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The Common Intuition to Transfer Learning Can Win or Lose:
Case Studies for Linear Regression*

Yehuda Dar, Daniel Leleunet, and Richard G. Baraniuk®

Abstract. We study a fundamental transfer learning process from source to target linear regression tasks, in-
cluding overparameterized settings where there are more learned parameters than data samples. The
target task learning is addressed by using its training data together with the parameters previously
computed for the source task. We define a transfer learning approach to the target task as a linear
regression optimization with a regularization on the distance between the to-be-learned target pa-
rameters and the already-learned source parameters. We analytically characterize the generalization
performance of our transfer learning approach and demonstrate its ability to resolve the peak in gen-
eralization errors in double descent phenomena of the minimum #2-norm solution to linear regression.
Moreover, we show that for sufficiently related tasks, the optimally tuned transfer learning approach
can outperform the optimally tuned ridge regression method, even when the true parameter vector
conforms to an isotropic Gaussian prior distribution. Namely, we demonstrate that transfer learning
can beat the minimum mean square error (MMSE) solution of the independent target task. Our
results emphasize the ability of transfer learning to extend the solution space to the target task
and, by that, to have an improved MMSE solution. We formulate the linear MMSE solution to our
transfer learning setting and point out its key differences from the common design philosophy to
transfer learning.
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1. Introduction. Contemporary machine learning models are often overparameterized,
meaning that they are more complex (e.g., have more parameters to be learned) than the
amount of data available for their training. Deep neural networks are a very successful example
for highly overparameterized models that are often trained without explicit regularization.
The challenge in such overparameterized learning is to be able to generalize well beyond the
given dataset, despite the tendency of overparameterized models to perfectly fit their (possibly
noisy) training data [41].

The empirical studies by [2, 15, 36] show that generalization errors follow a double de-
scent shape when examined with respect to the complexity of the learned model. In the
double descent shape, the generalization error peaks when the learned model becomes suf-
ficiently complex and begins to perfectly fit (i.e., interpolate) the training data. This peak
in generalization error reflects poor generalization performance, but when the learned model
complexity increases further then the generalization error starts to decrease again and even-
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tually may achieve excellent generalization ability for highly overparameterized models—even
despite perfectly fitting noisy training data! The prevalence of double descent phenom-
ena in deep learning motivated a corresponding field of theoretical research where learn-
ing of overparameterized models is analytically studied mainly for linear regression problems
[18, 3, 1, 39, 25, 28, 29, 9], as well as for other statistical learning problems such as classifi-
cation (e.g., [16, 21, 26, 27, 38, 10]) and linear subspace learning [8]. The existing literature
show that double descent phenomena occur in minimum-norm solutions to overparameterized
least squares regression; i.e., when there is no explicit regularization in the learning process.
Moreover, [18, 29] show that the explicit regularization in ridge regression is able to resolve
the generalization error peak of the double descent behavior in the minimum #>-norm solution
to linear regression (similar findings were provided in [16, 25] for models other than ridge
regression).

Transfer learning [31] is a key approach in the practical training of deep neural networks
(DNNs) where learning is conducted not only using a dataset that is relatively small compared
to the complexity of the DNN, but also using layers of parameters taken from a ready-to-use
DNN that was properly trained for a related task [4, 35, 24]. Transfer learning between DNNs
can be done by transferring network layers from the source to target models and setting them
fixed (while other layers are learned), fine tuning them (i.e., moderately adjusting to the target
task data), or using them as initialization for a comprehensive learning process. Clearly, the
source task should be sufficiently related to the target task in order to have a useful transfer
learning [33, 40, 22]. Nevertheless, finding successful transfer learning settings is still a fragile
task [32] that requires a further understanding—also from theoretical perspectives.

Surprisingly, there are only a few analytical theories for transfer learning, with limited
insight regarding double descent. Lampinen and Ganguli [23] analyze the optimization dy-
namics of transfer learning for multi-layer linear networks. Dhifallah and Lu [11] analyze
transfer learning of perceptron models for classification and regression where the target model
is trained with a fixed subset of source parameters or trained with regularization on a weighted
Euclidean distance from the source model; in [11], the training includes explicit fo-norm reg-
ularization on the learned parameters such that training data interpolation and the double
descent phenomenon do not seem to appear in both the source model and transfer learning of
the target model. Gerace et al. [17] examine transfer learning of two-layer nonlinear models
for binary classification where the source and target data generating models are related via a
correlated hidden manifold model. In [17], the first layer of the target model is set fixed as the
first source model layer and only the second layer of the target model is learned (this approach
has an interesting interpretation as the transfer learning analog to the random feature model);
they also numerically examine fine tuning of the entire model. The target model training in
[17] includes explicit o-norm regularization that prevents training data interpolation although
attenuated double descent phenomena are still observed. Obst et al. [30] analyze fine tuning
of underparameterized linear regression via gradient descent. Clearly, there are still more as-
pects and settings of transfer learning that should be analytically understood, even for linear
architectures.

In this paper, we study transfer learning between two linear regression tasks where the
transferred parameters from the source task are utilized for the learning of the target task’s
parameters. Specifically, we formulate the target task as a linear regression problem that
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includes regularization on the distance between the transferred source parameters (that were
already learned) and the to-be-learned parameters of the target task. One can also perceive
the transfer learning approach in this paper as transferring parameters from the source task
and adjusting them to the training data of the target task; for relatively similar source and
target tasks the adjustment of parameters is modest and can be interpreted as a fine tuning
mechanism. The settings and analytical techniques in this paper significantly differ from those
in previous studies on transfer learning.

We examine target and source tasks that have a noisy linear relation between their true
parameter vectors. Namely, the true parameter vector of the source task is a linear transfor-
mation of the true parameter vector of the target task plus additive white Gaussian noise.
We study our transfer learning approach under two different assumptions:

e For a partial knowledge of the statistical relation between the tasks: (i) we consider
the utilization of the linear transformation in a well-specified form, but also in a
misspecified form where only part of the linear transformation is known; (ii) the second-
order statistics of the task-relation noise is known but not the specific realization of
the noise vector.

e For an unknown relation between the tasks. Specifically, we consider a setting where
one does not know the linear transformation in the task relation, and therefore assumes
it is the identity operator.

Our transfer learning approach includes a regularization coefficient that determines the
importance of the source parameters in the learning of the target parameters. We consider
the optimally tuned version of our transfer learning approach and study its generalization
performance from analytical and empirical perspectives.

In various cases in the overparameterized regime, our transfer learning approach can be
improved by ignoring the true task relation operator and assuming it is the identity matrix.
Namely, our approach is highly suitable for various cases of unknown task relation. We explain
this by noting that the true task relation can induce small eigenvalues in a matrix inversion
(that also involves the rank deficient feature matrix) in the overparameterized learned model
and, thus, can increase the test error; on the other hand, using an identity matrix instead of
the true task relation operator regularizes the required matrix inversion and can achieve lower
test error despite ignoring the true task relation.

We show that our optimally tuned transfer learning can outperform the optimally tuned
ridge regression solution of the independent target task. Remarkably, we prove this result also
for the case where optimally tuned ridge regression provides the minimum mean square error
(MMSE) estimate for the parameters of the individual target task (namely, the case where the
true parameters of the target task follow an isotropic Gaussian distribution and the source
task solution is not utilized). We show that transfer learning outperforms ridge regression
if the target and source tasks are sufficiently related and the source task solution general-
izes sufficiently well at the source task itself (that is, the source task solution is sufficiently
accurate).

The main contribution of optimally tuned ridge regression is to resolve the generalization
error peak of the minimum /¢o-norm (ML2N) solution of the individual target task (see, e.g.,
red curves in Fig. 1 where their peaks are located at the point where the target task model
shifts from being underparameterized to being overparameterized). Optimally tuned transfer
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learning from a sufficiently related and accurate source task has the ability to not only resolve
the peak of the ML2N solution, but also to achieve significantly lower generalization errors
than the ridge solution over a wide range of parameterization levels (see, e.g., blue curves in
Fig. 1). Importantly, the usefulness of transfer learning based on the ML2N solution of the
source task may have a by-product in the form of another generalization error peak, which
is located at the point where the source task model shifts from being underparameterized to
being overparameterized (see, e.g., blue curves in Fig. 1).

While our transfer learning approach relies on the common intuition for how to utilize
the source task solution for the learning of the target model, we demonstrate that it is not
always beneficial compared to ridge regression. This motivates us to examine the linear MMSE
(LMMSE) solution to the transfer learning problem. By this, we exemplify that the common
design philosophy to transfer learning can sometimes be far from the best utilization of the
pre-trained source model.

1.1. Summary of the Principal Concepts of the Proposed Theory. The following further
emphasizes the main concepts which our work contributes to the understanding of.

1. Negative transfer. Our theory enables us to analyze negative transfer cases where
our transfer learning makes the target model to generalize worse than the optimally
tuned ridge regression solution (and the minimum f3-norm solution to least squares)
for the target model (without any transfer from the source model). Negative transfer
is an important aspect which is reflected in various transfer learning theories (e.g.,
[7, 17]), and indeed each of these previous works analyzes the negative transfer topic
from a different perspective that stems from the particular transfer learning method
under study. For example, negative transfer in [7] is defined as cases where transferring
more parameters degrades the generalization performance of the target model, and the
learning from scratch benchmark is the minimum #2-norm solution to least squares.
In [17], the two-layer model and transfer of the first layer of feature maps leads to the
definition of negative transfer as when such transfer learning generalizes worse than
learning the target model from scratch via the random feature model. In our work,
negative transfer is reflected by Corollary 4.4 that formulates (for a known task relation
and isotropic input feature) when the optimally tuned version of the proposed transfer
learning generalizes worse than ridge regression. Moreover, our results in Figures 1-5
demonstrate cases of negative transfer as parameterization levels at which the ridge
regression (and sometimes also the minimum fs-norm solution to least squares) has a
lower test error than the examined transfer learning models.

2. Improved generalization by ignoring the true task relation. We demonstrate
foundational study cases where not using the true task relation is beneficial. While
most of the transfer learning theories implicitly ignore some or all of the task relation,
in our case we explicitly study the implications of the task relation on our transfer
learning method — including a direct comparison of the generalization performance
with and without utilizing the task relation (see Section 6.2). As task relations are
usually unknown (at least not sufficiently accurate) in practice, our results suggest
that this does not necessarily reduce the generalization performance.

3. Transfer learning from an interpolating source model. To the best of our
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knowledge, only [7] previously considered transfer from interpolating source models
but with the transferred parameters being fixed in the target model. In this paper,
our theory considers transfer that regularizes the distance of the target model from a
source model that interpolates its own dataset (if the number of parameters is larger
than the number of source train samples). Hence, our theory further adds to the
understanding of transfer learning from interpolating source models.
Specifically, a double descent phenomenon in the source model can induce a corre-
sponding test error peak in transfer learning of the target model (this error peak is
around a target parameterization level that corresponds to the interpolation threshold
of the source model); this behavior was first analyzed in [7] and we further demon-
strate it here for our new transfer learning approach (for examples, see the blue error
curves in Figures 1, 4, 5).
4. The optimal transfer learning for linear models. The main transfer learning

approach in this work has settings at which it generalizes worse than ridge regression
(i.e., these are negative transfer cases). This leads us to define and examine the
linear minimum MSE (LMMSE) solution for our transfer learning setting (Section
6.3). Among the insights that this LMMSE solution provides, our results in Figures
7, 8 clearly demonstrate that the LMMSE transfer learning approach does not have
negative transfer cases with respect to other linear models.

It should be noted that our theory considers a linear transfer learning model and therefore it

cannot shed lights on the effects of model depth (as in [23]), transfer of feature maps from the

source model (as in [17]), or nonlinear activation functions (e.g., as in [11, 17]).

1.2. Paper Organization. This paper is organized as follows. In Section 2, we outline the
settings of the source and target tasks, as well as the model for their relation. In Section 3,
we present an intuitive design to transfer learning and study its generalization performance in
Sections 4—6. Specifically, in Section 4 we focus on a noisy task relation model where the linear
transformation is based on a known orthonormal matrix and the target features are isotropic;
this yields formulations that clearly show the effect of the proximity between the two tasks
(Section 4.1), explain the target test error peak around the source interpolation threshold
(Section 4.2), and provide a clear comparison to ridge regression (Section 4.3). In Section 5
we analyze the effect of misspecification, which in our transfer learning case also implies a
partial knowledge of the task relation. In Section 6 we extend our analysis by considering an
unknown task relation with any linear transformation and anisotropic target features; for this
we formulate the generalization error of the intuitive transfer learning method (Section 6.1),
explore why the intuitive transfer learning can be improved by ignoring the true task relation
(Section 6.2), and also examine the linear MMSE solution to transfer learning (Section 6.3).
Section 7 concludes this paper. Additional details and mathematical proofs are provided in
Appendices A-E

2. Problem Settings: Two Related Linear Regression Tasks.

2.1. Source Task: Data Model and Solution Form. The source task is a linear regression
problem with a d-dimensional Gaussian input z ~ N (0,1;) and a response value v € R that is

induced by v = 270 + &, where £ ~ N (0, 0?) is a noise variable independent of z, and € R?
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is an unknown parameter vector. Motivation for linear models with random features can be
found, e.g., in [18, 6]. While not knowing the true distribution of (z, v), the source learning task
~ . . n
is carried out using a dataset D £ {(z(’) , ’U(Z)) } . that includes 1 independent and identically
1= ~

distributed (i.i.d.) samples of (z,v). We also denote the n data samples in D using an n x d
input matrix Z £ [z(M), ..., z™]T and a 7 x 1 response vector v 2 [v™) ... v™]T  Therefore,
v =760 + £ where £ £ [5(1), . ,5(")]T is an unknown noise vector whose i*" component &)
originates in the i*® data sample relation v = z()-T@ 4 (),

The source task is addressed via the minimum #e-norm solution to linear regression,
namely,

(2.1) 6 = argmin ||v — Zr|? = Z1v,
reRrd

where Z™ is the Moore-Penrose pseudoinverse of Z. The source test error of the solution (2.1)
can be formulated according to the existing literature on linear regression (without transfer
learning aspects); see details in Appendix A.1. The focus of this paper is on transfer learning
and, therefore, we do not analyze the source test error. Yet, it is important to note the peak
that occurs in the generalization error & of the source task around d = 7 (see (A.1)), namely,
at the threshold between the under and over parameterized regimes of the source model'.

2.2. Target Task: Data Model and Relation to Source Task. Our interest is in a target
task with data (x,y) € R? x R that follow the model

(2.2) y= xI'B +e,

where x ~ N (0, Zy) is a d-dimensional Gaussian input vector, e ~ N (0,02) is a Gaussian
noise independent of x, and B € R? is an unknown parameter vector.

The unknown parameter vector of the source task, 0, is related to the unknown parameter
of the target task, 3, by the relation

(2.3) 6 =HS +n,

2
where H € R¥? is a fixed (non-random) matrix and 1 ~ N (0, %”Id> is a vector of i.i.d.

Gaussian noise components with zero mean and variance %%. The random elements 7, x,
¢, z and & are independent. The relation in (2.3) recalls a common data model in inverse
problems, which in our case relates to the recovery of the true 3 from the true 8. However, in
our setting, we do not have the true € but only its estimate 0 that was learned for the source
task purposes. Moreover, in this paper we examine learning settings where H can be known
or unknown.

While not knowing the true distribution of (x,y), the target learning task is performed

based on a dataset D £ {(x(i), y(i)) }n

. that contains n i.i.d. draws of (x, y) pairs. We denote
1=

the n data samples in D using an n x d matrix of input variables X £ [x(l), . ,x(”)]T and an

!Note that for the models in this work the number of learned parameters is equal to the dimension of the
input data.
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n x 1 vector of responses y £ [y(l), e ,y(”)]T. The training data satisfy y = X3 + € where
€= [6(1), cen e(”)}T is an unknown noise vector whose i™® component € originates in the 7*®
data sample relation y(9 = x()T3 4 ().

Consider a test input-response pair (x(teSt), y(teSt)) that is independently drawn from the
(x,y) distribution defined above. Given the Input x (test) the target task aims to estimate
the response value y() by the value § £ x(test) T3, where 3 is formed using D in a transfer
learning process that also utilizes the source estimate 6. We evaluate the generalization

performance of the target task using the test squared error
A S~ (test)) 2 2 3 2
(2.4) EEE (y—y s ) =0:+E H,@—,@HE

where Ha”%x = a’'S,a for a € RY, and the expectation in the definition of £ is with respect to
the test data (x(test), y(te“)) of the target task and the training data D, D of both the target

and source tasks. Note that, in a transfer learning process, ,@ is a function of the training
data of both the target and source tasks. A lower value of £ reflects better generalization
performance of the target task.

In this paper we study the generalization performance of the target task based on n
data samples, using d features of the data in the learning process. Then, we analyze the
generalization performance with respect to the parameterization level that is determined by
the number of samples n and the number of learned parameters d. In Appendix A.2 we
explain how (in a well-specified setting) the dimension d can be considered as the resolution
at which we examine the transfer learning problem; and provide corresponding examples for
orthonormal and circulant forms of H.

Now we can proceed to the definition of a transfer learning procedure and the analysis of
its generalization performance.

3. An Intuitive Design to Transfer Learning. Let us start by considering a well-specified
model that enables the learning of all the d parameters of B € R?. Since the target task is
related to the source task by the model (2.3), the optimization of the target task estimate
B can utilize the source task estimate  that was already computed. This means that we
consider a learning setting where parameters of the source model are transferred and adjusted
for the target model learning, and in many cases this can be conceptually perceived as a fine
tuning strategy. Accordingly, we suggest to optimize the parameters of 3 via

~ ~ 2
(3.1) B = argmin |ly — Xbl|3 + nary, HHb—HH
beRd 2

where H € R%? takes the role of H, which connects 8 to 6 in the true task relation (2.3). If
H is known, one is likely to set H = H; otherwise (i.e., if H is unknown), one can typically set
H = I; despite its potential differences from the unknown H. Note that H € R%*4 and 6 are
fixed in the optimization in (3.1). The second term in the optimization cost in (3.1) evaluates
the proximity of the target parameters (after processing by ﬁ) to the source parameters.
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Setting apr, = 0 in (3.1) disables the transfer learning aspects and provides a least squares
problem whose minimum fs-norm solution is By oy = Xy and its corresponding test error
is

(1+ ¢ )02 ford <mn -2,
(3.2) EMLaN = & 00 forn—1<d<n+1,
(14 g2) o2+ (1= D IBIE ford>n+2,

which is a special case of previous results, e.g., [3, 7]. Yet, the main focus in this paper is on
settings where arrr, > 0 and the transfer learning aspects in the optimization (3.1) are applied.
Let us consider the following assumption.

Assumption 1. ﬁ, H and 3« are full rank d x d real matrices.

Then, based on the full rank of ﬁ, the closed-form solution of the target task in (3.1) for
atr, > 01s

~ ~ o ~\ —1 ~ o~
(3.3) B = (XTX n naTLHTH) (XTy n naTLHTH) .

We study the generalization performance of the target task solution with respect to the pa-
rameterization level between d and n. Accordingly, the learning process is underparameterized
when d < n, and overparameterized when d > n.

Assumption 2 (Isotropic prior distribution). The target parameter vector B is random and
has isotropic Gaussian distribution with zero mean and covariance matriz By = %Id for some
constant b > 0.

Under Assumption 2, we will evaluate generalization performance using the test error from

2
S |

4. Known H: Analysis for Orthonormal H and Isotropic Y. In this section we math-
ematically analyze the transfer learning approach for a relatively simple setting where the
task relation operator H is known and has an orthonormal structure. This section serves as
a starting point towards the more general settings in the following sections. Specifically, in
Section 5 we will examine transfer learning in a misspecified setting with a partly known task
relation. Eventually, in Section 6 we will analyze transfer learning with an unknown H.

(2.4) with an additional expectation over 3, i.e., E11, = EglérL] =02 +E [HBTL — 6‘

4.1. Analysis of the Transfer Learning Approach. We first examine the case of H=H-=
W7 where W is a d x d real orthonormal matrix; namely, it is a multi-dimensional rotation
operator. Let us also consider isotropic feature covariance X = I;. This will let us to obtain
a relatively simple analytical characterization of the generalization performance. Later on, in
Section 6, we will proceed to the more intricate case where H and ¥« have general forms and
H differs from an unknown H.

Let us denote Xg = XW¥T. Because ¥ is an orthonormal matrix and the rows of X are
iid. from N (0,1;), Xg is a n X d random matrix with the same distribution as X.
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Lemma 4.1. Under Assumptions 1-2, and for H = H = U7 where ¥ is a dxd orthonormal
matriz, the expected test error of the solution from (3.3) for ary, > 0 can be written as

o d nQa%LCTL—l—af-/\k{XgX\p}}
b S E{; (Ak{XgX\If} + nozTL>2

where )\k{XgX\p} is the k'™ eigenvalue of the d x d matriz XJ‘I;X\I,, and the transfer learning

aspects are included in

7"‘%—05—1 ford<n -2,
(12) o2 { formotsdsntl
~ ~ (52 2 ~
(1_Z>Z+Z<J+dgﬁﬁl> ford>n+2.

This lemma is proved in Appendix C.1. Note that the expectation over the sum in (4.1) is only
with respect to the eigenvalues of XI‘I;X\I, Importantly, note that Cty, reflects two aspects
that determine the success of the transfer learning process: The first is the distance between
the tasks as induced by the noise level 0727 in the task relation. The second is the accuracy of
the source task solution which is associated with the source data noise level O'g and the source
parameterization level corresponding to (n,d).

Theorem 4.2. Consider Assumptions 1-2 and for H =H = 97 where ¥ is a d x d
orthonormal matriz. The optimal tuning of the transfer learning solution (i.e., ar, > 0) from
(3.3) is achieved for d ¢ {n —1,n,n + 1} by setting ay, to

2

43 opt — _Tc
(4.3) arr, nCry

and the corresponding minimal test error is

_ —1
(4.4) bt _ 52 (1 +Ex, [Tr { (X5 Xg +naffi1s) }D .

Forde {n—1,n,n+1}, &L = oo for any aty, > 0.

Theorem 4.2 is proved in Appendix C.2. Note that the discontinuity of Ctr, around d = 7 in
(4.2) is a consequence of the infinite test error of the source model at d € {n — 1,n,n + 1}
(see the error formulation in (A.1)). Consequently, plugging infinite-valued Crry, in the target
test error in (4.1) leads to infinite test error &y, for d € {n — 1,7, 7 + 1}.

To develop the optimal test error from (4.4) into a more explicit analytical form, we will
make use of an asymptotic setting, which is described next.

Assumption 3 (Asymptotic setting). The quantities d,n,n — oo such that the target task
parameterization level %—) Vgt € (0,00), and the source task parameterization level % —
Yare € (0,00). The task relation model @ = HB + 1 includes an operator H that satisfies

~ ~ 112
1 |H||% — xu. Moreover, the operator H satisfies : HHHF — K-
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Figure 1: The test error of the target task under isotropic Gaussian assumption on B and
isotropic target features. Here H = H = ¥7 where ¥ is the orthonormal DCT matrix. Ana-
lytical results are presented in solid lines: red curves correspond to minimum f-norm (ML2N)
solutions of the target task, green curves correspond to optimally tuned ridge regression, blue
curves correspond to optimally tuned transfer learning (TL) in its intuitive form from Section
3. The corresponding empirical results (errors averaged over 150 experiments) are denoted by
markers in the relevant colors. The number of data samples for the target task is n = 64 and
for the source task is n = 128. The misspecified models in (b) correspond to Assumptions 4-5
and polynomial reduction with a = 2.5, ¢ = 500, p = 2.

Our current case of H being an orthonormal matrix, and H = H, implies that kg = kg = 1.

Theorem 4.3. Consider Assumptions 1-3, d ¢ {n —1,n,n+ 1}, and H=H = 7 where
W is a d X d orthonormal matriz. Then, the transfer learning form of (3.3) whose ary, > 0
is optimally tuned to minimize the expected test error vy, (i.e., with ewpectation w.r.t. the
isotropic prior on (3) almost surely satisfies

copt t
(4.5) ERY — o? (1 + Yigt - M (—aOTILOO; ’ytgt)>
where
Ysrc 02 -1
O-% + 1—, 5) fOT’ Ysre < 1
4 6 opt 9 src
(4.6) Q] 00 = O Ytgt X ) o\ !
src — 1 src’
(’Y'Ysrc b + E <0—727 + 'Ysrci)> for ’YSI‘C > 1

1s the limiting value of the optimal apr, > 0, and

2
- (1 ~ Yegt T OéoTth,oo> + \/ (1 — Yegr + aOTth,oo) + 4%, o

opt
2’YtgtO‘TL,oo

(47) m (—aOTpLﬂOO;%gt> =
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s the Stieltjes transform of the Marchenko-Pastur distribution, which is the limiting spectral
distribution of the sample covariance associated with n samples that are drawn from a Gaussian
distribution N (0,1,).

The proof outline of the last theorem is provided in Appendix C.3. The blue curves in Fig. 1a
show the analytical formula for the test error g’%’f of the optimally tuned transfer learning
under Assumptions 1-3 and H = H, for instances of the task relation model where H is
an orthonormal matrix. Specifically, Fig. 1a shows transfer learning results for several noise
variances 072].

Let us compare the test errors of the examined transfer learning approach with the cor-
responding errors of the minimum /¢s-norm solution (recall the definition of By on before
(3.2)) that appear in red curves in Fig. 1a (see error formulation in Appendix C.4). One can
observe that if the source and target tasks are sufficiently related (in terms of a sufficiently
low task relation noise level oy,), then the intuitive transfer learning approach indeed succeeds
to resolve the peak that is induced by the ML2N solution and also to lower the test errors
for the majority of parameterization levels. The only exception is that the examined transfer
learning solution induces another peak in the generalization errors of the target task, and the
location of this peak is determined by the point where the source task shifts from under to
over parameterization. This is a side effect of transferring parameters from the source task,
which by itself is a ML2N solution and therefore suffers from a peak of double descent in its
own test error curves (see, e.g., (A.1)).

The test error peak in the examined transfer learning is an example for negative transfer,
namely, a case where the target model learning can degrade due to using the source model.
Specifically, in this work, we can identify a case as negative transfer if the test error for a
transfer learning setting is higher than for the minimum £-norm solution and for the optimally
tuned ridge regression (the latter will be characterized in Corollary 4.4). Other mathematical
analyses of negative transfer, in other transfer learning methods, are provided in [7, 17].

4.2. The Test Error Peak in the Intuitive Transfer Learning: A Closer Look. It is
natural to expect that the transferred source parameters would induce a peak in the target
test error around the interpolation threshold of the source task, where the source model itself
performs very poorly. Yet, one might also think that the optimal tuning of apr, > 0 in the
intuitive transfer learning formula (3.3) would not perform much worse than the minimum #»-
norm solution to least squares (recall that setting arpr, = 0 in the initial optimization form in
(3.1) degenerates the transfer learning into a least squares problem). We now turn to explain
this behavior in more detail.

The formulation in (4.6) for the optimal transfer learning parameter shows that as the
setting approaches the source task interpolation threshold (namely, vs.c — 1 from the left or
the right side of the limit), the optimal tuning approaches to zero (aOTI}fOO — 0%). In the
underparameterized regime of the target task, the matrix X is full rank and the limit of the

transfer learning (3.3) for a%‘}f + — 0T is the ordinary least squares regression:

(4.8) For g < 1 : lim By, = (XTX) " X y.
aOTT’OO—m*

However, in the overparameterized regime of the target task, the matrix X is rank deficient.
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Figure 2: The effect of less source training samples than target training samples, i.e., n > 7.
Number of data samples for the target task is n = 128 and for the source task is n = 64. The
test error of the target task under isotropic Gaussian assumption on 3 and isotropic target
features. Both subfigures refer to well specified settings with H = H. In (a), H = 7 where

W is the orthonormal DCT matrix. In (b), H is a d x d circulant matrix corresponding to the
_|7=0.5]
discrete version of the continuous-domain convolution kernel hye,(7) = 0(7) + e  “ker  with

Wker = 2/75. The non-orthonormal H is defined in more detail in Section 6.1.

Accordingly, X”X has a (d — n)-dimensional null space, whose orthogonal projection matrix
is Py(x) £ I; — XTX. Then, the transfer learning (3.3) for a?lfit + — 0T can be written as

~ ~m~\T ~ o~
(4.9) For i > 10 lim B = (X"X)" X"y + Pyx) (HTH) a’o
a%L,oo_>O+

= Baran + PN(X)ﬁ+§-

Eq. (4.9) shows that if the source task interpolation threshold occurs in the overparameterized
regime of the target task, the corresponding optimal tuning (a%rit + — 07) leads to transfer
learning that can significantly deviate from the minimum f3-norm solution in the null space of
the target data. Moreover, due to the involvement of 8, this deviation can increase the transfer
learning error and cause a peak in the target test error around the interpolation threshold of
the source task (where 0 has a poor performance by itself).

Equations (4.8)-(4.9) show that transferring the significant test error peak from the source
task is possible only in the overparameterized regime of the optimally tuned transfer learning.
Accordingly, we show in Fig. 2 the error curves for a setting where the target task has more
training samples than the source task, namely, n > n. In this setting, the source interpolation
threshold resides in the underparameterized regime of the target task (for example, in Fig. 2
the source interpolation threshold is at d/n = 0.5 whereas the target interpolation threshold is
at d/n =1). Indeed, Fig. 2 exemplifies that, for n > n, the optimally tuned intuitive transfer
learning does not have a significant error peak around the source interpolation threshold.
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Transfer learning is often motivated by insufficient training data for the target task, which
is accommodated by using a source model that was trained on a large dataset. Therefore, the
case of n < 1 is of main interest, and we will focus on it in the rest of this paper.

4.3. Transfer Learning versus Ridge Regression. Let us compare the transfer learning
of (3.1) with the standard ridge regression approach, which is independent of the source task
and does not involve any transfer learning aspect. We start in a non-asymptotic setting; i.e.,
without Assumption 3. The standard ridge regression approach can be formulated as

~ ] -1
(4.10) Bridge = arg nzm lly — Xng + Noyidge ||bH§ = (XTX + naridgeld) XTy.
beR

Here auigge > 0 is a parameter whose optimal value, which minimizes the expected test error
opt _ do?
ridge = mnb>?

of the target task, is « and the respective test error is

-1

(4.11) Rt = o7 (1 +Ex [Tr { (X7X + nagfi, o) }D .
Related results for optimally tuned ridge regression were provided, e.g., in [29, 13]. See
Appendix D.1 for the proof outline in our notations.

_Note that the test error formulations for the optimally tuned transfer learning for the case
of H = H and an orthonormal H in (4.4) and for the optimally tuned ridge regression in (4.11)
are the same except for the optimal regularization parameters onTlit and al?i%;e, respectively.
Accordingly, the cases where transfer learning is better than ridge regression are characterized
for non-asymptotic settings as follows (see proof in Appendix D.2).

Corollary 4.4. Consider H=H = 97 where ¥ is a d x d orthonormal matriz. Then, the

test error of optimally tuned transfer learning, EX', is lower than the test error of optimally
_ d-o2
tuned standard ridge regression, 8313;8, if aoTpit > afffge, which is satisfied if 0727 + ﬁ <b

ford ¢ {n—1,n,n+ 1}, and never for d € {n — 1,n,n + 1}.

The formula for the test error of the optimally tuned ridge regression in asymptotic settings
(that is, under Assumptions 2-3, without our transfer learning and source task aspects) was
already provided in [13, 18]. For completeness of presentation we provide this formulation in
our notations in Appendix D.3. In Fig. 1a we provide the analytical and empirical evaluations
of the test error of the optimally tuned ridge regression solution (see green curves and markers).
The results exhibit that if the source and target tasks are sufficiently related (e.g., the blue
curves that correspond to O'% =0,0.1,0.5), then the optimally tuned transfer learning approach
outperforms the optimally tuned ridge regression solution for all the parameterization levels
besides those in the proximity of the threshold between the under and over parameterized
regimes of the source model. Remarkably, whereas ridge regression indeed resolves the peak
of the double descent of the target task, the examined transfer learning approach can reduce
the test errors much further and for a wide range of parameterization levels.

Corollary 4.4 characterizes the cases where using a sufficiently related source task is more
useful than using the true prior of the desired 3. Moreover, we consider 3 to originate from
an isotropic Gaussian distribution, hence, the optimally tuned ridge regression solution is the
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minimum MSE estimate of the target task parameters; i.e., the solution that minimizes the
test error of the target task when only the sample data X,y are given. This means that we
demonstrated a case where even though optimally tuned ridge regression is the best approach
for solving the independent target task, it is not necessarily the best approach when there is
an option to utilize transferred parameters from a sufficiently-related source task (e.g., low
0727) that was already solved in a sufficiently accurate manner w.r.t. the source task goal (i.e.,
low ag and high |d — n]).

5. Misspecified Models: An Example for Beneficial Overparameterization. Our discus-
sion so far has focused on the learning of well-specified models, namely, where the number
of parameters d corresponds to the dimension of both the learned B and true 3 vectors. In
learning well-specified models using isotropic features, the test errors in the overparameterized
regime are usually higher than in the underparameterized regime (see the detailed discussion
in [18] for ML2N and ridge regression). Indeed, we see this behavior in all the well-specified
methods that we examine in Fig. 1a. Nevertheless, it is also shown in [18] that ML2N regres-
sion can become highly beneficial in the overparameterized regime when the learned model is
misspecified; namely, when the number of learned parameters in 3 is lower than the number
of parameters in the true 3, and that this gap decreases as the learned model becomes more
parameterized.

In our transfer learning setting we interpret the misspecification aspect as follows.

Assumption 4 (Misspecification of the target task). The data model in (2.2) is extended
mnto

(5'1) y= XTB + XmsTIBms +e

where the additional features xms € RY and true parameters B, € RY are ignored in the
learning process that only estimates the d-dimensional B3 using its corresponding features X.
Moreover, the task relation model in (2.3) is extended into

(5.2) 6=Hp3+H,8,.+n

where Hys € RYX9 corresponds to the misspecified parameters B,,. Also, B and Xpys are
independent of € and n.

Importantly, the transfer learning utilizes the operator H but not the additional operator
H,ys from (5.2), implying that the misspecified transfer learning uses only a part of the task
relation. Specifically, although in this section we still assume a known H and set H = H in
(3.3), the operator Hy,¢ is unknown and not used in the learning.

Assumption 5 (Independent misspecification with isotropic features). Consider a random
Bms Which is zero-mean, isotropic, and independent of (the possibly anisotropic) B. The
misspecified features Xms ~ N (0,1;) are independent of the other d features in x. Also,
H, HL = pI; for p > 0, which implies that ¢ > d and Hys has orthogonal rows.

We assume that E [||,3||§ + ||Bms||g] = wg,, for the same constant wg  for all d,q. Then,

similarly to [18], we assume that the relative misspecification energy reduces polynomially as
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o= (1 + %)ﬂl for a > 0. In Appendix B
we show that under Assumptions 4-5, the misspecification effect is equivalent to learning of a
well-specified model where the noise levels of € and n are effectively higher (but this effective
increase reduces with d). Such misspecification signficantly changes the behavior of the test
error as a function of the parameterization level. Specifically, overparameterized models (i.e.,
where d/n > 1) can achieve the best generalization performance — for example, see the results
for an orthonormal H in Fig. 1b, the results for a circulant (non-orthonormal) H in Fig. 4,
and additional results for stronger misspecification in Fig. 9 in Appendix B.2.

the parameterization level increases: E [H,@mng} /wa

6. Unknown H: Analysis for H and X, of General Forms. Having provided a detailed
analytical characterization for the case where H is a known orthonormal matrix, we now
proceed to the more intricate case where the matrix H is unknown and has a general form.

In this section, we examine the intuitive transfer learning approach from (3.3) with H that
might differ from the unknown H. Then, the main question is how to choose H. Surprisingly,
we will show that even the simple choice of H= I; can perform well and, in some cases, can
also outperform the seemingly better option of H=H.

6.1. Analysis of the Intuitive Transfer Learning Approach. Recall that in our transfer
learning approach (3.1) we do not have the true 6 but its estimate 6, which is the ML2N
solution to the source task. The benefits from utilizing 6 in our transfer learning process (3.1)
are affected by the distribution of the transferred source parameters 6. The second-order
statistics of the distribution of 6 given the true target parameters 3 are formulated as follows
(the proof is provided in Appendix E.1).

Proposition 6.1. The expected value of@ given 3 is

~ HB ford <mn,
(6-1) " [0"6] B {EHﬁ for d > n.

The covariance matrix ofa giwen B, namely, Célﬁ £E [(5 —E [5‘5}) (5 —E [6"8})11 ‘ﬂ] ’

18

o, _

ford <n—2, and

(6.3)
- - - o2
Cap = ey BB HT + icing ((IHBI3 — (H8)))-1,..) + (% + 75 ) )
ford>n+2. Forde {n—1,n,n+ 1} the covariance matriz is infinite valued.

In (6.3), {HPB}; is the j* component of the vector HB. The notation diag (-) refers to the
d x d diagonal matriz whose main diagonal values are specified as the arguments of diag (-).
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Proposition 6.1 demonstrates two very different forms of the covariance of : For an under-
parameterized source task with d < n — 2, the covariance is isotropic with a simple diagonal
form that does not reflect 8 nor H. However, for an overparameterized source task with
d > n+ 2, the covariance can be anisotropic with a form that depends on 3 and H. This is a
consequence of the ML2N solution to the source task, which by itself has two different error
forms in its under- and over-parameterized cases.

Next, we turn to formulate the asymptotic generalization error for any asymptotic param-
eterization level % — Yigt € (0,00). The proof is provided in Appendix E.3.

Theorem 6.2. Consider Assumptions 1-2, and general forms of ﬁ, H and X«. Then, the
transfer learning form of (3.3) with a (not necessarily optimal) parameter aypy, > 0 almost
surely satisfies

(6.4)
. 1 _
STII)Jt — 0'62 <1 + Yigt Tr {dW (c(aTL)W + aTLId) 1}

Oé2 (6% _ _
+'7tgt -Tr { <’)/ T;‘_Q FTL,co — LTlLId> (c(aTL)W + aTLId) 1 sW (c(aTL)W + aTLId) 1 })
tgt €

~ T
where W £ <H71> SH1 s £ d(arL) + 1,

(6.5)

1 (g2 deeo b (H-f) (H_8) 5
i\t | latg(H-H)(H-H ford <mn—2,
N form—1<d<n+1,
FTL’OO - b(ysre—1) a7 T 13- T

%gﬁ (’YsrcHH —HH" 4 kly — Edlag ({ [HH ]jj}jzlj._’d))

’Ysrc'Ug

~ ~\T
o (H-H) (H-H) gl <0% + %ml) I, ford>n+2,

c(arr) is obtained as the solution of m —1=2Tr {W(C(QTL)W +CYTLId)71}; and
then
2
et \'W (c(or) W + arrIy) H
/ F
(6.6) d(arr) = 1|2
(clerrn)) 2 = 25 |W (e(ar)W +ar1n) 7|

where ||| is the Frobenius norm.

In Figs. 3, 4 we provide test error evaluations for well-specified and misspecified? settings

where H is a circulant matrix that corresponds to circular convolution with the discrete
|[T—0.5]

version (d uniformly spaced samples) of the kernel function hye,(7) = §(7) + e “ker  defined

2R~ecall the definition of misspecification in Section 5 and note that one may have a well-specified setting
with H that differs from the true H.
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for 7 € [0,1]. Here 4(-) is the Dirac delta. Note that the discrete convolution kernel is centered
to have its peak value at the computed coordinate. Also, the discrete kernel is normalized
such that the circulant matrix H satisfies % |H||% = 1 for any d. Figs. 3, 4 show results for
different values of the width parameter wye,. For a larger wye. the operator H averages a
larger neighborhood of coordinates and therefore the source task is less related to the target
task, accordingly, Figures 3¢, 3d, 4c¢, 4d in general show reduced gains from transfer learning
compared to Figures 3a, 3b, 4a, 4b, respectively.

The results in Fig. 5 refer to a setting where H is a convolution with hye, but in the DCT
domain; namely, H is a composition of the d x d DCT matrix followed by the d x d circulant
matrix that corresponds to Aye.

Figures 3, 4, 5 exemplify interesting behaviors that will be discussed in the next sections.

6.2. The Intuitive Transfer Learning can be Improved by Ignoring the True Task Re-
lation. Let us examine the intuitive transfer learning method for H-= I; due to an unknown
H, and compare it to a setting where H is known and H=H.

Remarkably, our results showcase that, in the overparameterized regime, the intuitive
transfer learning with H= I can significantly outperform the intuitive transfer learning with
a known H and H = H. This behavior can be observed in several settings where the true
H differs from I;; for example, compare the error curves of intuitive transfer learning (in
the overparameterized regime) with a known H in Figs. 3a, 3c, 4a, 4c to their corresponding
curves with an unknown H in Figs. 3b, 3d, 4b, 4d, respectively. Figures 6a-6¢ show the error
differences of the corresponding error curves, such that a negative error difference implies that
using H = I; has a lower test error than using H = H.

To explain the potential improvement despite ignoring the true H, recall that the closed-
form solution of the intuitive transfer learning in (3.3) includes an inversion of the matrix

(6.7) X"X + nap, H'H.

We consider a full rank H (recall Assumption 1) and, therefore, the matrix in (6.7) is invertible.
Yet, there is still a question of the ability of the solution to attenuate noise effectively.

The condition number of (6.7), namely, the ratio between the maximal and minimal eigen-
values of the matrix in (6.7), provides a useful way to characterize a linear system’s suscepti-
bility to noise. Note that in the overparameterized regime, X is a n x d feature matrix where
d > n and, thus, the d x d matrix X7 X is rank deficient with at least d —n zero eigenvalues.
Moreover, the singular values of the full-rank matrix H are all non-zeros, but they can still
be very small. A small singular value of H yields a small eigenvalue of HTH. Hence, for
HTH with a considerable number of small eigenvalues, in highly overparameterized settings
(where XX is significantly rank deficient), the matrix in (6.7) is likely to have many small
eigenvalues and a large condition number. To see why thls is a problem, if we had X = 0
Lwhich is morally true on the null space of X), then ,BTL = 0 meaning that any error in
0 is amplified by small singular values of H.

Setting H = I; eliminates the error amplifying effects of small singuar values of H, which
can be even more beneficial than using the true H in the intuitive transfer learning. Put
differently, if setting H = H indeed amplifies error, there is a tradeoff between the errors
induced by ignoring the true task relation and by the error amplification due to using the true
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Figure 3: The test error of the target task under isotropic Gaussian assumption on 3 and
isotropic target features in a well specified setting. The matrix H is a d x d circulant

matrix corresponding to the discrete version of the continuous-domain convolution kernel
_‘T*0.5|

hier(T) = 6(7) + € “ker | here the kernel width is wke, = 2/75 in (a)-(b) and wye, = 2/25 in
(c)-(d). Curve colors and markers are as in Fig. 1. The number of data samples for the target
task is n = 64 and for the source task is n = 128.

task relation. For example, (6.4)-(6.5) show that using H with a lower condition number can
reduce error terms that involve H~! at the expense of some increase in the error terms that
depend on the difference of H from H. In many cases, H = I; addresses this tradeoff well
and importantly shows that one does not have to use nor know H! B
Figures 3, 4, 5 and the error difference curves in Fig. 6 demonstrate when using H = I
can outperform H = H, and when it cannot. Whereas Figs. 6a, 6b clearly show the significant
benefits of using H = I over using the true H, Fig. 6¢ does not show such benefits except
for the ultra high overparameterization levels. In Fig. 6¢ using H = I; performs worse
than H = H because the gap between the condition numbers of the two cases is moderate
(Fig. 6f) and H is too far from I (due to the transformation to the DCT domain before the
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Figure 4: The test error of the target task under isotropic Gaussian assumption on 3 and iso-
tropic target features in a misspecified setting (according to Assumptions 4-5 and polynomial

reduction with a = 2.5, ¢ = 500, p = 2). The matrix H is a dx d circulant matrix corresponding
_|7=0.5]
to the discrete version of the continuous-domain convolution kernel hye, (7) = 0(7) + € “ker

here the kernel width is wye, = 2/75 in (a)-(b) and wyer = 2/25 in (c)-(d). The number of
data samples for the target task is n = 64 and for the source task is n = 128.

convolution). In contrast, the significant benefits of using H= I in Fig. 6b are reflected also
by its ability to resolve the vast increase in the condition number of (6.7) for H = H in the
highly overparameterized regime. Also, Figs. 6a, 6b show greater gains from using H = I
when H is farther from I; (i.e., note the greater gains for H with wye, = 2/25 compared to
Wker = 2/75, although the latter is closer to I).

More generally, we observed that using the true H in our intuitive transfer learning ap-
proach can be outperformed by other linear models that do not use the true H. This raises
the question of what is the optimal linear model for transfer learning with a known H — we
will answer this question in the next section.
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Figure 5: The test error of the target task under isotropic Gaussian assumption on 3 and
isotropic target features in a well specified setting. The matrix H is a d x d matrix

corresponding to applying the discrete version of the continuous-domain convolution kernel
|[7—0.5]

hker(7) =8(7) + €  “ker in the DCT domain, here the kernel width is wye, = 2/75. The
number of data samples for the target task is n = 64 and for the source task is n = 128.

6.3. The Linear MMSE Solution to Transfer Learning. The intuitive transfer learning
design (3.3) can perform excellently in a particular range of overparameterized settings; how-
ever, this performance can significantly degrade as the overparameterization further increases.
This degradation is particularly evident for H = H where H is non-orthonormal, see Figs. 3a,
3¢, 4a, 4c, ba (in contrast, an orthonormal H has a condition number 1 and therefore the re-
lated matrix inversion does not lead to significant degradation, compared to ridge regression,
in the overparameterized regime, see Fig. 1). Motivated by this degradation behavior, and
since (3.3) is a linear estimator, we now turn to explore the optimal linear solution to our
transfer learning problem.

Theorem 6.3. Consider 3 as a zero mean random vector with a known covariance matriz
B,. Then, the linear MMSE (LJ\{MSE) estimate of 3 given the target dataset X,y and the
precomputed source task solution 0:

PR —1
XB,XT 1 021, XE [geT}

68 Bunse = [BXT B (68" EfopT] X" E[00"] [%}
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Figure 6: The test error difference between using H = I; and H = H (subfigures (a)-(c),
black dotted lines corresponds to zero difference). Each curve color corresponds to another
noise level (o ,2]) in the task relation, the colors refer to the same noise levels as in Fig. 3.
The corresponding condition number of the matrix to invert (6.7) are presented in subfigures
(d)-(£); solid lines refer to H = H and dotted lines refer to H = I;. Note that the peak of
the condition number around the interpolation threshold of the source task are due to the
optimal transfer learning parameter that is involved in the matrix in (6.7). These results
are for isotropic Gaussian assumption on 3 and isotropic target features in a well specified

setting. Each column of subfigures corresponds to another matrix H that is based on applying
_|r=0.5]

the discrete version of the continuous-domain convolution kernel hye (7) =0(7) + e  “ker
for wyer = 2/75 (left column of subfigures), wye, = 2/25 (middle column of subﬁgures), and

Wier = 2/75 in the DCT domain (right column of subfigures).

~ 1 d<n
where E [,BHT} = ({ Jor d < T) x B4HT and

for d>n
K+<
oo

=, y 02
(ZEK + 41 diag ({Tr {K} — kjj}j=1,..a) + <d" + d—?f—1> Id>
ford>n+2

(

sw SUN

2
+ =i )Id ford<n-—2

AAT] form—1<d<n+1

E [00

a3

\

where K = HB,HT and kjj is its (4, 5)™ component.
The proof of Theorem 6.3 is provided in Appendix E.4. According to the formulation in
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the theorem, the LMMSE naturally includes additional isotropic regularization (addition of a
scaled I;) in the matrix inversion for the 6 component, which addresses the problem of the
intuitive transfer learning with H = H when H is poorly conditioned. In this way, we can
think of intuitive transfer learning with H = I; as a coarse approximation to the LMMSE,
except it does not use H. Of course, the LMMSE will always perform better given complete
knowledge.

The empirically-evaluated generalization errors of the LMMSE transfer learning solution
are denoted by the purple markers in Figs. 7, 8. As expected, the errors of the LMMSE
solution (for a known H) lower bound the errors of the intuitive (linear) design to transfer
learning from (3.3) with H=H (Fig. 7) or H = I; (Fig. 8).

The results for general H and 3 (Fig. 7) show that the LMMSE significantly improves the
intuitive TL design at the highly overparameterized settings. Note that the LMMSE solution

form in (6.8) is obtained by a linear processing of the “effective measurements” vector g\]

that concatenates the source task solution to training data of the target task. Accordingly, the
significant performance gains due to the LMMSE solution suggest that the common intuition
to transfer learning implementation can sometimes be far from achieving the potential benefits
of using the source task.

7. Conclusions. We have established a new perspective on transfer learning as a regular-
izer of overparameterized learning. We defined a transfer learning process between two linear
regression tasks such that the target task is optimized with regularization on the distance of
its learned parameters from parameters transferred from an already computed source task.
We showed that the examined transfer learning method resolves the peak in the generalization
errors of the minimum #;-norm solution to the target task. We demonstrated that if the source
task is sufficiently related to the target task and solved in sufficient accuracy, then optimally
tuned transfer learning can significantly outperform optimally tuned ridge regression over a
wide range of parameterization levels. Remarkably, we show that our transfer learning can
perform well also without knowing the true task relation, and in various cases to outperform
utilization of the true task relation. The generalization performance of our transfer learning
can degrade at very high overparameterization levels. Hence, we show that this issue can be
resolved by implementing the linear MMSE solution to transfer learning, whose form poses
interesting questions on the common intuition to transfer learning designs. Future extensions
may study other optimization formulations such as hybrid regularizers that merge the ideas
of ridge regression and parameter transfer, and additional task relation models and their uti-
lization in the transfer learning process. Moreover, future work may use other analysis tools
and optimality definitions (e.g., minimax optimality) to further understand the performance
of the transfer learning methods that we proposed in this paper.

Appendix A. Additional Details for Section 2.

A.1. The Test Error of the Source Task. The test input-response pair (z(teSt),’u(teSt)) is
independently drawn from the (z,v) distribution defined above. Given the input Az(teSt), the
source task goal is to estimate the response value v(test) by the value 0 £ z(t): 79, where 0

is learned using D. We can assess the generalization performance of the source task using the
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~ 2
test squared error & 2 E [(?J\ — v(teSt))Q] = O'g +E [HG — 0”2} , where the expectation in the

definition of & is with respect to the test data (z(teSt), v(teSt)) and the training data D. Note
that @ is a function of the training data. A lower value of & reflects better generalization
performance of the source task.

The source test error of the minimum #9-norm solution (2.1) can be formulated in non-
asymptotic settings as

(A1) Ere = { o0 forfi—1<d<m+l,
(14 72=) o2+ (1-5) 1163 ford>7+2,

which is a particular case of the results in [3, 7].

A.2. The Well-Specified Problem Setting at Different Resolutions. The target task
solution is based on estimating the parameter vector 3 € R?. Let us assume that 3 is a
random vector that follows a Gaussian prior distribution N(0,By) where By is the d x d
covariance matrix of 3. For considering the same problem at different resolutions we will

assume that E {HBH%} = Tr {B4} = wg where wg is the same positive real constant for all d, n.

For example, the last assumption is satisfied by By = éId that corresponds to an isotropic
Gaussian prior distribution for 3 and a constant wg = 1.

Next we characterize the way that the parameter vector of the source task and the relation
model to the target task behave at the resolution induced by the dimension d. The relation
between 6 and 3 as presented in (2.3) implies that 6 is a random vector that is defined by a
noisy linear transformation of the random vector 3. Specifically, the distribution of 8 is multi-

2
variate Gaussian with zero mean and covariance matrix HB;HT + %Id. Similar to the above
case of the target task parameters, for examining the same problem at different resolutions we

2
assume that E [||0||§] =Tr {HBdHT + %"Id} = wp where wpg is the same positive real con-

stant for all d,n,7. In the case of By = 11, the last assumption is satisfied for % |H|% = wi
where wy is the same positive real constant for all d,n,n. Note the following examples that
satisfy this rule:

1. Transformation to another basis: H = \Pg where W, is a d x d real orthonormal matrix,
ie., \Ilg\Ild = I;. Examples for such ¥, are the d x d forms of the identity matrix,
discrete cosine transform (DCT) matrix, Hadamard matrix (the case of Hadamard is
defined only for d values that satisfy its recursive construction). In this setting, we
study the generalization performance versus the dimension d that is coupled with a
d x d orthonormal matrix ¥ of the same type (e.g., DCT).

2. Clircular convolution operation: In this case, H is a d x d circulant matrix that can
be interpreted as a discrete version of the circular convolution kernel hy, : [0,1] — R,
which is defined over the continuous interval [0, 1]. The function hye, is assumed to be
smooth. Again, H should be properly scaled to ensure 2 ||H||§; = wy where wy is a
constant independent of d, n,n.
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Appendix B. Details and Proofs for Section 5.

B.1. Independent Misspecification with Isotropic Features. Under Assumptions 4-5 we
can develop the test error of the target task as follows. We learn a d-dimensional B and
apply it on a test feature vector x(*®%) € R? to obtain the response estimate § = (x(ts0))7 3.
Meanwhile, the true test response has the form y(test) = (x(test))T3 4 (x%St))T,@ms + eltest),
Then, the corresponding test error is

_ 2 ~ 2
(B1) e2E|(7-0)] =248 |[B-a], | + = 16w
Now, consider a well specified model that corresponds to y = x’ 3 + €, where x ~ N (0, Zy)
is d-dimensional and € ~ N (0, 5}2) with 6.2 = 02 + E [Hﬁmsﬂg] Then, the test error of this

well-specified model is the same as the test error of the misspecified model from (B.1).

Next, under Assumptions 4-5 (specifically, recall that 8 and 8, are independent), the
misspecified task relation model 8 = HB + Hy,s3,,s + 1 implies that 8 has zero mean and
covariance

E [067] = HE [38"] H” + HunE [8,,.05.) Hiy + E [n”]
= HBH" + bunHuHE 4+ 0714

= HBH" + busply + 0714
(B.2) =HBH" + (busp + 07)1y
where we denote E [,Bmsﬁgs] = bmsI, for some constant bys > 0. Accordingly, we define

1N 2 HysB,s + 1 and note that 5 ~ N(0, (bysp + 07)1y) is independent of 3. Hence, the
well-specified task relation @ = HB3 + n is equivalent to the above misspecified model.

Recall that in Section 5 we assume that E [H,@H% + ||5ms|]§] = wg,, for the same constant
wg,, for all d,q, and that E [Hﬁmsﬂg} Jwa,, = (1+ %)_a for @ > 0. This implies that the

variance of a misspecified parameter is bys = LBan (1 + %)7(1, which reflects the reduction in
the misspecification level as the number of utilized features d increases.

B.2. Additional Examples for Generalization Performance in Misspecified Settings. In
Fig. 9 we present the test error evaluations for the same setting of the convolutional H as in
Figs. 4a, 4b but with a stronger misspecification level of p = 25 in the task relation.

Appendix C. Proofs for Section 4.1.
Recall that in Section 4 we consider H = H and, therefore, the corresponding proofs
directly consider H instead of H.

C.1. Proof of Lemma 4.1. The expected test error of the transfer learning solution to
the target task is developed as follows.
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Er, £ Eg[ErL] =02 +E [HBTL _’BHz]
=02+ R [H (XTX + nOéTLHTH)_l (XTy + naTLHT§> B ﬁ”i]

(C.1) =02 +E M (X"X +nar H'H) ' (X7 e+ narH' (n+(6-96))) Hj

where we used the relation 8 = 6 + (5 — 0) =HpB+n+ (5 — 0> and that

(XTX + naTLHTH) is always invertible under the full-rank assumption on H (i.e., Assump-
tion 1).

Lemma 4.1 considers the case where H = 7 where ¥ is a d x d orthonormal matrix.
Hence, ¥7¥ = W7 =1,;. We denote Xg = XW. Because the rows of X have isotropic
Gaussian distributions then their transformations by ¥” do not change their distribution.
Then, we can develop the error expression for £y, from (C.1) into

(CQ) gTL = 052 + Tr {E |:(X€,X\I, + naTLId) - (O‘?X@X\p + RQQ%LI‘TL)] }

where
(C3) T 2E[m']+E [(5 -0) (0~ G)T] +E[(0-0)n"| +E [’7 (6- oﬂ

Now we provide two fundamental results that are useful for the following developments. The
first result is about the 7 x d matrix Z that has i.i.d. standard Gaussian components, therefore
the expectation of the d x d projection matrix Z*Z is formulated (almost surely) as

1 for d <n
(C.4) E[Z'Z] =14 x{ - orda=mn
g for d > n.
The second fundamental result is on the expectation of the pseudoinverse of the d x d Wishart
matrix ZTZ that almost surely satisfies

ﬁ ford <mn -2,
(C5)  E[(z'2)| =E|Z7(27)"] = Lix { 0 fori—1<d<i+1,

The last result can be proved using the tools given in Theorem 1.3 of [5].
Using the auxiliary results (C.4)-(C.5) we get that

E [(5— 0) (6 - eﬂ —E (2720 +72'¢ - 0) (2" 26+ Z*¢ - 0)"|
ﬁ:‘idg_l fOI‘dSﬁ—Q,
(C.6) =TIy x { forn—1<d<n+1,

~ 2 - 2
%.%4-(1—%)“% for d >n+2
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and
~ ~ T 0 for d < m,
C.7 E|(6—0)n"|=E|n(6—-0) | = /- - B
(C.7) [( )77] {n< )] (%—1)7’2’Idf0rd>ﬁ
2
where we also used the result Eg,, [BBT} = b+d0" 14, which is due to the task relation model

(2.3), Assumption 2, and because H = W' where W is a d x d orthonormal matrix. Hence, the
matrix form in (C.6), which is a scaled identity matrix, lets us to express the error formula
from (C.2) as

- d n2a%;Crp, + 02 - )\k{Xqu,} }
(©8) L= +E{; (Ak{ngq’} + naTL>2

where )\k{XgX@} is the k™ eigenvalue of the d x d matrix XJ‘I;X\p, and

o2 0.2 »
T+ =5 for d <n—2,
(C.9) Cr, 2 (X forn—1<d<n-+1,
~ ~ o2 2 "
(1—3)3+g<;+d‘;§1> for d > 7t + 2.

This concludes the proof of Lemma 4.1.

C.2. Proof of Theorem 4.2. The derivative of the error expression for £, as given in
Lemma 4.1 with respect to aTy, is

0& d Ak{XEX\If}
e G e o o TR )

Since we consider oy, > 0 then the necessary condition for optimality, giii = 0, yields

2
C.11 opt __Te
( ) Qpy, nCoL’

which is the optimal value of ay, > 0 for our transfer learning process when H = ¥7 is an
orthonormal matrix and d ¢ {n — 1,n,n + 1}. Next, we set the expression for aOTI}f in the error
expression for Epy, from Lemma 4.1 and using some algebra gives, for d ¢ {n — 1,n,n + 1},

d
i 1
EX =02 | 1+EQD
A P Ak{xgxq,} +nal

(C.12) = o2 <1 +Ex, [Tr { (XEXe +nafi'L,) - H) .

Note that for d € {n—1,n,n+ 1}, Crr, = co and based on the error expression in (C.8) we
get that Epr, = oo for any apr, > 0. This concludes the proof outline for Theorem 4.2.




THE COMMON INTUITION TO TRANSFER LEARNING CAN WIN OR LOSE 27

C.3. Proof of Theorem 4.3. In the asymptotic setting (i.e., under Assumption 3), the
optimal parameter afﬁt from (C.11) goes to its limiting value

—1
2
t agﬁig"f) for d < 71— 2,
o 2 src
(C13) OéTIi,oo = O Vtgt X e 1
Ysre—1 1 2 sre’9¢ >n
< “Ysrc b + Ysrc <O-n + Ysre—1 >> for d =n + 2

Moreover, note that the error expression of optimally tuned transfer learning in (C.12) includes

-1
the form of Ex, [Tr{(XE,X\p + naOTI}fId) H where Xy is a n X d random matrix of

i.i.d. Gaussian variables A/ (0,1). This form, however with a different parameter than a%‘}f,

appears also in the analysis of optimally tuned ridge regression by Dobriban and Wager [14].
Accordingly, we can readily use the results from [14] in conjunction with the limiting value of
our parameter b’ from (C.13) and get that

(014) _’%Iit — O'E2 (1 + Ytgt - M <—a%l}ioo; ’)’tgt))

where

2
(1t o) (108 ) e

opt
2'YtgtO‘TL,oo

(C.15) m (—a%‘}im;%gt) =

is the Stieltjes transform of the Marchenko-Pastur distribution, which is the limiting spec-
tral distribution of the sample covariance associated with n samples that are drawn from a
Gaussian distribution A (0,1;). This completes the proof outline for Theorem 4.3.

C.4. Generalization Error of ML2N Regression Under Assumption 2. The test error of
the ML2N regression solution of the individual target task was provided in (3.2) for a given
parameter vector 3. Then, the expectation of Egrg from (3.2) with respect to the isotropic
Gaussian prior on 3 (i.e., under Assumption 2) is

(1+ﬁ)03 for d <n —2,
(C.16) Eg [EmLan] = { o0 forn—1<d<n+1,
(1+d—2—1)03+(1—%)b for d > n + 2.

Appendix D. Proofs and Details for Section 4.3.

D.1. Generalization Error of Ridge Regression in Non-Asymptotic Settings. The ex-
pected test error of the ridge regression solution of the (individual) target task can be devel-
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oped as outlined next.

N 2
gridge £ E,B [5ridge] = 0‘52 +E |:H/8ridge B ﬁH2:|

1 2
-t o et 50

. 2
=0l +E [H (XTX + navigels) XTGM

+E {H (XX + nopagels) " XTX ~ 1) ,3”3
(D.1)
where we used the fact that € is independent of X. Consider the eigendecomposition
(D.2) XTX = dx AxPx’

where ®x is a d x d orthonormal matrix with columns being eigenvectors of X7 X and the
corresponding eigenvalues )\k{XTX}, k =1,...,d, are on the main diagonal of the d x d

diagonal matrix Ax. Then, we can continue to develop (D.1) as follows.
gridge = 0'62 + U?E |:T1" {(AX + naridgeld)_2 Ax}:|
b 1 2
+ gE Tr ((Ax + nonidgela) T Ax — Id)

d 2 T b2 2
(DS) _ 0_62 " E{ O¢ )\k{X X} + am arldge }

2
k=1 ()\k{XTX} + naridge)

By equating the derivative (w.r.t. asiqge) of the expression in (D.3) to zero, one can obtain

the ayigge > 0 that minimizes the error & gge. The suggested calculations show that a;}i%tge =
2
dsg . By setting affi;e back in (D.3) one can show that the minimal expected test error for
ridge regression is
sopt 2 T opt -1
(D.4) Erdge = ¢ [ 1+ Ex |Tr ¢ (X7 X + noyjg..1a .

D.2. Proof Outline for Corollary 4.4. Consider H = ¥” and ¥ is an orthonormal matrix.
The main case to be proved is for d ¢ {n — 1,n,n + 1}. Then, according to Theorem 4.2 and
(C.12), the test error of optimally tuned transfer learning can be written as

d
(D.5) EP =021+ ZE{ ! }
)\k{ opt

b1 XEX‘I,} + napy,

where Xy is a n X d matrix of i.i.d. standard Gaussian variables. Note that the eigenvalues
)\k{Xqu,} are i.i.d. random variables.
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The optimally tuned ridge regression solution has the test error (D.4) that can be also
expressed as

d
_ 1
(D.6) Ehe=0c [ 14D :u-z{ }
k=1 )‘k{XTX} + na?ilt)itge

where X is a n x d matrix of i.i.d. standard Gaussian variables. Note that the eigenvalues
)\k{XTX} are i.i.d. random variables.

X and X have the same distribution, hence, their eigenvalues )\k{XTX}, )\k{XgX\p}

are also identically distributed. Therefore, the only difference between (D.5) and (D.6) is the
respective values of a%rit and a(r)i%tge. Then, according to the forms in (D.5)-(D.6), E%Iﬁt < Sfigtge
opt opt

when a- > Xpidge- According to Theorem 4.2, the condition aOTlit > Pt

ridge 18 satisfied when

ngfi - > dgg where Crp, is defined in Lemma 4.1 for the case of H = WL, This leads to the
condition
D.7 2, 10 b
. <
(D7) M P —

ford ¢ {n—1,n,n+1}.
Theorem 4.2 states that the transfer learning error is infinite for d € {n — 1,n,n + 1}.

Hence, 5%?} < gfigge is never satisfied for d € {n — 1,n,n + 1}.

D.3. Generalization Error of Ridge Regression in Asymptotic Settings. Previous studies
[14, 19] already provided the analytical formula for the expected test error of ridge regression
when the true parameter vector (3 in our case) originates at isotropic Gaussian distribution
and the sample data matrix (X in our case) has i.i.d. Gaussian N (0,1) components. Then,
translating the results from [14, 19] to our notations shows that

(D8) gl(r)ig‘ige - 062 (1 + Vtgt - M (_a?irc)itge,oo; ’Ytgt))

opt
ridge’

opt _ tgto?

where Mridgeco = — 5 = 18 the limiting value of « and

t t 2 t
— ( 1_,ytgt+a§)i€ige,oo ) +\/(1_’ytgt+aﬁi}zige,oo ) +4’Ytgta$i}zige,oo

opt
QPYtgt aridge,oo

(D.9) m (—a?ﬁtgepo;%gt) —
is the Stieltjes transform of the Marchenko-Pastur distribution. For more details see [14, 19].
Appendix E. Details and Proofs for Section 6.
E.1. Proof of Proposition 6.1.
E|8]8] = E [z*v|d]
—E[Z" (Z6 +¢)|8] =E [Z*Z (HB + ) |8]
=E[Z"Z]Hp

H for d <7
(E.1) i ord =,
JHB ford >n
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The last development relies on the fundamental result from (C.4).
Now, we continue to the covariance matrix of @ given 3, namely,

w235 [o6]) (0= ) ] <[] -= 0] ()
Using (E.1) we can easily get that

1 for d < n,

(E.3) E [5"6} (E [a"@DT =HpE H x (ﬁ>2 ford >n
. .

AT
We also need analytical formulation for E [90 ‘ ,6}, as explained next.

E [%T‘ﬁ] =E [Z+ (Z(HB+m)+€) (ZHB+n)+&)" (z")" ‘ﬁ}

—E[z'zHB™H" (2'2)" || + E [z Znn" (2'2)"] + B[z ¢€" (2")"]

(B4)  =E|z'zHBS H' (z'2)" |6] + (jE 22) + o [z (2*)"]

where the second term in the last expression can be explicitly formulated using (C.4). The
third term in (E.4) requires the fundamental result from (C.5). The first term in (E.4) is an

instance of the more general form E [Z*ZaaT (Z*Z)T} , where a € R? is a non-random vector.

For d < m, we almost surely have that Z*Z = I; and therefore E [Z*ZaaT (Z*Z)T} =aa’.

For d > 7, consider the decomposition ZTZ = RR” where R is a d x 7 matrix with 7
orthonormal columns that are taken from a random orthonormal matrix that is uniformly
distributed over the set of d x d orthonormal matrices (i.e., the Haar distribution of matrices).
Then, using the non-asymptotic properties of Haar-distributed matrices (see, e.g., Lemma 2.5
in [37] and Proposition 1.2 in [20]) and some algebra, one can prove that, for d > n,

T n{n+1 d—n .
(E5) E [Z+ZaaT (z72) } “d <d+ paa’ + pydiag ({HaHg — (@) Y., d)>

d
where a; is the 4™ component of the vector a. Based on the described proof outline, one can
use (E.4) to develop (E.2) into the form

w0 x[(@-2[le]) (0-2[as]) 5] - (% )
<[(-=[o) (o= )"} -

= g

(st o0 BT + deciog ((IKBIE — (H8),)...0) + (4 5 ) )

for d > n+2. In (E.7), {HB}; is the §™ component of the vector HB. For d € {n—1,n,n+1}

the covariance matrix is infinite valued as a result of the infinite valued E {(ZTZ) ﬂ , see (C.5).

L3N]

(E.7)

SUISZ
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E.2. Lemma E.1. To consider the general covariance case in the asymptotic setting, we
prove a general result on linear and quadratic functionals of resolvents of the random data
sample covariance matrix.

Lemma E.1. If X =[x, ..., x("T for ii.d. x%) ~ N(0,%) for & € R4 having bounded
spectral norm, and ® € R such that TY{(@T(-))I/Q} is uniformly bounded in p, and

2 e R4 is o positive semi-definite matriz, then with probability one, for each o > 0, as
n,d — 0o such that d/n — Yigt,

(E.8) Tr {@ <(%XXT +aly) " = () + aId)_l)} =0
and
T {O( (1XXT +aly) '8 (AXXT +aly) '
(E.9) — (e(@)E + aly) " ((Q)S + B) (c(a) S + aly) " )} =0,
where c(a) is the unique solution ¢ of X —1 = 22 Ty {S(cZ + aly) "'}, and

1 Tr {S(c()E + ody) 1E(c(a)X + alg) '}
cla)=2 — %Tgt Tr{ZE(c()X + aly) 1E(c(a)E + oly) 1}

(E.10) d(a) =

Proof of Lemma E.1: by Theorem 1 of [34], for any ¢t > 0, we have that with probability
one, for any a > 0,

(E.11) Tr{ (12 + 1XXT +aL,) " — (B + cla. ) +al) ) } >0,

where ¢(a, t) is the unique solution ¢ of

1 Vtgt —_ _
(E.12) E—lz%Tr{E(t:+cE+aId) .

By choosing t = 0, we obtain the first result of Lemma E.1 immediately. Then by Theorem 11
of [12], we know that the derivative with respect to ¢ of the left-hand side of (E.11) also goes
to zero. That is,

T {O( (18 + 1XXT +al)  E(tE+ XX +aly)
(E.13) — (2 + c(o, ) + aly) " (¢, ) + E) (12 + c(a, )3 + aly) " ) } 0,

where

Oc(a, t)
ot
et Tr {B(E + c(a, )3 + ody) 'E(E + (o, 1)E + olg) 7}
(o, t)72 = PR T {S(tE + c(a, 1) 2 + olg) " 'B(E + c(a, t) X 4 alg) "'}

(E.14) d(a,t) =

By again choosing ¢t = 0, we obtain the second result of Lemma E.1.
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E.3. Proof of Theorem 6.2. Similarly to (C.1)-(C.2) that were given above for the case
of orthonormal H, H = H and ¥x = I, one can express the expected error for the case of
general forms of H H and X4 (specifically note that, here, H can differ from H) as

2
3k

_ ~~\ —1 ~ —~ ~
(E15)  &rL=02+E H (XTX + naTLHTH) (XTe + nap BT (0 - Hﬂ))

Then, we define
~ "~ AT
LAE [(9—H,6’) (O—H,B) ]
and develop its express1on using ( A), (C 5), Proposmon 6.1, and the isotropic assumption
on 3. Also, we define W £ (H- )72, H! and X1 = XH™!. Then, we bring (E.15) into

the form of
1 1o !
Tr gW EXI?I*1 Xﬁ—l +arLly

1 (1 -
Tr {A (nxglxﬁ_l + aTLId> W <nxglxﬁ_1 + aTLId) H

where A 2 mTLI‘ L — “3+15. Note that the rows of Xg_, are ii.d. from N (0, W) and
that by choosmg 0= EW we can apply (E.8) from Lemma E.1 on the trace term in (E.16).

- d
(E.16)  ErL =02+ 02—E
n

d
(E.17)  + ang

Moreover, by choosing ©® = dUQ L7, — #3L1; and E = W we can apply (E.9) from Lemma
E.1 on the trace term in (E.17). Consequently, the limiting value of 11, can be formulated as
in Theorem 6.2.

E.4. Proof of Theorem 6.3. We seek to find the estimator of 3 that is linear in u = [g\]

and minimizes the mean squared error. That is, we seek Brymisg = Mu for some M €
R4*("+d) that minimizes

(E.18) E [HBLMMSE - ﬂHz ‘X] .

This problem has a solution given by the orthogonality principle:
(E.19) E[Mu-gu’|X]=0 — M=E][gu’[X](E[uu’|X])".
These expectations are simple to evaluate:

~T
~ XB, X7 + 021, XE [BO ]
£.20) E[pu’|X] = [B,XT E[g0'|], E[uu’|X]= S LA,
(E.20) E[Bu’[X] [ d [,3 ” [uu” [X] E[GBT}XT E[OOT]

~T ~~T
and we can use Proposition 6.1 to formulate E [,80 } and E [00 } in the forms that are
provided in Theorem 6.3.
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Figure 7: The test error of the target task. Comparison of the intuitive transfer learning
method to the LMMSE transfer learning method. Subfigures (a), (b), (c¢), (d), (e) extend
Subfigures 3a, 4a, 3c, 4c, Ha, respectively, by adding the LMMSE error curves. Here, in each
of the subfigures, one of the noise level 0'% curves is absent for better visibility. All the results

in this figure are for H=H.
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Figure 8: The test error of the target task. Comparison of the intuitive transfer learning
method to the LMMSE transfer learning method. Subfigures (a), (b), (c¢), (d), (e) extend
Subfigures 3b, 4b, 3d, 4d, 5b, respectively, by adding the LMMSE error curves. Here, in each
of the subfigures, one of the noise level 0'% curves is absent for better visibility. All the results
in this figure are for the intuitive TL with H = I;, but recall that the LMMSE TL always
uses H.
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Figure 9: The test error of the target task under isotropic Gaussian assumption on 8 and

isotropic target features. The matrix H is a d x d circulant matrix corresponding to the
_ |[7—0.5]
discrete version of the continuous-domain convolution kernel hye (7) = 6(7) + e  “ker | here

the kernel width is wye, = 2/75. Both subfigures correspond to misspecified models according
to Assumptions 4-5 and polynomial reduction with a = 2.5, ¢ = 500, p = 25. The number of
data samples for the target task is n = 64 and for the source task is n = 128.
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