
Citation: Cheng, W.-C.; Ni, Z.; Zhong,

X.; Wei, M. Autonomous Robot Goal

Seeking and Collision Avoidance in

the Physical World: An Automated

Learning and Evaluation Framework

Based on the PPO Method. Appl. Sci.

2024, 14, 11020. https://doi.org/

10.3390/app142311020

Academic Editor: Vincent A. Cicirello

Received: 13 September 2024

Revised: 7 November 2024

Accepted: 23 November 2024

Published: 27 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Autonomous Robot Goal Seeking and Collision Avoidance in the
Physical World: An Automated Learning and Evaluation
Framework Based on the PPO Method
Wen-Chung Cheng , Zhen Ni * , Xiangnan Zhong and Minghan Wei

Department of Electrical Engineering and Computer Science, Florida Atlantic University,
Boca Raton, FL 33431, USA; wcheng3@fau.edu (W.-C.C.); xzhong@fau.edu (X.Z.); weim@fau.edu (M.W.)
* Correspondence: zhenni@fau.edu; Tel.: +1-561-297-0035

Abstract: Mobile robot navigation is a critical aspect of robotics, with applications spanning from
service robots to industrial automation. However, navigating in complex and dynamic environments
poses many challenges, such as avoiding obstacles, making decisions in real-time, and adapting to
new situations. Reinforcement Learning (RL) has emerged as a promising approach to enable robots
to learn navigation policies from their interactions with the environment. However, application of RL
methods to real-world tasks such as mobile robot navigation, and evaluating their performance under
various training–testing settings has not been sufficiently researched. In this paper, we have designed
an evaluation framework that investigates the RL algorithm’s generalization capability in regard to
unseen scenarios in terms of learning convergence and success rates by transferring learned policies
in simulation to physical environments. To achieve this, we designed a simulated environment in
Gazebo for training the robot over a high number of episodes. The training environment closely mim-
ics the typical indoor scenarios that a mobile robot can encounter, replicating real-world challenges.
For evaluation, we designed physical environments with and without unforeseen indoor scenarios.
This evaluation framework outputs statistical metrics, which we then use to conduct an extensive
study on a deep RL method, namely the proximal policy optimization (PPO). The results provide
valuable insights into the strengths and limitations of the method for mobile robot navigation. Our
experiments demonstrate that the trained model from simulations can be deployed to the previously
unseen physical world with a success rate of over 88%. The insights gained from our study can assist
practitioners and researchers in selecting suitable RL approaches and training–testing settings for
their specific robotic navigation tasks.

Keywords: automated learning framework; platform development; autonomous robot; deep
reinforcement learning; physical implementation; collision avoidance

1. Introduction

Mobile robot navigation is a fundamental research topic in the realm of robotics,
with applications across a wide range of domains [1,2]. The goal of enabling robots to
autonomously navigate through intricate and dynamic environments has spurred the
exploration of various methodologies, among which reinforcement learning (RL) has
emerged as a promising paradigm. The utilization of RL techniques for mobile robot
navigation builds upon a rich body of research. Prior studies have demonstrated the
potential of RL in addressing navigation challenges.

Among various RL methods, proximal policy optimization (PPO) has gained popular-
ity due to its efficiency and robustness [3–6]. PPO is a policy gradient method that updates
the policy by taking a step that is close to the previous policy, while ensuring a bounded
policy change. This helps to avoid large policy updates that can harm the algorithm’s
performance or cause instability. Several previous works have explored the use of PPO for
mobile robot navigation, with different aspects and objectives. For instance, the authors

Appl. Sci. 2024, 14, 11020. https://doi.org/10.3390/app142311020 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app142311020
https://doi.org/10.3390/app142311020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9291-2458
https://orcid.org/0000-0003-3166-4726
https://orcid.org/0000-0001-9522-8814
https://doi.org/10.3390/app142311020
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app142311020?type=check_update&version=1

Appl. Sci. 2024, 14, 11020 2 of 17

of [7] proposed a qualitative comparison of the most recent autonomous mobile robot
navigation techniques based on deep reinforcement learning, including PPO. However,
according to [8,9], PPO struggles in continuous action space and has a slow covergence rate.

According to the literature, deep reinforcement learning (DRL) has the potential to
enable robots to learn complex behaviors from high-dimensional sensory data without
explicit programming, and deep Q-network (DQN) [10–13] and deep deterministic policy
gradient (DDPG) [14–17] are two promising DRL algorithms for mobile robot navigation.
For instance, the authors of [18] devised the dynamic epsilon adjustment method integrated
with DRL to reduce the frequency of non-ideal agent behaviors and therefore improved
the control performance (i.e., goal rate). The authors of [19] proposed an improved deep
deterministic policy gradient (DDPG) path planning algorithm incorporating sequential
linear path planning (SLP) to address the challenge of navigating mobile robots through
large-scale dynamic environments. The proposed algorithm utilized the strengths of SLP to
generate a series of sub-goals for the robot to follow, while DDPG was used to refine the
path and avoid obstacles in real time. This approach also had a better success rate than the
traditional DDPG algorithm and the A+DDPG algorithm [20]. The authors of [21] proposed
a new DRL algorithm called a dueling Munchausen deep Q network (DM-DQN) for robot
path-planning. DM-DQN combined the advantages of dueling networks and Munchausen
deep Q-learning to improve exploration and convergence speed. In static environments,
DM-DQN achieved an average path length that was shorter than both DQN and Dueling
DQN. In dynamic environments, DM-DQN achieved a success rate that was higher than
DQN and Dueling DQN. The authors of [22] proposed a global path planning algorithm for
mobile robots based on the prior knowledge of PPoAMR, a heuristic method that used prior
knowledge particle swarm optimization (PKPSO) [23–25]. They used PPoAMR to find the
best fitness value for the path planning problem and then used PPO to optimize the path.
Moreover, they showed that their algorithm can generate optimal and smooth paths for
mobile robots in complex environments. However, as [26] pointed out, implementing DQN
or any extended DQN algorithms on physical robots is more challenging. They are also
often more resource-intensive. Moreover, DQN algorithms require extensive training data,
are sensitive to environmental changes, and necessitate careful hyperparameter tuning.
On the other hand, DDPG requires a large number of samples to converge to the optimal
policy [27].

The authors of [28] proposed a generalized computation graph that integrates both
model-free and model-based methods. Experiments with a simulated car and real-world
RC car demonstrated the effectiveness of the approach. In recent years, there has been a
growing interest in developing platforms that enable the evaluation of multi-agent rein-
forcement learning and general AI approaches. One such platform is SMART, introduced
by [29], an open-source system designed for multi-robot reinforcement learning (MRRL).
SMART integrated a simulation environment and a real-world multi-robot system to evalu-
ate AI approaches. In a similar vein, the Arcade Learning Environment (ALE) was proposed
by [30] as a platform for evaluating domain-independent AI. The ALE provided access
to hundreds of Atari 2600 game environments, offering a rigorous testbed for comparing
various AI techniques. The platform also includes publicly available benchmark agents
and software for further research and development. However, these approaches require
specialized hardware or resources, limiting accessibility for those with standard PC setups
to conduct research from home.

Sampling efficiency and safety issues limit robot control in the real world. One solution
is to train the robot control policy in a simulation environment and transfer it to the real
world. However, policies trained in simulations often perform poorly in the real world due
to imperfect modeling of reality in simulators [31].

The authors of [32] developed a training procedure, a set of actions available to the
robot, a suitable state representation, and a reward function. The setup was evaluated using
a simulated real-time environment. The authors compared a reference setup, different
goal-oriented exploration strategies, and two different robot kinematics (holonomic and

Appl. Sci. 2024, 14, 11020 3 of 17

differential). With dynamic obstacles, the robot was able to reach the desired goal in 93% of
the episodes. The task scenario was inspired by an indoor logistics setting, where one robot
is situated in an environment with multiple obstacles and should execute a transport order.
The robot’s goal was to travel to designated positions in the least amount of time, without
colliding with obstacles or with the walls of the environment. However, this was all done
in the simulated setting. The authors of [33] designed an automated evaluation framework
for Rapidly-Exploring Random Tree (RRT) frontier detector for indoor space navigation,
which addressed the performance verification aspect. However, the method being verified
was not of the RL category. The authors of [34] also designed a simulation framework
for training the Turtlebot robot agents. However, the framework was only designed for
simulation purposes. These important works have set the stage for the examination of PPO
in our study since the algorithm has a decent performance in robotic tasks and is easier to
implement in mobile robots.

The domain of mobile robot navigation presents a multitude of complexities, including
navigating through cluttered spaces, avoiding obstacles, and making decisions in real
time. To address these challenges, this study employs an automated evaluation framework
tailored for Turtlebot robots, designed to rigorously assess the performance of RL techniques
in a controlled environment. The investigation is anchored in an extensive analysis, focusing
on the PPO algorithm. This technique is scrutinized in a discrete action space. The
contributions of this paper are as follows:

• We redesigned and implemented a personalized automated learning and evaluation
framework based on an existing repository [34], allowing users to specify custom
training and testing parameters for both simulated and physical robots (Turtlebot).
This makes the platform adaptable and accessible to a wider range of users with
limited resources.

• To establish a robust benchmark for robotic research study, we design a simulated
environment in Gazebo to train the agent. The training environment closely mimics
typical indoor scenarios encountered by Turtlebot robots with common obstacles such
as walls and barriers, replicating real-world challenges.

• Our implementation provides statistical metrics, such as goal rate, for detailed com-
parison and analysis, with the flexibility to extend output to additional data such as
trajectory paths and robot LiDAR readings. Moreover, our implementation can be
extended to output additional metrics such as trajectory data, robot LiDAR data, etc.
The insights gleaned from this study are invaluable to practitioners and researchers
for their specific robotic navigation tasks.

• We conducted extensive physical experiments to evaluate the real-world navigation
performance under varied environment configurations. Our results show that the
agent trained in simulation can achieve a success rate of over 88% in our physical
environments. Simulated training is not restricted by physical constraints such as the
robot’s battery power, and is more efficient in training data collection. This finding
demonstrates the value of simulated training with RL for real world mobile navigation.

The organization of the paper is provided as follows. The algorithm background of
PPO is presented in Section 2. The automated framework development and the integration
of it with the PPO algorithm for robot navigation is presented in Section 3. The experimental
set-up along with the set parameters for each environment is presented in Section 4. The
results with relevant figures are provided in Section 5. Finally, Section 6 concludes the work.

2. PPO Algorithm Background

Schulman et al. [3] proposed the Proximal Policy Optimization (PPO) algorithm, which
presents a novel approach to reinforcement learning that focuses on improving the stability
and sample efficiency of policy optimization. PPO belongs to the family of policy gradient
methods and aims to address some of the limitations of earlier algorithms like TRPO [35].

PPO introduces the concept of a clipped surrogate objective function, which plays a
central role in its stability. This function limits the extent to which the policy can change

Appl. Sci. 2024, 14, 11020 4 of 17

during each update, effectively preventing overly aggressive updates that can lead to
policy divergence:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]. (1)

where Êt represents the empirical average across time t. ϵ = 0.2 is a hyperparameter. clip(·)
is the clipping function that restricts rt(θ) into the interval [1− ϵ, 1 + ϵ]. rt(θ) denotes the
probability ratio, which is the ratio between the current policy, πθ(at|st), and the policy
from the previous time step, πθold(at|st):

rt(θ) =
πθ(at|st)

πθold(at|st)
, (2)

Ât denotes the advantage estimator, which is defined as follows:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (3)

δt = Rt+1 + γVµ(st+1)−Vµ(st), (4)

where γ = 0.99 is the discount factor. λ = 2× 10−4 is the learning rate. t is the current
time step. T is the total number of time steps in the end. Rt+1 is the reward received in the
next time step. Vµ(st+1) is the value function of the next time step, and Vµ(st) is the current
value function. Both functions are output by the critic network with parameter set µ. By
constraining policy changes, PPO ensures smooth learning and reliable convergence.

Another crucial aspect of PPO is its use of importance sampling. This technique
enables a balance between exploration and exploitation by adjusting the policy updates
based on the ratio of probabilities between the new and old policies. This allows the agent
to explore new actions while still staying close to its current policy, preventing excessive
deviations. The PPO algorithm also boasts high sample efficiency, making it particularly
suitable for applications where data collection is resource-intensive. It efficiently learns
from a relatively small amount of data, which is vital for real-world scenarios where
collecting extensive data can be costly or time-consuming.

3. Integration of the PPO Algorithm for Robot Navigation

For both the simulation and physical experiments study, a TurtleBot machine learning
development package for ROS (Robot Operating System) has been used [36]. It is a collec-
tion of software tools and libraries that enable the development and deployment of machine
learning algorithms on TurtleBot robots, and provides a wide range of functionalities, such
as data collection, data pre-processing, training, and evaluation of machine learning models.
At the beginning of each training episode, the agent is assigned a random goal. The agent
then learns to navigate to goals based on its LiDAR sensor data. This demonstration is
shown in Figure 1a.

The agent takes 360-degree LiDAR scan data, the current heading to the goal, the
current distance to the goal, the current distance to the closest obstacle, and the current
heading to the closest obstacle as inputs. The LiDAR scan data input is composed of
360 infrared readings of distances between the agent and the obstacles around it. More
details about the sensor can be found in Appendix A. The heading of any detected point
with respect to the agent takes value in [−π, π), where 0 rad corresponds to the forward
direction of the agent, as shown in Figure 1b. The heading to the point of interest increases
as the agent turns counterclockwise towards the point, and decreases as the agent turns the
other way. The agent can perform four actions as shown in Figure 1a. Action 1 is when the
agent is stationary (lws = 0 m/s, rws = 0 m/s, where lws represents left wheel speed, and
rws represents right wheel speed). Actions 2 and 3 are turning clockwise (lws = 0.4 m/s,
rws = 0 m/s) and counterclockwise (lws = 0 m/s, rws = 0.4 m/s), respectively. Action 4 is
going forward only (lws = 0.4 m/s, rws = 0.4 m/s), so the agent’s movement is limited to
moving forward.

Appl. Sci. 2024, 14, 11020 5 of 17

(a) Agent actions and input schematic (b) Agent coordinate frame convention

Figure 1. (a) Agent learning its surroundings using LiDAR data while navigating to the goal. The
agent has four discrete actions available in this environment, where Action 1 is not moving, Action
2 is turning clockwise, Action 3 is turning counter-clockwise, and Action 4 is moving forward.
(b) Coordinate frame of the agent, where 0 rad is the forward direction of the agent.

3.1. Agent Model

Figure 2 is the neural network structure of the PPO method used in the training. Note
that the PPO method includes both an actor and a critic networks. As can be seen in
Figure 2, the actor network is made up of an input layer followed by a ReLU activation
function, a hidden layer of 256 nodes followed by another ReLU activation function, which
is followed by another hidden layer of 256 nodes and a ReLU activation function, and an
output layer followed by a SoftMax activation function that outputs one of the four actions
at each step. The critic network has a similar structure as the actor network, except that its
output is a single state value of the current state. Note that the heading and distance to the
goal and obstacles are obtained using the odometry data of the robot agent.

3.2. PPO Workflow

The PPO update script is structured as in Figure 3. At each time step, the actor network
within the PPO agent exhibits some action at and receives a tuple of the current state st, the
action taken at, the reward received Rt+1, the logarithmic probability of the action taken
logprob(at), and the binary episode termination flag Flag (the flag takes a value of either 1
or 0). The tuple is then stored into a trajectory, which will be used to update the PPO agent
every other 500 time steps, where each time step is at the millisecond scale. During each
update, the actor network outputs the policy of the current state πθ , which will be used to
calculate the probability ratio rt(θ). The state value returned by the critic network is then
used to estimate the advantage function Ât. Then both Ât and rt(θ) are used to calculate
the actor network objective function LCLIP(θ), which is used to update the actor neural
network weights. The aforementioned calculations are boxed in blue to show that they are
specific to the updates of the actor network. At the end, the current policy πθ is saved as
the previous policy πθold , and the current policy πθ is updated using stochastic gradient
descent (SGD). The current value function Vµ(st) is updated using SGD, based on the error
between predicted and actual values. The aforementioned calculations are boxed in red to
show that they are specific to the updates of the critic network. Note that the solid arrow
lines represent direct maneuver of the variables, whereas the dotted arrow lines represent
the updates of the networks.

Appl. Sci. 2024, 14, 11020 6 of 17

(a) Actor Network (b) Critic Network

Figure 2. (a) Structure of the actor network. The network takes 6 inputs. The LiDAR data input is
composed of 360 infrared readings of distances between the agent and the obstacles around it. The
past action input is composed of left and right wheel speeds from the previous time step. The other
4 inputs are of single values. The inputs are sent through a ReLU activation function to a hidden
layer of 256 nodes. Afterwards, they are sent through another ReLU activation function to another
hidden layer of 256 nodes. The output is then sent through first a ReLU and then a SoftMax activation
function, which would be either of the 4 action values. (b) Structure of the critic network. The network
takes the same inputs as the actor network. The output is the value of the agent’s current state.

Figure 3. PPO agent update workflow. The PPO agent is updated every other 500 time steps. Each
of the trajectory memory tuple contains the current state st, the action taken at, the reward received
Rt+1, the logarithmic probability of the action taken logprob(at), and the binary episode termination
flag Flag. The goal of the actor network here is to maximize the value function output by the critic
network. The operations within the blue box are specific to the actor network updates, whereas the
operations within the red box are specific to the critic network updates. Note that the solid arrow
lines represent direct maneuver of the variables, whereas the dotted arrow lines represent the updates
of the networks.

Appl. Sci. 2024, 14, 11020 7 of 17

3.3. Overall Training Workflow

To make the whole evaluation more streamlined and autonomous, we have redesigned
an evaluation framework. This framework is structured as in Figure 4. At the beginning of
the current training round, the user can specify several parameters. For instance, the user
can specify whether to conduct testing or training on the agent. An environment choice
index can be specified as well, allowing the user to select different simulated environments
for training/testing. The user can also choose whether to conduct the study in a simulated
or real environment. The number of training/testing episodes (N) and the option to load a
previously trained model can also be specified. When the episode termination condition
is met, the current goal rate will be calculated and saved to an array of N episodes of
goal rates, which will be saved to a CSV file for further analysis. Algorithm 1 provides
pseudocode for the entire training process. Action A in the pseudocode can be any one of
the four actions shown in Figure 1a and explained in Section 3, whereas the current state S
and the new state S′ (the state from the next step) are the array containing the six inputs
shown in Figure 2 and explained in Section 3.1.

Algorithm 1 Training Pseudocode
User Input:
TestTrainingFlag, Env, RealSimFlag, NumEp, LoadFlag

1: EpisodeSuccess = [∅]
2: if RealSimFlag = Sim then
3: Load the robot model and Gazebo model of Env
4: else
5: Obtain the live LiDAR data from the physical robot in the real Env
6: end if
7: if LoadFlag = TRUE then
8: Load previously saved policy onto PPOAgent
9: else

10: Initialize random policy of PPOAgent
11: end if
12: for Episode = 1, 2, . . . , NumEp do
13: Initialize S from Env
14: for Step = 1, 2, . . . , 500 do
15: Choose A from S using policy derived from PPOAgent
16: Take action A, observe S′

17: S← S′

18: if TestTrainingFlag = Training then
19: Update PPOAgent
20: end if
21: if S′ = Collision or Step > 500 then
22: Break
23: end if
24: end for
25: if S′ = Collision or Step > 500 then
26: Append 0 to EpisodeSuccess
27: else
28: Append 1 to EpisodeSuccess
29: end if
30: GoalRateCSV ← AVERAGE(EpisodeSuccess)
31: end for
32: Output GoalRateCSV

Appl. Sci. 2024, 14, 11020 8 of 17

Figure 4. Overall workflow. The user can specify the parameters needed at the beginning of the
current training round. In each episode, the agent receives the new state st, when taking action at.
When the episode termination condition is met (i.e., the binary episode termination flag Flag is set to
1), the current goal rate will be calculated and saved to an array, which will be saved to a CSV file for
further analysis.

3.4. Reward Function

The reward function has two components, each influencing the agent’s actions and
learning process. The components include a goal-oriented reward function, which cal-
culates the reward contributed by the location of the goal relative to the agent, and an
obstacle-oriented reward function, which calculates the reward contributed by the location
of the closest obstacle relative to the agent. The composition of these elements is carefully
designed to meet the specific objectives and shape the agent’s behavior accordingly.

The goal-oriented reward function is formally represented as Equation (5):

RtGoal =

{−10 ΔdGoal > 0.5 m, ΔdGoal ≤ 0 m

200 × ΔdGoal ×
(
1 − 4 × ∣∣0.5 −

{
A
π

}∣∣) 0 m < ΔdGoal ≤ 0.5 m
, (5)

The goal distance rate is calculated as in Equation (6), which represents the change of
agent to goal distance between steps:

Goal distance rate = ΔdGoal = PastGoalDistance − GoalDistance (6)

Intuitively if ΔdGoal ≤ 0 m, the agent is further away from the goal than the previous
time step. GH = arctan

ygoal−yrobot
xgoal−xrobot

− θ represents the goal heading, where (xgoal , ygoal) and

(xrobot, yrobot) are the Cartesian coordinates of the goal and robot, respectively, and θ is the
robot’s orientation. The {·} function takes the fraction part of any calculated result inside,
where A = (0.5 × (GH + π)) (mod 2π), which is the remainder after division by 2π. We
partially follow the implementation in the original work [36] to define A with an offset
value of π to ensure that the robot receives the maximum rewards when facing the goal
directly. Figures 5 and 6 show the hardware representations of the robot, obstacles, and
goal positions, where Figure 5 shows an example of how the goal distance and heading
change for the agent. Figure 7a shows the plot of the goal-oriented reward function. As can
be seen in the plot, the agent receives the most reward if it is facing the goal directly and is
close to it. The agent receives the largest penalty when facing away from the goal. Note
that the green arrow line represents the path of the agent.

The obstacle-oriented reward function is formally represented as Equation (7):

Appl. Sci. 2024, 14, 11020 9 of 17

RtObstacle =

{
5 ∆dObstacle ≤ 0 m

−400× ∆dObstacle ×
(
1− 4×

∣∣0.5−
{
B
π

}∣∣) ∆dObstacle > 0 m
, (7)

The obstacle distance rate is calculated as in Equation (8), which represents the change
of agent to closest obstacle between steps:

Obstacle distance rate = ∆dObstacle = PastObstacleDistance−ObstacleDistance (8)

Intuitively if ∆dObstacle ≤ 0 m, the agent is further away from the closest obstacle than
the previous time step. OH represents the obstacle heading, where B = (0.5× (OH + π))
(mod 2π). We partially follow the implementation in the original work [36] to define B
with an offset value of π to ensure that the robot receives the minimum rewards when
directly facing the closest obstacle. Figure 6 demonstrates pictorially one case of how the
obstacle distance and heading might change for the agent. Figure 7b shows the plot of the
obstacle-oriented reward function. As can be seen in the plot, the agent receives the most
reward if it is facing away from the closest obstacle. The agent receives the largest penalty
when facing the obstacle directly and is close to it.

(a) Goal distance representation (b) Goal heading representation

Figure 5. (a) Current and past goal distance and (b) goal heading representation. The green arrow
line represents the path of the agent.

(a) Obstacle distance representation (b) Obstacle heading representation

Figure 6. (a) Current and past obstacle distance and (b) obstacle heading representation.

Appl. Sci. 2024, 14, 11020 10 of 17

(a) Goal−Oriented Reward Function Plots

(b) Obstacle−Oriented Reward Function Plots

Figure 7. (a) The reward plots related to goal heading and distance. The agent receives maximum
reward if it is facing the goal directly and is close to it. (b) The reward plots related to obstacle
heading and distance. The agent receives the largest penalty when facing the obstacle directly and
close to it.

4. Experimental Set-Up
4.1. Source Simulated Maze

The simulated training environment used for this framework was created using the
Gazebo simulator [37], which provides realistic robotic movements, a physics engine, and
the generation of sensor data combined with noise. The source simulated maze, shown in
Figure 8, is a customized map with an area of approximately 82.75 m2 (free space area).
This simulated maze is an approximate replica of one of the target mazes. For additional
information regarding the parameters chosen for the training phase in this particular
simulation environment, see Appendix B.

4.2. Testing Physical Environments

The first physical maze, shown in Figure 9a, is a customized map free of obstacles.
The second physical maze, shown in Figure 9b, is another customized map that is similar
to the simulated environment. Note this maze has walls. The third physical maze, shown
in Figure 9c, is another customized map that has a slab of wall in the middle that allows the
robot to pass through on both sides. These mazes will be the physical testing environments
for the agent. For additional information regarding the parameters chosen for the training
and testing phases in this particular physical environment, see Appendix C.

Appl. Sci. 2024, 14, 11020 11 of 17

Figure 8. The custom simulated environment. Dimension = 12.50 m × 8.00 m. Environment size ≈
82.75 m2.

(a) (b)

(c)

Figure 9. (a) Physical Maze 1, (b) Maze 2, and (c) Maze 3. (a) Physical Maze 1. Dimension = 12.50 m
× 8.00 m. Environment size ≈ 82.75 m2. (b) Physical Maze 2. Dimension = 12.50 m × 8.00 m.
Environment size ≈ 82.75 m2. (c) Physical Maze 3. Dimension = 12.50 m × 8.00 m. Environment size
≈ 82.75 m2.

5. Results Analysis
5.1. Simulation Training

The agent was first trained in a simulated environment as shown in Figure 8 for
5000 episodes. This number of episodes was chosen because a reasonable performance was
reached (a goal rate of 0.78). Figures 10–12 show the success rate, the total number of goals
reached, and the average rewards obtained over all training episodes. The x-axis in each
of the figures represents the total number of episodes run, and the y-axis represents the
respective metric being evaluated.

Appl. Sci. 2024, 14, 11020 12 of 17

Figure 10. The goal rate for all training episodes in the simulated environment with obstacles. The
simulated environment, shown in Figure 8, was used. One of the advantages of simulated training is
abundant training episodes without a time-consuming setup. After about 5000 episodes, the agent’s
goal rate converged to about 79%.

Figure 11. The total number of goals reached for all training episodes in the simulated environment
with obstacles. The simulated environment, shown in Figure 8, was used. Again, as the agent
improves at reaching the target, the curve should appear more linear, which is shown here close to
the end of 5000 episodes.

Figure 12. Average rewards for all training episodes in the simulated environment with obstacles.
As the agent improves at the task at hand, the average rewards should become more positive and
converge to a value, which is shown here.

Appl. Sci. 2024, 14, 11020 13 of 17

All figures have shown sufficient performance by the agent because the agent showed
a goal rate of approximately 79% at the end of the 5000-episode training, as demonstrated
in Figure 10. In Figure 11, the line representing the total number of goals reached is almost
at 45 degrees relative to the x-axis near the end of the training. This means that the agent
is almost always reaching the goal at each episode. In addition, the average rewards
obtained was becoming more positive and stabilized (the curve is becoming flatter in the
positive region), as shown in Figure 12. The network weights at the end of this training
were transferred to environments as shown in Figure 9 for physical testing. To assess the
reliability of this training, we repeated the same training process for 100 runs, where each
run lasts for 5000 episodes. The results are in Figure 13. The blue line shows the agent’s
mean goal rate over 5000 episodes for all 100 runs, whereas the shaded region indicates the
95% confidence interval across all runs. This interval provides insight into the variability of
performance, which converges as the agent stabilizes its learning. We have also trained a
basic DQN agent under the same settings, but the goal rate converged at around only 10%.

Figure 13. Confidence interval plot of 100 independent PPO training runs across 5000 episodes. The
shaded region around the mean represents the 95% confidence interval, quantifying run variability
and training process robustness.

5.2. Physical Testing

We evaluate the performance of the agent in the physical environments as shown in
Figure 9 for 5 runs of 100 trials. A run consists of any number of trials (in this case, 100),
whereas the robot attempting to navigate to the goal position is counted as a trial. Table 1
shows the success rates over all the 5 runs of 100 trials in the environments mentioned.
We can see that the agent has the highest average goal rate in Maze 1 since Maze 1 is an
empty maze. In Maze 2, the agent has a goal rate of 0.724, which is comparable to the
converged goal rate in the simulation training. The agent has a goal rate of 0.881 in Maze 3
since there is a slab of wall in the middle and it is easier for the robot to pass through either
side. Although the agent achieved a success rate of approximately 79% in the simulated
environment (Simulated Maze 2), its performance dropped slightly to 72.4% in the physical
environment (Maze 2). This difference is attributed to the environmental noise present in
the physical setting, which is absent in simulation.

Table 1. Average Goal Rate. The goal rate value is first calculated out of 100 trials and then averaged
over 5 runs.

Maze 1 Maze 2 Maze 3

Average Goal Rate 0.952 0.724 0.881

Appl. Sci. 2024, 14, 11020 14 of 17

Figure 14 shows that the agent reached its goals the quickest in Maze 1, which is an
empty maze, as indicated by the steep slope of the blue line. Maze 2, with a goal rate of
0.724, proved to be the most challenging due to its narrower central open space compared
to the other mazes. In Maze 3, the agent reached its goals at a moderate pace, navigating
around a central wall by successfully learning to pass on either side. This is reflected by the
more gradual slope of the yellow line in the figure.

Figure 14. Average cumulative goals for all 5 runs of 100 trials in physical environments shown in
Figure 9. It can be seen clearly that the agent reaches goals more often in Maze 1 since it is a free
maze, whereas the agent reaches the goals least often in Maze 2 since there are more walls.

6. Conclusions

In this paper, we design an existing automated evaluation framework so that the
user can input more specific training parameters before the actual testing, allowing for
easily repeatable experiments with any number of iterations. Our work also allows the
framework to evaluate the agent’s testing performance. We show this by first defining a
source simulated environment that is similar to one of the target real-world environments.
We then set up three physical environments (an empty maze as Maze 1, a maze similar
to the simulation maze as Maze 2, and the maze with one slab of wall in the middle as
Maze 3) to show the performance difference of the agent in different physical environments
including familiar and unforeseen environments. Our experiments show that sufficient
training in simulation can greatly improve the agent’s performance when transferred to
physical environments. With our framework, statistical results such as goal rates can be
output as a CSV file for later analysis.

Author Contributions: W.-C.C., Z.N., and X.Z. identified the topic, formulated the problem, and
decided the system-level framework. W.-C.C. integrated the method, conducted the simulation and
physical experiments, collected the data, and initialized the draft. M.W. and Z.N. provided related
literature, suggested the experiment designs, and discussed the comparative results. All authors
analyzed the experimental data, such as figures and tables, and proofread the manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Science Foundation under Grant 2047064,
2047010, 1947418, and 1947419.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Source code and case study data are available at https://github.com/
Ac31415/RL-Auto-Eval-Framework, accessed on 22 November 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

https://github.com/Ac31415/RL-Auto-Eval-Framework
https://github.com/Ac31415/RL-Auto-Eval-Framework

Appl. Sci. 2024, 14, 11020 15 of 17

Appendix A. Sensor Specifications

In this Appendix, we present the specifications of the LiDAR sensor used. More details
can be found in the manufacturer’s datasheet [38].

• Hardware: 360 Laser Distance Sensor LDS-01, Hitachi-LG Data Storage, Inc., Tokyo,
Japan

• Quantity: 1
• Dimensions: 69.5 (W) × 95.5 (D) × 39.5 (H) mm
• Distance Range: 120–3500 mm
• Sensor Position: 192 mm from the ground

Appendix B. Simulation Training Parameters

In this appendix, we specify the hyperparameters used for simulation training, along-
side various implementation details. These parameters are set so that the algorithm can
converge within a reasonable time frame.

• Episode limit: 5000
• Update time step (memory limit): 500
• Policy update epochs: 50
• PPO clip parameter: 0.2
• Discount factor (γ): 2× 10−4

Appendix C. Physical Training and Testing Parameters

In this appendix, we specify the hyperparameters used for physical training and
testing, alongside various implementation details. Note that during physical testing,
update parameters were not used.

• Number of runs: 5
• Number of trials of each run: 100
• Update time step (memory limit): 500
• Policy update epochs: 50
• PPO clip parameter: 0.2
• Discount factor (γ): 2× 10−4

References
1. Gonzalez-Aguirre, J.A.; Osorio-Oliveros, R.; Rodriguez-Hernandez, K.L.; Lizárraga-Iturralde, J.; Morales Menendez, R.; Ramirez-

Mendoza, R.A.; Ramirez-Moreno, M.A.; Lozoya-Santos, J.d.J. Service robots: Trends and technology. Appl. Sci. 2021, 11, 10702.
[CrossRef]

2. O’Brien, M.; Williams, J.; Chen, S.; Pitt, A.; Arkin, R.; Kottege, N. Dynamic task allocation approaches for coordinated exploration
of Subterranean environments. Auton. Robot. 2023, 47, 1559–1577. [CrossRef]

3. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
4. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage

estimation. arXiv 2015, arXiv:1506.02438.
5. Heess, N.; Tb, D.; Sriram, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.; et al. Emergence of

locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.
6. Wang, Y.; Wang, L.; Zhao, Y. Research on door opening operation of mobile robotic arm based on reinforcement learning. Appl.

Sci. 2022, 12, 5204. [CrossRef]
7. Plasencia-Salgueiro, A.d.J. Deep Reinforcement Learning for Autonomous Mobile Robot Navigation. In Artificial Intelligence for

Robotics and Autonomous Systems Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 195–237.
8. Holubar, M.S.; Wiering, M.A. Continuous-action reinforcement learning for playing racing games: Comparing SPG to PPO. arXiv

2020, arXiv:2001.05270.
9. Del Rio, A.; Jimenez, D.; Serrano, J. Comparative Analysis of A3C and PPO Algorithms in Reinforcement Learning: A Survey on

General Environments. IEEE Access 2024, 12, 146795–146806.
10. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.
11. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

http://doi.org/10.3390/app112210702
http://dx.doi.org/10.1007/s10514-023-10142-4
http://dx.doi.org/10.3390/app12105204
http://dx.doi.org/10.1038/nature14236

Appl. Sci. 2024, 14, 11020 16 of 17

12. Kim, K. Multi-agent deep Q network to enhance the reinforcement learning for delayed reward system. Appl. Sci. 2022, 12, 3520.
[CrossRef]

13. Pérez-Gil, Ó.; Barea, R.; López-Guillén, E.; Bergasa, L.M.; Gomez-Huelamo, C.; Gutiérrez, R.; Diaz-Diaz, A. Deep reinforcement
learning based control for Autonomous Vehicles in CARLA. Multimed. Tools Appl. 2022, 81, 3553–3576. [CrossRef]

14. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

15. Barth-Maron, G.; Hoffman, M.W.; Budden, D.; Dabney, W.; Horgan, D.; Tb, D.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed
distributional deterministic policy gradients. arXiv 2018, arXiv:1804.08617.

16. Egbomwan, O.E.; Liu, S.; Chaoui, H. Twin Delayed Deep Deterministic Policy Gradient (TD3) Based Virtual Inertia Control for
Inverter-Interfacing DGs in Microgrids. IEEE Syst. J. 2022, 17, 2122–2132. [CrossRef]

17. Kargin, T.C.; Kołota, J. A Reinforcement Learning Approach for Continuum Robot Control. J. Intell. Robot. Syst. 2023, 109, 1–14.
[CrossRef]

18. Cheng, W.C.A.; Ni, Z.; Zhong, X. A new deep Q-learning method with dynamic epsilon adjustment and path planner assisted
techniques for Turtlebot mobile robot. In Proceedings of the Synthetic Data for Artificial Intelligence and Machine Learning:
Tools, Techniques, and Applications, Orlando, FL, USA, 13 June 2023; Volume 12529, pp. 227–237.

19. Chen, Y.; Liang, L. SLP-Improved DDPG Path-Planning Algorithm for Mobile Robot in Large-Scale Dynamic Environment.
Sensors 2023, 23, 3521. [CrossRef]

20. He, N.; Yang, S.; Li, F.; Trajanovski, S.; Kuipers, F.A.; Fu, X. A-DDPG: Attention mechanism-based deep reinforcement learning
for NFV. In Proceedings of the 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan,
25–28 June 2021; pp. 1–10.

21. Gu, Y.; Zhu, Z.; Lv, J.; Shi, L.; Hou, Z.; Xu, S. DM-DQN: Dueling Munchausen deep Q network for robot path planning. Complex
Intell. Syst. 2023, 9, 4287–4300. [CrossRef]

22. Jia, L.; Li, J.; Ni, H.; Zhang, D. Autonomous mobile robot global path planning: A prior information-based particle swarm
optimization approach. Control Theory Technol. 2023, 21, 173–189. [CrossRef]

23. Hamami, M.G.M.; Ismail, Z.H. A Systematic Review on Particle Swarm Optimization Towards Target Search in The Swarm
Robotics Domain. Arch. Comput. Methods Eng. 2022, 1–20. [CrossRef]

24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

25. Wang, H.; Ding, Y.; Xu, H. Particle swarm optimization service composition algorithm based on prior knowledge. J. Intell. Manuf.
2022, 1–19. [CrossRef]

26. Escobar-Naranjo, J.; Caiza, G.; Ayala, P.; Jordan, E.; Garcia, C.A.; Garcia, M.V. Autonomous navigation of robots: Optimization
with DQN. Appl. Sci. 2023, 13, 7202. [CrossRef]

27. Sumiea, E.H.; Abdulkadir, S.J.; Alhussian, H.S.; Al-Selwi, S.M.; Alqushaibi, A.; Ragab, M.G.; Fati, S.M. Deep deterministic policy
gradient algorithm: A systematic review. Heliyon 2024, 10, e30697. [CrossRef] [PubMed]

28. Kahn, G.; Villaflor, A.; Ding, B.; Abbeel, P.; Levine, S. Self-supervised deep reinforcement learning with generalized computation
graphs for robot navigation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 5129–5136.

29. Liang, Z.; Cao, J.; Jiang, S.; Saxena, D.; Chen, J.; Xu, H. From multi-agent to multi-robot: A scalable training and evaluation
platform for multi-robot reinforcement learning. arXiv 2022, arXiv:2206.09590.

30. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The arcade learning environment: An evaluation platform for general agents.
J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]

31. Ju, H.; Juan, R.; Gomez, R.; Nakamura, K.; Li, G. Transferring policy of deep reinforcement learning from simulation to reality for
robotics. Nat. Mach. Intell. 2022, 4, 1077–1087. [CrossRef]

32. Gromniak, M.; Stenzel, J. Deep reinforcement learning for mobile robot navigation. In Proceedings of the 2019 4th Asia-Pacific
Conference on Intelligent Robot Systems (ACIRS), Nagoya, Japan, 13–15 July 2019; pp. 68–73.

33. Andy, W.C.C.; Marty, W.Y.C.; Ni, Z.; Zhong, X. An automated statistical evaluation framework of rapidly-exploring random tree
frontier detector for indoor space exploration. In Proceedings of the 2022 4th International Conference on Control and Robotics
(ICCR), Guangzhou, China, 2–4 December 2022; pp. 1–7.

34. Frost, M.; Bulog, E.; Williams, H. Autonav RL Gym. 2019. Available online: https://github.com/SfTI-Robotics/Autonav-RL-Gym
(accessed on 24 April 2022).

35. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 1889–1897.

36. ROBOTIS-GIT. turtlebot3_machine_learning. 2018. Available online: https://github.com/ROBOTIS-GIT/turtlebot3_machine_
learning (accessed on 24 April 2022).

http://dx.doi.org/10.3390/app12073520
http://dx.doi.org/10.1007/s11042-021-11437-3
http://dx.doi.org/10.1109/JSYST.2022.3222262
http://dx.doi.org/10.1007/s10846-023-02003-0
http://dx.doi.org/10.3390/s23073521
http://dx.doi.org/10.1007/s40747-022-00948-7
http://dx.doi.org/10.1007/s11768-023-00139-w
http://dx.doi.org/10.1007/s11831-022-09819-3
http://dx.doi.org/10.1007/s10845-022-02032-w
http://dx.doi.org/10.3390/app13127202
http://dx.doi.org/10.1016/j.heliyon.2024.e30697
http://www.ncbi.nlm.nih.gov/pubmed/38765095
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1038/s42256-022-00573-6
https://github.com/SfTI-Robotics/Autonav-RL-Gym
https://github.com/ROBOTIS-GIT/turtlebot3_machine_learning
https://github.com/ROBOTIS-GIT/turtlebot3_machine_learning

Appl. Sci. 2024, 14, 11020 17 of 17

37. Gazebo. Open Source Robotics Foundation. 2014. Available online: http://gazebosim.org/ (accessed on 24 April 2022).
38. ROBOTIS-GIT. LDS Specifications. Available online: https://emanual.robotis.com/docs/en/platform/turtlebot3/features/

#components (accessed on 24 April 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://gazebosim.org/
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#components
https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#components

	Introduction
	PPO Algorithm Background
	Integration of the PPO Algorithm for Robot Navigation
	Agent Model
	PPO Workflow
	Overall Training Workflow
	Reward Function

	Experimental Set-Up
	Source Simulated Maze
	Testing Physical Environments

	Results Analysis
	Simulation Training
	Physical Testing

	Conclusions
	Sensor Specifications
	Simulation Training Parameters
	Physical Training and Testing Parameters
	References

