
Springer Nature 2021 LATEX template

Debugging Convergence Problems in Probabilistic Programs via

Program Representation Learning with SixthSense

Zixin Huang1*, Saikat Dutta2 and Sasa Misailovic1

1*Department of Computer Science, University of Illinois, 201 North Goodwin Avenue,
Urbana, 61820, Illinois, USA.

2Department of Computer Science, Cornell University, 402 Gates Hall, Ithaca, 14853, New
York, USA.

*Corresponding author(s). E-mail(s): zixinh2@illinois.edu;
Contributing authors: saikatd@cornell.edu; misailo@illinois.edu;

Abstract

Probabilistic programming aims to open the power of Bayesian reasoning to software developers and
scientists, but identification of problems during inference and debugging are left entirely to the devel-
opers and typically require significant statistical expertise. A common class of problems when writing
probabilistic programs is the lack of convergence of the probabilistic programs to their posterior distributions.
We present SixthSense, a novel approach for predicting probabilistic program convergence ahead of run
and its application to debugging convergence problems in probabilistic programs. SixthSense’s train-
ing algorithm learns a classifier that can predict whether a previously unseen probabilistic program
will converge. It encodes the syntax of a probabilistic program as motifs – fragments of the syntac-
tic program paths. The decisions of the classifier are interpretable and can be used to suggest the
program features that contributed significantly to program convergence or non-convergence. We also
present an algorithm for augmenting a set of training probabilistic programs that uses guided mutation.
We evaluated SixthSense on a broad range of widely used probabilistic programs. Our results
show that SixthSense features are effective in predicting convergence of programs for given
inference algorithms. SixthSense obtained Accuracy of over 78% for predicting convergence, sub-
stantially above the state-of-the-art techniques for predicting program properties Code2Vec and
Code2Seq. We show the ability of SixthSense to guide the debugging of convergence problems,
which pinpoints the causes of non-convergence significantly better by Stan’s built-in warnings.

Keywords: Probabilistic Programming, Debugging, Machine Learning

1 Introduction

Probabilistic programs (PP) express complicated
Bayesian models as simple computer programs, used
in various domains [1–4], including the important
applications like epidemic modeling [5] and single-cell
genomics [6]. Probabilistic languages extend the
conventional languages with constructs for sampling

from probabilistic distributions (prior), condition-
ing on data, and probabilistic queries, such as the
distribution reshaped by conditioning on the data
(posterior) [7]. Probabilistic programming systems
(PP systems) compile the programs and compute
the results using an efficient inference algorithm,
while hiding the intricate details of inference. Most
practical inference algorithms are non-deterministic

1

Springer Nature 2021 LATEX template

and approximate. For instance, Markov Chain Monte
Carlo (MCMC) algorithms [8–10] run a probabilistic
program multiple times (each of which is referred
to as an iteration) to sample data points from the
posterior distribution. They drive today’s popular
PP systems, such as Stan [11].

MCMC algorithms have a nice theoretical prop-
erty: in the limit, the samples they generate come from
the correct posterior distribution. But, in practice, a
user can only execute the algorithm for a finite time
budget and hence needs to fine-tune the algorithms
to balance between quality of inference and execution
time. This complicates development: the programmer
needs to write the program in a way that interacts
well with the algorithm and select some parameters
specific for the inference algorithms. For instance,
inference may fail to properly initialize, silently pro-
duce inaccurate results, or generate non-independent
samples from the posterior distribution. Even iden-
tifying and afterward resolving these challenges
currently requires significant statistical expertise.

An important property for successful inference is
convergence, since non-convergence is often a cause
of inaccurate (or wrong) result. Convergence means
the samples generated by the inference algorithm
represent the target distribution. While there exists
metrics for convergence (e.g. the Gelman-Rubin
diagnostic [12]) in statistic literature, there lacks a
comprehensive study of what model features could
cause non-convergence. Thus, getting a data-driven
understanding of the causes could help developers
to debug the non-convergence issues, and does not
require expert knowledge. Moreover, the existing
convergence diagnostics are not predictive – they
cannot be determined ahead of time i.e. without
running the program. Building prediction model for
converges ahead of time would save the time to run
programs (often taking minutes or more). It would
also enable a faster program debug/update cycle.

1.1 SixthSense

We present SixthSense, the first approach for identi-
fying convergence problems in probabilistic programs
ahead-of-run. SixthSense adopts a learning approach:
its trains a classifier that can, for a previously unseen
probabilistic program and its data, predict whether
the program will converge in a specified number of
steps (for a given threshold of the Gelman-Rubin
diagnostic). The decisions of the classifier are inter-
pretable and can be used to suggest which program

features lead to the convergence/non-convergence of
the program.

To train such a classifier, SixthSense needs to over-
come several challenges that are beyond the big-code
techniques studied for conventional languages [13–17].
First, probabilistic programs are small (20-100 lines
of code) compared to conventional programs but their
execution is complicated, with conditioning state-
ments for data and non-standard semantics that per-
forms Bayesian inference. Second, due to their relative
novelty, there are few publicly-available probabilistic
programs that can be used for training. Finally, we
should be able to interpret why the programs are pre-
dicted to convergence or non-convergence in order to
guide developers to debug the non-convergence issues.
Representing Structural, Data, and Runtime
Features: To learn a classifier, we embed the syn-
tactic and semantic program features in a numerical
vector. To encode program structure, we observe
that many snippets of code in probabilistic programs
form patterns (sampling from distributions, hier-
archical models, relations between variables) that
may repeat within the single program or across
programs. We identify those patterns as motifs –
fragments of probabilistic program code, consisting
of several adjacent abstract-syntax-tree nodes (e.g.,
neighboring statements or expressions).

SixthSense learns the set of features from
the subset of motifs it identifies in the code. It
groups together similar motifs by calculating a
low-dimensional representation of the motifs using
randomized discrete projections [18]. This way, it can
balance the accuracy of prediction and the size of
the learned models. We also engineered a set of data
features (e.g., means, variances) and the runtime fea-
tures – diagnostics from early warmup iterations that
the inference algorithms compute as they execute.
These features cannot be learned by the approaches
that focus on static code features [13–16].
Mutation-Based Program Generation: We
present a novel technique based on program and data
mutations that produces a diverse set of probabilistic
programs with a good balance between converging
and non-converging programs, with the goal to
augment the training set. Our technique takes a set
of seed probabilistic programs as input, analyzes
them and applies a set of pre-defined mutations
which aim to change the semantics of generated
programs. To obtain better diversity, our algorithm
identifies (via locality-sensitive hashing [19]) and

Springer Nature 2021 LATEX template

se 3

discards any mutant that is too similar to the one
that was generated before.
Interpretable Predictor Results: For problem
diagnosis and debugging of probabilistic programs,
it is important to be able to interpret why the
algorithm predicted non-convergence. Our learning
algorithm leverages random forests for this task. It
relates the likely cause of non-convergence to specific
statements or expressions in the program code.

1.2 Results

In this work, we learn the classifiers for convergence
of three popular classes of probabilistic programs:
Regression, Time Series, and Mixture Models. We
obtained 166 seed probabilistic programs, across the
three classes, from an open source repository of Stan
programs [20]. For each class, SixthSense generated
more than 10,000 mutants with diverse conver-
gence property. We train our classifiers for multiple
thresholds of the convergence score (Gelman-Rubin
diagnostic) to evaluate the sensitivity of our classifiers.

Our evaluation shows the effectiveness of Sixth-
Sense in predicting convergence of probabilistic
programs compared to two state-of-the-art learning
algorithms for conventional code: Code2Vec [13] and
Code2Seq [14]. We measure the prediction quality
via Accuracy (ratio of sum of True Positives and
True Negatives to total tested programs), Precision
(ratio of True Positives to total classified as Posi-
tives) and Recall (ratio of True Positives to total
actual Positives). Here True Positive is a program
that is predicted to converge and it indeed converges;
the others are defined analogously.

SixthSense obtains an average Accuracy score
across the three model classes of 78% for convergence
prediction (with almost equally high precision and
recall). SixthSense, with just code features outper-
forms Code2Vec [13] by 8 percentage points on
average and Code2Seq [14] by 5 percentage points
on average (for a tight convergence threshold). More-
over, we also show that Accuracy scores increase
to over 83% when adding runtime features obtained
after just the first 10-200 samples from the warmup
stage of the inference algorithm (which is less than
10% of its run-time). SixthSense also has higher
precision for all model classes, and recall higher than
Code2Vec but similar to Code2Seq. SixthSense’s
prediction time is less than a second and the model
size is modest – less than 20 MB, which is 25-37%
smaller than Code2Vec/Code2Seq. We show that

the prediction numbers hold across a range of the
number of samples the inference would take (between
100 and 1000), and we observe that SixthSense can
still achieve a high prediction quality.

We further demonstrate, by studying 40 non-
converging programs, that SixthSense can pinpoint
the locations in the code that cause non-convergence
for 29 programs (72.5%). In contrast, Stan’s runtime
warnings point to non-convergence causes in only 5
programs (12.5%).

1.3 Contributions

We highlight the main contributions of this paper:

? SixthSense System1. SixthSense is a system for
learning to predict convergence of probabilistic
programs that aids programmers in pinpointing
and understanding the sources of convergence
problems in PPs.

? Predicting convergence of probabilistic pro-
grams. We present the first approach for learning
predictors for convergence of probabilistic programs
based on encoding the structure of probabilistic
programs using code motifs.

? Program generation for training set aug-
mentation. We present a new mutation algorithm
for augmenting the training set with PPs that have
diverse structural and runtime characteristics.

? Experimental evaluation. We show that Sixth-
Sense predicts convergence for three popular classes
of programs, with higher accuracy, precision, and
recall than two state-of-the-art approaches (which
were originally designed for conventional programs,
including tasks like code captioning). In our case
study, SixthSense helps pinpoint the likely causes
of non-convergence for 29 out of 40 non-converging
programs, compared to 5 programs for which
Stan’s runtime warnings help.

2 Example

We use a concrete example of a probabilistic program
to illustrate how SixthSense works and howwe can use
it to guide the debugging of probabilistic programs.
Figure 1 shows two variants of a Mixture model in
Stan. A Mixture Model is a probabilistic model that
assumes that each observed data point comes from
one out of several independent sub-distributions

1SixthSense is publicly available at https://github.com/
uiuc-arc/sixthsense.

Springer Nature 2021 LATEX template

{<39,76,47,10,54>: 3,
<47,10,54,18,98>: 1,
<65,31,43,50,98>: 3
...

}

Param Param Param

theta

log_mix

{<39,76,47,10,54>: 0,
<47,10,54,18,98>: 0,
<65,31,43,50,98>: 3
...

}

Not

Converging

Converging

(h) Trained Random

Forest Model

(e) AST Features

(motif : count)

(f) AST Features

(motif : count)

Most Important
Features

Most Important
Features

(g) Trained Random

Forest Model

(b) Program B (non-converging)

(a) Program A (converging) (c) AST Fragments

(d) AST Fragments

(k) Prediction Results

(j) Prediction Results

parameters {
real mu[1];
real<lower=0> sigma[1];
real<lower=0> p1;
real<lower=0,upper=1> theta;

}
model {

mu ~ normal(0,2);
sigma ~ normal(p1, 2);
p1 ~ normal(0,2.72);
theta ~ beta(5,5);
for(n in 1:K){

target += log_mix(theta,
normal_lpdf(y[n]|mu[1],sigma[1]),0.5);

}
}

normal_lpdf(…) 0.5

Params

Function

NegOp

FunctionCall

-

Param Param Param

theta

log_mix

normal_lpdf(…) 0.5

Params

Function

FunctionCall

Target_stmt

parameters {
real mu[1];
real<lower=0> sigma[1];
real<lower=0> p1;
real<lower=0,upper=1> theta;

}
model {

mu ~ normal(0,p1);
sigma ~ gumbel(0,1);
p2 ~ gamma(1.71,1.71);
theta ~ beta(5,5);
for(n in 1:K){

target += -log_mix(theta,
normal_lpdf(y[n]|mu[1],sigma[1]),0.5);

}
}

Fig. 1: An example of two models with different convergence behaviors. We obtain the features from the Abstract
Syntax Tree (AST) of source code and data (not shown here). We use them as inputs to the trained Random Forest
Model for predicting the label (Converging/Not Converging). We can also obtain the most important features which
likely contributed to (non)-convergence.

of values. Each sub-distribution has an associated
probability (called mixing ratio) of being chosen.

The programs A and B in Figure 1(a), 1(b)
have several (unknown) parameters: mean mu and
variance sigma of the Normal sub-distribution; theta
is the mixing ratio of the sub-distributions and p1 is
an auxiliary parameter. The programs also access the
array of observations, y, of size K. Each observation
in y is assumed to be sampled from one of these
two sub-distributions: a Normal distribution (as nor-
mal lpdf) or a uniform distribution (as the constant
0.5). For the program B, consider a novice developer,
who was confused about Stan’s target statement
[21], calculated the negative likelihood instead. As
an example of how developers typically execute the
programs, we invoke Stan with default setting: the
NUTS inference algorithm, which employs a 1,000
iterations. In this case, the program A converges
while the program B does not converge.

SixthSense’s goal is to predict whether these pro-
grams will converge before running the programs, and
do so in a small fraction of time. If a program does
not converge, the user should know the reason and
use the information from SixthSense to debug the
program. We next describe how SixthSense computes
motifs, trains the predictor, and guides debugging.

Feature Extraction. First, we extract different
classes of features for each program in the corpus
of mutants. These include motifs – representing

fragments of the Abstract Syntax Tree (AST), aug-
mented with data features, and run-time features.
To extract motifs, we parse each program and
construct an AST. Then, starting from each node,
we obtain all AST paths of length L by traversing
the ancestors of the node. Figures 1(c) and 1(d)
present one sub-tree for the function call statement
(in loop) in the programs A and B respectively
and several motifs that SixthSense extracts. The
elements in the motif consist of the sequence of node
type IDs. The counts of distinct motifs, along with
other features constitute the feature vector of the
program. Figure 1(e) and 1(f) illustrates the motifs
(e.g. 〈39,76,47,10,54〉) and their counts (e.g. 0,0,3).

A good learning algorithm should be able to
combine similar motifs and operate only on groups
of them. To identify such groups of motifs, we apply
random discrete projections, a well-known technique
for reducing the dimensionality of the feature space.
It maps the feature vectors of the node type IDs
onto a hash value with a much smaller dimension.
The random projections algorithm has a distance-
preserving property, which means that the similar
vectors (even when they are not grouped together)
will have similar low-dimensional representations.
This property allows us to apply standard learning
algorithms on this low-dimensional representation
while preserving the similarity of the original motifs.

Springer Nature 2021 LATEX template

se 5

Computing Reference Solutions and Labels.
To compute the program labels (‘converging’ and
‘not-converging’), SixthSense runs them using Stan’s
MCMC algorithm (NUTS) with the default con-
figuration of 1,000 iterations. For convergence, we
calculate a well-known diagnostic called the Gelman-
Rubin (R̂) statistic [12]. If the R̂ statistic is within
a certain bound (close to 1.0), it indicates that the
program converged.

Training. Given a sufficient number of training pro-
grams (e.g., an order of 10,000 programs for each
model class), SixthSense extracts the features and
obtains the labels for convergence. SixthSense then
generates precise and interpretable predictors. We
build separate models for predicting convergence for
each model class, since models in three classes are sig-
nificantly different in both semantics and the way they
interact with inference algorithms. The model classes
are easy to identify manually for users even with
minimal expertise or by using simple analytical tools.

Prediction. We use the classifier trained using the
batch of Mixture Models for convergence. We use
a threshold of 1.05 for the Gelman-Rubin diagnostic
(a very tight bound). SixthSense correctly predicts
True label for program in Figure 1(a) and False label
for program in Figure 1(b). The total time required
for computing the features and doing the prediction
for a single program is less than a second, compared
to 53 seconds on average to run a program.

Interpretation and Debugging. Our combina-
tion of random projections – which groups very
similar motifs together, even if they appear at dif-
ferent locations in the program – and the random
forest classification – which has the ability to explain
its decisions – proves effective in identifying the
parts of the program that impede convergence.

Params

Function

NegOp

FunctionCall

<39,76,47,10,54>

-log_mix(param1, ...)

ç

ç

Param

Fig. 2: Topmost
motif in program B

Specifically, we can employ
SixthSense’s random for-
est classifier to identify top
features. When SixthSense
predicts non-convergence,
the user can debug the
program according to the
top features.

Now consider the sce-
nario where a novice Stan
developer used negative
log-likelihood in Stan’s tar-
get statement, and wrote
program B (Figure 1(b)).

SixthSense predicts that B does not converge, and
gives the topmost feature as the path segment (motif)
starting from the negative sign to the parameters
in the log-likelihood calculation (function log mix).
Figure 2 presents this motif. There were three such
motifs in program B (one for each argument of
the log mix function), highly contributing to non-
convergence prediction. In contrast, this motif is
missing from program A (Figure 1(a)), and thus has
negatively contributed in the converging prediction.
This observation validates our earlier intuition about
the cause of difference in the nature of two programs
and is correctly inferred by our prediction model.

It is intuitive for the user to fix a non-converging
program (program B) by altering the code that corre-
sponds to the top features. In this case, the topmost
motif suggests that removing the negative sign would
allow program to converge. We describe the debug-
ging process for this example at the end of Section 7.2.
After applying the change, the user can use Sixth-
Sense to predict again, or even iteratively search for
a good fix. This iterative debugging would be much
faster than running through the full compilation and
execution with Stan. At the same time, SixthSense
can provide more directed warning messages.

3 Overview

Figure 3 shows the architecture of SixthSense. We
next describe each of its components.

Program Runner

Feature Extractor

AST

Motifs

Data

DataStats

Program

Generator

Model

Trainer

Metrics

Calc.

Runtime

Feat.

Seed
Programs Mutants

FV. Labels

M1

M2

...

Fig. 3: SixthSense Training Workflow

Feature Computation. SixthSense’s features can
be broadly divided into three major groups:
(1) automatically-selected AST (Abstract Syntax
Tree) based features - motifs - which represent frag-
ments of the AST; (2) Data Features, and (3) runtime
features of the inference algorithm. We present our
feature selection and summarization in Section 4.
Program Generation. The generator uses the
input set of seed probabilistic programs to generate a
batch of mutants. We use two sets of transformations

Springer Nature 2021 LATEX template

to mutate the program: (1) Expansive Mutations pro-
duce more complex models compared to the original
ones (e.g., add a new parameter), and (2) Reducing
Mutations simplify the models by simplifying arith-
metic expressions, removing conditional statements,
etc. Our adaptive mutator uses nearest neighbor
algorithms to efficiently explore the feature space
of the programs. We explain the mutations and the
algorithms in Section 5.
Program Runner. It runs each generated mutant
and collects several statistics such as samples from
MCMC iterations and runtimes.
Metric Calculator. Typically, the MCMC algo-
rithms provide samples for each parameter from the
posterior distribution. The metric calculator com-
putes the convergence for each parameter using the
samples from the posterior.
Model Trainer. Using the syntax, data and run-
time features and metrics computed by the previous
components, the Model Trainer builds a machine
learning model for predicting the behavior of proba-
bilistic models for the given inference algorithm. Here,
we used Random Forest Classifier.

We build models to predict, for given metric
thresholds, (1) Convergence of the models using static
features of model and data, (2) Convergence of the
models using static features and run-time diagnostics
from initial phases of sampling, and (3) The number
of iterations needed for the model to converge.

3.1 Convergence

Convergence is an important property for successful
inference. In this work, we use the term Convergence
to mean “Convergence in distribution”. Let us assume
each sample is represented by a random variable
Xi (i=1,2,...). We say that a sequence of random
variables X1, X2, X3, ... converges in distribution to

a random variable X, represented by Xn
d
−→X, if

lim
n→∞

FXn
(x)=FX(x),

for all x at which FX(x) is continuous. Here, FX(x)
is the cumulative distribution function (CDF) of X.
Gelman-Rubin Diagnostic (R̂). The Gelman-
Rubin diagnostic analyzes multiple Markov Chains to
evaluate the convergence of an MCMC algorithm [12].
The convergence is computed by comparing the esti-
mated between-chains and within-chain variances for
each model parameter. Large differences between
these variances indicate non-convergence. Let us

assume we have M chains of length N . For a param-
eter θ, {θmt}

N
t=1 is the mth simulated chain. Let θ̂m

and σ̂2
m be the mean and variance of mth chain. Let

θ̂= (1/M)
∑M

m=1 θ̂m be the overall posterior mean.
The between-chains and within-chains variances are
given by:

B=
N

M−1

M
∑

m=1

(θ̂m−θ̂)2, W=
1

M

M
∑

m=1

σ̂2
m.

We can calculate a weight average of B and W :
V̂ = N−1

N W+ 1
NB. Theoretically, if the distribution of

the chains equals the target distribution, or N→∞,
V̂ is an unbiased estimator for the marginal posterior
variance of θ. Finally, we can compute the Gelman-
Rubin diagnostic as follows:

R̂=

√

V̂

W

In practice, R̂ values ≤ 1.1 are considered as good
indicators of convergence [12].

3.2 Deployment

Once the trainer produces the model, we can use it
to predict the convergence of new programs. For a
given program and its dataset, SixthSense runs the
feature extractor, runs it through the predictor and
outputs the convergence label. It also reports on the
features that contributed most to the prediction, and
relates them back to the source code.

4 Learning Program Features

We present the description of the programs and
SixthSense’s approach for collecting code, data, and
runtime.
Probabilistic Programs Syntax. A probabilistic
program is an imperative program with additional
constructs for sampling from distributions, condition-
ing the model on observed data values, and one or
more queries for either the posterior distribution or
expected value of a parameter. In this work, we use
a subset of syntax of Storm-IR [22] for representing
probabilistic program, as shown in Figure 4.
Representing Program Paths. To understand the
causes of non-convergence and for better debuggabil-
ity, we select a representation that is easy to train and

Springer Nature 2021 LATEX template

se 7

x ∈ Vars
c ∈ Consts∪{−∞,∞}
aop ∈ {+,−,∗,/,̂}
bop ∈ {=,>,...}
Dist ∈ {Normal,Uniform,...}
ID ∈ String

Type ::= Int | Float
Decl ::= x : Type | x : [c+]
Expr ::= c | x | Expr aop Expr | Expr bop Expr

Stmt ::= x = Expr | Decl | observe(Dist(Expr+),x)
| x ∼ Dist(Expr+) | for x ∈ 1..n;{Stmt∗}
| if (Expr) then Stmt∗ else Stmt∗

Query ::= posterior(x) | expectation(x)
Program ::= Stmt∗ Query∗

Fig. 4: Syntax of Storm-IR [22]

interpret. Existing approaches Code2Vec/Code2Seq
[13, 14] aim to predict variable names through
natural-language semantics, and they encode the path
between any two terminal nodes in the Abstract Syn-
tax Tree (AST). Instead, we encode the sequences
of AST nodes with limited length to pinpoint
the semantic issues. We formalize our notions:
Definition 1. (Abstract Syntax Tree) Similar to [13],
we define an AST for a program P as a tuple
〈N,T,s,δ〉. N is a set of non-terminal nodes, T is the
set of terminal nodes, s∈N is the root node, and
δ :N → (N∪T)∗ is a function that maps each non-
terminal node to the list of its child nodes, which can
be either non-terminal or terminal.
Definition 2. (AST Path) An AST path is a path
between the nodes in the AST, which starts from one
terminal or non-terminal node and ends at another
non-terminal node, traversing through the ancestors
of each node. We denote an AST path of length
L as 〈N1,N2,...,NL〉, where Ni ∈ δ(Ni+1), for each
i∈{1,2,...,L−1}.
Definition 3. (Node-to-Type Mapping) Each node
in the AST has an associated node type. We define
a function τ : (N ∪T)→ Node Types, which maps
each node to its corresponding node type. Examples
of node types include “Statement”, “FunctionCall”,
“Mulop”, etc.
Definition 4. (Node Type ID) We define the
function φ : Node Types→ N, that maps each dis-
tinct node type to a unique identifier, known as
the node type ID, represented by a natural num-
ber. For example, in Figure 1 (c), the function φ
assigns the same node type ID to the parent nodes
of the sub-expressions theta and normal lpdf(...),
as they both are instances of the “Param” node type.
Definition 5. (Motif) A motif, denoted as m, is a
vector that encodes an AST path from a node passing
through the ancestors as a numerical vector. Each
element in this vector represents the node type ID of
a corresponding node in the path. Specifically, for an
AST path 〈N1,N2,...,NL〉, the motif is a vector m=

〈I1,I2,...,IL〉, where Ii=φ(τ(Ni)), for each index i∈
{1,2,...,L}. We refer to the set of all motifs as M.

4.1 Extracting Features from Program

Motivation. Two major challenges in efficiently
encoding the motifs in a feature vector include (1)
the large numbers of different paths that a program
may have, and (2) the variability of length between
different paths. A general approach to solve both
problems is to design a flexible scheme for dimension-
ality reduction, which encodes the rich structures, like
our motifs as a smaller set of program properties.

We rest our approach on two observations. First,
despite a huge number of possible syntactic paths,
similar motifs repeat often in a single program and
across multiple programs. Therefore, we need to think
only about the subsets of all possible paths that
appear in the corpus of programs. Second, the variabil-
ity between motifs is often local, and many similar
(though not-identical) motifs may lead to the same
program behaviors. Therefore, instead of encoding
each motif in the feature vector independently, we
can group similar motifs and encode only the group.

To reduce the dimensionality of available paths
and group together similar motifs, we use Locality-
Sensitive Hashing (LSH) [23], a hashing technique.
While LSH is well-known in data mining for its ability
to group similar items with a high probability, it
has not been applied to big-code representation. A
popular variant of LSH is the Random Discretized
Projections (RDP) [18]. RDP calculates hash codes
that facilitate the grouping of similar items into the
same buckets with high probability. These hash codes
serve as identifiers for motif groups within the feature
vector of the program.

Next we formally define the motif groups and the
feature vectors:
Definition 6. (Motif Group) Let M be the set of all
motifs, and letH=[h1,h2,...,hn] be a list of n hashing
functions. For any motif m∈M, define its hash code
as the tuple c(m) = (h1(m),h2(m),...,hn(m)). Two

Springer Nature 2021 LATEX template

motifs m1,m2∈M have the same hash code, c(m1)=
c(m2) if and only if hi(m1) = hi(m2) for every i ∈
{1,2,...,n}.

We then define a motif group, denoted as M,
which is a subset of M. A motif group is associated
with a specific hash code cM and contains all motifs
in M that have the hash code cM :

M={m∈M |c(m)=cM}.

In our application, RDP utilizes a list of random
projection vectors [r1,r2,...,rn], and defines each hash-
ing function hi(m) to represent the projection of the
motif m (which is a numerical vector) onto ri. This
mechanism allows RDP to assign the same hash code
to similar motifs.
Definition 7. (Feature Vector) A program P for
a fixed hashing function has a feature vector v =
[v1,v2,...,vk]. Each element vi∈N (i∈{1,...,k}) is the
sum of counts of the motifs from the motif group Mi

in the AST of the program P .

Algorithm for Feature Vector Extraction from
a Batch of Programs. Algorithm 1 outlines the
procedure for extracting the feature vector from a
batch of programs. The algorithm processes each
program within the batch. Lines 4-8 detail the process
of computing the feature vector for an individual
program.

In lines 5, the algorithm iterates over the nodes
in the AST. At each node, it generates a sequence
of nodes by recursively ascending through the parent
nodes, up to a depth of L. This process is defined by
the function GetMotifAt (line 6):

GetMotifAt(N,0) =ε

GetMotifAt(∅,L)=ε

GetMotifAt(N,L)=φ(τ(N))::

GetMotifAt(parent(N),L−1)

Here ε denotes an empty sequence to represent the
base cases of the GetMotifAt function. The function
φ(τ(N)) retrieves the type ID of the node N, as
defined in Definition 5. When N is the root node, the
parent(N) function returns ∅, indicating ‘no parent’ .

The function RDPSimilarityHash (line 7) com-
putes a hash key cM of each motif using the Random
Discretized Projections. If the size of the motif is
smaller than L (e.g., because the node does not have

Algorithm 1 Compute Feature Vectors
Input: Batch of Programs Batch, Motif depth L
Output: Table of Feature Vectors F

1: procedure CalculateFeatures

2: F←∅
3: for P∈Batch do
4: v=[0,...,0]
5: for node∈nodes(AST) do
6: m←GetMotifAt(node,L)
7: cM←RDPSimilarityHash(PadRight(m,L))
8: v[cM]←v[cM]+1

9: F(P)←v

10: return F

sufficient number of parents), PadRight pads the
motif to the maximum size with unused elements. The
resulting hash code cM serves as the unique identifier
for the motif group to which the motif belongs (as
defined in Definition 6). Line 8 is responsible for incre-
menting the count associated with the motif group
each time a similar motif with the same hash code is
encountered.

RDP allows a flexible number of projections and
the size of bins. These parameters can be tuned to
control the granularity of similarity calculations and
indirectly impact the size of the feature vector, which
will be described shortly.

In line 9, the algorithm assigns the vector v as
the feature vector for the program P in the table
of feature vectors F . Each row of F corresponds to
the feature vector of a single program. Finally, the
algorithm returns the table of feature vectors F of
all programs in the batch.

4.2 Data Features

The nature of the data-set may determine the perfor-
mance of the probabilistic model when run using an
inference algorithm. For instance, in absence of suffi-
cient data, the choice of prior distributions become
very important. Similarly, a strong prior with very
small variance is unlikely to converge to the correct
results in such a scenario [24]. SixthSense computes
data metrics like sparsity (number of non-zero ele-
ments), auto-correlation (correlation between values
of a time series), skewness (asymmetry of the distribu-
tion), maximum/minimum variances of the model’s
prior distributions, and several others for observed
and predictor data variables.

4.3 Runtime Features

For inference algorithms like MCMC, diagnostics
from the early stages (warmup) of sampling can
often indicate the presence or absence of problems
with the model and associated data. Such diagnostics

Springer Nature 2021 LATEX template

se 9

can help in discovering problems earlier so that the
users can update their model for more efficient per-
formance. Unfortunately, they are not predictive in
nature: manually observing the raw values may not
provide a good intuition about the program execu-
tion. However, our prediction engine can infer useful
information from them.

To validate this intuition, we collect several run-
time features from MCMC chains during the early
stages of warmup iterations:

• Posterior Log Density: Computes the log
probability that the data is produced by the
model using current set of the parameters

• Tree Depth: Tree Depth for the NUTS algo-
rithm

• Divergence: Measures the divergence of the
simulation from true trajectory.

• Acceptance Rate: Acceptance Rate of gener-
ated samples

• Step-size: Determines the distance between
consecutive samples

• Leapfrog steps: Number of steps to take for
the next sample

• Energy: Potential energy of the Hamiltonian
Particle

More details about these runtime features can be
found at [25].

5 Program Generation for
Training Set Augmentation

In this section, we describe our approach of generating
mutant programs from a corpus of seed probabilis-
tic programs. To produce mutants from the original
seed probabilistic programs, we define two kinds of
transformations – for code and data.

5.1 Code Mutations

Our Code Mutations can be broadly classified into
two sets: (1) expansive mutations, which make more
complicated models from the original one, and (2)
reducing mutations, which reduce the complexity of
the models.
Expansive Mutations. We apply the following
mutations:
• Auxiliary Parameter Creator. This mutation
replaces any distribution and function argument
with a parameter and assigns a prior distribution to
the parameter. For instance, given a statement of
the form x=normal(a,b), this mutation can expand
the single statement to a chain of statements: σ=

gamma(c1,c2); p = normal(a,σ); x = normal(p,b).
Here, a and b can be any expressions, c1 and c2
are appropriate constants. We perform interval
and dimensional analysis to find the valid set of
distributions and values (i.e. not limited to Gamma
and Normal distributions).

• Constant Replacer. This mutation lifts a con-
stant in the program to a parameter with an
appropriate prior distribution. For instance, a con-
stant 0.5 is transformed to parameter sampling
from beta distribution (it samples from [0,1]).

• Dimension Expander. This mutation expands
the dimension of a scalar parameter to match the
dimension of any vector expression it is used in. For
instance, for a statement, y=a+b, where y and b
are vectors and a is a scalar parameter, Dimension
Expander changes the dimension of a to match the
dimension of y and b. We use dimensional and type
analysis to ensure the mutation is valid and does
not lead to compile time failures.

• Data to Parameter Transformer. This muta-
tion randomly replaces a real valued data array
with a parameter with the same dimension. It
also assigns appropriate prior distribution to the
parameter based on range of data values.

Reducing Mutations. The reducing transforma-
tions include the following:
• Arithmetic Simplifier: this transformation
replaces arithmetic expressions with either of the
operands or changes the arithmetic operation.

• Conditional Eliminator: it replaces conditional
statements with either of the branches.

• Distribution Simplifier: it replaces complex dis-
tributions like Laplace and Weibull with common
distributions like Normal or Uniform.

• Math-Function Call Eliminator: it replaces
common math functions such as log and exp with
constants.

• Conjugate Replacer: In probability theory, if
the prior and posterior distributions belong to
the same probability distribution family, they are
referred to as conjugate distributions [26]. The prior
distribution is said to be conjugate to the posterior
(or likelihood) distribution. This property is partic-
ularly important for inference algorithms because
the presence of conjugacy between the prior and
likelihood distribution simplifies sampling from the
posterior distribution, as it can be easily factor-
ized. To explore this property, we consider replacing
prior distributions with distributions conjugate to
the likelihood when possible.

Springer Nature 2021 LATEX template

The first four kinds of transformations have been
previously used by Storm [22] for testing PP systems.
We added the conjugate replacer as it can simplify
the inference.

5.2 Data Mutations

Apart from source code transformations, we also
added several data transformations. Such transforma-
tions help in changing the distribution of values in the
data set, which could produce challenging scenarios
for the probabilistic model or inference algorithm to
work with. The data mutations include scaling by a
constant, adding arbitrary noise, Box-Cox transforma-
tion [27], scaling to new mean and standard deviation,
cube root transform, and random replacement of
values with values from the same data set.

5.3 Adaptive Algorithm for Mutant

Generation

To generate programs with different runtime behav-
iors, it is essential to explore programs with diverse
semantic and syntactic features. Our mutation algo-
rithm achieves this by randomly introducing several
mutations to the original program. One promi-
nent approach to ensuring such diversity is through
the techniques called Locality Sensitive Hashing
(LSH) [23], which is designed to group similar fea-
ture vectors with high probability. One of the most
popular versions of LSH is the Random Discretized
Projections (RDP), which was also introduced in Def-
inition 6 (Section 4.1) for motifs. In this section we
repurpose RDP for feature vectors which are also
numerical vectors like motifs. Utilizing RDP allows us
to identify and exclude mutants with highly similar
feature vectors. Here we generate the hash code for a
feature vector analogously to the motif’s hash code,
using RDP as outlined in Definition 7. Specifically,
we consider two feature vectors v1 and v2 as neigh-
bors if they have the same hash code in RDP. To
ensure diversity among generated mutants, we keep
only one mutant for each unique hash code.

Algorithm 2 presents the mutant selection algo-
rithm. The inputs for the algorithm are seed proba-
bilistic programs S, the total number K of programs
to generate, and the total number B of programs to
generate in each batch from each seed program. The
algorithm returns the selected mutant programs set

progs as output. First, we initialize the LSH (Local-
ity Sensitive Hashing) engine using Random Discrete
Projections (RDP) hash functions.

In each round, we first choose a seed program s∈S
using the ChooseSeed function. The ChooseSeed func-
tion randomly chooses among the original seed pro-
gram s and the mutants generated in earlier rounds
(stored in progs). Next, we generate a new batch of
programs of size B using GeneratePrograms.

For each newly generated program P , we compute
its feature vector using lsh.getFeatureVector and the
number of neighbors among the already generated
programs using lsh.Neighbors. We select the program
only if it has no neighbors in the already selected
set of programs. Finally, the algorithm returns the
selected set of programs once it has generated the
target K programs.

Furthermore, Algorithm 3 defines the Gener-
atePrograms algorithm, which is used as a subroutine
of Algorithm 2. GeneratePrograms is responsible for
generatingK mutants for a seed program S. For each
program, in each iteration, it applies a set of ran-
domly chosen mutations and adds it to the set of new
programs. Finally, it returns the set of new programs
to the caller. Using this algorithm, we can obtain a
diverse set of probabilistic programs with a balance
of converging/non-converging behavior.

5.3.1 Generating Semantically Valid
Mutants

Maintaining semantic validity of generated programs
ensures that we do not generate programs which
compile but fail trivially due to semantic errors (e.g.
incorrect array indices, dimension mismatches, illegal
distribution/function inputs like indefinite matrices).
Otherwise, the prediction task becomes simpler and
less useful for predicting properties of real programs–
which have more complex structure.

To ensure the semantic validity of mutants,
we implement several analysis techniques which
incorporate domain knowledge. For instance, the
multi normal distribution has a co-variance matrix
parameter. The parameter’s constraint is that it must
be positive definite. Otherwise, sampling from the
distribution leads to several runtime errors which con-
sequently leads to erroneous samples during inference.
To prevent this we use data-flow analysis to identify
key computations affecting the covariance matrix in
the program and avoid applying mutations to those.

Springer Nature 2021 LATEX template

e 11

Algorithm 2 Selecting Mutants
Input: Seed Programs S, Programs K, BatchSize B
Output: Program Set progs

procedure SelectMutants

lsh←InitializeLSH()
progs←∅
while |progs|<K do

for s∈S do
seed←ChooseSeed(s,progs)
cand←GeneratePrograms(seed,B)
for P ∈cand do

v← lsh.GetFeatureVector(P)
if lsh.Neighbors(v)=∅ then

lsh.StoreVector(v,P)
progs←progs∪{P}

return progs

Algorithm 3 Generating Mutants
Input: Seed program S, Programs K, Max Changes C
Output: Program Set progs

procedure GeneratePrograms

progs←∅
i←0
while i<K do

P ′←P
for t∈{1..C} do

m←chooseMutation()
P ′←m.mutate(P ′)

if P ′ 6=P then
progs←progs.append(P’)

i←i+1

return progs

Algorithm 4 Mutation Profiling Algorithm
Input: Metrics Met, Mutation Combinations MC
Output: Mutation Profile MPS

procedure Create Mutation Profile

scores← [0,0,...,0]
for i∈{1,...,Met.length} do

mt←Met[i]
for mut∈MC[i] do

if mt=False then
scores[mut]←scores[mut]−1/MC[i].length

else
scores[mut]←scores[mut]+1/MC[i].length

return scores

5.3.2 Extension: Generating Harder
Benchmarks

We explore an interesting scenario where we bias
our mutant generation algorithm to generate harder
benchmarks i.e. programs that do not converge or
produce inaccurate results. Such programs can serve
as useful benchmarks for any developer who wants
to evaluate their inference algorithm and test its
performance. Next, we outline a heuristic for our
approach.

We create a profile of all the mutations by assign-
ing scores to each mutation based on the runtime
behavior of the previous batch of programs. Algo-
rithm 4 takes the metric label (for convergence or
accuracy) for each mutant program in previous batch
and the set of mutations MC used on each mutant.
It initializes all scores with zero. For each mutant
program, it decreases the score proportionally if the
program did not converge (or was inaccurate) and
vice-versa. Finally, it returns the set of scores for the
mutations. Given such a mutation profile, we can
easily tune GeneratePrograms algorithm to choose
mutations by assigning higher weights to mutations
with more negative scores or higher tendency to

produce harder benchmarks (non-converging or inac-
curate). Another possible approach would be to use
our learned predictors for convergence and accuracy
to select the likely non-converging and/or inaccurate
mutants for new batch.

6 Methodology

We present the methodology for collecting seed prob-
abilistic programs and the program features and
metrics we compute.
Seed Probabilistic Programs. We collected a
corpus of probabilistic programs from the most
comprehensive open-source repository of Stan Mod-
els [20]2. Out of total 505 probabilistic programs, we
selected the three most common categories: Regres-
sion (120 programs), Time-Series (23), and Mixture
Models (23, augmented with 3 from [28]). These
probabilistic programs come with their datasets.
Inference Engine and Sampling. NUTS, the
default inference engine of Stan [29]. We executed all
probabilistic programs using 4 MCMC chains with
1000 iterations each for warmup phase and sampling.
This configuration is default for Stan. We also checked
the eventual convergence by running the programs
for many more iterations. We used 100,000 as the
maximum iteration number (the convergence metrics

2The number of publicly available probabilistic programs in
public sources is low compared to conventional languages. This is
in part due to the novelty of these languages and expertise required
to create and interpret those programs. As a further challenge,
probabilistic program systems like Stan require not only a well-
defined program, representing the statistical model, but also a
corresponding dataset to fit the model to. Unfortunately, many
Stan programs on GitHub lack this essential dataset. Furthermore,
most of the publicly available programs are tuned to converge to
their available datasets.

Springer Nature 2021 LATEX template

do not change significantly even for 106 iterations for
the seed probabilistic programs).
Feature Extraction. We used a Python based
implementation of Randomized Discretized Projec-
tion (RDP) [30]. We configured the hyper-parameters
of the RDP algorithm as P=5 and bin-width B=5,
which worked well to reduce the dimensionality of
the vector space.
Random Forests. We used Random Forests Classi-
fier from Scikit-Learn package in Python for training.
We use 5-fold cross validation for training. We extract
top features using TreeInterpreter [31].
Execution Setup. We performed the mutant gen-
eration and feature computation on an Intel Xeon
3.6 GHz machine with 6 cores and 32 GB RAM. We
used Azure Batch Scheduling Service to run all the
programs and metrics computations. We capped the
MCMC execution under 240 minutes.

6.1 Baselines

We compare SixthSense to three baselines: The first,
Code2Vec [13], and the second, Code2Seq [14],
are state-of-the-art predictors based on Deep Neural
Networks for big-code. They were originally used
to predict function names from code. We adapted
these systems to do classification for each threshold of
convergence, by extracting path contexts (subsets of
paths similar to our motifs) form the code. The third
baseline, the majority label classifier, assigns the
most likely label observed on the training set to all
programs during prediction. Since it consistently (and
naively) uses the same majority label of the training
set as its prediction, it helps indicate the prediction
“hardness” when the training set is imbalanced.

6.2 Metrics

We describe various metrics that we use in our
evaluation.
Accuracy. Accuracy is a classification metric defined
as the ratio of correct predictions (the sum of True
Positives and True Negatives) to the total number of
tested programs:

Accuracy score=
True Positives + True Negatives

Total Num. of Tested Programs

Higher accuracy values, closer to 1, indicate bet-
ter model performance, with 1 denoting perfect

classification and 0 indicating none are classified cor-
rectly. Accuracy is well-suited for balanced datasets
where the number of converging and non-converging
programs in the test set is approximately equal.
F1 score. The F1 score measures a different aspect
of classification performance. It is the harmonic mean
of Precision and Recall:

Precision=
True Positives

True Positives + False Positives

Recall=
True Positives

True Positives + False Negatives

F1 score=2·
Precision·Recall

Precision+Recall

Intuitively, Recall (also True Positive Rate) mea-
sures the proportion of positive instances correctly
identified by a classification model amongst all
positive instances; while Precision measures the
proportion of correctly identified positive instances
amongst all instances classified as positive. Both mea-
sures are the better when closer to 1, but there is
a trade-off between Precision and Recall. For train-
ing and cross-validation, we use F1 score as the
optimization metric.
AUC. AUC [32] represents the area under the
receiver operating characteristic curve (ROC). The
ROC curve is a plot of Recall (True Positive Rate)
against the Fallout (False Positive Rate) for all the
thresholds. The threshold refers to the cutoff value
used to interpret a predicted score (ranging from 0
to 1) as positive or negative labels.

Fallout=
False Positives

False Positives + True Positives
.

One point on the ROC curve represents one pair of
Recall(t) and Fallout(t) for a specific threshold t. One
can calculate AUC as

AUC=

∫

Recall(t) d(Fallout(t)).

Ideally, we want the Fallout to be low (close to 0)
and Recall to be high (close to 1). AUC presents the
trade-off between Recall and Fallout, which the F1
score does not directly quantify. AUC can be inter-
preted as the probability that our classifier ranks a
positive case higher than a negative case. The value

Springer Nature 2021 LATEX template

e 13

of AUC ranges from 0 to 1. A random classifier for
balanced data will result in AUC=0.5. Unlike the
Accuracy Score, the AUC score is useful for measur-
ing the performance of classifiers with imbalanced
data [33].

6.3 Evaluation Experimental Setup

Training and Test Sets. We generate a corpus of
mutants programs for each seed probabilistic program
using the approach discussed in Section 5.3. We cre-
ate a test-train split for every seed program in the
following way: (1) Test set consists of a single seed
program and all its mutants; (2) Training set con-
tains all other seeds and mutants. Thus, the training
is not aware of any mutants of the test seed program.
For each such split, we train a classifier using the
training set and evaluate its performance (using the
metrics below) on the test set. With this strategy we
obtain metrics for each split (each representing one
seed program and its mutants). Finally, we compute
the average performance across the splits.

Training a predictor by leaving out each proba-
bilistic program and its mutants in test set allows
us to stress-test the predictor. We choose this evalu-
ation strategy because the number of original seed
probabilistic programs in each class is low compared
to conventional big-code datasets. Every seed prob-
abilistic program represents a different statistical
model and using this strategy helps us evaluate the
sensitivity of the classifiers for each such model.
Classification Scores. We used Precision, Recall,
F1, Accuracy, and AUC [32] to evaluate the perfor-
mance of the learned classifier. They range between 0
and 1 (higher better). We use the same metric for all
the baselines. Specifically, we report Accuracy for the
scenario when the test set has balanced labels, and
when dealing with potential imbalanced labels, we
report Precision and Recall, or F1 score, in conjunc-
tion with AUC to provide a comprehensive evaluation
of the classification performance.

7 Evaluation

7.1 Predicting Convergence of

Inference

Figure 5 presents the prediction scores for SixthSense
when predicting convergence of MCMC algorithms
(NUTS in this case). The Y-axis shows the accuracy
scores for each prediction model (higher is better).

The X-axis shows the four thresholds (1.05-1.2) of
the convergence metric, Gelman-Rubin diagnostic,
that we considered in our evaluation. We chose this
range to test how general the prediction can be as the
individual program labels change. For each threshold,
we plot the accuracy scores of our prediction model
(SixthSense) together with Code2Vec, Code2Seq and
aMajority Label Classifier, as vertical bars in different
colors. We evaluated the trained model on a held-out
test set (see Section 6.3).
Comparison with Code2Vec/Code2Seq.
Figure 5 shows that SixthSense, with solely AST
motifs is better than Code2Vec and Code2Seq (see
also the ablation study in Section 8). The results
show that SixthSense’s learned classifiers have an
accuracy score close to 0.8. These prediction rates
are already useful for the user because it helps them
avoid wasting time for compiling and running pro-
grams which would likely not converge. Our training
algorithm is able to learn classifiers that generalize
well across different thresholds.

For Regression and Mixture model programs,
SixthSense has consistently better accuracy than the
other approaches across all thresholds. For the tight-
est convergence bound R̂=1.05, its accuracy is by
5 percentage points higher than the alternatives for
Regression, and 8 percentage points higher for Mix-
ture. For Time Series programs, the accuracy scores
of SixthSense is by 1 percentage point higher than
Code2Seq.

Table 1: Precision (P) and recall (R) (R̂=1.05)
Class 6s-AST Code2Vec Code2Seq

P R P R P R

Regression 0.71 0.71 0.63 0.69 0.66 0.72
Mixture 0.77 0.74 0.67 0.67 0.67 0.72
TimeSeries 0.79 0.75 0.69 0.74 0.74 0.77

Table 2: AUC scores (R̂=1.05)
Class 6s 6s+RT Code2Vec

Regression 0.82 0.88 0.73
Mixture 0.84 0.90 0.74
TimeSeries 0.86 0.89 0.79

Table 1 presents the precision and recall for
R̂=1.05. SixthSense exhibits consistently higher pre-
cision over Code2Vec (8 to 10 percentage points) and
Code2Seq (5 to 10 percentage points). SixthSense also
has higher recall than Code2Vec (1 to 7 percentage
points), while the recalls of SixthSense and Code2Seq
are comparable (within 2 percentage points). Recall

Springer Nature 2021 LATEX template

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y
S
c
o
re

(a) Regression models

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y
S
c
o
re

(b) Mixture models

Majority Code2Vec Code2Seq

SixthSense SixthSense+RT

1.05 1.10 1.15 1.20

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y
S
c
o
re

(c) Time Series models

Fig. 5: SixthSense Prediction Accuracy for Convergence (Measured Using the Gelman-Rubin Diagnostic)

that the precision/recall are averaged over those for
different splits and can be more sensitive to small
and unbalanced splits.

Table 2 shows the AUC scores for SixthSense,
SixthSense with runtime features and Code2Vec.
Code2Seq does not provide its probability of predic-
tions, which prevents us from computing its AUC
score. The results show that SixthSense improves in
AUC score over Code2Vec for all classes.

The prediction accuracy, prediction, and recall
from Tables 1 and 2 persist for higher thresholds of R̂.
Comparison to Majority Label Classifier.
Figure 5 shows the comparison of SixthSense to a
naive Majority Label Classifier, which has the classifi-
cation accuracy of 0.5. It indicates the significant level
of improvement of SixthSense over the uninformed
random choice.
Predicting with Warm-up Runtime Features.
Figure 5 presents the impact of SixthSense’s AST fea-
tures augmented with runtime features (Section 4.3)
sampled from the first 200 iterations of the warmup
stage (at this point Stan still does not issue warn-
ings for our programs). Recall, the results of these
iterations are dropped by the inference algorithm, as
in this phase the mixing of the MCMC chains has
just begun. However they can be useful in addition
to code features: they help improve the prediction by
further 6 percentage points for Regression and Time-
series, and 8 percentage points for Mixture models
(R̂= 1.05).Table 2 also shows the improvement in
AUC of both AST and Run-Time features over the
AST-only version of SixthSense. However, note that
collecting run-time features still requires compiling
the program and starting its execution. While this
time differs among the systems and datasets, it may
be non-trivial, as is the case for Stan (e.g. around 30
seconds for compilation). This time may be an impor-
tant factor when deciding to use a runtime-predictor
for different PP systems. We also present a feature
ablation study in Section 8.

7.2 Debugging Non-Converging

Programs

Table 3: Debugging Non-Converging Programs
Class #M. 6s Upd. Stan Warn. Stan Upd.

Regression 14 11 4 2
Mixture 13 9 4 1
TimeSeries 13 9 4 2

When SixthSense’s learned model predicts that a
probabilistic program will not converge, two natural
follow-ups are (1) ask which part of the program is
likely culprit for non-convergence and (2) how many
iterations would be sufficient to run the program to
converge, if it converges.
Debugging Approach. We interpret the outcomes
SixthSense predicts, and leverage the AST features
and the random forests to help pinpoint which part
of the program leads to non-convergence.

To obtain the set of programs, we randomly
selected 40 probabilistic programs from our test sets,
equally across the three model classes, which Sixth-
Sense correctly identified as non-converging for 1000
iterations. For each program, we obtained the most
important features from the learned random forest.
We selected top-5 features (motifs) and inspected the
probabilistic program to identify whether the parts
of the motifs contains the culprit of non-convergence.
The top-5 features typically only cover 5% of all the
motifs, which means SixthSense points to a relatively
small scope to debug.

We make up to two manual updates to each prob-
abilistic program by making changes only to the AST
elements identified by the motifs or the referenced
observed data. These changes represent simple seman-
tic modifications that a user of probabilistic program
might make as they explore various possible models
for their data. We simulate a try and check inter-
active search with these localized transformations.

Springer Nature 2021 LATEX template

e 15

For instance, SixthSense identified a constant array
in a regression equation as one of the top motifs.
Converting that constant into a parameter made
the probabilistic program converge. Some of our
attempted updates include changing the variance
(constant) of a distribution, changing the distribution
for a parameter, changing a parameter to a constant,
and removing mathematical functions (e,g. abs, log)
when they are redundent.

After transforming the probabilistic program, we
run inference to see if it converges. We further check
if the probabilistic program become accurate (or cor-
rect) after the fix, since non-convergence often causes
inaccurate (or wrong) result. For each probabilis-
tic program, we apply accuracy tests from Bayesian
model checking [12, Ch.6]: we compute the mean
squared error to compare the new result from the
probabilistic program to its correct data and also do
visual inspection on the result density plot to check if
it matches the correct distribution. Multiple student
authors inspected the updates and agreed that these
changes followed the protocol described above.
Results. Table 3 presents the results for this debug-
ging application. Column 1 (Class) presents the
classes of randomly sampled probabilistic programs.
Column 2 (#M.) presents the number of mutant pro-
grams we randomly selected from each class. Column
3 (6s Upd.) presents the number of programs that
we manually updated to converge using the method
above. Column 4 (Stan Warn.) presents the num-
ber of programs which Stan issued a warning during
sampling. Column 5 (Stan Upd.) presents the num-
ber of programs for which Stan’s warnings helped
update the program to converge.

Overall, we were able to identify the problem
and let 29 updated programs converge out of 40
programs. Specifically, we corrected 16 programs by
replacing a parameter indicated by SixthSense with
a constant; corrected 6 by simplifying mathematical
functions, 3 by changing constants in distributions,
2 by converting constants to parameters, and 2 by
changing distributions for parameters. All the code
elements we changed were pointed by top three motifs
SixthSense returned. For 11 programs that we were
not able to update, we believe that the programs
correction would require more complex changes than
those we specified in setup above.

Out of 29 updated, now converging programs, we
ran SixthSense again. It correctly predicted that 21
will converge (with 8 from Regression, 8 from Time

Series and 5 from Mixture); this is, interestingly, close
to the prediction rates from Section 7.1. This illus-
trates that SixthSense can be useful in the iterative
debugging loop.

These results demonstrate the advantage of inter-
pretability SixthSense’s learned model. Using motifs
from the AST as features and a simple learning model
(random forests) helps the user easily identify key pro-
gram components which affect the runtime behavior
of a probabilistic program. In comparison, identifying
such important features is hard for other complex
neural network-based models and might require more
low-level handling of the learned model. In particular,
Code2Vec and Code2Seq do not provide a way to
interpret how their prediction worked.
Comparison to Stan’s runtime warnings. Com-
pared to Stan’s runtime warnings, SixthSense motifs
reveal more fine-grained patterns that hinder conver-
gence. For most of the non-converging programs (29
out of the 40 in this experiment), Stan did not issue
a warning (beyond the low R̂ value at the end of
inference) The 12 warnings issued by Stan only have
regards to function domains. Seven out of 12 were not
related to non-convergence. For instance, one program
returns “Warning: normal lpdf: Scale parameter is
-0.0799029, but must be > 0.” Changing the scale
parameter limits does not help. Instead SixthSense
identifies the fix that is not at this location.

The remaining 5 Stan runs indicate non-
convergence and can help with updating the program.
However, they were not as helpful in locating the
causes as SixthSense. One example where both Sixth-
Sense and Stan indicated problem is in the program
with the expression normal(exp(w0)+sqrt(abs(w1))∗
x1 + w2 ∗ x2, s). Stan warned about the over-
flow in the first argument of normal, disregarding
its sub-expressions. SixthSense traced the problem
to the sqrt and abs sub-expressions that indeed
helped fix the non-convergence, by simplifying the
function expressions.
Example: Practical Guide to Debugging Prob-
abilistic Programs with SixthSense. SixthSense
provides a practical approach for users to diagnose
and fix convergence issues effectively. Here we work
through the debugging process using the example
from Section 2. In this example, a novice Stan devel-
oper has created a probabilistic program labeled B
(Figure 1(b)). SixthSense predicts that program B
does not converge and outputs the top five motifs
contributing to its prediction.

Springer Nature 2021 LATEX template

The top motifs and their corresponding AST
types for program B are shown in Table 4. Different
from Figure 1(c) where motifs are numerical vec-
tors symbolizing SixthSense’s internal representation,
SixthSense eventually prints its finding to users via
the list of AST types (shown in the second column
of Figure 4). Recall that motifs are represented by
ascending through parent nodes, therefore, the lists
of AST types provided to the users are in the reverse
order of the motifs to facilitated easier interpretation.

Table 4: Top Motifs for Program B
Motif List of AST Node Types

〈39,76,47,10,54〉 “NegOp-Function-FunctionCall-Params-Param”
〈47,10,54,18,98〉 “Stmt-Target-NegOp-Function-FunctionCall”
〈65,31,43,50,98〉 “Stmt-Prior-Limits-Value-Int”
〈31,91,39,76,40〉 “Distr-Params-Param-MulOp-Value”
〈10,54,18,78,55〉 “Block-Stmt-Target-NegOp-FunctionCall”

Note that three out of these five motifs (the first,
second and fifth motifs) share the “NegOp” node
(encoded as “54”), suggesting it may be a primary
cause of the non-convergence issue. Given this infor-
mation, the user may consider removing the negative
sign or altering it. After applying this change, before
running the full execution of the program (which
may take minutes and may not give an accurate
result if the program does not converge), the user
can use SixthSense again to predict convergence. In
this example, after removing the negative sign, Sixth-
Sense’s subsequent prediction is convergence. The user
will notice that SixthSense no longer highlights any
path segments with NegOp, indicating that removing
NegOp indeed solves the issue.

Furthermore, the third and fourth motifs pro-
vide valuable insights. The motif “Statement-Prior-
Limits-Val-Int” highlights that too many prior
distributions limited within a truncated domain
may cause non-convergence. Meanwhile, the motif
“DistrExpr-Params-Param-MulOp-Val” suggests that
sophisticated arithmetic operations in the prior can
impede smooth sampling and lead to non-convergence.
Although these might not be the main problem here
– fixing them could entail big changes to the model,
like removing several latent parameters or changing
the arithmetic structure of the model – they are still
constructive indicators for potential issue sources.

Since different motifs can indicate various poten-
tial modifications to the program, SixthSense users
are encouraged to consider which changes offer the
greatest potential in resolving the convergence issue

while preserving the model’s integrity. If SixthSense
does not predict convergence after a fix, the user can
also iteratively explore alternative fixes suggested by
the other top motifs until SixthSense predicts conver-
gence. As an illustrative example, if a user observes
that the topmost motif includes the FunctionCall
(log mix), the user may choose to replace log mix

with a semantically equivalent if-then-else statement
since it does not alter the underlying model at all.
However, after such a change, SixthSense still pre-
dicts non-convergence for the modified program which
indicates to the user that further changes are needed.

7.3 Prediction For Different Iteration

Counts

Table 5: F1 Scores for Different Iterations (R̂=1.05)
Class\Iterations 100 400 600 800
Regression 0.76 0.75 0.75 0.75
Timeseries 0.75 0.78 0.77 0.81
Mixture 0.75 0.74 0.74 0.74

Table 6:AUC Scores for Different Iterations(R̂=1.05)
Class\Iterations 100 400 600 800
Regression 0.78 0.80 0.79 0.80
TimeSeries 0.76 0.78 0.79 0.78
Mixture 0.75 0.74 0.74 0.75

We explore the generality of SixthSense by con-
ducting predictions when the number of MCMC
iterations is fewer than the original 1000. Table 5
summarizes the results. Each cell presents the F1
score (averaged over 3 runs) for different number of
iterations. In this experiment we fixed the Gelman-
Rubin diagnostic threshold to 1.05. Table 6 presents
the AUC scores for the same experiment.

The results shows that even for different distri-
butions of positive and negative labels, SixthSense
performs well. Although the labels of individual proba-
bilistic programs change, sometimes significantly (e.g.,
for 100 iterations), the F1 scores remain consistently
high. For AUC we observe a similar trend.

7.4 Characteristics of Generated

Mutants

Figures 6a, 6c, 6b show the distribution of
converging/non-converging mutants in the program
set generated by our mutation algorithm (Algo-
rithm 2), after running 1000 iterations. Y-Axis

Springer Nature 2021 LATEX template

e 17

(a) Regression (R̂=1.05)

(b) Mixture (R̂=1.05) (c) Time Series (R̂=1.05)

Fig. 6: Distribution of Converging Mutants
for All Seeds. Blue programs are converging, orange
are non-converging.

presents the total number of mutants. Each bar gives
the count of mutants from each seed probabilistic
program, marking converging and non-converging sep-
arately. In total, we generated 30,000 mutants, with
around 10,000 mutants per class.

These plots illustrate the effectiveness of our muta-
tion algorithms. For most seed programs, SixthSense
was able to generate a well-balanced set of semanti-
cally correct mutants – for over 60% of the 166 seeds,
the ratio between converging and non-converging pro-
grams is between 0.3 and 0.7. The total number
of semantically-correct generated mutants per pro-
gram is generally high (more than 70% on average
across three classes), which is particularly important
for the classes that have fewer seed programs like
MixtureModels and TimeSeries.

When using a larger R̂ threshold, more seed pro-
grams will be marked as converging. In those cases,
our Algorithm 4 is particularly helpful in generating
harder mutants to get around 50% non-converging
cases. One might also observe in Figure 5 that, the
Majority Label Classifier, which reflects the ratio of
converging or non-converging cases, always has its
accuracy around 50%.

Several seed programs pose difficulty to the
mutation algorithm to generate semantically valid pro-
grams. The common features include computations
on array indices, custom functions, or positive definite
matrices. However, the number of these programs

is relatively small: less than 10% Regression models,
17% Mixture models, and 22% Time Series models.

7.5 Training and Testing Times and

Prediction Model Sizes

Table 7 presents the statistics of different parts of
SixthSense’s execution. Each row presents one class
of models. Columns 2 and 3 present the number of
the original models from the Stan repository and the
number of generated mutants. Column 4 presents the
time to generate all the mutants. Column 5 presents
the time to run the generated programs and collect
the execution statistics in the logs (we reuse the
information about the model runs when re-training
the data). This includes the time to run each program
using NUTS algorithm in Stan for 100,000 iterations
for one chain and 1000 iterations for four chains,
and computing the accuracy and convergence metrics.
Further, it also includes the time to collect the run-
time features, as discussed in Section 4.3 for 10-100
iterations. Column 6 shows the time to compute
the program’s static features (Section 4.1). Finally,
Column 7 and 8 present the time to train and test
our random forest models.

Executing the seed and mutated programs is the
most expensive step in the training. Running the sam-
pling algorithms for 100,000 iterations for each model
takes significant time, especially for more complex
models. The average training time per threshold for
SixthSense is less than a minute, for Code2Vec about
6 minutes (6x slower) and Code2Seq over two hours
(120x slower), as it tries to learn the features during
training. Computing the AST motifs and data fea-
tures takes less than 1 second on average per instance
for SixthSense. Code2Vec and Code2Seq take about
0.3 seconds per instance (but without data features).

Table 8 presents the size (in MBs) of the
gzip-compressed prediction models for the three
tools. SixthSense’s models are 25-37% smaller
than Code2Vec and Code2Seq.

8 Sensitivity Analysis

We present various sensitivity analyses of SixthSense
to justify our design choices.

8.1 Feature Ablation Study

Table 9 shows the Accuracy score for convergence
predictions when trained with different combinations

Springer Nature 2021 LATEX template

Table 7: Time Taken by Different Phases in SixthSense
Model Class Programs Mutants Mutant Gen. Code Run Feature Calc. Training Test
Regression 121 8960 2h5m 23h57m 1h5m 23m 0.21s
Mixture Models 24 8524 2h 48h2m 1h42m 20m 0.22s
Time Series 27 8703 1h31m 39h33m 1h16m 21m 0.22s

Table 8: The Size of Prediction Models
Class SixthSense Code2Vec Code2Seq
Regression 19M 29M 26M
Mixture 17.7M 20.3M 23M
TimeSeries 16.3M 24M 25.3M

of feature groups (AST features, AST and data fea-
tures, and all features). Runtime features are from 200
warmup iterations. The AST features (motifs) alone
contribute a major portion to the Accuracy scores
in all cases. Data features do not have much impact
on these models. Runtime features, after a certain
number of iterations further improve prediction (they
are in fact a strong predictor, but do not establish a
relation with the program code). Obtaining runtime
statistics comes at a cost of compiling and running
the program, which can be over 30 seconds for Stan.

8.2 Impact of the Noisy Labels on the

Prediction

Noisy labels, where binary labels are randomly flipped,
pose a common challenge in binary classification tasks.
To evaluate the robustness of our predictions, we
intentionally introduced label noise into the training
set at various noise levels and conducted experiments
using two approaches: one involving a robust ver-
sion of SixthSense that employs a technique called
Rank Pruning [34], which is known for its ability to
enhance the training for binary classification when
labels are noisy, and the other using the basic version
of SixthSense without Rank Pruning. Importantly,
Rank Pruning seamlessly integrates with SixthSense.

Table 10 shows the Accuracy scores for the dif-
ferent model classes for several noise levels (1-5%).
For each noise level, the R (Robust) column shows
the scores when trained using the Rank Pruning
algorithm and the B (Basic) column shows the
scores for the basic SixthSense. Even in the presence
of significant training noise, our learning approach
maintains high Accuracy scores. For instance, the per-
formance of Mixture Models remains almost constant
(close to 78%), whether Rank Pruning is applied or
not, even when 5% labels are wrong.

8.3 Motif Ablation Study

We performed a sensitivity study to determine the
importance of different motifs obtained from AST in
prediction. First, we looked at different motif sizes. For
three motif sizes (5, 10, 20) on the threshold R̂=1.05,
we do not see a significant increase in the Accuracy
score. This reflects that even smaller motifs obtained
from probabilistic programs can be very effective for
predicting their runtime behavior. Therefore, we used
Motif size of 5 in all our experiments.

We select only non-overlapping motifs from the
features set (i.e motifs with no common nodes or
sequence of nodes in AST) and use them for predic-
tion. Next, we repeat the same experiments, but with
smaller randomly sampled subsets of non-overlapping
motifs. Tables 11 shows the results for this study
for convergence and accuracy prediction respectively.
First column shows the model class. Columns 2-5
show the F1 scores when we use 10%,40%,80%, and
100% of the non-overlapping motifs. The final column
shows the F1 scores that we obtain when using all
original motifs (as in Sections 7.1 and 7.2).

We observe that the scores drop slightly com-
pared to the original scores when using only non-
overlapping motifs. The scores gradually deteriorate
when using smaller subsets of non-overlapping motifs.
This shows that although removing some overlap-
ping motifs might help reduce the feature space and
improve the training time, the user still needs to
pay the penalty of worse predictions.

8.4 Other Sensitivity Studies

We also performed other sensitivity studies on the
features and generated programs. This included the
following experiments: sub-sampling motif subsets for
each program, using different LSH configurations to
remove syntactically similar programs from the train-
ing set, and increasing themotif depth. However, these
experiments did not show substantial deviation from
the F1 scores we obtained in the main experiments.

Springer Nature 2021 LATEX template

e 19

Table 9: Ablation Study (R̂=1.05)

Class A A+D A+RT A+D+RT

Regression 0.77 0.77 0.83 0.83
Mixture 0.78 0.78 0.87 0.87
TimeSeries 0.79 0.79 0.84 0.85

Table 10: Training with Noisy Labels (R̂=1.05)
Label Flip Pr. 1% 3% 5%

Model Class R B R B R B

Regression 0.765 0.760 0.763 0.765 0.760 0.764
Mixture 0.772 0.784 0.774 0.782 0.783 0.785
TimeSeries 0.786 0.789 0.794 0.781 0.781 0.788

Table 11: Using Motif Subsets (R̂=1.05)
Class 0.1 0.4 0.8 1.0 All

Regression 0.60 0.70 0.72 0.72 0.77
Mixture 0.62 0.69 0.72 0.73 0.78
TimeSeries 0.61 0.73 0.73 0.77 0.79

9 Related Work

Probabilistic Programming. Probabilistic pro-
gramming offers a means to encode intricate statistical
models into straightforward computer programs,
serving as a powerful tool to capture and ana-
lyze uncertainty. Recently, probabilistic programming
languages (PPLs) and their underlying inference sys-
tems have gained significant interest from research
and industry [1, 7, 11, 35–41]. Typically, PPLs
(e.g., Stan) only provide simple runtime diagnostics
and timing information as they run. In contrast,
SixthSense is a predictive data-driven approach
that complements these efforts.

The prior debugging approach for PPLs [42]
requires augmenting Bayesian network representation
with additional labels and extending the inference
algorithm. However, its applicability is limited as
state-of-the-art PP systems typically do not use
Bayesian network representation. In contrast, our
approach learns program features for debugging with-
out altering the inference algorithm. Other existing
tools [22, 43] target lower-level implementation bugs
in probabilistic programming systems. Meanwhile,
the statistics community explores enhancing model
robustness against data noise [44], while our work
addresses non-convergence issues in model inference.

Several recent approaches have explored the
nature of regression tests in probabilistic and machine
learning applications such as the causes and fixes for
flaky tests [45, 46], usage of seeds in tests [47], and
speeding up expensive regression tests [48].
Predicting Program Properties from Big-
Code. Much attention has recently been devoted
to uses of machine learning to analyze and pre-
dict various program properties. Notable examples
include predicting variable names/types via statistical
program models [15], predicting patches [49], summa-
rizing code [16, 50], API discovery [13, 51], and bug

detection/repair [52–54]. However, all of these works
apply learning to conventional programs (C/Java/-
Javascript), obtained from massive code repositories.
Moreover, many of these approaches predict static
program properties (e.g., names/types), rather than
execution properties like convergence. While some of
these approaches benefit from the natural-language
semantics of identifiers [13, 14], we are interested
in semantics of the program itself, which are better
represented by the sequence of AST nodes.

We also present how to augment the corpus of
programs with diverse programs via guided muta-
tion. While our approach bears similarity to data
augmentation in machine learning [55–57], probabilis-
tic programs have complex structure defined by many
syntactic (and often semantic) rules.
Predicting Algorithm Performance.
Researchers developed machine learning approaches
that predict hardness of NP-hard problems (e.g., SAT,
SMT, ILP) [58–60]. These works are complementary
and their syntax and semantics are considerably sim-
pler than for probabilistic programs. Researchers also
proposed models for performance of other machine
learning architectures [61–64], but their techniques
and applications are orthogonal to ours.
Transformer-based Code Generation. Recently,
new advances in transformer-based neural networks
have demonstrated substantial improvment in code
generation quality. Popular examples include Alpha-
Code [65], ChatGPT [66] and Codex [67] that can
generate a program in seconds for a given natural lan-
guage prompt. Other systems like [68] are designed
for edit-time code completion in IDEs. These systems
report a high result performance, which is compara-
ble to humans. While these approaches can help with
program generation or property prediction, training
these systems usually requires a large code corpus,
which is not available for probabilistic programs. Fur-
ther, it is unclear how to use these systems to predict
semantic properties of programs (like convergence).

Springer Nature 2021 LATEX template

10 Conclusion

We presented SixthSense, a novel approach and sys-
tem, which predicts convergence for probabilistic
programs and helps guide the debugging of conver-
gence issues. Our results demonstrate the effectiveness
of SixthSense in extracting features from probabilis-
tic programs and learning a prediction model. When
compared to the state-of-the-art techniques, Sixth-
Sense achieves a significant improvement in accuracy,
exceeding an accuracy score of 78% for predicting
convergence. SixthSense exhibits the potential to pin-
point the causes of non-convergence issues, which
offers practical support for software developers and sci-
entists in addressing convergence issues and enhance
the reliability of probabilistic programming practices.

Supplementary Information. SixthSense is
publicly avaliable at https://github.com/uiuc-arc/
sixthsense.

Acknowledgments. This research was supported
in part by NSF Grants No. CCF-1846354, CCF-
1956374, CCF-2008883, CCF-2217144, USDA NIFA
Grant No. NIFA-2024827, a gift from Facebook, a
Facebook Graduate Fellowship, and Microsoft Azure
Credits. We would also like to thank Prof. Jian Peng
for the useful comments on an earlier draft.

The previous version of this work appeared in
FASE 2022 [69].

Springer Nature 2021 LATEX template

e 21

References

[1] Minka, T., Winn, J.M., Guiver, J.P., Webster, S.,
Zaykov, Y., Yangel, B., Spengler, A., Bronskill,
J.: Infer.NET 2.5. Microsoft Research Cambridge.
http://research.microsoft.com/infernet (2013)

[2] Tehrani, N.K., Arora, N.S., Noursi, D., Tingley,
M., Torabi, N., Lippert, E.: Bean machine: A
declarative probabilistic programming language
for efficient programmable inference. In: PGM
(2020)

[3] Modeling Censored Time-to-Event Data
Using Pyro. https://eng.uber.com/
modeling-censored-time-to-event-data-using-pyro/
(2019)

[4] Flaxman, S., Mishra, S., Gandy, A., Unwin,
H.J.T., Mellan, T.A., Coupland, H., Whittaker,
C., Zhu, H., Berah, T., Eaton, J.W., et al.:
Estimating the effects of non-pharmaceutical
interventions on covid-19 in europe. Nature, 1–5
(2020)

[5] Gelman, A.: Stan being used to study
and fight coronavirus. Stan Forums
(2020). https://discourse.mc-stan.org/t/
stan-being-used-to-study-and-fight-coronavirus/
14296

[6] Obermeyer, F.: Deep probabilistic programming
with Pyro. Models, Inference, and Algorithms
(2020). https://www.broadinstitute.org/talks/
deep-probabilistic-programming-pyro

[7] Goodman, N., Mansinghka, V., Roy, D.M.,
Bonawitz, K., Tenenbaum, J.B.: Church: a lan-
guage for generative models. arXiv preprint
arXiv:1206.3255 (2012)

[8] Robert, C., Casella, G.: Monte Carlo Statistical
Methods. Springer, New York (2013)

[9] Hoffman, M.D., Gelman, A.: The no-u-turn
sampler: adaptively setting path lengths in hamil-
tonian monte carlo. Journal of Machine Learning
Research 15(1), 1593–1623 (2014)

[10] Neal, R.M.: An improved acceptance procedure
for the hybrid monte carlo algorithm. Journal of
Computational Physics 111(1), 194–203 (1994)

[11] Carpenter, B., Gelman, A., Hoffman, M., Lee, D.,
Goodrich, B., Betancourt, M., Brubaker, M.A.,
Guo, J., Li, P., Riddell, A.: Stan: A probabilis-
tic programming language. JSTATSOFT 20(2)
(2016)

[12] Gelman, A., Stern, H.S., Carlin, J.B., Dunson,
D.B., Vehtari, A., Rubin, D.B.: Bayesian Data
Analysis. Chapman and Hall/CRC, New York
(2013)

[13] Alon, U., Zilberstein, M., Levy, O., Yahav, E.:
code2vec: Learning distributed representations of
code. Proceedings of the ACM on Programming
Languages 3(POPL), 40 (2019)

[14] Alon, U., Brody, S., Levy, O., Yahav, E.:
code2seq: Generating sequences from structured
representations of code. In: International Confer-
ence on Learning Representations (2019). https:
//openreview.net/forum?id=H1gKYo09tX

[15] Raychev, V., Vechev, M., Krause, A.: Predict-
ing program properties from big code. In: ACM
SIGPLAN Notices, vol. 50, pp. 111–124 (2015).
ACM

[16] Iyer, S., Konstas, I., Cheung, A., Zettlemoyer,
L.: Summarizing source code using a neural
attention model. In: Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp.
2073–2083 (2016)

[17] Mendis, C., Renda, A., Amarasinghe, S., Carbin,
M.: Ithemal: Accurate, portable and fast basic
block throughput estimation using deep neural
networks. In: ICML (2019)

[18] Bingham, E., Mannila, H.: Random projection in
dimensionality reduction: applications to image
and text data. In: Proceedings of the Interna-
tional Conference on Knowledge Discovery and
Data Mining (KDD) (2001). ACM

[19] Andoni, A., Indyk, P.: Near-optimal hashing
algorithms for approximate nearest neighbor in
high dimensions. Communications of the ACM
51(1), 117 (2008)

[20] Stan Example Models. https://github.com/
stan-dev/example-models (2018)

Springer Nature 2021 LATEX template

[21] Stan. Using target += syntax. https:
//stackoverflow.com/questions/40289457/
stan-using-target-syntax (2016)

[22] Dutta, S., Zhang, W., Huang, Z., Misailovic,
S.: Storm: Program reduction for testing and
debugging probabilistic programming systems.
In: FSE (2019)

[23] Datar, M., Immorlica, N., Indyk, P., Mirrokni,
V.S.: Locality-sensitive hashing scheme based
on p-stable distributions. In: Proceedings of the
Twentieth Annual Symposium on Computa-
tional Geometry, pp. 253–262 (2004). ACM

[24] Prior Choice Recommendations in Stan.
https://github.com/stan-dev/stan/wiki/
Prior-Choice-Recommendations (2011)

[25] http://mc-stan.org/users/documentation/
index.html (2018)

[26] Raiffa, H., Schlaifer, R.: Applied statistical
decision theory (1961)

[27] Sakia, R.: The box-cox transformation technique:
a review. Journal of the Royal Statistical Soci-
ety: Series D (The Statistician) 41(2), 169–178
(1992)

[28] Inference case studies in knitr. https://github.
com/betanalpha/knitr case studies (2019)

[29] Gelman, A., Lee, D., Guo, J.: Stan a probabilistic
programming language for bayesian inference
and optimization. Journal of Educational and
Behavioral Statistics (2015)

[30] NearPy. https://github.com/pixelogik/NearPy
(2011)

[31] Tree Interpreter Package. https://github.com/
andosa/treeinterpreter (2020)

[32] Fawcett, T.: An introduction to roc analy-
sis. Pattern recognition letters 27(8), 861–874
(2006)

[33] Davis, J., Goadrich, M.: The relationship
between precision-recall and roc curves. In: Pro-
ceedings of the 23rd International Conference on

Machine Learning, pp. 233–240 (2006). ACM

[34] Northcutt, C.G., Wu, T., Chuang, I.L.: Learn-
ing with confident examples: Rank pruning for
robust classification with noisy labels. In: Pro-
ceedings of the Thirty-Third Conference on
Uncertainty in Artificial Intelligence. UAI’17.
AUAI Press, Sydney, Australia (2017). http:
//auai.org/uai2017/proceedings/papers/35.pdf

[35] Wood, F., van de Meent, J.W., Mansinghka, V.:
A new approach to probabilistic programming
inference. In: AISTATS (2014)

[36] Mansinghka, V., Selsam, D., Perov, Y.: Ven-
ture: a higher-order probabilistic programming
platform with programmable inference. arXiv
preprint 1404.0099 (2014)

[37] Goodman, N.D., Stuhlmüller, A.: The design
and implementation of probabilistic program-
ming languages. Retrieved 2015/1/16, from
http://dippl. org (2014)

[38] Tran, D., Kucukelbir, A., Dieng, A.B., Rudolph,
M., Liang, D., Blei, D.M.: Edward: A library for
probabilistic modeling, inference, and criticism.
arXiv (2016)

[39] Pyro. http://pyro.ai (2018)

[40] Claret, G., Rajamani, S.K., Nori, A.V., Gordon,
A.D., Borgström, J.: Bayesian inference using
data flow analysis. In: FSE (2013)

[41] Huang, Z., Dutta, S., Misailovic, S.: Aqua:
Automated quantized inference for probabilistic
programs. In: International Symposium on Auto-
mated Technology for Verification and Analysis,
pp. 229–246 (2021). Springer

[42] Nandi, C., Grossman, D., Sampson, A., Mytkow-
icz, T., McKinley, K.S.: Debugging probabilistic
programs. In: MAPL (2017)

[43] Dutta, S., Legunsen, O., Huang, Z., Misailovic, S.:
Testing probabilistic programming systems. In:
Proceedings of the 2018 26th ACM JointMeeting
on European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, pp. 574–586 (2018). ACM

Springer Nature 2021 LATEX template

e 23

[44] Huang, Z., Dutta, S., Misailovic, S.: Astra:
Understanding the practical impact of robust-
ness for probabilistic programs. In: Uncertainty
in Artificial Intelligence, pp. 900–910 (2023).
PMLR

[45] Dutta, S., Shi, A., Choudhary, R., Zhang, Z.,
Jain, A., Misailovic, S.: Detecting flaky tests in
probabilistic and machine learning applications.
In: ISSTA (2020)

[46] Dutta, S., Shi, A., Misailovic, S.: Flex: fixing flaky
tests in machine learning projects by updating
assertion bounds. In: FSE (2021)

[47] Dutta, S., Arunachalam, A., Misailovic, S.: To
seed or not to seed? an empirical analysis of
usage of seeds for testing in machine learning
projects. In: ICST (2022)

[48] Dutta, S., Selvam, J., Jain, A., Misailovic, S.:
Tera: Optimizing stochastic regression tests in
machine learning projects. In: ISSTA (2021)

[49] Long, F., Rinard, M.: Automatic patch gen-
eration by learning correct code. In: ACM
SIGPLAN Notices, vol. 51, pp. 298–312 (2016).
ACM

[50] Allamanis, M., Peng, H., Sutton, C.: A convolu-
tional attention network for extreme summariza-
tion of source code. In: International Conference
on Machine Learning, pp. 2091–2100 (2016)

[51] Wang, K., Su, Z.: Learning blended, pre-
cise semantic program embeddings. ArXiv, vol.
abs/1907.02136 (2019)

[52] Allamanis, M., Jackson-Flux, H., Brockschmidt,
M.: Self-supervised bug detection and repair.
Advances in Neural Information Processing
Systems 34, 27865–27876 (2021)

[53] Pradel, M., Sen, K.: Deepbugs: A learning
approach to name-based bug detection. Proceed-
ings of the ACM on Programming Languages
2(OOPSLA), 1–25 (2018)

[54] Xia, C.S., Zhang, L.: Less training, more repair-
ing please: revisiting automated program repair
via zero-shot learning. In: Proceedings of the
30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations
of Software Engineering, pp. 959–971 (2022)

[55] Simard, P.Y., Steinkraus, D., Platt, J.C.: Best
practices for convolutional neural networks
applied to visual document analysis. In: Icdar,
vol. 3 (2003)

[56] Cubuk, E.D., Zoph, B., Mane, D., Vasudevan,
V., Le, Q.V.: Autoaugment: Learning aug-
mentation policies from data. arXiv preprint
arXiv:1805.09501 (2018)

[57] Taylor, L., Nitschke, G.: Improving deep learning
using generic data augmentation. arXiv preprint
arXiv:1708.06020 (2017)

[58] Leyton-Brown, K., Hoos, H.H., Hutter, F., Xu,
L.: Understanding the empirical hardness of
np-complete problems. Communications of the
ACM 57(5), 98–107 (2014)

[59] Khalil, E.B., Le Bodic, P., Song, L., Nemhauser,
G., Dilkina, B.: Learning to branch in mixed
integer programming. In: Thirtieth AAAI Con-
ference on Artificial Intelligence (2016)

[60] Balunovic, M., Bielik, P., Vechev, M.: Learning to
solve smt formulas. In: Advances in Neural Infor-
mation Processing Systems, pp. 10338–10349
(2018)

[61] Istrate, R., Scheidegger, F., Mariani, G.,
Nikolopoulos, D., Bekas, C., Malossi, A.C.I.:
Tapas: Train-less accuracy predictor for archi-
tecture search. arXiv preprint arXiv:1806.00250
(2018)

[62] Dutta, S., Joshi, G., Ghosh, S., Dube, P., Nag-
purkar, P.: Slow and stale gradients can win the
race: Error-runtime trade-offs in distributed sgd.
arXiv preprint arXiv:1803.01113 (2018)

[63] Deng, B., Yan, J., Lin, D.: Peephole: Predict-
ing network performance before training. arXiv
preprint arXiv:1712.03351 (2017)

[64] Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzi-
lay, R.: sk p: a neural program corrector for
moocs. In: Companion Proceedings of the 2016
OOPSLA, pp. 39–40 (2016). ACM

Springer Nature 2021 LATEX template

[65] Li, Y., Choi, D., Chung, J., Kushman, N., Schrit-
twieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al.: Competition-
level code generation with alphacode. Science
378(6624), 1092–1097 (2022)

[66] ChatGPT: Optimizing Language Models for Dia-
logue. https://openai.com/blog/chatgpt (2022)

[67] Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto,
H.P.d.O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al.: Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374 (2021)

[68] Svyatkovskiy, A., Deng, S.K., Fu, S., Sundaresan,
N.: Intellicode compose: Code generation using
transformer. In: Proceedings of the 28th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering, pp. 1433–1443 (2020)

[69] Dutta, S., Huang, Z., Misailovic, S.: Sixthsense:
Debugging convergence problems in probabilistic
programs via program representation learning.
In: International Conference on Fundamental
Approaches to Software Engineering, pp. 123–144
(2022). Springer, Cham

	Introduction
	SixthSense
	Results
	Contributions

	Example
	Overview
	Convergence
	Deployment

	Learning Program Features
	Extracting Features from Program
	Data Features
	Runtime Features

	Program Generation for Training Set Augmentation
	Code Mutations
	Data Mutations
	Adaptive Algorithm for Mutant Generation
	Generating Semantically Valid Mutants
	Extension: Generating Harder Benchmarks

	Methodology
	Baselines
	Metrics
	Evaluation Experimental Setup

	Evaluation
	Predicting Convergence of inference
	Debugging Non-Converging Programs
	Prediction For Different Iteration Counts
	Characteristics of Generated Mutants
	Training and Testing Times and Prediction Model Sizes

	Sensitivity Analysis
	Feature Ablation Study
	Impact of the Noisy Labels on the Prediction
	Motif Ablation Study
	Other Sensitivity Studies

	Related Work
	Conclusion
	Supplementary Information
	Acknowledgments

