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Asymptotics of the Sketched Pseudoinverse\ast 
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Abstract. We take a random matrix theory approach to random sketching and show an asymptotic first-
order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to
a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization
and extend previous results on an asymptotic equivalence of random matrices to the real setting,
providing a precise characterization of the equivalence even under negative regularization, including
a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be
of independent interest. We then further characterize the second-order equivalence of the sketched
pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to
sketched ridge regression. Last, we prove that these results generalize to asymptotically free sketching
matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our
results to several common sketches used in practice.
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1. Introduction. In large-scale data processing systems, sketching or random projections
play an essential role in making computation efficient and tractable. The basic idea is to
replace high-dimensional data by relatively low-dimensional random linear projections of the
data such that distances are preserved. It is well-known that sketching can significantly reduce
the size of the data without harming statistical performance, while providing a dramatic
computational advantage [1, 24, 30, 54]. For a summary of results on the applications of
sketching in optimization and numerical linear algebra, we refer the reader to [38, 55].

In this work, we present a different kind of result than the usual sketching guaran-
tee. Typically, sketching is guaranteed to preserve the output or statistical performance
of computational methods with an error term that vanishes for sufficiently large sketch sizes
[5, 6, 10, 27, 44, 56]. In contrast, we characterize the precise way in which the solution to a
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computational problem changes when operating on a sketched version of data instead of the
original data, showing that sketching induces a specific type of regularization.

Our primary contribution is a statement about the effect of sketching on the (regularized)
pseudoinverse of a matrix. An informal statement of our result is as follows. Here the notation
\bfA \simeq \bfB for two matrices \bfA and \bfB indicates an asymptotic first-order equivalence, which we
define in section 2, and \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ) is the smallest nonzero eigenvalue of a matrix \bfA . We refer

to \bfS 
\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H as the sketched (regularized) pseudoinverse of \bfA , because when \bfS 

has orthonormal columns, the pseudoinverse of \bfS \bfS H\bfA \bfS \bfS H is equal to \bfS (\bfS H\bfA \bfS ) - 1\bfS H. This
expression is also related to the Nystr\"om approximation of \bfA .

Theorem 1.1 (Theorems 4.1 and 7.2, informal). Given a positive semidefinite matrix \bfA \in 
Cp\times p and sketching matrix \bfS \in Cp\times q, for any \lambda > - \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfS 
H\bfA \bfS ), there exists \mu \in R such that

\bfS 
\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H \simeq (\bfA + \mu \bfI p)

 - 1.

The general implication of this result is that when we do computation using the sketched
version of a matrix, there is a sense in which it is as if we were using additional ridge regu-
larization. More precisely, when we solve (regularized) linear systems on a sketched version
of the data and apply this solution to the sketched data, it is equivalent in a first-order
sense to solving a regularized linear system in the original space. To see this, consider, for
example, a least squares problem min\bfitbeta \| \bfy  - \bfX \bfitbeta \| 22. The first-order optimality condition is
\bfX H\bfX \bfitbeta =\bfX H\bfy , and if we replace \bfX by a sketch \bfX \bfS , we have the solution in the sketched do-
main \widehat \bfitbeta \bfS = (\bfS H\bfX H\bfX \bfS ) - 1\bfS H\bfX H\bfy . If we then measure this solution in some sketched direction
\bfS H\bfu for some independent unit vector \bfu , we obtain \^\beta \bfu = \bfu H\bfS \widehat \bfitbeta \bfS = \bfu H\bfS (\bfS H\bfX H\bfX \bfS ) - 1\bfS H\bfX H\bfy .
By our result, this is asymptotically equivalent to measuring \^\beta \bfu \simeq \bfu H(\bfX H\bfX +\mu \bfI ) - 1\bfX H\bfy ---that
is, as if we had solved the original least squares problem using some regularization \mu .

Summary of contributions. Below we summarize the main contributions of the paper.
1. \bfR \bfe \bfa \bfl -\bfv \bfa \bfl \bfu \bfe \bfd \bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe . We extend previous results from random matrix theory

[45] for independent and identically distributed (i.i.d.) random matrices to real-valued
regularization, explicitly characterizing the behavior of the associated fixed-point equa-
tion extended from the complex half-plane to the reals, allowing for consideration of
negative regularization. This result includes what is to the best of our knowledge the
first characterization of the limiting smallest nonzero eigenvalue of arbitrary Wishart
type sample covariance matrices, which may be of independent interest.

2. \bfF \bfi \bfr \bfs \bft -\bfo \bfr \bfd \bfe \bfr \bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe . Applying the real-valued equivalence, we obtain a first-
order equivalence for the ridge-regularized i.i.d. sketched pseudoinverse.

3. \bfS \bfe \bfc \bfo \bfn \bfd -\bfo \bfr \bfd \bfe \bfr \bfe \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe . Using the calculus of asymptotic equivalents, we also
obtain a second-order equivalence for the ridge-regularized i.i.d. sketched pseudoinverse
that captures a variance-like inflation due to the randomness of sketching.

4. \bfE \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe \bfp \bfr \bfo \bfp \bfe \bfr \bft \bfi \bfe \bfs . We provide a thorough investigation of the theoretical
properties of the equivalence relationship, such as how the induced regularization de-
pends on the original applied regularization, sketch size, and matrix rank.

5. \bfA \bfp \bfp \bfl \bfi \bfc \bfa \bft \bfi \bfo \bfn \bfs . We demonstrate how to apply our results by performing novel analysis
of sketch-and-project [24] and sketched ridge regression.
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6. \bfF \bfr \bfe \bfe \bfs \bfk \bfe \bft \bfc \bfh \bfi \bfn \bfg . Finally, we extend the scope of our results for first-order equivalence
of the sketched pseudoinverse beyond i.i.d. sketching to general asymptotically free
sketching and specialize to orthogonal sketching matrices.

Related work. The existence of an implicit regularization effect of sketching or random
projections has been known for some time [17, 31, 46, 50]. While prior works have demon-
strated clear theoretical and empirical statistical advantages of sketching, our understanding
of the precise nature of this implicit regularization has been largely limited to quantities such
as error bounds. We provide, in contrast, a precise asymptotic characterization of the solution
obtained by a sketching-based solver, not only enabling the understanding of the statistical
performance of sketching-based methods, but also opening the door for exploiting the specific
regularization induced by sketching in future algorithms.

Our results in this work provide a general extension of a few results appearing in recent
works that have revealed explicit characterizations of the implicit regularization effects induced
by random subsampling. To the best of our knowledge, the first such result was presented
by [34], who showed that ensembles of (unregularized) ordinary least squares predictors on
randomly subsampled observations and features converge in an \ell 2 metric to an (optimal)
ridge regression solution in the proportional asymptotics regime. This result was limited in
several aspects: (a) it required a strong isotropic Gaussian data assumption; (b) it required the
subsampled data to have more observations than features; (c) it considered only unregularized
base learners in the ensemble; (d) it required an ensemble of infinite size to show the ridge
regression equivalence; (e) it provided only a marginal guarantee of convergence over the data
distribution rather than a single-instance convergence guarantee; and (f) it did not provide the
relationship between the subsampling ratio and the amount of induced ridge regularization. In
addition, the proof relied on rote computation of expectations of matrix quantities, providing
limited insight into the underlying mathematical principles at work. The result we present in
this work in Theorem 4.1 addresses all of these issues.

Around the same time, [42] showed the remarkably simple result that the expected value
of the pseudoinverse of any positive definite matrix sampled by a determinantal point process
is equal to a resolvent of the matrix. Similarly to the result by [34], this result demon-
strated that when random subsampling is applied in techniques without any regularization,
the resulting solution is as if a regularized technique was used on the original data. This result
provided a simple form of the argument of the induced resolvent as a solution to a matrix trace
equation, which is analogous to the results we present in this work for sketching. The same
authors later empirically demonstrated that the same effects occur when using i.i.d. Gaussian
and Rademacher sketches [12] and obtained a first-order equivalent for certain sub-Gaussian
sketched projection operators [14] and first- and second-order moments for certain debiased
sketches [13]. Our work generalizes these later developments and also differs from these works
in that we provide a single-instance equivalent ridge regularization in the asymptotic regime,
rather than an expectation over the random projections.

Our results also echo the finite-sample results of [16], who showed that the unregularized
inverse of a particular sketched matrix form has a merely multiplicative bias for sketch size
minimally larger than the rank of the original matrix. This is captured by Theorem 3.1 in our
work when z\rightarrow 0, combined with Remark 5.7, in which we observe that there is asymptotically
no spectral distortion in the range of the original matrix for sketches larger than the rank.
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Our work leverages techniques from random matrix theory [45], and the techniques em-
ployed bear some resemblance to other recent work in high dimensional statistical analysis
[15, 22, 26]. In particular, we leverage the calculus of deterministic equivalences as pre-
sented by [21]. However, instead of characterizing only very specific quantities such as in-
distribution generalization error, requiring tedious updates to the proof to adapt to other
quantities of interest, we have isolated the expressions that will be needed to analyze any
quadratic functional of the sketched pseudoinverse. In addition, instead of characterizing
\bfA 1/2\bfS 

\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H\bfA 1/2 (as considered, e.g., by [14] for \lambda = 0), which is a simple

reparameterization of (\bfA 1/2\bfS H\bfS \bfA 1/2 + \lambda \bfI p)
 - 1 and therefore straightforwardly understood

through equivalences for sample covariance matrices [32, 45], we characterize the quantity

\bfS 
\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H, which is essential for asymmetric applications such as ridge regression

without data assumptions (see the example in subsection 6.2).
Our application of our results to sketch-and-project [24] improves upon recent work by

[14] in that we are also able to calculate asymptotic computational complexity as a function
of sketch size thanks to the uniformity of convergence over bounded sketching ratios and the
ability to consider sparse sketches that can be applied in O(q2) time (see Remark 4.5).

Other works have considered other types of sketches that do not have the same random
matrix properties as the matrices we consider in our main results. In particular, fast sketching
techniques such as CountSketch [9] and the subsampled randomized Hadamard transform
(SRHT) [51] are among the most popular random projections in practice, since they can be
applied in only O(p log p) time rather than O(pq) or O(q2) for i.i.d. sketches. Very little is
known about the properties of these sketches under proportional asymptotics; we know only
of [29], who analyzed specific first and second moments in the isotropic case for the SRHT.
Other prior work has shown universality of certain sketching inversion bias behavior under
any rotationally invariant sketch [16]. We show that our results generalize to the broader
class of ``free"" sketches in Theorem 7.2 using free probability [53, 40] and specialize to an
exact formula for orthogonal sketching in Corollary 7.3. Then we empirically show that fast
sketches commonly used in practice behave according to our generalization.

A few works have shown that under certain data geometry and noise, the optimal ridge
regression parameter can be negative [28, 57]. For this reason, we take special care to determine
the limit of allowable negative regularization in sketched settings. Then in a ridge regression
example in subsection 6.2, we demonstrate how negative regularization can be optimal for
standard noisy learning problems in undersampled distributed optimization settings.

Organization. The rest of the paper is structured as follows. In section 2, we start with
some preliminaries on the language of asymptotic equivalence of random matrices that we will
use to state our results. In section 3, we extend a previous result on asymptotic equivalence
for a ridge regularized resolvent to include real-valued negative regularization and provide a
precise limiting lower limit of the permitted negative regularization. In section 4, we provide
our main results about the first- and second-order equivalence of the sketched pseudoinverse.
Then, in section 5, we explore properties of the equivalence and present illustrative examples.
In section 6, we perform novel analysis of two sketching-based optimization methods. Finally,
in section 7, we conclude by giving various extensions and providing a generalization of the
asymptotic behavior of sketched pseudoinverse for a broad family of sketching matrices using
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the insights obtained from the proof of our main result and experimentally compare sketches
commonly used in practice to our theory. Our code for generating all figures can be found at
https://github.com/dlej/sketched-pseudoinverse.

Notation. We denote the real line by R and the complex plane by C. For a complex
number z = x + iy, Re(z) denotes its real part x, Im(z) denotes its imaginary part y, and
z = x  - iy denotes its conjugate. We use R\geq 0 and R>0 to denote the set of nonnegative
and positive real numbers, respectively; similarly, R\leq 0 and R<0 respectively denote the set
of nonpositive and negative real numbers. We use C+ = \{ z \in C : Im(z) > 0\} to denote the
upper half of the complex plane and C - = \{ z \in C : Im(z)< 0\} to denote the lower half of the
complex plane.

We denote vectors in lowercase bold letters (e.g., \bfy ) and matrices in uppercase bold
letters (e.g., \bfX ). For a vector \bfy , \| \bfy \| 2 denotes its \ell 2 norm. For a rectangular matrix \bfS \in Cp\times q,
\bfS H \in Cq\times p denotes its conjugate or Hermitian transpose (such that [\bfS H]ij = [\bfS ]ji), \| \bfS \| \mathrm{t}\mathrm{r}
denotes its trace norm (or nuclear norm), that is, \| \bfS \| \mathrm{t}\mathrm{r} = tr[(\bfS H\bfS )1/2], and \| \bfS \| \mathrm{o}\mathrm{p} denotes the
operator norm with respect to the \ell 2 vector norm (which is also its spectral norm). For a
square matrix \bfA \in Cp\times p, tr[\bfA ] denotes its trace, rank(\bfA ) denotes its rank, r(\bfA ) = 1

prank(\bfA )

denotes its relative rank, and \bfA  - 1 \in Cp\times p denotes its inverse, if it is invertible. For any
matrix \bfA \in Cp\times q, \bfA \dagger denotes the Moore--Penrose inverse. For a positive semidefinite matrix
\bfA \in Cp\times p, \bfA 1/2 \in Cp\times p denotes its positive semidefinite principal square root, \lambda \mathrm{m}\mathrm{i}\mathrm{n}(\bfA ) its
smallest eigenvalue, and \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ) its smallest positive eigenvalue.
A sequence xn converging to x\infty from the left or right is denoted by x\nearrow x\infty or x\searrow x\infty ,

respectively. We denote almost sure convergence by
\mathrm{a}.\mathrm{s}. -  - \rightarrow .

2. Preliminaries. We will use the language of asymptotic equivalence of sequences of
random matrices to state our main results. In this section, we define the notion of asymptotic
equivalence, review some of the basic properties that such equivalence satisfies, and present
an asymptotic equivalence for the ridge resolvent. We then extend that result to handle
real-valued resolvents, which will form the building block for our subsequent results.

To begin, consider two sequences \bfA n and \bfB n of p(n)\times q(n) matrices, where p and q are
increasing in n. We will say that \bfA n and \bfB n are asymptotically equivalent if for any sequence
of deterministic matrices \bfTheta n with trace norm uniformly bounded in n, we have tr[\bfTheta n(\bfA n  - 
\bfB n)]

\mathrm{a}.\mathrm{s}. -  - \rightarrow 0 as n\nearrow \infty . We write \bfA n \simeq \bfB n to denote this asymptotic equivalence.1 The notion
of deterministic equivalence, where the right-hand sequence is a sequence of deterministic
matrices, has been typically used in random matrix theory to obtain limiting behavior of
functionals of random matrices; for example, see [11, 25, 47], among others. More recently,
the notion of deterministic equivalence has been popularized and developed further in [20, 21].2

We will use a slightly more general notion of asymptotic equivalence in this paper, where both
sequences of matrices may be random.

The notion of asymptotic equivalence enjoys some properties that we list next. The
majority of these are stated in the context of deterministic equivalence in [20, 21], but they

1When we use the same notation for a vector or scalar equivalence, it can be understood as applying this
definition to a p(n)\times 1 or 1\times 1 matrix, respectively.

2Note that [20, 21] use the notation \bfA n \asymp \bfB n to denote deterministic equivalence of sequence \bfA n to \bfB n.
We instead use the notation \bfA n \simeq \bfB n to emphasize that this equivalence is asymptotically exact, rather than
up to constants.
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also hold more generally for asymptotic equivalence. For the statements to follow, let \bfA n, \bfB n,
\bfC n, and \bfD n be sequences of random or deterministic matrices (of appropriate dimensions).
Then the following properties hold:

1. \bfE \bfq \bfu \bfi \bfv \bfa \bfl \bfe \bfn \bfc \bfe . The relation \simeq is an equivalence relation.
2. \bfS \bfu \bfm . If \bfA n \simeq \bfB n and \bfC n \simeq \bfD n, then \bfA n +\bfC n \simeq \bfB n +\bfD n.
3. \bfP \bfr \bfo \bfd \bfu \bfc \bft . If \bfA n \simeq \bfB n, and \bfC n is independent of \bfA n and \bfB n with operator norm

bounded in n almost surely, then \bfA n\bfC n \simeq \bfB n\bfC n.
4. \bfT \bfr \bfa \bfc \bfe . If \bfA n \simeq \bfB n for square matrices \bfA n and \bfB n of dimension p(n) \times p(n), then

1
p(n)tr[\bfA n]\simeq 1

p(n)tr[\bfB n].

5. \bfE \bfl \bfe \bfm \bfe \bfn \bft \bfs . If \bfA n \simeq \bfB n for \bfA n,\bfB n of dimension p(n)\times q(n) and i(n) \in \{ 1, . . . , p(n)\} 
and j(n)\in \{ 1, . . . , q(n)\} , then [\bfA n]i(n),j(n) \simeq [\bfB n]i(n),j(n).

6. \bfD \bfi ff\bfe \bfr \bfe \bfn \bft \bfi \bfa \bft \bfi \bfo \bfn . Suppose f(z,\bfA n) \simeq g(z,\bfB n) where the entries of f and g are
analytic functions in z \in D and D is an open connected subset of C. Furthermore,
suppose for any sequence \bfTheta n of deterministic matrices with trace norm uniformly
bounded in n, we have that | tr[\bfTheta n(f(z,\bfA n) - g(z,\bfB n))]| \leq M for every n and z \in D
for some constant M <\infty . Then we have that f \prime (z,\bfA n) \simeq g\prime (z,\bfB n) for every z \in D,
where the derivatives are taken entrywise with respect to z.

The almost sure convergence in the statements above is with respect to the entire ran-
domness in the random variables involved. One can also consider the notion of conditional as-
ymptotic equivalence wherein we condition on a sequence of random matrices. More precisely,
suppose \bfA n, \bfB n are a sequence of random matrices that may depend of another sequence of
random matrices \bfZ n. We call \bfA n and \bfB n to be asymptotically equivalent conditioned on \bfZ n

if for any sequence of deterministic matrices \bfTheta n with trace norm uniformly bounded in n,
we have limn\nearrow \infty tr[\bfTheta n(\bfA n  - \bfB n)] = 0 almost surely conditioned on \bfZ n. Properties similar to
those listed above for unconditional asymptotic equivalence also hold for conditional equiva-
lence by considering all the statements conditioned on the sequence \bfZ n. In particular, for the
product rule, we require that the sequence \bfC n be conditionally independent of \bfA n and \bfB n

given \bfZ n. Finally, for our asymptotic statements, we will work with sequences of matrices,
indexed by either n or p. However, for notational brevity, we will drop the index from now
on whenever it is clear from the context.

Equipped with the notion of asymptotic equivalence, below we state a result on the asymp-
totic deterministic equivalence for ridge resolvents of Wishart type matrices, adapted from
Theorem 1 of [45] and Theorem 3.1 of [21], that will form a base for our results.

Lemma 2.1 (basic asymptotic equivalent for ridge resolvents, complex-valued regularization).
Let \bfZ \in Cn\times p be a random matrix consisting of i.i.d. random variables that have mean 0,
variance 1, and finite absolute moment of order 8 + \delta for some \delta > 0. Let \bfSigma \in Cp\times p be a
positive semidefinite matrix with operator norm uniformly bounded in p, and let \bfX = \bfZ \bfSigma 1/2.
Then, for z \in C+, as n,p\nearrow \infty such that 0< lim inf p

n \leq limsup p
n <\infty , we have

(2.1) ( 1n\bfX 
H\bfX  - z\bfI p)

 - 1 \simeq (c(z)\bfSigma  - z\bfI p)
 - 1,

where c(z) is the unique solution in C - to the fixed-point equation

(2.2)
1

c(z)
 - 1 = 1

ntr
\Bigl[ 
\bfSigma (c(z)\bfSigma  - z\bfI p)

 - 1
\Bigr] 
.
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Furthermore, 1
ptr

\bigl[ 
\bfSigma (c(z)\bfSigma  - z\bfI p)

 - 1
\bigr] 
is a Stieltjes transform of a certain positive measure on

R\geq 0 with total mass 1
ptr[\bfSigma ].

Strictly speaking, the results in [45] and [21] require that the sequence \bfSigma be deterministic.
However, one can take \bfSigma to be a random sequence of matrices that are independent of \bfZ ; see,
for example, [32]. In this case, the asymptotic equivalence is treated conditionally on \bfSigma .

3. Real-valued equivalence. For real-valued negative z, corresponding to positive ridge
regularization, we remark that one can use Lemma 2.1 to derive limits of linear and certain
nonlinear functionals (through the calculus rules of asymptotic equivalence) of the ridge re-
solvent ( 1n\bfX 

H\bfX  - z\bfI p)
 - 1 by considering z \in C+ with Re(z) < 0 and letting Im(z)\searrow 0. This

follows because a short calculation (see the proof of Theorem 3.1) shows that Im(c(z))\nearrow 0 as
Im(z)\searrow 0 for z \in C+ with Re(z)< 0. Thus one can recover a real limit from the right-hand
side of (2.1) through a limiting argument. Moreover, it is easy to see that the fixed-point
equation (2.2) has a unique (real) solution c(z)> 0 for z \in R<0.

However, it has recently been pointed out that under certain special data geometry, neg-
ative regularization is often beneficial, in real data experiments [28] as well as in theoretical
formulations where it can achieve optimal squared prediction risk [57]. One can still recover
such a case by considering z \in C+ with Re(z) > 0 over a valid range, and taking the limit
as Im(z)\searrow 0. However, solving the fixed-point equation (2.2) over reals directly in this case,
which is the most efficient way to compute the solution numerically, poses certain subtleties
as we no longer can guarantee a unique real solution for c(z).

Our next theorem shows how to handle this case. We will make use of this for our results
on sketching in section 4, but we believe the result to be of independent interest and worth
stating on its own. In addition to enabling the computation of the asymptotic equivalence
for nonnegative real-valued z, it also provides the asymptotic value of \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(
1
n\bfX 

H\bfX ) (given
by z0 in the theorem statement) for arbitrary \bfSigma , which to our knowledge is the first explicit
general characterization of the smallest nonzero eigenvalue of Wishart-type matrices, although
the underlying principles are known in random matrix theory [49] and have been applied
algorithmically [19]. We note that our characterization enables an extremely efficient and
simple approach for computing z0 via direct root finding in \zeta 0. Furthermore, z0 improves
significantly on the na\"{\i}ve lower bounds commonly used in theoretical works [43, 57], as seen
in Figure 1.

Theorem 3.1 (basic asymptotic equivalent for ridge resolvents, real-valued regularization).
Assume the setting of Lemma 2.1. Let \zeta 0, z0 \in R be the unique solutions, satisfying \zeta 0 <
\lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(\bfSigma ), to the system of equations

1 = 1
ntr

\Bigl[ 
\bfSigma 2 (\bfSigma  - \zeta 0\bfI p)

 - 2
\Bigr] 
, z0 = \zeta 0

\Bigl( 
1 - 1

ntr
\Bigl[ 
\bfSigma (\bfSigma  - \zeta 0\bfI p)

 - 1
\Bigr] \Bigr) 

.(3.1)

Then, for each z \in R satisfying z < lim inf z0, as n,p\nearrow \infty such that 0< lim inf p
n \leq limsup p

n <
\infty , we have

z( 1n\bfX 
H\bfX  - z\bfI p)

 - 1 \simeq \zeta (\bfSigma  - \zeta \bfI p)
 - 1,(3.2)

where \zeta \in R is the unique solution in ( - \infty , \zeta 0) to the fixed-point equation

(3.3) z = \zeta 
\Bigl( 
1 - 1

ntr
\Bigl[ 
\bfSigma (\bfSigma  - \zeta \bfI p)

 - 1
\Bigr] \Bigr) 

.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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10−8

10−6

10−4

10−2
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Limiting λ+
min(

1
n
XHX) for Marchenko–Pastur( p

m
) Σ

0.2 0.9 5 p
m

new limit z0

näıve bound

empirical

Figure 1. Plots showing how z0 (solid) from (3.1) matches the empirical minimum nonzero eigenvalue
(markers) of 1

n
\bfX \top \bfX when \bfSigma = 1

m
\bfY \top \bfY for \bfY \in Rm\times p with i.i.d. \scrN (0,1) elements, such that the limiting

spectrum of \bfSigma follows the Marchenko--Pastur( p
m
) distribution for p

m
\in \{ 0.2,0.9,5\} . In contrast, the commonly

used na\"{\i}ve bound (dashed) lim inf \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(

1
n
\bfX \top \bfX ) \geq (1 - 

\sqrt{} 
p
m
)
2
(1 - 

\sqrt{} 
p
n
)
2
1\{ p <max\{ m,n\} \} , obtained by multi-

plying the minimum nonzero eigenvalues of 1
n
\bfZ \top \bfZ and \bfSigma when at most one of them is singular, is quite loose

outside of the m \gg p and n \gg p cases and fails to capture the correct behavior at all when both are singular
(p >max\{ m,n\} ). Empirical values are computed for p= 500 for a single trial.

Furthermore, as n,p\nearrow \infty , \zeta \simeq  - 1
v(z) , where v(z) is the companion Stieltjes transform of the

spectrum of 1
n\bfX 

H\bfX given by

v(z) = 1
ntr

\Bigl[ 
( 1n\bfX \bfX H  - z\bfI n)

 - 1
\Bigr] 
,

and z0 \simeq \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(

1
n\bfX 

H\bfX ).

Proof sketch. To prove this corollary, we define \zeta \triangleq z
c(z) to obtain (3.2) from (2.1) for

z \in C+ and also observe that  - 1
\zeta is the limiting companion Stieltjes transform v(z) of 1

n\bfX \bfX H

at z. This implies that \zeta \in C+ and that the mapping z \mapsto \rightarrow \zeta is a holomorphic function on its
domain, which includes all real z < lim inf \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(
1
n\bfX \bfX H). We then identify the analytic contin-

uation of the mapping z \mapsto \rightarrow \zeta to the reals, which consists of careful bookkeeping to determine
z0, the least positive value of z for which \zeta does not exist, which must be asymptotically
equal to \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(
1
n\bfX \bfX H). The proof details can be found in section SM2 of the supplementary

material.

Remark 3.2 (the case of z = 0). The form of the equivalence (2.1) is slightly different as
compared with (3.2) in that the resolvent ( 1n\bfX 

H\bfX  - z\bfI p)
 - 1 has a normalizing multiplier of

z in the latter case. This enables continuity of the left-hand side at z = 0, in contrast to
specializing the equivalence (2.1) to real z, where both the left- and right-hand sides may
diverge as z\nearrow 0.

Our main result in the next section for sketching follows directly from this theorem and
shares a very similar form. For this reason, we defer discussion about the interpretation of the
solutions to the above equations for our reformulation under the sketching setting; however,
analogous interpretations will apply to the above theorem.
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4. Main results. One way to think about Theorem 3.1 is that the data matrix \bfX =\bfZ \bfSigma 1/2

is a sketched version of the (square root) covariance matrix \bfSigma 1/2, where \bfZ acts as a sketching
matrix. The sketching is done by ``nature"" in the form of the n observations, rather than by
the statistician, but is otherwise mathematically identical to sketching. Using this insight,
along with the Woodbury identity, we can adapt the random matrix resolvent equivalence in
Theorem 3.1 to a sketched (regularized) pseudoinverse equivalence. To emphasize the shift
in perspective, we denote the dimensionality of the sketched data as q (replacing n), replace
\bfSigma with \bfA , and absorb the normalization by 1

q (replacing 1
n) into the sketching matrix \bfS 

(replacing \bfZ ), so that the sketching transformation is norm-preserving (see Remark 4.2 for
more details).

4.1. First-order equivalence. Our first result provides a first-order equivalence for the
sketched regularized pseudoinverse. By first-order equivalence, we refer to equivalence for
matrices that involve the first power of the ridge resolvent. We also present a second-order
equivalence for matrices that involve the second power of the ridge resolvent in subsection 4.2.

In preparation for the statements to follow, recall that r(\bfA ) = 1
p

\sum p
i=1 1\{ \lambda i(\bfA )> 0\} , or in

other words, the normalized number of nonzero eigenvalues of \bfA . Note that 0\leq r(\bfA )\leq 1.

Theorem 4.1 (isotropic sketching equivalence). Let \bfA \in Cp\times p be a positive semidefinite
matrix such that \| \bfA \| \mathrm{o}\mathrm{p} is uniformly bounded in p and lim inf \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA )> 0. Let
\surd 
q\bfS \in Cp\times q be

a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite
8+ \delta moment for some \delta > 0. Let \lambda 0, \mu 0 \in R be the unique solutions, satisfying \mu 0 > - \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ),
to the system of equations

1 = 1
q tr

\Bigl[ 
\bfA 2 (\bfA + \mu 0\bfI p)

 - 2
\Bigr] 
, \lambda 0 = \mu 0

\Bigl( 
1 - 1

q tr
\Bigl[ 
\bfA (\bfA + \mu 0\bfI p)

 - 1
\Bigr] \Bigr) 

.(4.1)

Then, as q, p \nearrow \infty such that 0 < lim inf q
p \leq limsup q

p < \infty , the following asymptotic equiva-
lences hold:

(i) for any \lambda > limsup\lambda 0, we have

\bfA 1/2\bfS (\bfS H\bfA \bfS + \lambda \bfI q)
 - 1\bfS H \simeq \bfA 1/2(\bfA + \mu \bfI p)

 - 1;(4.2)

(ii) if furthermore either \lambda \not = 0 or limsup q
p < lim inf r(\bfA ), we have

\bfS (\bfS H\bfA \bfS + \lambda \bfI q)
 - 1\bfS H \simeq (\bfA + \mu \bfI p)

 - 1,(4.3)

where \mu is the unique solution in (\mu 0,\infty ) to the fixed-point equation

\lambda = \mu 
\Bigl( 
1 - 1

q tr
\Bigl[ 
\bfA (\bfA + \mu \bfI p)

 - 1
\Bigr] \Bigr) 

.(4.4)

Furthermore, as p, q\rightarrow \infty , \mu \simeq 1\widetilde v(\lambda ) , where
\widetilde v(\lambda ) = 1

q tr
\Bigl[ 
(\bfS H\bfA \bfS + \lambda \bfI q)

 - 1
\Bigr] 
,

and \lambda 0 \simeq  - \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(\bfS 

H\bfA \bfS ).
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Figure 2. Empirical density histograms over 20 trials demonstrating the concentration of the elements of
\bfS (\bfS \top \bfA \bfS + \lambda \bfI ) - 1\bfS \top for real Gaussian \bfS and diagonal \bfA taking values \{ 0,1,2\} with equal frequency along the
diagonal. We choose \lambda = 1 and q = \lfloor \alpha p\rfloor for \alpha = 0.8 over p \in \{ 60,300,1500\} . As expected by Theorem 4.1,
the individual elements of the sketched pseudoinverse converge to those of (\bfA + \mu \bfI ) - 1, where for this problem
\mu \approx 1.63. Therefore, the diagonals concentrate with equal mass around \{ 1/(a+\mu ) : a\in \{ 0,1,2\} \} (black, dotted),
and the off-diagonals concentrate around 0.

Proof sketch. We begin by considering the case that \bfA satisfies limsup\| \bfA  - 1\| \mathrm{o}\mathrm{p} < \infty .
Then we can rewrite the left-hand side of (4.2) or (4.3) such that we can apply Theorem 3.1
with \bfX =

\surd 
q\bfS H\bfA 1/2, \lambda = - z, and \mu = - \zeta . For any \lambda > - lim inf z0,

\bfA 1/2\bfS 
\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H\bfA 1/2 =\bfA 1/2\bfS \bfS H\bfA 1/2

\Bigl( 
\bfA 1/2\bfS \bfS H\bfA 1/2 + \lambda \bfI p

\Bigr)  - 1

= \bfI p  - \lambda 
\Bigl( 
\bfA 1/2\bfS \bfS H\bfA 1/2 + \lambda \bfI p

\Bigr)  - 1

\simeq \bfI p  - \mu (\bfA + \mu \bfI p)
 - 1

=\bfA 1/2 (\bfA + \mu \bfI p)
 - 1\bfA 1/2.

We can then multiply on the right, or both left and right, by \bfA  - 1/2 to obtain the results in (4.2)
and (4.3), respectively, by the product rule of asymptotic equivalences. If \bfA does not have a
norm-bounded inverse, we can apply the above result for \bfA \delta \triangleq \bfA + \delta \bfI p for \delta > 0 and make a
uniform convergence argument for interchanging limits of p and \delta to prove the equivalence in
(4.3). We then multiply by \bfA 1/2 and make another uniform convergence argument to extend
this equivalence to the case \lambda = 0 to obtain the equivalence in (4.2). The details can be found
in section SM3 of the supplementary material.

In words, the sketched pseudoinverse of \bfA with regularization \lambda is asymptotically equiv-
alent to the regularized inverse of \bfA with regularization \mu , and the relationship between \lambda 
and \mu asymptotically depends only on \bfA , p, and q. As mentioned in section 2, this im-
plies, for example, that the elements of the sketched pseudoinverse converge to the elements
of the ridge-regularized inverse. We illustrate this in Figure 2, where for a diagonal \bfA , the
off-diagonals of the sketched pseudoinverse quickly converge to zero as p increases, while the
diagonals converge to the diagonals of the regularized inverse of \bfA .

Below we provide several remarks on the assumptions and implications of Theorem 4.1.
It will be useful to interpret the equations in terms of the sketching aspect ratio \alpha \triangleq q

p .

Remark 4.2 (normalization choice for the sketching matrix). We remark that the normal-
ization factor

\surd 
q in

\surd 
q\bfS of the sketching matrix is such that the norm of the rows of \bfS is 1
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in expectation. This is done so that E[\| \bfS H\bfx \| 22] = \| \bfx \| 22 as E[\bfS \bfS H] = \bfI p. One can alternately
consider sketching matrices with normalization

\surd 
p\bfS such that the columns have norm 1 in ex-

pectation. It is easy to write an equivalent version of Theorem 4.1 with such a normalization.
We choose to focus on the former scaling because it is more common in practice.

Remark 4.3 (on assumptions). The assumptions imposed in Theorem 4.1 are quite mild.
In particular, the sequences of matrices \bfA being sketched can be random, so long as they
are independent of \bfS . Furthermore, the spectrum of the sequences of matrices \bfA need not
converge to a fixed spectrum. The aspect ratio \alpha of the sketching matrices \bfS also need not
converge to a fixed number. The reason this is possible is because we are not expressing the
sketched resolvent in terms of the limiting spectrum of \bfS and \bfA , but rather relating it through
\bfA and a parameter \mu that depends on \alpha and \bfA (and the original regularization level \lambda ), which
allows us to keep our assumptions weak.

Remark 4.4 (rotationally invariant unregularized sketching). When \lambda = 0, the first-order
equivalence in fact holds for any sketching matrix \bfS that is rotationally invariant on the left
and is not limited to i.i.d. sketching matrices. That is, if we look at the singular value decom-
position of \bfS =\bfU \bfD \bfV H, the left singular vectors \bfU are drawn from the Haar distribution over
matrices with orthonormal columns. For q \leq rank(\bfA ), \bfS 

\bigl( 
\bfS H\bfA \bfS 

\bigr)  - 1
\bfS H = \bfU 

\bigl( 
\bfU H\bfA \bfU 

\bigr)  - 1
\bfU H,

and so the sketched pseudoinverse does not depend on the spectrum of \bfS \bfS H at all and we can
without any loss of generality apply Theorem 4.1. Given the universality of this result, it is
no surprise that essentially all prior results for unregularized random projections [14, 34, 42]
agree even for sketches of varying spectra or determinantal point processes. However, this
universality does not extend to \lambda \not = 0 or to higher order equivalences; see Theorem 7.2.

Remark 4.5 (proportionally sparse sketching). Although i.i.d. sketching is commonly re-
ferred to as ``dense sketching,"" Theorem 4.1 easily accommodates relatively sparse sketches
that are faster to apply. We can draw [\bfS ]ij from a distribution taking value 0 with probability
1 - q

p and still satisfy the bounded 8+\delta moment condition, leading to an \bfS with O(q2) nonzero

elements with high probability. This means that a vector multiply \bfS H\bfu has cost O(q2) rather
than O(pq), which can be sufficient in many cases to make the cost of sketching negligible
(see an example in subsection 6.1). This approach is essentially identical to the LESS-uniform
embedding proposed by [13] as a special case, although LESS-uniform sketches can be ``truly
sparse"" (less than O(q2)) with additional incoherence assumptions on \bfA . It is worth recalling
that since the ratio q

p is bounded, strictly speaking all of these costs are O(p2); however, the
relative advantages are often still computationally meaningful (see Figure 6). Faster O(p log p)
sketches are not covered by this theorem, but we expect most such sketches to be covered by
our extension in Theorem 7.2.

Remark 4.6 (the case of \lambda = 0). While the form in (4.3) is the most general, it does not
hold for \lambda = 0 if the sketch size is larger than the rank of \bfA , since the inverse is unbounded.
However, in machine learning settings such as ridge(less) regression, we only need to evaluate
the regularized pseudoinverse \bfS (\bfS H 1

n\bfX 
H\bfX \bfS + \lambda \bfI p)

 - 1\bfS H 1\surd 
n
\bfX . Thus, we can apply the form

in (4.2) with \bfA 1/2 = ( 1n\bfX 
H\bfX )1/2, which is sufficient for any downstream analysis.

Remark 4.7 (alternate form of equivalence representation). Expressed in terms of \widetilde v(\lambda ),
the equivalence (4.3) becomes
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210 LEJEUNE, PATIL, JAVADI, BARANIUK, AND TIBSHIRANI

\bfS (\bfS H\bfA \bfS + \lambda \bfI q)
 - 1\bfS H \simeq \widetilde v(\lambda )(\widetilde v(\lambda )\bfA + \bfI p)

 - 1,

and the fixed-point equation (4.4) becomes

\lambda =
1\widetilde v(\lambda )  - 1

q tr
\Bigl[ 
\bfA (\widetilde v(\lambda )\bfA + \bfI p)

 - 1
\Bigr] 
.

4.2. Second-order equivalence. Although the equivalence in Theorem 4.1 holds for first-
order trace functionals, this equivalence does not hold for higher order functionals. To in-
tuitively understand why, it is helpful to reason about the asymptotic equivalence similarly
to an equivalence of expectation in classical random variables. That is, we may have two
random variables X,Y with E [X] =E [Y ], but this does not allow us to make any conclusions
about the relationship between E

\bigl[ 
Xk

\bigr] 
and E

\bigl[ 
Y k

\bigr] 
for k > 1. In the same way, our first-order

asymptotic equivalence does not directly tell us higher order equivalences.
Fortunately, however, because of the resolvent structure of the regularized pseudoinverse,

we can cleverly apply the derivative rule of the calculus of asymptotic equivalences to obtain
a second-order equivalence from the first- order equivalence. Such a derivative trick has
been employed in several prior works [22, 26, 23, 32, 37] for computing some specific second-
order functionals, but we extend to generic second-order functionals. This approach could in
principle be repeated for higher order functionals.

Theorem 4.8 (second-order isotropic sketching equivalence). Consider the setting of Theorem
4.1. If \bfPsi \in Cp\times p is a deterministic or random positive semidefinite matrix independent of \bfS 
with \| \bfPsi \| \mathrm{o}\mathrm{p} uniformly bounded in p, then if either \lambda \not = 0 or limsup q

p < lim inf r(\bfA ),

\bfS 
\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H\bfPsi \bfS 

\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H \simeq (\bfA + \mu \bfI p)

 - 1(\bfPsi + \mu \prime \bfI p)(\bfA + \mu \bfI p)
 - 1,

where \mu is as in Theorem 4.1, and

\mu \prime =

1
q tr

\Bigl[ 
\mu 3(\bfA + \mu \bfI p)

 - 1\bfPsi (\bfA + \mu \bfI p)
 - 1

\Bigr] 
\lambda + 1

q tr
\Bigl[ 
\mu 2\bfA (\bfA + \mu \bfI p)

 - 2
\Bigr] \geq 0.(4.5)

Proof. By assumption, there exists M < \infty such that M > limsup\| (\bfS H\bfA \bfS + \lambda \bfI q)
 - 1\| \mathrm{o}\mathrm{p}

and M > limsup\| (\bfA + \mu \bfI p)
 - 1\| \mathrm{o}\mathrm{p} almost surely (see proof details for Theorem 4.1 in the

supplementary material). Define \bfB z \triangleq \bfA + z\bfPsi . Then for all z \in D, where

D= \{ z \in C : limsup (| z| M\| \bfPsi \| \mathrm{o}\mathrm{p}max\{ \| \bfS \| 2\mathrm{o}\mathrm{p},1\} )<
1
2\} ,

we have that max\{ limsup\| (\bfS H\bfB z\bfS + \lambda \bfI q)
 - 1\| \mathrm{o}\mathrm{p}, limsup\| (\bfB z + \mu \bfI p)

 - 1\| \mathrm{o}\mathrm{p}\} \leq 2M . Therefore,
we can apply the differentiation rule of asymptotic equivalences for all z \in D:

 - \bfS 
\Bigl( 
\bfS H\bfB z\bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H\bfPsi \bfS 

\Bigl( 
\bfS H\bfB z\bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H = \partial 

\partial z\bfS 
\Bigl( 
\bfS H\bfB z\bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H

\simeq \partial 
\partial z (\bfB z + \mu (z)\bfI p)

 - 1

= - (\bfB z + \mu (z)\bfI p)
 - 1 \bigl( \bfPsi + \partial 

\partial z\mu (z)\bfI p
\bigr) 
(\bfB z + \mu (z)\bfI p)

 - 1 .
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Figure 3. Empirical density histograms over 20 trials demonstrating the concentration of diagonal elements
of \bfS (\bfS \top \bfA \bfS + \lambda \bfI ) - 1\bfS \top \bfPsi \bfS (\bfS \top \bfA \bfS + \lambda \bfI ) - 1\bfS \top for (\bfS ,\bfA , \lambda ) as in Figure 2 and \bfPsi \in \{ \bfI p,\bfA \} . As expected by
Theorem 4.8, the individual elements of the sketched pseudoinverse converge to those of (\bfA + \mu \bfI ) - 1(\bfPsi +
\mu \prime \bfI )(\bfA + \mu \bfI ) - 1 (black, dotted), where \mu \prime \approx 0.813 and 0.403 for \bfPsi = \bfI p and \bfA , respectively.

We let \mu \prime (z) = \partial 
\partial z\mu (z), and then we can divide (4.4) by \mu (z) and differentiate to obtain

\lambda \mu \prime (z)

\mu (z)2
= 1

q tr
\Bigl[ 
\bfPsi (\bfB z + \mu (z)\bfI p)

 - 1  - \bfB z(\bfB z + \mu (z)\bfI p)
 - 1 \bigl( \bfPsi + \mu \prime (z)\bfI p

\bigr) 
(\bfB z + \mu (z)\bfI p)

 - 1
\Bigr] 
.

Solving for \mu \prime (0) gives the expression in (4.5). For the nonnegativity of \mu \prime , see Remark 5.6
and its proof.

That is, the second-order equivalence is the same as plugging in the first-order equivalence
and then adding a nonnegative inflation \mu \prime (\bfA + \mu \bfI ) - 2. The inflation factor \mu \prime depends linearly
on the matrix \bfPsi , but the inflation is always isotropic, rather than in the direction of \bfPsi . It is
nonnegative in the same way that the variance of an estimator is also nonnegative. Examples
of quadratic forms where this second-order equivalence can be used include estimation error
(\bfPsi = \bfI ) and prediction error (\bfPsi =\bfSigma , the population covariance) in ridge regression problems.
We give a demonstration of the concentration in Figure 3. While typically \mu \prime > 0, it can go to
0 in the special case of \mu = 0 and \bfPsi sharing a subspace with \bfA , as we discuss in Remark 5.7.

Remark 4.9 (the case of \lambda = 0). Similar to the variant form in (4.2) of Theorem 4.1, if we
consider the slightly different form

\bfA 1/2\bfS 
\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H\bfPsi \bfS 

\Bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\Bigr)  - 1
\bfS H\bfA 1/2

\simeq \bfA 1/2(\bfA + \mu \bfI p)
 - 1(\bfPsi + \mu \prime \bfI p)(\bfA + \mu \bfI p)

 - 1\bfA 1/2

for the second-order resolvent, we do not need the \lambda \not = 0 or limsup q
p < lim inf r(\bfA ) restriction

as stated in the theorem. Because the proof of this case is entirely analogous to the results in
Theorems 4.1 and 4.8, we omit the proof.

5. Properties and examples. Below we provide various analytical properties of the quan-
tities that appear in Theorems 4.1 and 4.8. See section SM4 in the supplementary material
for their proofs.
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Table 1
Sign patterns of \lambda 0 and \mu 0.

\alpha vs. r(\bfA ) \mu 0 \alpha vs. 1
p
tr[\bfA (\bfA + \mu 0\bfI )

 - 1] \lambda 0

\alpha > r(\bfA ) < 0 \alpha = 1
p
tr[\bfA 2(\bfA + \mu 0\bfI )

 - 2]> 1
p
tr[\bfA (\bfA + \mu 0\bfI )

 - 1] < 0

\alpha = r(\bfA ) 0 \alpha = limx\searrow 0
1
p
tr[\bfA 2(\bfA + x\bfI ) - 2] = limx\searrow 0

1
p
tr[\bfA (\bfA + x\bfI ) - 1] 0

\alpha < r(\bfA ) > 0 \alpha = 1
p
tr[\bfA 2(\bfA + \mu 0\bfI )

 - 2]< 1
p
tr[\bfA (\bfA + \mu 0\bfI )

 - 1] < 0

5.1. Lower limits. The quantities \lambda 0 and \mu 0 provide the lower limits of regularization in
Theorem 4.1. The following two remarks describe their behavior in terms of \alpha .

Remark 5.1 (dependence of \mu 0 and \lambda 0 on \alpha ). Writing the first equation in (4.1) as

(5.1) \alpha = 1
ptr

\Bigl[ 
\bfA 2 (\bfA + \mu 0\bfI p)

 - 2
\Bigr] 
,

note that for fixed \bfA , \mu 0 only depends on \alpha . Furthermore, the equation indeed admits a
unique solution for \mu 0 for a given \alpha . This can be seen by noting that the function f : \mu 0 \mapsto \rightarrow 
1
ptr[\bfA 

2(\bfA + \mu 0\bfI p)
 - 2] is monotonically decreasing in \mu 0, and

1
p lim
\mu 0\searrow  - \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA )
tr[\bfA 2(\bfA + \mu 0\bfI p)

 - 2] =\infty , and 1
p lim
\mu 0\nearrow \infty 

tr[\bfA 2(\bfA + \mu 0\bfI p)
 - 2] = 0.

In addition, because \mu 0(\alpha ) = f - 1(\alpha ), \mu 0 is monotonically decreasing in \alpha , and lim\alpha \searrow 0 \mu 0(\alpha ) =
\infty and lim\alpha \nearrow \infty \mu 0(\alpha ) = - \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ).
Given \mu 0, the second equation in (4.1) then provides \lambda 0 as

(5.2) \lambda 0 = \mu 0

\Bigl( 
1 - 1

\alpha 
1
ptr

\Bigl[ 
\bfA (\bfA + \mu 0\bfI )

 - 1
\Bigr] \Bigr) 

.

For \alpha \in (0, r(\bfA )), \lambda 0 : \alpha \mapsto \rightarrow \lambda 0(\alpha ) is monotonically increasing, and lim\alpha \searrow 0 \lambda 0(\alpha ) =  - \infty and
lim\alpha \rightarrow r(\bfA ) \lambda 0(\alpha ) = 0. When \alpha = r(\bfA ), \mu 0 = 0 and consequently \lambda 0 = 0. Finally, for \alpha \in 
(r(\bfA ),\infty ), \lambda 0 : \alpha \mapsto \rightarrow \lambda 0(\alpha ) is monotonically decreasing in \alpha , and lim\alpha \nearrow \infty \lambda 0(\alpha ) =  - \lambda +

\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ).
This follows from a short limiting calculation.

Remark 5.2 (joint sign patterns of \mu 0 and \lambda 0). Observe from (4.1) the sign pattern sum-
marized in Table 1.

5.2. First-order equivalence. In general, the exact \mu depends on \lambda , \alpha , and \bfA via the
fixed-point equation (4.4). However, we can infer several properties of the behavior of \mu as a
function of \lambda and \alpha as summarized below.

Proposition 5.3 (monotonicities of \mu in \lambda and \alpha ). For a fixed \alpha \geq 0, the map \lambda \mapsto \rightarrow \mu (\lambda ), where
\mu (\lambda ) is as defined in (4.4), is monotonically increasing in \lambda over (\lambda 0,\infty ), and lim\lambda \searrow \lambda 0

\mu (\lambda ) =
\mu 0, while lim\lambda \nearrow \infty \mu (\lambda ) =\infty . For a fixed \lambda \geq 0, the map \alpha \mapsto \rightarrow \mu (\alpha ) where \mu (\alpha ) is as defined in
(4.4) is monotonically decreasing in \alpha over (0,\infty ); when \lambda < 0, the map \alpha \rightarrow \mu (\alpha ) is monoton-
ically decreasing over (0, r(\bfA )) and monotonically increasing over (r(\bfA ),\infty ). Furthermore,
for any \lambda \in (\lambda 0,\infty ), lim\alpha \searrow 0 \mu (\alpha ) =\infty , and lim\alpha \nearrow \infty \mu (\alpha ) = \lambda .
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Remark 5.4 (joint signs of \lambda and \mu ). When \lambda \geq 0, for any \alpha > 0, we have \mu \geq 0, where \mu 
is the unique solution to (4.4) in (\mu 0,\infty ). When \lambda < 0, for \alpha \leq r(\bfA ), we have \mu \geq 0, while for
\alpha > r(\bfA ), we have sign(\mu ) = sign(\lambda ).

Proposition 5.5 (concavity, bounds, and asymptotic behavior of \mu in \lambda ). The function \lambda \mapsto \rightarrow 
\mu (\lambda ), where \mu (\lambda ) is the solution to (4.4), is a concave function over (\lambda 0,\infty ). Furthermore,
for any \alpha \in (0,\infty ), \mu (\lambda ) \leq \lambda + 1

q tr[\bfA ] for all \lambda \in (\lambda 0,\infty ), and when \alpha \leq r(\bfA ), \mu (\lambda ) \geq \lambda for

all \lambda \in (\lambda 0,\infty ); otherwise \mu (\lambda )\geq \lambda for \lambda \geq 0. Additionally, lim\lambda \nearrow \infty | \mu (\lambda ) - (\lambda + 1
q tr[\bfA ])| = 0.

5.3. Second-order equivalence. Below we provide a few additional properties related to
the inflation factor \mu \prime in (4.5), which appears in the statement of Theorem 4.8.

Remark 5.6. We have the following alternative form for \mu \prime :

\mu \prime = 1
q tr

\Bigl[ 
\mu 2(\bfA + \mu \bfI p)

 - 1\bfPsi (\bfA + \mu \bfI p)
 - 1

\Bigr] \partial \mu 
\partial \lambda 

.

Note that the term \partial \mu 
\partial \lambda does not depend in any way on \bfPsi and that the remaining term is

well-controlled for any \mu > \mu 0. Therefore, \mu 
\prime will only diverge when \partial \mu 

\partial \lambda diverges, which occurs
as \lambda \rightarrow \lambda 0. This is clearly visible in Figure 4 (top) as \lambda approaches \lambda 0, where the slope of the
curve tends to infinity. Additionally, because \mu is increasing in \lambda , this decomposition shows
that \mu \prime \geq 0.

Remark 5.7 (vanishing \mu \prime ). If Ker(\bfA )\subseteq Ker(\bfPsi ), then as \mu \rightarrow 0, \mu \prime \searrow 0. The best intuition
for this is in the case \bfPsi = \bfA . Because we can only have \mu = 0 for \alpha > r(\bfA ) and \lambda = 0,

we have \bfS 
\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H\bfA \bfS 

\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H| \lambda =0 = \bfS 

\bigl( 
\bfS H\bfA \bfS + \lambda \bfI q

\bigr)  - 1
\bfS H| \lambda =0, and

the second-order equivalence reduces to the first-order equivalence with no inflation factor.
This remarkable property means that sketching leads to extremely accurate estimates with
no spectral distortion, but only in low-rank settings with little regularization.

5.4. Illustrative examples. In order to better understand Theorems 4.1 and 4.8, we con-
sider a few examples with special choices of the matrix \bfA . When the spectrum of \bfA converges
to a particular distribution of eigenvalues, \mu will converge to a value that is deterministic
given \bfA .

5.4.1. Isotropic rank-deficient matrix. For the first example, let 0 < r \leq 1 be a real
number. We then consider \bfA = [ \bfI \lfloor rp\rfloor \bfzero 

\bfzero \bfzero 
] such that r(\bfA ) \rightarrow r as p\nearrow \infty . We have chosen the

standard basis representation of this matrix, but the following results also hold for any \bfA that
is isotropic on a subspace, regardless of basis. Such an \bfA includes settings such as \bfA =\bfX \top \bfX 
where \bfX \in Rn\times p is an orthogonal design matrix with orthonormal rows. In this case,

\mu =
\lambda + r

\alpha  - 1 +
\sqrt{} 

(\lambda + r
\alpha  - 1)2 + 4\lambda 

2
.

Furthermore, we have simple forms for \mu 0 and \lambda 0:

\mu 0 =
\sqrt{} 

r
\alpha  - 1, \lambda 0 = - 

\Bigl( \sqrt{} 
r
\alpha  - 1

\Bigr) 2

.

The expression for \lambda 0 can also be obtained directly from the minimum nonzero eigenvalue of
the Marchenko--Pastur distribution with aspect ratio \alpha 

r and variance scaling r
\alpha , which describes

\bfS H\bfA \bfS . In the case \lambda = 0, we have a very simple expression for \mu :
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Figure 4. Plots of \mu as a function of \lambda and \alpha for rank-deficient isotropic (left) and Marchenko--Pastur
(middle) spectra, normalized so that 1

p
tr[\bfA ] = r = 1/2. The values of \lambda and \alpha in each location of the plot

are indicated by the colormap (right), shared between the two views of each plot. As we sweep \alpha , we also plot
(\alpha ,\lambda 0, \mu 0) (black, dotted). We also plot the lines \mu = 0, \lambda = 0, and \alpha = r (gray, dashed). The scaling of the \mu 
and \lambda axes are linear, and the scaling of the \alpha axis is proportional to 1/\alpha . In this way we can clearly capture the
general \mu \approx \lambda + 1

p
tr[A]/\alpha relationship for \lambda > 0, as well as the limiting behavior of \mu = \lambda for large \alpha . The most

significant difference between the two distributions is that for the isotropic distribution, \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ) = 1, while for

the Marchenko--Pastur case, \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(\bfA ) = (

\surd 
2 - 1)2/2\approx 0.0859, limiting the achievable negative values of \mu when

\lambda < 0 and \alpha > r.

\mu =

\Biggl\{ 
r
\alpha  - 1 if \alpha < r,

0 otherwise.

We can also obtain the limiting behavior of \mu for large \lambda or small \alpha :

lim
\lambda +

r
\alpha \nearrow \infty 

\mu 

\lambda + r
\alpha 

= 1.

In Figure 4 (left), we plot \mu as a function of both \lambda and \alpha . We see that even for modest values
of \lambda > 0 or \alpha < r, the relationship \mu \sim \lambda + r

\alpha holds quite accurately. We see a clear transition
point at \alpha = r where \lambda 0 = 0, and on either side of which \lambda 0 decreases. Other properties from
the previous sections, such as monotonicity, concavity in \lambda , and sign patterns, are clearly
visible in this plot as well. We also plot \mu \prime as a function of \mu and \alpha in Figure 5, where we see
that the inflation vanishes for \bfPsi = \bfA only if \alpha > r and \mu = 0. It is nonnegligible otherwise
and tends to infinity as \mu tends to \mu 0 for each \alpha .
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Figure 5. Plot of \mu \prime as a function of \mu and \alpha for the rank-deficient isotropic spectrum with r = 1/2 for
\bfPsi \in \{ \bfI p,\bfA \} . In both cases, as \mu \searrow \mu 0 (dashed), \mu \prime \nearrow \infty . Otherwise, \mu \prime is not too large. For \bfPsi = \bfI p, \mu 

\prime decays
slowly in \alpha and \mu . However, for \bfPsi =\bfA , there is a regime for \alpha > r around \mu = 0 for which \mu \prime tends to zero.
Thus, the unregularized pseudoinverse preserves \bfA remarkably well on its range when the sketch size is greater
than the rank of the matrix, but outside of the range of \bfA , it has nonnegligible error.

5.4.2. Marchenko--Pastur spectrum. We also consider the case when \bfA is a random
matrix of the form \bfA = 1

n\bfZ 
\top \bfZ , where \bfZ \in Rn\times p contains i.i.d. entries of mean 0, variance 1,

and bounded moments of order 4 + \delta for some \delta > 0. This case is of interest for real data
settings where \bfA will be a sample covariance matrix. In this case, the spectrum of \bfA can
be computed explicitly and is given by the Marchenko--Pastur law. Computing \mu explicitly
in this case is possible, but cumbersome. We instead provide numerical illustrations on the
behavior of \mu as a function of \alpha and \lambda .

From Figure 4 (middle), we can see that the behavior of \mu for the Marchenko--Pastur
spectrum is not substantially different from the rank-deficient isotropic spectrum. The only
regime that differs significantly is when \alpha > r(\bfA ) and \lambda < 0, where \lambda 0 is much closer to 0
than in the isotropic case, and so there is no equivalence for more negative values of \lambda .

It is also worth noting that when \alpha < r(\bfA )< 1, the na\"{\i}ve bound on the smallest regular-
ization \lambda permissible is 0 (as explained in the caption of Figure 1). However, from Figure 4
we observe that the equivalence in Theorem 4.1 holds even for quite negative \lambda (blue region),
contrary to this na\"{\i}ve bound. In fact, the true bound is almost the same as the rank-deficient
isotropic case, \lambda 0 = - (

\sqrt{} 
r
\alpha  - 1)2.

6. Applications. To demonstrate how to apply our theory to sketching-based algorithms,
we give two concrete examples, demonstrating when the first-order equivalence can be suf-
ficient to characterize performance and when the second-order equivalence is necessary. We
leave proof details to section SM5 in the supplementary material.

6.1. Sketch-and-project. The sketch-and-project algorithm, also known as the general-
ized Kaczmarz method, solves the satisfiable linear system \bfL \bfx = \bfb for some \bfL \in Cn\times p via the
following iterations:

\bfx t = \bfx t - 1  - \bfL H\bfS t(\bfS 
H
t \bfL \bfL 

H\bfS t)
\dagger \bfS H

t (\bfL \bfx t - 1  - \bfb ).

Here \bfS t \in Cn\times m are independently drawn random sketching matrices. This algorithm clas-
sically enjoys linear convergence of E[\| \bfx t  - \bfx \ast \| 22] where \bfx \ast = \bfL \dagger \bfb that depends only on the
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smallest eigenvalue of E
\bigl[ 
\bfL H\bfS t(\bfS 

H
t \bfL \bfL 

H\bfS t)
\dagger \bfS H

t \bfL 
\bigr] 
[24, 18]. Since this is the same quantity of

interest as in our sketching equivalence, we obtain a similar convergence guarantee in the as-
ymptotic limit almost surely by applying Theorem 4.1 with \bfA =\bfL \bfL H (see subsection SM5.1):

\| \bfx t  - \bfx \ast \| 22 \lesssim \rho t\| \bfx 0  - \bfx \ast \| 22, where \rho \triangleq 
\mu 

\lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(\bfL \bfL 

H) + \mu 
.(6.1)

Here by an,t \lesssim bn,t, we mean that for any fixed t, lim infn\rightarrow \infty bn,t - an,t \geq 0, and the result holds
for an implicit sequence of \bfx 0, \bfx \ast with increasing dimensions and uniformly bounded norms
such that Theorem 4.1 can be applied. Since there are no second-order effects, and we use
\lambda = 0, this convergence result holds in fact for any rotationally invariant sketch by Remark 4.4.
Asymptotically, assuming we can compute the product \bfL H\bfS t efficiently, the computational
bottleneck comes from evaluating the pseudoinverse \bfL H\bfS t(\bfS 

H
t \bfL \bfL 

H\bfS t)
\dagger , which typically has

complexity O(mpmin\{ m,p\} ).3 To reach a desired residual \| \bfL \bfx t  - \bfb \| 22 \leq \varepsilon , we must run
the algorithm for at most t\varepsilon = \lceil log(\varepsilon /\lambda \mathrm{m}\mathrm{a}\mathrm{x}(\bfL \bfL 

H)\| \bfx 0  - \bfx \ast \| 22)/ log(\rho )\rceil iterations. The total
complexity of the algorithm is therefore O(m2pt\varepsilon ) for m < p, compared to O(npmin\{ n,p\} )
to solve the system directly. Since both of these quantities diverge in the asymptotic limit, it
is of more interest to study their quotient. To that end, we define the relative computation
factor \alpha 2t\varepsilon for \alpha = m

n , which is equal to the quotient up to a factor of \mathrm{m}\mathrm{i}\mathrm{n}\{ n,p\} 
n , which does

not depend on \alpha .

Remark 6.1 (optimal sketch size for minimizing computation). The asymptotic relative
computation factor \alpha 2t\varepsilon is characterized as follows. For \alpha \geq r(\bfL ), t\varepsilon = 1 for all \varepsilon , and so
\alpha 2t\varepsilon = \alpha 2. For all sufficiently small \varepsilon , lim\alpha \searrow 0\alpha 

2t\varepsilon = 0. For 0 < \alpha < r(\bfL ), lim\varepsilon \searrow 0\alpha 
2t\varepsilon = \infty .

Thus, for small \varepsilon , the computational complexity of sketch-and-project is minimized globally
by letting \alpha \searrow 0 and locally by choosing \alpha = r(\bfL ).

We demonstrate this observation empirically in Figure 6. In order to keep the cost of
evaluating \bfL H\bfS t to O(m2p), we sample sparse Gaussian matrices \bfS t according to Remark 4.5
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Figure 6. Empirical computation time of sketch-and-project as a function of sketch size m. We sample a

fixed [\bfL ]ij
\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0,1) and \bfx \ast \sim \scrN (\bfzero , 1

p
\bfI p) for n = 104, p = 2000. We run the algorithm until 1

n
\| \bfL \bfx t  - \bfb \| 22 \leq 

10 - 3. We find that the number of iterations (blue) matches our upper bound t\varepsilon (orange) up to a constant factor
(left). Additionally (right), we find that the trend of the wall-clock time of the algorithm (blue) matches the
relative computation factor \alpha 2t\varepsilon (orange), and that the computation time is minimized by taking \alpha as small as
possible. Error bars denote standard deviation over 10 random trials.

3Our remarks here also hold directly for any possible ``galactic"" matrix inversion algorithm of complexity
O(mpmin\{ m,p\} \delta ) for some \delta > 0 [3], provided \bfL H\bfS t can be computed in similar time.
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having elements drawn from \scrN (0, n
m2 ) with probability m

n and 0 otherwise, such that there
are O(m2) nonzero elements of \bfS t with high probability.

6.2. Sketched ridge regression. In sketch-and-project, we introduced new randomness
in each iteration, and as a result the first-order equivalence was sufficient to characterize the
algorithm's performance. However, with less randomness, the second-order effects are much
more pronounced. We illustrate this in the setting of sketched ridge regression, also known as
sketch-and-solve, which is an important problem in randomized numerical linear algebra [41].

Concretely, we can define the sketched ridge regression problem for design matrix \bfL \in 
Cn\times p, targets \bfb \in Cn, and sketching matrix \bfS \in Cn\times m as

\widehat \bfx = argmin
\bfx 

1
n\| \bfS 

H(\bfL \bfx  - \bfb )\| 22 + \lambda \| \bfx \| 2.

To connect back to sketch-and-project from the previous section, a single iteration of sketch-
and-project solves this exact problem if we set \lambda = 0 and replace \bfb by \bfb  - \bfL \bfx t. For brevity
and parallelism with sketch-and-project, we only consider this formulation of sketched ridge
regression. However, similar analyses can be performed for ``dual"" sketching where we consider
residuals \bfL \bfS \prime \bfx  - \bfb , as well as joint sketching with residuals \bfS H(\bfL \bfS \prime \bfx  - \bfb ); see [33].

The solution \widehat \bfx is given in terms of the sketched (regularized) pseudoinverse, which means
we can obtain its first-order asymptotic equivalent from Theorem 4.1 with \bfA = 1

n\bfL \bfL 
H:

\widehat \bfx = 1
n\bfL 

H\bfS 
\Bigl( 
\bfS H 1

n\bfL \bfL 
H\bfS + \lambda \bfI p

\Bigr)  - 1
\bfS H\bfb \simeq 1

n\bfL 
H
\Bigl( 

1
n\bfL \bfL 

H + \mu \bfI p

\Bigr)  - 1
\bfb \triangleq \widehat \bfx \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v}.

Furthermore, we can characterize second-order errors; if we define the quadratic error

\scrE \bfPhi (\bfx ,\bfx \prime )\triangleq (\bfx  - \bfx \prime )H\bfPhi (\bfx  - \bfx \prime ),

we can apply Theorem 4.8 with \bfPsi = 1
n\bfL \bfPhi \bfL H to obtain

\scrE \bfPhi 
\bigl( \widehat \bfx ,\bfx \prime \bigr) \simeq \scrE \bfPhi 

\bigl( \widehat \bfx \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v},\bfx 
\prime \bigr) + \mu \prime 

n
\bfb H

\Bigl( 
1
n\bfL \bfL 

H + \mu \bfI n

\Bigr)  - 2
\bfb ,(6.2)

where

\mu \prime =

1
mtr

\Bigl[ 
\mu 3

\bigl( 
1
n\bfL \bfL 

H + \mu \bfI n
\bigr)  - 1 1

n\bfL \bfPhi \bfL H
\bigl( 
1
n\bfL \bfL 

H + \mu \bfI n
\bigr)  - 1

\Bigr] 
\lambda + 1

mtr
\Bigl[ 
\mu 2 1

n\bfL \bfL 
H
\bigl( 
1
n\bfL \bfL 

H + \mu \bfI n
\bigr)  - 2

\Bigr] \geq 0.

In other words, the error of the sketched solution can be decomposed into the error of the
first-order equivalent solution plus an inflation quantity. Note that this inflation is only
the additional effect due to sketching. This should not be conflated with estimate variance,
which is generally defined to include the effect of noise in \bfb , which will appear in both the
\scrE \bfPhi (\widehat \bfx \mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{v},\bfx 

\prime ) and inflation terms.
The inflation term can be quite large when \lambda is near \lambda 0, meaning the sketched solution is

quite poor; however, by averaging K independently sketched solutions we can replace \mu \prime by
\mu \prime 

K , allowing us to control the inflation via randomized parallelization, such as in distributed
settings. We demonstrate this theoretically and empirically in Figure 7. Note how in the
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Figure 7. Estimation error \scrE \bfPhi (\widehat \bfx ,\bfx \ast ) = \| \widehat \bfx  - \bfx \ast \| 22 for a sketched ridge regression problem as a function of \lambda .

We sample a fixed [\bfL ]ij
\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0,1) and \bfx \ast \sim \scrN (\bfzero , 1

p
\bfI p) and generate a fixed \bfb =\bfL \bfx \ast +\bfh with \bfh \sim \scrN (\bfzero , \sigma 2\bfI n) for

n= 2000, p= 400, and \sigma = 1.5. We plot the theoretical asymptotic error from (6.2) (lines) as well as empirical
values (circles and triangles), averaging over K = 30 random sketches \bfS . We plot the single estimate error
(blue), average of K estimates (orange), and equivalent ridge predictor (green) for an undersampled setting
(m = 100, left) and an oversampled setting (m = 450, right). In the undersampled setting, the optimal error
(stars) for the averaged estimate is obtained by using negative \lambda . We emphasize that the data model here is
underparameterized with a moderate signal-to-noise ratio and is not contrived to make negative regularization
optimal as seen in some overparameterized settings [28, 57].

undersampled regime withm= 100, which is the regime of interest for distributed optimization
as it reduces the computational cost per worker, the optimal regularization penalty \lambda can in
fact be negative, even if the optimal ridge penalty \mu for the equivalent problem is positive.
Our theoretical characterization enables us to handle this case elegantly. The intuition behind
this is that the smaller the sketch size is, the more regularization is added, and so to achieve
a target regularization (the optimal ridge penalty), negative regularization may be required.

7. Discussion and extensions. In this paper, we have provided a detailed look at the
asymptotic effects of i.i.d. sketching on matrix inverses. We have provided an extension of
existing asymptotic equivalence results to real-valued regularization (including negative) and
used this result to obtain both first- and second-order asymptotic equivalences for the sketched
regularized pseudoinverse. We have also described how to apply these equivalences to analyze
algorithms based on random sketching, providing novel insights into sketch-and-project and
ridge regression as concrete examples.

Our work is far from a complete characterization of sketching. We now list some natural
extensions to our results.

Relaxing assumptions, strengthening conclusions. As mentioned in section 4, we make min-
imal assumptions on the base matrix \bfA . In particular, we do not assume that the empirical
spectral distribution of \bfA converges to any fixed limit. The assumption that the maximum
and minimum eigenvalues of \bfA are bounded away from 0 and \infty can be weakened. In particu-
lar, one can let some eigenvalues escape to \infty and have some eigenvalues decay to 0, provided
certain functionals of the eigenvalues remain bounded. Our assumptions on the sketching
matrix \bfS are also weak. We do not assume any distributional structure on its entries and only
require bounded moments of order 8+ \delta for some \delta > 0. Using a truncation strategy, one can
push this to only requiring moments of order 4+ \delta for some \delta > 0 for almost sure equivalences
up to order 2 that we show in this paper. Finally, while our asymptotic results give practically
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relevant insights for finite systems, we lack a precise characterization for nonasymptotic set-
tings. In particular, the rate of convergence depends on a number of factors including the
choice of \lambda and the higher order moments of the elements of \bfS .

Generalized sketching. Our assumption that the elements of the matrix \bfS are i.i.d. draws
from some distribution limits its application in practical settings on two key fronts: the effect
of a rotationally invariant sketch is isotropic regularization, i.i.d. sketches can be slow to apply,
and there is unnecessary distortion of the spectrum of \bfA for q \nearrow p. We now discuss how to
extend our framework to extend to more general classes of sketches that more closely align
with those used in practice.

We may desire to use generalized nonisotropic ridge regularization to perform Bayes-
optimal regression (see, e.g., Chapter 3 of [52]) or to avoid multiple descent [39, 58], or we
may find ourselves using nonisotropic sketching matrices, such as in adaptive sketching [30],
where the sketching matrix depends on the data. We can cover these cases with the following
extension of Theorem 4.1.

Corollary 7.1 (nonisotropic sketching equivalence). Assume the setting of Theorem 4.1.
Let \bfR be an invertible p \times p positive semidefinite matrix, either deterministic or random
but independent of \bfS with limsup\| \bfR \| \mathrm{o}\mathrm{p} < \infty , and let \widetilde \bfS = \bfR 1/2\bfS . Then, for each \lambda >

 - lim inf \lambda +
\mathrm{m}\mathrm{i}\mathrm{n}(

\widetilde \bfS \top \bfA \widetilde \bfS ), as p, q\nearrow \infty such that 0< lim inf q
p \leq limsup q

p <\infty ,

\widetilde \bfS \Bigl( \widetilde \bfS \top \bfA \widetilde \bfS + \lambda \bfI q

\Bigr)  - 1 \widetilde \bfS \top \simeq 
\bigl( 
\bfA + \mu \bfR  - 1

\bigr)  - 1
,

where \mu is the most positive solution to

\lambda = \mu 
\Bigl( 
1 - 1

q tr
\Bigl[ 
\bfA 
\bigl( 
\bfA + \mu \bfR  - 1

\bigr)  - 1
\Bigr] \Bigr) 

.

Proof. The proof uses simple algebraic manipulations. Observe that, since the operator
norm is submultiplicative, and \| \bfR \| \mathrm{o}\mathrm{p}, \| \bfA \| \mathrm{o}\mathrm{p} are uniformly bounded in p, \| \bfR 1/2\bfA \bfR 1/2\| \mathrm{o}\mathrm{p} is
also uniformly bounded in p. Using Theorem 4.1, we then have that

\bfS 
\Bigl( 
\bfS \top \bfR 1/2\bfA \bfR 1/2\bfS + \lambda \bfI q

\Bigr)  - 1
\bfS \top \simeq 

\Bigl( 
\bfR 1/2\bfA \bfR 1/2 + \mu \bfI q

\Bigr)  - 1
.

Right and left multiplying both sides by \bfR 1/2, and writing \widetilde \bfS =\bfR 1/2\bfS , we get

\widetilde \bfS \Bigl( \widetilde \bfS \top \bfA \widetilde \bfS + \lambda \bfI q

\Bigr)  - 1 \widetilde \bfS \top \simeq \bfR 1/2
\Bigl( 
\bfR 1/2\bfA \bfR 1/2 + \mu \bfI p

\Bigr)  - 1
\bfR 1/2 =

\bigl( 
\bfA + \mu \bfR  - 1

\bigr)  - 1

as desired, completing the proof.

Because nonisotropic sketching can be used to induce generalized ridge regularization,
this can be exploited adaptively to induce a wide range of structure-promoting regularization
via iteratively reweighted least squares, in a manner similar to adaptive dropout methods
(see [35] and references therein). Additionally, this result shows that methods applying ridge
regularization to adaptive sketching methods, using, for example, \bfR = \bfA as in [30], are not
equivalent to ridge regression but instead to generalized ridge regression.
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Free sketching. Even among isotropic sketches, there can be a wide range of behavior
beyond i.i.d. sketches. It turns out that a more general result holds for free sketching matrices
(a notion from free probability that generalizes independence of random variables; see [40] for
an introductory text). We state a complex version of the result in the following theorem and
defer the general extension to real arguments and investigation of properties to future work.4

Theorem 7.2 (general free sketching). Let \bfA \in Cp\times p be a positive semidefinite matrix and
\bfS \in Cp\times q be a sketch such that the spectral distributions of \bfA and \bfS \bfS H converge almost surely
to bounded distributions, and \bfS \bfS H is asymptotically free from any other matrices5 with respect
to the average trace 1

ptr[\cdot ] and has limiting S-transform S\bfS \bfS H analytic on C - . Then, for all

z \in C+, there exists \zeta \in C+ such that

\bfS 
\Bigl( 
\bfS H\bfA \bfS  - z\bfI q

\Bigr)  - 1
\bfS H \simeq (\bfA  - \zeta \bfI p)

 - 1 .

Furthermore,

\zeta \simeq zS\bfS \bfS H

\Bigl( 
 - 1

ptr[\bfA (\bfA  - \zeta \bfI p)
 - 1 ]

\Bigr) 
and \zeta \simeq zS\bfS \bfS H

\biggl( 
 - 1

ptr

\biggl[ 
\bfS H\bfA \bfS 

\Bigl( 
\bfS H\bfA \bfS  - z\bfI q

\Bigr)  - 1
\biggr] \biggr) 

.

Proof sketch. The key idea of the proof is to use Jacobi's formula for a parameterized
matrix: \partial 

\partial t log det(\bfB t) = tr[\bfB  - 1
t

\partial \bfB t

\partial t ]. First we simplify by considering self-adjoint \bfTheta and \widetilde \bfS =

(\bfS \bfS H)1/2 so that we can work entirely in dimension p. We can then define \bfB t,\zeta = \bfA +

t\bfTheta  - \zeta \bfI p and \bfB 
\widetilde \bfS 
t,z =

\widetilde \bfS (\bfA + t\bfTheta )\widetilde \bfS  - z\bfI p. What we need to prove is that \partial 
\partial t

1
p log det(\bfB 

\widetilde \bfS 
t,z) \simeq 

\partial 
\partial t

1
p log det(\bfB t,\zeta ) for some appropriate \zeta at t= 0. We can eliminate the complexity introduced

by \bfTheta by instead first differentiating with respect to z and controlling the derivative with
respect to t using the second derivative. In the process, the choice of \zeta presented in the
statement naturally arises and can be shown to be correct using differential calculus. The
details can be found in section SM6 of the supplementary material.

That is, a more general version of Theorem 4.1 holds for any \bfS that has the rotational
invariance properties associated with freeness. By the same reasoning as in Remark 4.4, we
expect that in the special case of z \rightarrow 0, free sketches will generally have the exact same
first-order properties as the i.i.d. sketching case, since all spectral properties of \bfS \bfS H except
the rank (sketch size) become irrelevant. In general, however, the mapping z \mapsto \rightarrow \zeta depends on
the spectrum of \bfS \bfS H and is not the same as in the i.i.d. sketching case.

A particularly important sketching matrix that fits this broader definition is the orthogonal
sketch. For example, randomized Fourier transforms are orthogonal and asymptotically free
[4, 29]. Unlike the i.i.d. sketch, an orthogonal sketch does not distort the spectrum near q= p
and so has less implicit regularization. We give proof details in section SM6.

4After a preprint of this article was made available, a reader pointed out connections of Theorem 7.2
to the multiplicative subordination result in Theorem 3.6 of [7]. Exploring these connections and possible
generalizations of Theorem 7.2 further is left for future work.

5Standard zero-order freeness suffices when p\bfTheta has uniformly bounded operator norm. For general trace
norm bounded \bfTheta , first-order (infinitesimal) freeness [48] is also required; see proof details. Unitarily invariant
ensembles such as the orthogonal sketches in Corollary 7.3 are known to satisfy all the necessary properties [8].
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Corollary 7.3 (orthogonal sketching). For q \leq p with lim q
p = \alpha , let

\sqrt{} 
q
p\bfQ \in Cp\times q be a

Haar-distributed matrix with orthonormal columns, and let \bfA \in Cp\times p be positive semidefinite
with eigenvalues converging to a bounded limiting spectral measure. Then, for any \lambda > 0,

\bfQ (\bfQ H\bfA \bfQ + \lambda \bfI q)
 - 1\bfQ H \simeq (\bfA + \gamma \bfI p)

 - 1,

where \gamma is the most positive solution to

1
ptr

\Bigl[ 
(\bfA + \gamma \bfI p)

 - 1
\Bigr] 
(\gamma  - \alpha \lambda ) = 1 - \alpha .(7.1)

Furthermore, for \mu from Theorem 4.1 applied to the same (\bfA , \alpha ,\lambda ), we have \gamma < \mu .

Proof. First, \bfQ \bfQ H and \bfA are almost surely asymptotically free [40, Theorem 4.9]. We can
therefore apply Theorem 7.2. It is straightforward to obtain the analytic limiting S-transform
S\bfQ \bfQ H(w) = \alpha (1+w)

\alpha +w , from which we can obtain (7.1) from the equation \gamma = \lambda S\bfQ \bfQ H( - 1
ptr[\bfA 

(\bfA + \gamma \bfI p)
 - 1]). That is, if we take z\rightarrow  - \lambda , which is a well-defined limit for Im(z)\searrow 0 for any

\lambda > 0, we have \zeta \simeq  - \gamma . To see that \gamma < \mu , observe that we can write (4.4) and (7.1) as

\mu 
p tr

\Bigl[ 
(\bfA + \mu \bfI p)

 - 1
\Bigr] 
= 1 - \alpha +

\alpha \lambda 

\mu 
,

\gamma 
p tr

\Bigl[ 
(\bfA + \gamma \bfI p)

 - 1
\Bigr] 
= 1 - \alpha + \alpha \lambda 1

ptr
\Bigl[ 
(\bfA + \gamma \bfI p)

 - 1
\Bigr] 
.

The left-hand sides of these two equations are the same increasing function of \mu and \gamma ,
respectively, while the right-hand sides are decreasing functions, with the function of \mu being
strictly greater than the function of \gamma , since 1

ptr[(\bfA + \mu \bfI p)
 - 1]< 1

\mu for \mu > 0. This means that
the intersection with the decreasing function for \gamma must occur for a smaller value than the
intersection for \mu , proving the claim.

In the statement, \gamma < \mu means that the orthogonal sketch has less effective regularization
than the i.i.d. sketch. For settings in which we desire to solve a linear system with as little
distortion as possible, we therefore would much prefer an orthogonal sketch to an i.i.d. sketch,
especially for q \approx p. With additional work, one could extend this result to negative regular-
ization as we have done in the i.i.d. sketching case. We leave it for future work.

In Figure 8, we repeat the experiment from Figure 2 for a variety of normalized non-
i.i.d. sketches used frequently in practice. Both CountSketch [9] and the fast Johnson--
Lindenstrauss transform (FJLT) [2] behave similarly to i.i.d. sketching, with the FJLT slightly
overregularizing. As predicted by Corollary 7.1, adaptive sketching with \bfR =\bfA [30] behaves
very differently from the other sketches, showing only two point masses instead of three since
\bfA  - 1 is not well-defined for its eigenvalues of 0. Last, the SRHT [51] is an orthogonal version
of the FJLT, and our experiment elucidates the effect of zero padding on the Hadamard trans-
form of the SRHT. The fast Hadamard transform is defined only for powers of 2, so for other
dimensions, the common approach is to simply zero-pad the data to the nearest power of 2.
However, from this experiment we can see that this zero-padding can have a significant impact
on the effective regularization; for p slightly smaller than a power of 2, the SRHT performs
almost identically to an orthogonal sketch as expected. However, for p slightly larger than
a power of 2, there is significant effective regularization induced, even though the sketch is
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Figure 8. Empirical density histograms over 20 trials demonstrating the concentration of diagonal elements
of \bfS (\bfS \top \bfA \bfS + \lambda \bfI ) - 1\bfS \top for \bfA as in Figure 2 with q\approx 0.8p, \lambda = 1, and several normalized sketches \bfS commonly
used in practice. We also plot the diagonals of the i.i.d. sketching equivalence (\bfA + \mu \bfI ) - 1 (black, dotted) and
the orthogonal sketching equivalence (\bfA + \gamma \bfI ) - 1 from Corollary 7.3 (red, dashed), where \mu \approx 1.63 and \gamma \approx 1.17.

still norm-preserving. This is because zero padding changes the spectrum, so the S-transform
deviates from the orthogonal case.

Our proposed framework of first- and second-order equivalence promises to provide a
principled means of comparison of different sketching techniques. Once \zeta from Theorem 7.2
can be determined for a given sketch (which depends on its spectral properties), an analogous
result to Theorem 4.8 will directly follow to yield inflation with a factor of \zeta \prime . Armed with both
\zeta and \zeta \prime for a collection of sketches, we can compare them using these bias and variance-style
decompositions and make principled choices analogously to classical estimation techniques.
Our best guidance to practitioners from the insights presented in this work would be to apply
a fast sketch with an isotropic spectrum to minimize computation time and distortion, such
as the SRHT, but to be aware of issues arising from zero-padding; for this reason we suggest
that other Fourier transforms be used instead of the standard fast Hadamard transform.

Future work. As alluded to in the introduction, the first- and second-order equivalences
developed in this work can be used directly to analyze the asymptotics of the predicted values
and quadratic errors of sketched ridge regression. We leave a complete detailed analysis of
sketched ridge regression for a companion paper, in which we use the results in this work
to study both primal (observation-side) and dual (feature-side) sketching of the data matrix,
as well as joint primal and dual sketching. We believe that our results can also be combined
with the techniques in [36], who obtain deterministic equivalents for the Hessian of generalized
linear models, enabling precise asymptotics for the implicit regularization due to sketching in
nonlinear prediction models such as classification with logistic regression.
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