∗
−i(U

∗
0 )) = Ei(x) + ∫

∞

0
{∥ui + βiu

∗
0∥

2

Ri

− ∥u∗i + βiu
∗
0∥

2

Ri

− 2(u∗i + βiu
∗
0)

TRi(ui − u∗i )

+ ∥vi + βiv
∗
0∥

2

Yi

− ∥v∗i + βiv
∗
0∥

2

Yi

− 2(v∗i + βiv
∗
0)

T

⋅ Yi(vi − v∗i )}dτ

=Ei(x) + ∫
∞

0
{(ui − u∗i )

TRi(ui − u∗i )

+ (vi − v∗i )
TYi(vi − v∗i )}dτ. (31)

It follows Ji(x,µi(U
∗
0 ), µ

∗
−i(U

∗
0 )) ≥ Ei(x). Considering the

fact Ei(x) = Ji(x,µ
∗
i (U

∗
0 ), µ

∗
−i(U

∗
0 )), we have

Ji(x,µi(U
∗
0 ), µ

∗
−i(U

∗
0 )) ≥ Ji(x,µ

∗
i (U

∗
0 ), µ

∗
−i(U

∗
0 )). (32)

Therefore, the Nash equilibrium holds for all the followers
{U∗1 ,U

∗
2 ,⋯,U∗N} = {µ∗1(U

∗
0 ), µ

∗
2(U

∗
0 ),⋯, µ∗N(U∗0 )}.

Combining (26) and (32), and based on Definition 1,
we have that the designed control policies can achieve
Stackelberg-Nash equilibrium with Ū0 = U∗0 , M̄i(Ū0) =

µ∗i (U
∗
0 ) and M̄−0(U0) = U

U0

−0 . This competes the proof. ∎

IV. A TWO-LEVEL NEURAL-RL-BASED METHOD

Based on Theorem 1-2, we can solve the robust control
problem of hierarchical mismatched uncertain system (1) with
the assistance of the designed auxiliary system (3). This is
achieved by addressing a set of coupled HJ equation (12).
However, solving (12) directly is difficult due to the complex
coupling structure associated with the nonlinear dynamic sys-
tem evolution. The established auxiliary inputs further increase
the couplings among players, which makes the problem more
challenging. Therefore, this paper proposes the development
of a two-level neural-RL-based method to adaptively learn the
solution.

A. Adaptive Two-Level Neural-RL-Based Control Structure

An adaptive two-level neural-RL-based control method is
designed. Specifically, a critic network is established for the
leader at the high level to reconstruct the performance index
as

V ∗
0 (x) = ω∗Tc,0ϕc,0(x) + σc,0(x) (33)

where ω∗c,0, ϕc,0(x), and σc,0(x) are the ideal critic network
weights, activation function, and bounded critic network error,
respectively, for the leader. Then, the derivative of V ∗

0 (x) can
be provided as

∇V ∗
0 (x) = ∇ϕT

c,0(x)ω
∗
c,0 +∇σc,0(x) (34)

where ∇ϕc,0(x) =
∂ϕc,0(x)

∂x
and ∇σc,0(x) =

∂σc,0(x)
∂x

. Substi-
tuting (34) into (16), we obtain the control policy for leader

at the high level as

U
∗
0 = [u∗T0 , v∗T0 ]

T ; (35)

u∗0 = −
1

2
C1(∇ϕ

T
c,0(x)ω

∗
c,0 +∇σc,0(x)) +

1

2
F1

N

∑
i=1

αi1R
−1
i

⋅ hT
i (x)(∇ϕ

T
c,i(x)ω

∗
c,i +∇σc,i(x)) (36)

v∗0 = −
1

2
C2(∇ϕ

T
c,0(x)ω

∗
c,0 +∇σc,0(x)) +

1

2
F2

N

∑
i=1

αi2Y
−1
i

⋅ G
T
i (x)(∇ϕT

c,i(x)ω
∗
c,i +∇σc,i(x)). (37)

Furthermore, establish the critic network for each follower
at the low level with ω∗c,i, ϕc,i(x), and σc,i(x) as the
ideal critic network weights, activation function, and bounded
critic network error, respectively, for follower i ∈ F . There-
fore, the performance index V ∗

i (x) is provided as V ∗
i (x) =

ω∗Tc,i ϕc,i(x) + σc,i(x) with the derivative as

∇V ∗
i (x) = ∇ϕT

c,i(x)ω
∗
c,i +∇σc,i(x) (38)

where ∇ϕc,i(x) =
∂ϕc,i(x)

∂x
and ∇σc,i(x) =

∂σc,i(x)
∂x

. Substitut-
ing (38) into (17), the control policy for follower i ∈ F at the
low level is derived as

U
∗
i = [u∗Ti , v∗Ti ]

T ; (39)

u∗i = −βi1u
∗
0 −

1

2
R−1i hT

i (x)(∇ϕ
T
c,i(x)ω

∗
c,i +∇σc,i(x)) (40)

v∗i = −βi2v
∗
0 −

1

2
Y −1
i G

T
i (x)(∇ϕT

c,i(x)ω
∗
c,i +∇σc,i(x)). (41)

Considering (35) and (39), however, one realizes the ideal
weights ω∗c,0 and ω∗c,i are difficult or impossible to achieve.
Therefore, we consider the current estimated critic network
weights ωc,0 for leader and ωc,i for follower i ∈ F . Then, the
estimated performance index is provided as

V̂0(x) = ωT
c,0ϕc,0(x), (42)

V̂i(x) = ωT
c,iϕc,i(x), i ∈ F (43)

where V̂0(x) is the estimated performance index for leader
which is learned at the high level and V̂i(x) is the estimated
performance index for ith follower which is learned at the low
level. Therefore, the corresponding derivatives are ∇V̂0(x) =
∇ϕT

c,0(x)ωc,0 and ∇V̂i(x) = ∇ϕT
c,i(x)ωc,i. It follows the

estimated control policy for leader at the high level as

U0 =[u
T
0 , v

T
0 ]

T ; (44)

u0 = −
1

2
C1∇ϕ

T
c,0(x)ωc,0 +

1

2
F1

N

∑
i=1

αi1R
−1
i hT

i (x)

⋅ ∇ϕT
c,i(x)ωc,i (45)

v0 = −
1

2
C2∇ϕ

T
c,0(x)ωc,0 +

1

2
F2

N

∑
i=1

αi2Y
−1
i G

T
i (x)

⋅ ∇ϕT
c,i(x)ωc,i (46)

and for follower i ∈ F at the low level as

Ui = [uT
i , v

T
i ]

T ; (47)

ui = −βi1u0 −
1

2
R−1i hT

i (x)∇ϕ
T
c,i(x)ωc,i (48)

vi = −βi2v0 −
1

2
Y −1
i G

T
i (x)∇ϕT

c,i(x)ωc,i. (49)
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Considering (42) and (43), we can unify the performance
index for all the players as V̂j(x) = ωT

c,jϕc,j(x), j ∈ P . Hence,
based on the neural network design, we have the unified
version of the estimated Hamiltonian for player j ∈ P as

Hj(x,∇V̂j ,Uj ,U−j) = T 2
j (x) +A2

ε(x) +Λj(x,Uj ,U−j)

+ ∇ϕT
c,j(x)ωc,j(f(x) +

N

∑
k=0

hk(x)uk +
N

∑
k=0
Gk(x)vk). (50)

According to the coupled HJ equation (12), we define the error
function for the critic network as ec,j = Hj(x,∇V̂j ,Uj ,U−j)
and the objective function as Ec,j =

1
2
eTc,jec,j . Hence, the critic

network weights are updated as

ω̇c,j = −ηj
1

(DT
c,jDc,j + 1)2

(
∂Ec,j

∂ω̂c,j
)

= −ηj
Dc,j

(DT
c,jDc,j + 1)2

(T
2
j (x) +A2

ε(x)

+Λj(x,Uj ,U−j) +DT
c,jωc,j), j ∈ P (51)

where ηj is the learning rate of the critic network for player
j ∈ P and Dc,j = ∇ϕc,j ẋ = ∇ϕc,j(f(x) + ∑

N
j=0 hj(x)uj +

∑
N
j=0 Gj(x)vj) is for normalization. Note that ωc,0 is updated

at the high level for leader and ωc,i is updated at the low level
for follower i. Here, we establish the critic-only structure for
all the players, such that the computation load can be reduced
for the multiplayer system. The detailed algorithm is provided
in Algorithm 1.

B. Stability Analysis

The following theorem provides the stability analysis of the
designed online-learning process.

Theorem 3: Consider the nominal hierarchical multiplayer
system (3). Establish the critic network for the leader at the
high level as in (42) and for the follower i ∈ F at the low level
as in (43). The weights updating law is provided in (51). If the
leader’s control policy is designed as in (44) and the follower’s
control policy as in (47), then the closed-loop control design
is uniformly ultimately bounded (UUB).

Proof: Define the Lyapunov function as

Lsys =
N

∑
j=0

Lj(x) +
N

∑
j=0

Lj(ω̃c,j), j ∈ P (52)

where ω̃c,j = ω∗c,j − ωc,j , Lj(ω̃c,j) = η−1j tr(ω̃T
c,jω̃c,j), and

Lj(x) = V ∗
j (x). Define Lsys,j = Lj(x) + Lj(ω̃c,j). The first

derivative of (52) is provided as L̇sys = ∑
N
j=0 L̇sys,j . Therefore,

if we have L̇sys,j ≤ 0, it follows L̇sys ≤ 0. Hence, we consider
L̇sys,j = L̇j(x) + L̇j(ω̃c,j).

Based on (12), we have the first term L̇j(x) = −T
2
j (x) −

A2
ε(x)−Λj(x,Uj ,U−j) ≤ 0. Now, we consider the second term

L̇j(ω̃c,j) =η
−1
j tr

⎛

⎝
ηjω̃

T
c,j

Dc,j

(DT
c,jDc,j + 1)2

(DT
c,jωc,j

+ T
2
j (x) +A2

ε(x) +Λj(x,Uj ,U−j))
⎞

⎠
. (53)

Algorithm 1 Robust Control with Two-Level Neural-RL-
Based Method

1: Choose the learning time TL > 0 and the execution time
TE > 0. Set parameters Qj , Tj(x), Aε(x), and ηj for
player j ∈ P . Set parameters αi1, αi2, βi1, and βi2 for
follower i ∈ F . Set a threshold κj for player j ∈ P .
Learning Phase

2: Initialize ωc,0, ωc,j , U0, and Ui.
3: for t = 0→ TL do
4: Take actions U0 and Ui in (3), and collect x;
5: Begin the high-level learning
6: Determine U0 = [uT

0 , v
T
0 ]

T through (44);
7: Compute V̂0(x) based on (42);
8: Update ωc,0 based on (51) for leader j = 0;
9: if ∣∣∆ωc,0∣∣ < κ0 then

10: Stop;
11: end if
12: Begin the low-level learning
13: Determine Ui = [uT

i , v
T
i ]

T , i ∈ F , through (47);
14: Compute V̂i(x), i ∈ F , based on (43);
15: Update ωc,i based on (51) for follower j = i ∈ F ;
16: if ∣∣∆ωc,i∣∣ < κi then
17: Stop;
18: end if
19: end for
20: return ωc,0 and ωc,i.

Robust Control Phase
21: for t = 0→ TE do
22: Compute u0 using (45);
23: Compute ui, i ∈ F , using (48);
24: Take actions u0 and ui in (1), and collect x;
25: end for

Since the fact ωc,j = ω∗c,j − ω̃c,j , we can rewrite (53) as

L̇j(ω̃c,j) =η
−1
j tr

⎛

⎝
− ηjω̃

T
c,j

Dc,jD
T
c,j

(DT
c,jDc,j + 1)2

ω̃c,j

+ ηjω̃
T
c,j

Dc,j

(DT
c,jDc,j + 1)2

(DT
c,jω

∗
c,j + T

2
j (x)

+A
2
ε(x) +Λj(x,Uj ,U−j))

⎞

⎠
. (54)

It follows

L̇j(ω̃c,j)

≤ −

XXXXXXXXXXX

Dc,j

DT
c,jDc,j + 1

XXXXXXXXXXX

2

∥ω̃c,j∥
2
+
1

2

⎛

⎝
ηj

XXXXXXXXXXX

Dc,j

DT
c,jDc,j + 1

XXXXXXXXXXX

2

∥ω̃c,j∥
2

+
∥DT

c,jω
∗
c,j + T

2
j (x) +A2

ε(x) +Λj(x,Uj ,U−j)∥
2

ηj(DT
c,jDc,j + 1)2

⎞

⎠
. (55)

By setting ΦDj =
Dc,j

DT
c,jDc,j+1 and Ωj = DT

c,jω
∗
c,j + T

2
j (x) +
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A2
ε(x) +Λj(x,Uj ,U−j) ≤ Ω̄j , we have

L̇j(ω̃c,j) ≤ − ∣∣ΦDj ∣∣
2
∣∣ω̃c,j ∣∣

2
+
1

2
ηj ∣∣Φ

D
j ∣∣

2
∣∣ω̃c,j ∣∣

2

+
∣∣Ωj ∣∣

2

2ηj(DT
c,jDc,j + 1)2

≤ − (1 −
1

2
ηj)∣∣Φ

D
j ∣∣

2
∣∣ω̃c,j ∣∣

2
+

Ω̄2
j

2ηj
. (56)

If the following conditions hold

0 < ηj < 2, ∣∣ω̃c,j ∣∣
2
>

Ω̄2
j

2ηj(1 −
1
2
ηj)∣∣ΦDj ∣∣

2
(57)

then L̇j(ω̃c,j) < 0. Hence, we can further derive that L̇sys,j =

L̇j(x) + L̇j(ω̃c,j) < 0. This means the designed online learn-
ing process for the hierarchical multiplayer decision-making
system is UUB. This concludes the proof. ∎

Remark 1: This paper designs an adaptive two-level neural-
RL-based approach for hierarchical multiplayer systems with
mismatched uncertainties. The specific novelty of this work
can be summarized as follows:
● Different from the conventional multiplayer systems [18],

[20], [23], [41] where all the players respond simul-
taneously, this work considers Stackelberg-Nash game
with a hierarchical decision-making process. The design
incorporates coupling information, i.e., the leader’s policy
(16) involves the responses of all the followers and can
act first, while each follower’s policy (17) also exists an
additional term related to the leader. This relationship in-
creases complexity to the learning-based stability design
and theoretical analysis for this new class of problems.

● In contrast to the Stackelberg game problem [34], [35],
which contains two players only, this work concerns
the hierarchical decision-making process with one leader
and multiple followers. The learning-based design for
such system is more challenging due to the complex
interactions and increased coupling relationships among
all the players.

● The designed method can automatically solve the cou-
pled HJ equation and learn the control policy for each
player. The established hierarchical structure facilitates a
more organized and systematic learning process, where
the leader and followers can adapt their strategies in a
coordinated and flexible manner.

● Furthermore, compared to the existing related works [36],
[39], [40], our designed method can also learn in a
more intricate environment with mismatched, noisy, or
unreliable information, which enhances the robustness
and adaptability of the learning process.

Therefore, this two-level learning-based framework opens up
new possibilities for applying RL to complex multiplayer
systems where hierarchical decision-making is crucial. In
addition, the stability proof of the online learning process
ensures the viability and effectiveness of our proposed method.

V. EXPERIMENT STUDIES

Example 1: Consider the following six-player continuous-
time nonlinear hierarchical game with mismatched uncertain-

ties (open loop unstable),

ẋ = f(x) + h0(x)u0 + ε0(x) +
5

∑
i=1

hi(x)ui +
5

∑
i=1

εi(x) (58)

with

f(x) =

[
−x1 + x2 +

1
2
x2
1x2

−x1 − x2 + x1x
2
2 +

1
4
x2((cos(2x1) + 2)2 + (sin(4x2

1) + 2)2)
] ,

h0(x) = [
0

cos(x1)
] , h1(x) = [

0
cos(2x1 + 1)

] ,

h2(x) = [
0

sin(x1 + 2)
] , h3(x) = [

0
sin(4x2

1) + 1
] ,

h4(x) = [
0
2
] , h5(x) = [

0
4 cos(x2

1 + x2
2)
] .

where x = [x1, x2]
T ∈ R2 is the state variable and uj ∈ R is

the policy controlled by player j, j ∈ {0,1,2,3,4,5}. We have
the player 0 as the leader, who can take the decision first, and
other players {1,2,3,4,5} as the followers, who then respond
to the leader’s decision.

The term εj(x) = dj(x)ξj(x) represents the unknown
uncertainty applied on the jth player with

ξj(x) = λ1x1 cos
⎛

⎝

1

x2 + λ2

⎞

⎠
+ λ3x2 sin (λ4x1x2),

d0(x) = [
sin(x2

1)

0
] , d1(x) = [

1
0
] ,

d2(x) = [
sin(x1 + 1)

0
] , d3(x) = [

1
2
1
] ,

d4(x) = [
cos(2x2

2)

0
] , d5(x) = [

sin(x2 + 2)
1

] .

where λ1 ∈ [−1,1], λ2 ∈ [−100,0)⋃(0,100], λ3 ∈ [−1,1], and
λ4 ∈ [−100,100] are the unknown parameters. Besides, since
hj(x) ≠ dj(x), we know the hierarchical game contains the
mismatched uncertainties.

The developed learning-based control method is applied
to address this robust problem. Based on Theorem 1-2, we
conclude that the problem can be effectively solved with the
assistance of the auxiliary nominal plant. Accordingly, we
build the nominal plant as follows

ẋ = f(x)+h0(x)u0 + G0(x)v0 +
5

∑
i=1

hi(x)ui +
5

∑
i=1
Gi(x)vi

(59)

where Gj(x) = (In − hj(x)h
+
j (x))dj(x) and h+j (x) =

(hT
j (x)hj(x))

−1
hT
j (x), j ∈ {0,1,2,3,4,5}. Therefore, we

have G0(x) = [
sin(x2

1)

0
], G1(x) = [

1
0
], G2(x) = [

sin(x1 + 1)
0

],

G3(x) = [
1
2
0
], G4(x) = [

cos(2x2
2)

0
], and G5(x) =

[
sin(x2 + 2)

0
]. Define K2

vj
(x) ≜ ρ∣∣∑

N
k=0 Gk(x)v

∗
k ∣∣

2

with

ρ = 2. Considering the uncertainty on each player, we have
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(a) Leader

c,j
(1)

c,j
(2)

c,j
(3)

c,j
(4)

c,j
(5)

c,j
(6)

Fig. 1. Convergence process of critic network weights ωc,j , j ∈
{0,1,2,3,4,5}: (a) leader, (b) follower 1, (c) follower 2, (d) follower 3,
(e) follower 4, and (f) follower 5.

∣∣εj(x)∣∣ ≤ ∣∣x∣∣ ≜ εM,j(x) and A2
ε ≜ ∑

5
j=0 ε

2
M,j(x). Note that

the open-loop configuration of (59) is unstable.
The critic network is designed for each player to learn

its performance index Vj(x) and help develop the feedback
control policy uj . Specifically, we establish the critic network
for leader 0 at the high level based on (42) and for followers
{1,2,3,4,5} at the low level based on (43). The neuron
structure of each critic network is designed as 4−6−1, which
represents four input neurons, six hidden neurons, and one
output neuron. The input of the critic network for player j is
Cj = [x1, x2, uj , vj]

T and the output is the performance index
Vj(x). For this three-layer critic network (one hidden layer),
we define the activation function as a sigmoid function which
is described as

ϕc,j(x) =
1 − e−hc,j

1 + e−hc,j
(60)

with hc,j = ωT
c1,jCj , where ωc1,j are the weights between the

input and hidden layer of the critic network. In this paper, we
randomly choose ωc1,j ∈ [−0.5,0.5] at the beginning and fix
the values thereafter. Hence, we obtain

∇Vj(x) =∇ϕ
T
c,j(x)ωc,j

=
1

2
((1 − ϕ2

c,j(x))ωc1,j(x))
T

ωc,j (61)

where ωc1,j(x) are the fixed weights of x component for input
to hidden layer of critic network and ωc,j are the hidden-to-
output layer weights updated based on (51). The initial value
of ωc,j is randomly chosen within [−0.5,0.5]. Besides, choose
αik = βik = 0.2, i ∈ {1,2,3,4,5}, k ∈ {1,2}, and Qj , Rj and
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Fig. 2. Evolution of control policies uj and vj , j ∈ {0,1,2,3,4,5} during
the learning process.
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1.5
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x2(designed)
x1(conventional)
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Fig. 3. Comparisons of state trajectories in the learning phase between the
designed method and conventional flat actor-critic design [41].

Yj , j ∈ {0,1,2,3,4,5} are the identity matrix with suitable
dimensions. According to Theorem 3, we substitute A2

ε, K2
vj

and ∇Vj(x) into (51), and obtain the updating rule of the critic
network weights for each player.

Select the learning rate as ηj = 0.01 and the sample interval
as 0.05s. We conduct the training based on the developed RL-
based control algorithm with the initial state as x(0) = [2,−2].
The training has lasted 100 time steps × 0.05 sample interval
= 5s. The convergence process of the critic network weights
between the hidden and output layers ωc,j are provided in
Fig. 1 for all the players. We observe that the weights can
converge quickly, which demonstrate the optimal learning
process of the developed method. The evolution of the optimal
control policies uj and vj during the training process are
presented in Fig. 2. It is clearly shown that the designed
policies can attain stable equilibrium at about 2s, where
the Stackelberg-Nash equilibrium is achieved. To show the
effectiveness of the designed method, we compare our results
with the conventional flat actor-critic design for uncertain
multiplayer systems [41], where all the players are allowed to
optimize their value functions equally. The comparisons under
the same initial conditions are provided in Fig. 3. We observe
that our developed two-level learning-based control method
can converge much faster than the conventional method.

After the learning process, we apply the learned control
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Fig. 4. State trajectories in the robust control phase: (a) Case 1, (b) Case 2,
(c) Case 3, and (d) Case 4.
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Fig. 5. Control policy trajectories in the robust control phase: (a) Case 1,
(b) Case 2, (c) Case 3, and (d) Case 4.

policies uj on the original uncertain hierarchical system (58)
to verify the performance of the established robust-optimal
transformation. We consider four cases of the uncertainties
applied on the system with the parameters selected as follows:
● Case 1: λ1 = −1, λ2 = −100, λ3 = 1, λ4 = 50;
● Case 2: λ1 = −0.5, λ2 = 100, λ3 = −1, λ4 = −100;
● Case 3: λ1 = −0.2, λ2 = −50, λ3 = −1, λ4 = 50;
● Case 4: λ1 = 0.2, λ2 = 1, λ3 = −0.5, λ4 = −1.

With the learned policies, the state trajectories and control
evolution during the robust control process for these four cases

Fig. 6. Histogram of mean square error for x1.

Fig. 7. Histogram of mean square error for x2.

are given in Fig. 4 and Fig. 5, respectively. We observe that the
system states of all the above four cases can quickly converge
to the equilibrium point under the designed control policy
uj . In other words, the control policy uj developed based
on the transformed optimal stabilization is the solution of the
original robust decision-making problem and can effectively
stabilize the hierarchical multiplayer system with mismatched
uncertainty.

So far, we consider four specific cases to show the effective-
ness of the designed learning-based control approach and hi-
erarchical robust-optimal transformation. From the results, we
can clearly observe that different set of uncertain parameters
(λ1, λ2, λ3 and λ4) will drive the state in different trajectories.
The convergence rates are also different. Therefore, without
loss of generality, we randomly choose the admissible uncer-
tainties and measure the mean square error (MSE) of the state
during the robust control process for each set of parameters.
We conduct 5,000 independent runs and provide the histogram
of MSE for x1 and x2 in Fig. 6 and Fig. 7, respectively.
It is shown that the MSE of states are finite under all the
admissible uncertainties with the designed control policies,
which indicates that our developed intelligent hierarchical
multiplayer system can converge to the stable equilibrium and
is robust to any admissible uncertainties. These simulation
results further demonstrate the equivalence of our established
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Fig. 8. Convergence process of critic network weights ωc,j , j ∈ {0,1,2}:
(a) leader, (b) follower 1, (c) follower 2.

robust-optimal transformation, indicate the effectiveness of the
developed learning-based control approach, and validate the
theoretical studies.

Example 2: A three-player hierarchical system with four
state variables x = [x1, x2, x3, x4]

T ∈ R4 has been presented
to demonstrate the effectiveness of our proposed method. This
problem is more challenging because it involves additional
degrees of freedom, leading to more complex interactions and
increased potential for uncertainties. Moreover, the system’s
open-loop configuration is unstable. The system function is
given as

ẋ = f(x) + h0(x)u0 + ε0(x) +
2

∑
i=1

hi(x)ui +
2

∑
i=1

εi(x) (62)

where

f(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x2

−2x2 + x1x2 + 0.5x4(cos(2x2 + 2))2

x4

−x2 + x3 − 2x4 + 0.5x3x4(sin(2x
2
2 + 2))2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and h0(x) = [0,0,0,2]T , h1(x) = [0,0,0, cos(2x1)]
T , and

h2(x) = [0,0,0, cos(4x2) + 1]T . Three players j ∈ {0,1,2}
need to control this challenging system together with player
0 as the leader who acts first and players {1,2} are the fol-
lowers who respond to the leader’s decision. Furthermore, the
system involves unknown mismatched uncertainties εj(x) =

dj(x)ξj(x), which makes the input and output data unreliable.
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Fig. 9. State trajectories x = [x1, x2, x3, x4]T in the robust control phase.
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Fig. 10. Robust control trajectories for three players.

The dynamics of the uncertainties are given as

d0(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(x2
1 + 1)
0
0
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, d1(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
2 sin(x1 + 1)

0.2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, d2(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
2
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

ξj(x) = p1x2 sin(x1x2) + p2x1 cos(x3x4)

with p1, p2 ∈ [−1,1] are the unknown parameters. Hence, the
upper bound for each uncertainty is defined as εM,j(x) ≜ 2∣∣x∣∣.
Then, we have A2

ε ≜ ∑
2
j=0 ε

2
M,j(x).

Apply the developed learning-based control method to solve
this robust control problem. Based on Theorem 1-2, we build
the corresponding nominal plant as

ẋ = f(x)+h0(x)u0 + G0(x)v0 +
2

∑
i=1

hi(x)ui +
2

∑
i=1
Gi(x)vi

(63)

with G0(x) = [cos(x2
1 + 1),0,0,0]T , G1(x) = [0,2 sin(x1 +

1),0.2,0]T , and G2(x) = [0,2,0,0]. The critic network is
established for each player to stabilize the auxiliary system
(63). Specifically, the network is built based on (42) for leader
0 at the high level and on (43) for followers {1,2} at the
low level. The neuron structure for each network is designed
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as 6 − 8 − 1 with the input as [x1, x2, x3, x4, uj , vj] and the
output as Vj(x). Set the learning rate of the critic network as
ηj = 0.01 and select the sample interval as 0.05s. The initial
weights are randomly chosen within [−0.5,0.5]. Then, we
fix the input-to-hidden layer weights and update the hidden-
to-output layer weights based on (51). The learning process
spans a total of 400 time steps × 0.05 sample interval = 20s
with the initial state as x = [0.5,1,1,−0.5]T . The convergence
evolution of the critic network weights between the hidden
and the output layers is provided in Fig. 8. It shows that the
learning phase can achieve equilibrium with the cooperation of
three players. After that, we fix the critic network weights and
design the feedback controller for the leader based on (45) and
for the followers based on (48). The designed controllers are
applied to the original uncertain system. Select the uncertain
parameters as p1 = 1 and p2 = −1. We conduct the robust
control phase for 500 time steps × 0.05 sample interval = 25s,
and present the state trajectories and control evolution in Fig.
9 and Fig. 10, respectively. We can observe that our designed
robust-optimal transformation can quickly drive the system
to the equilibrium point, and ensure the stability even in
the presence of complex uncertainties. These results further
validate the equivalence of our robust-optimal transformation
mechanism and demonstrate the effectiveness of the developed
learning-based control method for hierarchical multiplayer
systems with mismatched uncertainties.

VI. CONCLUSION

In this paper, we design an intelligent hierarchical multi-
player system that is robust to the mismatched uncertainties.
This new problem has been formulated as the multiplayer
Stackelberg-Nash game integrated with a hierarchical robust-
optimal transformation. A two-level neural-RL-based method
is developed to stabilize the transformed nominal system,
which is also the solution to the original uncertain multi-
player system in hierarchy. This method also ensures that
the designed control policies of the players can achieve
the Stackelberg-Nash equilibrium. The stability proof of the
designed online learning process is also provided. Finally, the
numerical studies verify the effectiveness of the developed
hierarchical learning-based control approach.

Additionally, we also identify several directions for future
research and extensions. For example, we intend to implement
our designs in real-world problems, such as autonomous vehi-
cle coordination or smart grid energy management. This will
increase the practical applicability of our approach, provide
valuable insights into its performance in dynamic environ-
ments, and align with societal values by contributing to safer,
more efficient, and sustainable systems.
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[1] D. Liu, H. Liu, J. Lü, and F. L. Lewis, “Time-varying formation of
heterogeneous multiagent systems via reinforcement learning subject to
switching topologies,” IEEE Transactions on Circuits and Systems I:
Regular Papers, 2023, early access.

[2] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang,
M. Alban, I. Fadakar, Z. Chen, et al., “Smarts: Scalable multi-agent
reinforcement learning training school for autonomous driving,” arXiv
preprint arXiv:2010.09776, 2020.

[3] J. Xiao and M. Feroskhan, “Learning multi-pursuit evasion for safe tar-
geted navigation of drones,” IEEE Transactions on Artificial Intelligence,
2024, early access.

[4] A. Krnjaic, J. D. Thomas, G. Papoudakis, L. Schäfer, P. Börsting,
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