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Abstract

Objective. Precise control of neural systems is essential to experimental investigations of how the
brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant
network states. Model predictive control, which employs a dynamical model of the system to find

optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of
exogenous noise, and limited information about unmeasured states and parameters that are
common in a wide range of neural systems. However, the challenge still remains of selecting the
right model, constraining its parameters, and synchronizing to the neural system. Approach. As a
proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear
machine-learning model of a Hodgkin—Huxley type neuron when only the membrane voltage is
observable and there are an unknown number of intrinsic currents. Main Results. We show that
this approach is able to learn the dynamics of different neuron types and can be used with model
predictive control (MPC) to force the neuron to engage in arbitrary, researcher-defined spiking
behaviors. Significance. To the best of our knowledge, this is the first application of nonlinear MPC
of a conductance-based model where there is only realistically limited information about

unobservable states and parameters.

1. Introduction

1.1. Control of neural systems

Precise control of neural systems is a major goal of
modern neuroscience, both as a means for experi-
mental investigation of the brain and as a clinical
method for treating neurological disorders [1]. In the
most general sense, we seek to find a command signal
that will force a specific neuron or network of neur-
ons to follow a specified trajectory through state space
[2]. More informally stated, how can we make the
system do what we want it to do? This level of con-
trol would allow us to experimentally test the predic-
tions of hypotheses in neural systems and potentially
restore normal function to a circuit that has gone into
a pathological state [3].

Achieving control presupposes the ability to pre-
dictably manipulate the system. In open-loop con-
trol, a command signal is chosen ahead of time based
on a general model of the system and then applied

to an individual instance (figure 1(a)). The outcome
may inform the general model, but this occurs off-
line. In neurophysiology, examples of open-loop con-
trol include current-clamp intracellular recording as
well as most optogenetics experiments, where a pulse
of current or light is used as the command signal to
force a neuron to spike or prevent it from spiking
[4]. What makes these open-loop is that the intensity
and duration of the pulse is not automatically adjus-
ted if the stimulus fails to achieve the desired effect
[5]. Although open-loop control has the advantages
of being fast and simple to implement, it is not robust
to unknown disturbances or errors in command sig-
nal calculation [6]. Because neurons in vivo receive
many spontaneously active excitatory and inhibitory
inputs, there may be significant trial-to-trial variabil-
ity in the number of spikes evoked during application
of the command signal. More broadly, variability in
the actual effects of a manipulation reduces the power
to make causal inferences in experimental settings.

© 2024 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Open- vs Closed-Loop Control. (a) (Above) Block diagram of open-loop control. A command signal is applied to the
system irrespective of the system output. (Below) Diagram of typical optogenetic stimulation experiment. A light source is
applied to a cell expressing the appropriate light-sensitive opsin. For open-loop stimulation, the intensity of the light is
determined before recording and may or may not cause the cell to fire. (b) (Above) Block diagram of closed-loop control. A
command signal is calculated by the controller based on the state error—the difference between the system state trajectory and
reference trajectory. (Below) Diagram of a voltage-clamp experiment. The cell is held at a specified voltage by injecting current
determined by an online comparison of the membrane voltage with the desired reference voltage.
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In contrast, for closed-loop (or feedback) con-
trol, the command signal is dynamically adjusted as
a function of the difference between the actual (or
estimated) state of a specific system and the desired
reference trajectory (figure 1(b)). This is the approach
employed in voltage-clamp experiments, where the
difference between the actual and the desired mem-
brane voltage (the state error) is scaled by a gain factor
and used as the command signal of electrical cur-
rent injected into the neuron [7]. Closed-loop con-
trollers have the ability to adapt to unknown sys-
tem disturbances and changes in system dynamics
even when tracking complicated reference trajectories
[8]. Because of this, considerable work has gone into
incorporating feedback controllers in other areas of
neuroscience such as brain-machine interfaces [9—
12] and neuro-prosthetics [9, 13—17]. In particular,
there have been recent advancements in using feed-
back controllers with optogenetic stimulation to give
more fine-tuned and reliable control of neural spik-
ing at both the individual neuron [18] and population
levels [19, 20].

Although a promising avenue of research, there
are still many issues when using feedback controllers
with complicated systems. Most implementations of
feedback control are purely reactive, where the com-
mand signal is a function of the present and/or past
state error terms. Reactive control works exception-
ally well with intracellular preparations that allow
low-noise measurements of voltage and direct injec-
tion of current [7]; indeed, voltage-clamp experi-
ments are foundational to almost all of what we know
about the physiology of individual neurons. However,
there are significant obstacles to using reactive control

in networks of neurons, which can have highly non-
linear dynamics in much larger state spaces, more
unobservable states and parameters, and proportion-
ally fewer variables that can be experimentally con-
trolled. Our goal in this study is to explore the applic-
ation of anticipatory control to neural systems, using
a single neuron with Hodgkin-Huxley dynamics as a
proof of principle. Although this is a simple system
that does not need sophisticated methods to control
it, we are able to use it to address one of the major
problems likely to arise when applying more sophist-
icated methods to complex circuits, namely the lack
of ground-truth knowledge about the dynamics and
the unmeasureable states of the system.

1.2. Model predictive control

One promising method of feedback control to deal
with these problems is model predictive control
(MPC), which is a type of optimal controller. It is
optimal in the sense that the control input ¥ minim-
izes an objective function of the form

T

J(x0) =Y L(xi,ui), (1)

i=0
with constraints

Xn+1 :f(xnv ”n)

XLB

N

x < Xy
<

N

Uip X U x Uys,

where ((x;,u;) is the loss associated with ith time
step, which is a function of the state variable(s) x and
input(s) u. Many types of loss functions are possible,
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Figure 2. Receding Horizon of MPC. Starting at the top row, (left) the system state trajectory (red) is being controlled to follow
the reference trajectory (black). At the current time step (vertical dotted line) the controller finds the optimal set of inputs that
minimize the loss function for a specified time horizon (shown with a gray box). In this case, the controller looks ahead 5 time
steps (black dashed curve). Given the state at the current time (o), the controller uses a model to predict where the system will be
across the future time horizon (red dashed curve). The inputs into the system (right) are optimized in discrete-time, and the
input into the system is held constant between model time steps (solid blue curve). The predicted optimal future inputs (dashed
blue curve) are calculated across the future time horizon. However, only the first of these values (circled in black) is used as input
in the next time step before the optimization procedure begins again. From the top to bottom rows, we see how the controller may
pick new optimal inputs given updates in the model predictions and by having access to new reference trajectory values (black
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but typically involve the state error and energy cost
of the command signal. The constraints allow one to
specify the dynamics of the system and to give lower
and upper bounds for the state variables and inputs.
More sophisticated versions of MPC allow for addi-
tional constraints where knowledge of any measure-
ment or process noise can be incorporated [21], but
this will not be explored here.

The controller uses a discrete-time model of the
system f(x,,u,) to predict what command inputs
would best force the system to follow the refer-
ence trajectory over some time horizon T (figure 2).

At each time step, the controller finds an optimal
command signal by minimizing the total loss given
the constraints. The total loss is calculated by sum-
ming the actual and predicted losses across the time
horizon. However, only the first time step in the
optimized control signal is applied to the system,
and the optimization is performed again in the next
time step. This process repeats at each discrete time
step, which leads some to refer to MPC as receding
horizon control [22]. By finding an optimal input
based on predictions of how the system will behave
in the future, MPC is an anticipatory controller [23].
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Although the command signal is only guaranteed to
be globally optimal for linear systems with convex loss
functions, MPC has been widely used in nonlinear
system control [24, 25].

A commonly used analogy to describe MPC is the
game of chess [24], where the player (the controller)
wants to find a set of moves (the command signal) to
win the game (the objective function). When selecting
a move, the player must use a model of their oppon-
ent to anticipate how that opponent will respond to
their moves. Although the player may have mapped
out their moves for the next T turns (the time hori-
zon), the player can only implement the first of these
moves during their turn. The player may update their
planned moves based on a variety of factors. Their
opponent may have selected a different move than
predicted, or after completing their turn the player
is able to think one more move ahead (the reced-
ing horizon) and finds a new optimal set of moves.
Intuitively, being able to think more moves ahead
(extending the length of the time horizon) should
produce a more optimal set of moves to win the game.
However, this comes at the cost of increased compu-
tational complexity for the player, and errors in mod-
eling how the opponent will respond can accumulate
when incorporating these errors across the extended
time horizon. This leads to a balancing act in MPC
where not having a large enough time horizon may
result in suboptimal moves in the long run, whereas
too long of a time horizon is expensive and sensitive
to modeling errors.

One of the primary considerations in implement-
ing MPC is choosing a good model of the system
one wants to control [26]. At first glance, this might
not seem to be a problem for applications in neur-
oscience since constructing mathematical models of
neural systems is one of the main research areas. For
example, models based on voltage-dependent ionic
conductances using the Hodgkin—Huxley framework
can accurately predict how the membrane voltage
of a neuron with a given morphology and comple-
ment of currents will respond to an arbitrary input.
However, building a conductance model of a spe-
cific neuron is far from trivial [27]. The types of cur-
rents must be chosen along with dozens to hundreds
of free parameters that govern the maximal con-
ductances of the intrinsic currents and their voltage-
dependent kinetics, and there are many state vari-
ables of which only the membrane voltage is typically
observable [28]. MPC has been successfully applied
to conductance models in previous work [29-31], but
always with the assumption that the number, type,
and/or functional forms of all the intrinsic currents
are known a priori. Under this assumption, there are
many data assimilation methods that can be used to
estimate the unknown parameters and hidden states
of the model [28, 32, 33]. However, in most biolo-
gical preparations, this is an unrealistic assumption,
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because neurons express a large, diverse complement
of voltage-gated channels whose physiological prop-
erties can depend on variations in isoform compos-
ition, modulatory subunits, phosphorylation state,
and subcellular localization. Choosing even a general
form of a model to be used with a specific type of cell
requires significant hand-tuning [34] that would not
be feasible if the goal is to control a specific neuron or
network in a live experiment.

1.3. Data-driven approaches to modeling

An alternative to constructing a detailed biophys-
ical model is to use a data-driven approach where
the dynamics of the system are modeled based on
empirical data with minimal reference to the under-
lying biology of the neuron. Using standard machine-
learning approaches, unknown parts of the system
can be modeled via function approximation and used
to predict the time-evolution of the system to vari-
ous inputs. These models are often referred to as fore-
casting models since the model predicts how the sys-
tem will change across time. Data-driven approaches
have been successfully applied to MPC problems in
diverse fields [21, 35-38]. While there has been previ-
ous work using these approaches to model HH-type
neuron models, the models were either used solely for
prediction (instead of control) [39] or made unreal-
istic assumptions about which state variables were
available in the training data or the extent to which
the complement and functional forms of the intrinsic
currents could be known [30, 31].

In order for data-driven models to be useful
for MPC applications in neuroscience, these models
must be able to accurately predict the states to be
controlled based only on observable state measure-
ments, be agnostic to the number of hidden states
and intrinsic currents, and generalize to a control
scheme where command signals may be outside the
training set. As a proof of principle, we conducted
a simulation study to control the membrane voltage
of an HH-type neuron through current injection
when the parameters of the model were unknown,
and only the membrane voltage was observable. We
used these observations to create a nonlinear data-
driven model that accurately predicted the response
of the system to command signal inputs and used this
model for MPC. The model made no assumptions
about the nature of the intrinsic currents and still
allowed the controller to force the membrane voltage
to follow a reference trajectory. Although control of
single unit voltage activity is achievable with pro-
portional feedback control both in vivo and in vitro
[40], our goal was to demonstrate how data-driven
modeling can be applied to nonlinear MPC of neural
systems. To our knowledge, this is the first applica-
tion of nonlinear MPC to a spiking neuron model
where realistically limited knowledge of the system is
known.
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2. Methods

2.1. Connor-stevens model

As a model of single-unit responses to an injected
current, we used the HH-type Connor-Stevens (CS)
model for all simulations [41]. The CS model includes
four intrinsic currents and an extrinsic injected cur-
rent. We also included a noise current that modeled
the unknown, variable synaptic inputs that contribute
to the trial-to-trial variability neurons tend to exhibit
in vivo. The model is given by the equations

dv
CE = Ina +Ix + Ia + I + Inoise + Iinj7 (2)

where

Ing = gnah (Eng — V)
Ix = ggn* (Ex — V)
Iy = gad’b(Ex — V)
L=g(E-V),

where Iy, Ik, and I, are the voltage-dependent
sodium, potassium, and A-type intrinsic ionic cur-
rents, and I is the intrinsic leak current. The activity
of the neuron can be externally modulated by varying
the injected current Ij,. For the noise current Ijse,
random Poisson spike trains were convolved with an
alpha function with a decay rate of 10 ms [41] to
model the resulting post-synaptic potentials. Each CS
model received inputs from both an excitatory and
inhibitory Poisson neuron with a firing rate of 20
Hz. The amplitude of I,y (t) was scaled in reference
to the training and validation injected currents to
have a constant signal-to-noise ratio (SNR) of 5. Note
that all currents are functions of time but we omit
making this explicit in the equations for simplicity.
Each of the three voltage-gated currents depend on
one or more unobservable state variables that model
the activation state (m,n,a) and inactivation state
(h,b) of the channels. Each of these state variables is
governed by a first-order differential equation with
unique parameters that determine its kinetics. While
in principle one could estimate the values of the state
variables and model parameters using data assimila-
tion techniques [28, 32, 42], in an actual biological
preparation one would be unlikely to know all of the
channels a specific neuron expresses.

The CS model is able to produce distinct fir-
ing dynamics by changing the parameter E; and ga
parameter values (figure 3). With g4 = 47.7mS and
Ej = —22 mV, the model exhibits Type-I excitabil-
ity, which is characterized by a smooth increase in
firing rate when the input currents exceed the fir-
ing threshold. When gy = OmS (eliminating the A-
type current) and E; = —72.8 mV, the model instead
exhibits Type-II excitability, which is characterized by
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a discontinuous jump in firing rate for input cur-
rents that exceed the firing threshold. This differ-
ence in spiking behavior reflects two distinct dynam-
ical topologies that undergo qualitatively different
kinds of bifurcations: Type-I spiking is indicative of
a saddle-node bifurcation, whereas Type-II spiking is
caused by an Andronov—Hopf bifurcation. To show
that data-driven approaches to MPC can extend to
various types of neural dynamics and number of
intrinsic currents, we used both the Type-I and Type-
IT CS models in all simulated experiments.

2.2. Data-driven forecasting of CS model

The HH model and its variants are conductance-
based models where the cell membrane is modeled
as a capacitor [43]. Thus, the relationship between
the membrane voltage and cellular currents can be
expressed using the current conservation equation

dv
CE :Zw),

where the time derivative of the membrane voltage
V is proportional to the sum of all currents through
the membrane. These currents may be externally
applied (e.g. electrode injected currents) or intrinsic
to the neural dynamics themselves (e.g. arising from
voltage- and ligand-gated ion channels). To construct
a forecasting model, we only assumed the dynamics
of the membrane voltage were given by

C%:F(V,X,@,t)Jrlinj, (3)
where C is the membrane capacitance and F(.) is
an unknown time-varying function of membrane
voltage, with unknown states X and unknown para-
meters O. We stress that this assumption would hold
not only for the CS model, but any conductance-
based model because of the additivity of the cur-
rents. For the CS model, this F(.) would be the
intrinsic currents, X would be the intrinsic state
variables, and © would be the model parameters.
The goal in data-driven forecasting (DDF) is not to
estimate these unknowns but to approximate F such
that one can accurately predict how the neuron will
respond to an arbitrary input current I;y; by integrat-
ing equation (3).

Let V= [Vy, Vi,..., V7] denote a set of discretely
sampled membrane voltages where Vi = V(kAt)
and At is the sampling period. Similarly, let I =
[Io,1,...,Ir] be the set of discretely sampled injec-
ted currents. Given only V and I, the goal is to find
a DDF model of the form V,; = Fppp(V,I) that
can accurately map V, to V,,,. There are many pos-
sible models Fppg(.) to choose from and as a gen-
eral rule demand larger amounts of training data as
the DDF model gets more complex [44]. Additionally,
if one used both the membrane voltage and injected
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Figure 3. CS Model Behaviors. (a) The spiking pattern of a Type-I (above) and Type-II (below) CS model in response to a 300 ms
9 pA step current. (b) The firing rate of the CS model as a function of step current amplitude. Notice that the Type-I model’s
firing rate increases approximately linearly after the input passes the firing threshold while the Type-II model abruptly jumps in
firing rate. (c) The effect of the noise current on the CS models when stimulated with the same step current from panel A.

currents as input into black-box function approx-
imator, it would be difficult to separate the effects
of the intrinsic dynamics of the system (membrane
voltage) from the effects of the external force (injec-
ted current). An approach taken by [45] when model-
ing the dynamics of HH-type neurons was to exploit
the fact that the [i,; term is additive and remove that
from the function approximation step. In [45], they
were able to achieve a good forecasting model by
using time-embeddings of V in conjunction with a
radial basis function network (RBFN) [46]. This is a
single hidden-layer artificial neural network (ANN)
that typically uses a Gaussian as the nonlinear activ-
ation function. Although this is a classical approach
largely superseded by more modern forecasting mod-
els such as LSTMs [47] and Transformers [48], their
DDF model generalized to in vitro recordings across
many different neuron types. In contrast to more
complex models, RBFNs are easier to train while
still being universal function approximators [49]. The
general form of this DDF model is given by the
equation

Vn+1 = Vn +FRBF (Sn) +a(1n+1 +In)7 (4)

where V, is the membrane voltage at the nth time
sample, S, is a time-embedding of V,,, Fgpg(.) is a
RBEN with learned parameters, I, is the injected cur-
rent at the nth time sample, and « is a learned scal-
ing parameter. See appendix for a brief derivation
of the DDF model and [45, 50] for a more detailed
treatment.

2.2.1. Simulating training data
Separate DDF models were trained on data from the
Type-I and Type-II CS neuron models. The injected

currents used to stimulate the CS neurons were
obtained from the x(t) state of the Lorenz 63 system
[51]. This chaotic current has been shown to cover a
large frequency spectrum and has been used to drive
in vitro neurons across a sufficient extent of their
state space to support accurate data assimilation [28].
The differential equations governing the system were
scaled in time by 7 and the resulting x(¢) trajectory
was scaled by amplitude A:

Tx=0(y—x) (5)
Ty=x(p—z)—y (6)
TZz=xy— fz (7)
B (1) = Ax (1) ®)

where 7 =20 and the amplitudes for the CS
model Type-I and Type-II models were 1.8 and 0.5
respectively.

All  simulations were performed using
scipy.integrate.odeint with a time window
h=0.02 ms. Five seconds of simulated data were
used as training data for each of the DDF mod-
els. Because MPC is computationally expensive, we
would not expect to be able to run the optimization
process (figure 5, blue loop) at the sampling rate of
the recording, and so we down-sampled the mem-
brane voltage and injected currents to 10 kHz, which
corresponds to a sampling period of Ar=0.1 ms.
This is a relatively low sampling rate for voltage-
clamp experiments and demonstrates we are still
able to control these systems with less data than typ-
ically used to build biophysical conductance-based
models.
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2.2.2. RBEN hyperparameters
A Gaussian was used as the radial basis function in the
RBFNs, which is of the form

ve(S) =exp (RIS, — |}, ()

The dimension of the time-embedding was chosen
using the Simplex method as described in [52] with
the pyEDM package. Using a time delay 7* of 1,
the optimal predictive embedding dimension D, was
found to be 2 for both DDF models (i.e. S, =
[V, Vue1]). The center vectors u. (N = 50) were
obtained by performing k-means clustering in the
time-embedded space of the training data. For all
RBFs, a length scaling parameter of R=0.01 was
used.

2.2.3. RBFN training

The RBFNs were trained via Ridge regression (also
known as Tikhonov regularization) with the solution
given by

W= (X"X+ A1) X"y, (10)
where
Vi—Vy
Vo=V
Y: . b
Vr—Vr_
1 (So) 2 (So) N (So) L +1p
1 (S1) P2 (S1) N (S1) L+1L
X=

. . . . . )

Y1 (St—1) Y2 (S1—1) YN (Sr—1) I+ Ir—

w1

w2

w=1|.]|. (11)

Model training was performed using the sklearn
python package [53] with 10-fold cross-validation to
obtain an optimal \ regularization parameter.

2.2.4. DDF model evaluation

Although previous work has shown that the DDF
model has high accuracy for in silico and in vitro
neurons [45], the sampling rate was much higher
than our data (= 50 kHz). To assess whether DDF
would work on the CS model using data with a lower
sampling rate more in line with the control loop
speed we might expect to achieve in a live, biological
preparation, we performed open-loop forecasting on
novel injected currents. Because the DDF models had
a time-embedding parameters D, =2 and 7* =1,
the first two At time samples were used to seed the
model. As seen in figure 4, the DDF model was able
to accurately predict the response of the CS neuron to
a novel current injection. Although the DDF model
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did not accurately forecast every spike, it is important
to note that it was only able to use the injected current
to make predictions of the time-evolution of the sys-
tem. We believed this was largely due to the unknown
synaptic noise current rather than significant errors
in the model. To test this, we compared the DDF pre-
dictions to the responses of the original CS neuron
to noisy currents (figure 4, right). By running the CS
model with different instantiations of the noise cur-
rent, we can see that the prediction error of the DDF
model is comparable to the variability due to the noise
current.

2.3. Model predictive control using a DDF model
Controlling the membrane voltage of a CS neuron
via MPC was performed by finding an optimal set
of injected current inputs that minimized the cost
function

T—1
argmin se% -+ quﬁﬂ +r1AL,,, (12)
Li,L,... It n=0

subject to the constraints

Vn+1 - Vn +FRBF (Sn) +a (InJrl +In)

II,| < 100 pA, (13)

where V) is the membrane voltage at the current time
step, e, is the error between the membrane voltage V,
and the reference trajectory V'*f at the nth time step
relative to Vo, and Al = I,y — I, (also relative to
V). Note that the arg min corresponds to controlling
the I,41 term in the DDF model. For the very first
optimization loop, we set Iy to 0 uA. The controller
hyperparameters s, q and r allow one to differentially
weight errors in control and errors in input fluctu-
ations. Setting r = 0 can result in rapid input fluctu-
ations which may make the controller perform poorly
[54]. One could additionally add another term to the
cost function that penalizes the squared magnitude of
the input current.

At the beginning of the control loop, the control-
ler uses a model of the system to simulate T time
steps into the future in order to find the optimal set of
inputs to minimize the cost function. Recall that the
DDF model is working in 0.1 ms time steps result-
ing in the control input I;,; applied to the CS neurons
being kept constant for that time window. Reducing
the width of this window would enable one to control
systems at faster time scales but at the cost of increased
computational load.

While in principle, one could measure the con-
trolled system once to get the initial values and use
the data-driven model forecasts as an estimate of the
actual state for the entirety of the control loop, we
update the DDF model at every sampling period with
the corresponding membrane voltage values of the CS
neuron. This was done due to the high amount of
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Figure 4. DDF Model Forecasts. Each CS model was stimulated with 5 seconds of a known Iiyj(f) and unknown Ingse (¢). Each of
the DDF models were fit using only the observations of the CS model voltages and the Iinj(¢). To evaluate the fit of the DDF
models, their forecasted membrane voltages and spike trains were compared to CS models stimulated by a validation set of
injected and noise currents. The forecasts were completely open-loop, where the DDF model was not corrected based on errors in
predictions. (Left) CS model state trajectories (colored) and DDF model forecasts (black) on 2000 ms of validation data. (Middle)
The Iiyj (t) (black) and Iois (£) (orange) currents for the section of validation data. The injected currents used to train and validate
the model were obtained using the chaotic Lorenz 63 system. Poisson neurons were used to produce the noise current and had

balanced excitation and inhibition. The amplitudes of the noise currents were chosen to result in an SNR of 5 compared to the
injected current. This can be seen in the differing scales of the injected and noise currents between the two models. (Right) In
black are the DDF forecasted rasters and directly below are the CS model spikes when only stimulated by Ii; (¢). We see a strong
similarity between the two spike trains indicating that the DDF model learned much of the CS model dynamics. Although the
DDF model did not accurately forecast every spike in the validation data (a), this was largely due to the unknown sources of noise.
Repeated simulations of the CS model with the same injected current but different noise currents (yellow) show that the CS
model without Ioise () is deficient in predicting the noisy spike trains.

noise present in the system. In systems were there is a
low amount of noise, data-driven models that accur-
ately forecast the dynamics could be used without the
need of the constant monitoring of the system states.

All MPC optimizations and implementations
were performed using the do-mpc python package
[55]. This package utilizes CasADi [56] and IPOPT
[57] for optimization and automatic differentiation
methods. See table 1 in appendix for controller
hyperpameters.

Note that the range in which the control input
operates is higher than is typical of patch-clamp
experiments [40]. The CS model has parameters that
are normalized by soma surface area which result in
different conductance and capacitance values when
modeling cells of different sizes. For simplicity all CS
models corresponded to a neuron with a soma sur-
face area of 1 cm?. In practice, the size of the neuron
would have a significant impact on the magnitudes
of the input currents used. Larger cells will require
larger values of input current to produce meaning-
ful changes in the membrane voltage compared to
smaller cells [41] and smaller cells would not sur-
vive larger injected currents. However, in a real patch
clamp scenario the researcher would know a reason-
able range of voltages that would produce neural fir-
ing. Given enough data, the DDF model would be able

to learn the relationship between the magnitude of
input needed to drive the neuron without needing an
estimate of the soma size.

3. Results

3.1. Homogeneous system control

Our first test of MPC for neural control was to force a
CS neuron to reproduce a previously recorded voltage
trajectory (the reference trajectory V'f). We refer to
this as homogeneous system control because each CS
model was forced to track a reference trajectory it pre-
viously produced. For each CS model, we simulated
50 trials of 1-second responses to a chaotic current
similar to the one used in the training data. We then
used MPC with the corresponding DDF model to find
Iiyj such that the errors in state tracking were minim-
ized, thereby forcing the CS model to reproduce each
of these 50 trials.

We repeated each trial in an open-loop condi-
tion; that is, by injecting the same input current that
produced the reference trajectory. If the neuron were
deterministic, then the voltage trace would perfectly
match the reference. However, because I,,.;s varies in
each trial, the same injected current will not produce
the same voltage trace or pattern of spiking. Thus,
the open-loop condition gives us a reference for the
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Figure 5. MPC via DDF Diagram. (Red) The CS neuron receives an input iy () from the controller at time step # which is held
constant across a time interval of At seconds. (Blue) The DDF model gets an update of the CS model membrane voltage every At
seconds. Given the membrane voltage V,,, time-embedded state history S,;, and discrete-time input I, the controller finds an
optimal input for the next time step I, 4. Given this optimized input, the DDF model makes a prediction of the CS model
membrane voltage at the next At time step, V,,41. The controller uses the DDF model to simulate 5 At time steps into the future
(the time horizon) to find a sequence of optimized inputs by minimizing the loss function. (Purple) The first of these optimized
inputs I, 4 is used as the next injected current into the CS neuron.

amount of variability we would expect to see without
feedback control.

In order to quantify how well the MPC and open-
loop control performed, we used three measures of
fit: MSE, ISI-distance, and spike-distance. The MSE
was calculated by comparing the reference traject-
ory V™ with the voltage trajectory V the controlled
CS model produced. The ISI- and spike-distances are
measures of spike train similarity [58]. Rather than
directly comparing the trajectories, these measures
use the times that the CS model spiked and compare
them to corresponding spikes in V™, Spike times were
obtained by recording when the voltage exceeded a
threshold (30 mV). The ISI-distance measures the
similarity between the inter-spike intervals (ISI) of
two spike trains, and the spike-distance measures the
similarity of the spike timing between the two spike
trains.

As seen in figure 6, MPC performed much bet-
ter than open-loop control for both CS model types.
This is clear from visual inspection of the mem-
brane voltages and from the quantitative measures of
performance. This result is remarkable because the
underlying DDF model in the controller does not
have any knowledge of the biophysical details of the
system it is controlling.

3.2. Heterogeneous system control

As a more difficult test of the MPC controller, we
investigated whether it could force a CS neuron of one
type to follow a reference trajectory generated by the
other type. In other words, could a Type-I neuron be
made to spike like a Type-II neuron? We refer to this as

heterogeneous system control because one dynamical
system is being forced to behave as a different dynam-
ical system. We used the same MSE and spike train
similarity metrics to compare MPC performance with
open-loop control. In this case, open-loop control
was performed by taking the Ii; that produced the
vl in a particular CS model type and using that as
the command signal into the other CS model.

Unsurprisingly, open-loop control performed
poorly for this task, because each CS model was a
distinct dynamical system and thus responded dif-
ferently to the same command signal. Type-I neur-
ons often failed to fire at all when driven by injec-
ted currents used to stimulate Type-II neurons, pre-
sumably because the A-type current in the Type-I
model counteracted the depolarizing injected cur-
rent. Conversely, the Type-II neurons had a tendency
to produce too many spikes when injected with cur-
rents used to stimulate Type-I neurons. Despite the
dissimilar intrinsic currents and dynamical topolo-
gies of the two CS models, MPC was able to force
each CS model to follow the trajectory of the other
model as seen in figure 7.

3.3. Spike train control and comparison to other
control methods

In many neuroscience studies, the experimenter
wants to make a neuron spike at specific times
without caring too much about the subthreshold
activity. Spike trains are a point process, whereas the
DDF models forecast a continuous variable. To over-
come this mismatch in data structure, we extracted
the mean spike waveform from the training data of
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times. The same Iiy; (f) used to generate the reference trajectory was used as the input for the open-loop control. However, the
unknown noise current Iyise () into the CS model resulted in the controlled membrane voltage deviating from the reference
trajectory. (Middle) Example of a membrane voltage trajectory for a Type-I CS model controlled via MPC. The controlled
membrane voltage tracks the reference trajectory extremely well compared to the open-loop controller. (Bottom) The unknown
noise current (orange) into the CS model, the Iiyj(¢) used to generate the reference trajectory and as the open-loop input (black),
and MPC optimized input used to control the CS model (blue). (Right) The same diagrams as on the left, but for a Type-II CS
model. (b) Performance metrics comparing the open-loop and MPC methods of control. The MSE was calculated for each
reference/control trajectory pair. ISI-distance and spike-distance are both on the interval [0,1] where 0 indicates identical spike
trains. Although the MSE for the Type-II CS model is slightly lower compared to the open-loop method, the spike train similarity
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each CS model and embedded it into a time series
of constant value chosen to be below the threshold.
The peaks of these embedded waveforms matched the
spike times of the reference spike train. By doing so,
we were able to convert any spike train into a reference
trajectory with units of mV.

As shown in figure 8(a), MPC achieved good con-
trol of spike timing for both CS models. However,
as previously stated, there are decades of work show-
ing that controlling the firing of individual neurons
is readily achievable with simple methods. With the
increased use of data-driven methods for complex
control schemes, it is important to consider when
methods like MPC are more beneficial compared to

traditional methods of control. To illustrate this, we
also controlled the CS models with a proportional
controller and open-loop pulse control. The propor-
tional controller scaled the state error by a gain para-
meter of K, = —2 for both CS models. While this con-
troller does not explicitly use constraints to find the
control signal, the maximum and minimum values
were clamped to the same values as the MPC con-
straints. This simple closed-loop controller demon-
strated exceptional performance (figure 8(b)) which
is unsurprising given that this is essentially the meth-
odology used in voltage-clamp [40]. Similarly, an
entirely open-loop 2 ms pulse is able to produce con-
sistent firing to the desired spike train of both CS
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Figure 7. Results of Heterogeneous System Control. (a) (Left) Example of a membrane voltage trajectory for a Type-I CS model
with open-loop control. The reference trajectory (black) was obtained from a Type-II CS model. In this example, the controlled
trajectory (red) exhibited very little spiking and did not closely follow the reference trajectory. This was expected since the control
input for the open-loop controller was the Iinj(t) used to generate the reference trajectory. The Type-II model fires at a lower
amplitude input than the Type-I model, and therefore the open-loop input would be weakly stimulating to the Type-I model.
(Middle) Example of a membrane voltage trajectory for a Type-I CS model controlled via MPC. Notice that MPC is able to force
the Type-I model to follow a Type-II model reference trajectory. (Bottom) The unknown noise current (orange) into the CS
model, the Iinj(#) used to generate the reference trajectory and as the open-loop input (black), and MPC optimized input used to
control the CS model (blue). The MPC input drastically deviates from the open-loop control input in order to make the Type-I
model follow the Type-II reference trajectory. (Right) The same diagrams as on the left, but now a Type-II CS model is controlled
to follow a reference trajectory taken from a Type-I model. In open-loop control (Top), the Type-II model fires noticeably more
than the reference trajectory since the control input is the Iinj(£) used to generate the Type-I reference trajectory (which fires at
higher input amplitudes compared to the Type-II model). However, MPC is able to more accurately control the Type-II neuron
into following the Type-I reference trajectory. (b) Performance metrics comparing the open-loop and MPC methods of control.

In all cases, MPC achieved much better control than the open-loop controller.

models (figure 8(c)). While this would not prevent
spikes produced by the unknown noise current, it is
completely adequate for low noise systems.

Although models of individual neurons are a
good test bed for building data-driven models for
use in MPC, we again stress that this methodo-
logy is not universally superior to simpler altern-
ative methods. In practice, MPC is most useful in
high dimensional systems and when there are many
constraints [24]. Given the ever increasing amount
of data that can be recorded from neural activ-
ity (e.g. [59]), we have no doubt that data-driven
MPC will become an important experimental tool in
neuroscience.

4, Discussion

Neural systems can be difficult to control because
of their nonlinear dynamics and many hidden states
[27]. Here we demonstrated that nonlinear MPC
can control the well-characterized Connor-Stevens
neuron model via an injected current using only
measurements of the membrane voltage. The control-
ler was able to force the model to reproduce a previ-
ously observed voltage trajectory in the presence of
unknown intrinsic noise, follow a reference traject-
ory produced by a model with a different dynam-
ical topology, and produce an arbitrary spike train
with high temporal precision. Importantly, we are
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Figure 8. Results of Spike Train Control. (a) Membrane voltage trajectory controlled via MPC for a Type-I (top) and Type-II
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waveform for the corresponding CS model type and embedding it into a constant valued time series (—65 mV) at time points
where a spike is desired. MPC was able to control CS models with their resulting membrane voltages (red) following the reference
trajectories. (b) A proportional feedback controller is able to achieve much better performance compared to MPC in this
example. The values of the control signal were clamped between —100 and 100 pA in accordance with the constraints but on the
MPC controller. For both the Type-I and Type-II CS models, the proportional controller produces a sharp excitatory input at the
desired spike time follwed by an strong inhibitory input. This inhibitory input is largely unneeed, but since the controller has no
knowledge of the system dynamics (unlike MPC) it attempts to minimize the state error when the controlled spikes occur at a
slightly delayed time compared to the reference spikes. (b) Open-loop control with 2 ms wide pulses of current also produce spike
trains exteremly similar to the desired set. The amplitudes of the two pulses required empirical scaling to ensure that the neurons
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able to do this without any knowledge of the biophys-
ical details of the Connor-Stevens model by using a
data-driven forecasting model fit to a few seconds of
noisy current-clamp data.

This study represents one step toward the ulti-
mate goal of controlling biological networks of neur-
ons in vivo to experimentally probe the mechan-
isms of neural computations and ameliorate patho-
logical circuit states. The system tested here involves
only a single neuron in the equivalent of a whole-
cell patch recording, which enables an experimenter
to make low-noise, high-bandwidth measurements of
membrane potential while injecting current through
an access resistance much smaller than the resting
(input) resistance of the cell membrane. This prepar-
ation is easily controllable in practice however, and
modern intracellular amplifiers are able to clamp cell
voltage using relatively simple proportional feedback
controllers implemented in analog circuitry [40]. The
purpose of this study was not to improve on amp-
lifier design but rather as a proof of principle for
how data-driven nonlinear MPC can achieve control
of a neuron’s membrane voltage without any prior
knowledge of the intrinsic ionic currents expressed
by a specific neuron. To our knowledge, all of the
prior studies applying MPC to conductance-based
neuron models have assumed knowledge about the

neuron such as the states of current gating variables or
the parameters and functional forms of their kinetics
[29-31, 33], which would not be known in a real
experiment. The results in this study show that this
information is not necessary, bolstering confidence
that data-driven MPC can be extended to neural
networks in which there is likely to be even less
knowledge about the full state and parameters of the
system.

To illustrate some of the ways in which the prin-
ciples in this study could be extended to networks,
consider as an example the zebra finch’s HVC, a bilat-
eral premotor nucleus which contains around 36 000
highly interconnected neurons in each hemisphere
[60]. Precise patterns of neural activity in HVC col-
lectively result in the bird singing, and the ability
to experimentally control HVC to produce arbitrary
trajectories in its state space would produce major
insights into how this system orchestrates vocal com-
munication. Present technology allows simultaneous
measurement of activity in a few hundred of these
cells using calcium imaging or high-density extracel-
lular electrophysiology, and activity could be manip-
ulated in a (potentially different) subset of neurons
using optogenetic stimulation. The state of the sys-
tem would now be a vector, naively with one com-
ponent for each of the neurons the experimenter was
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monitoring. The input would also be a vector corres-
ponding to the neurons the experimenter was manip-
ulating, and the loss function would generalize to a
form along the lines of

T—1

J(x0) = el.Ser + Z ey 1Qe,p + Al RAL L,
n=0

(14)

where ¢; and AI; have the same meaning as in
equation (12) but are now vector-valued with each
element corresponding to an individual state and
external input source respectively. The matrices S, Q,
and R function largely the same as the scaling factors
s, q, and r in equation (12), but now allow one to dif-
ferentially weight the cost of each of the elements of
vectors e and I. For example, there may be a subset
of neurons in a network that have an outsized impact
on the population activity as a whole. By using lar-
ger values in the Q and S matrices that correspond to
this subset of neurons in error vector e, the controller
will view state errors in these neurons as more costly
than the other units in the network. It should be noted
that this kind of loss function could be applied across
many different modalities of neural activity. Similar
loss functions for linear MPC have been applied to
optogenetics both in vivo [18] and simulation models
[61, 62]. It would be straightforward (at least math-
ematically) to use behaviorally derived states in vector
e while maintaining cellular inputs in vector I. This
would allow researchers to explore how specific pat-
terns of neural activity control organism behavior.
Extending control to neural circuits may necessit-
ate the use of more complicated function approxim-
ators to obtain a good forecasting model. However,
there are several advantages of simpler models like the
RBEN compared to more complex models. Time is
often a constraint in neuroscience experiments and
the ability to estimate and use a model in a short
time frame is a necessity. When controlling a neuron
(or neural circuit) with MPC, the forecasting model
would need to be estimated quickly and in a data-
efficient manner. Because neurons exhibit a large
diversity of dynamics, a forecasting model trained
on one neuron is unlikely to generalize to a differ-
ent neuron. The more complex and time-consuming
the forecasting model is to train, the less time there
would be to control the neuron. We were able to
construct DDF models using only 5 seconds of data
and the training time was negligible compared to
the amount of time for a typical patch-clamp exper-
iment. Modern data-driven models often have many
more parameters and more computationally expens-
ive training algorithms which limit their ability to
be practical in an experimental setting. Additionally,
RBENs can be estimated in an online setting (e.g.
recursive least squares) which allow the DDF models
to adapt to changes in the neural dynamics which can
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come from many sources such as electrode drift, tis-
sue damage, and intrinsic plasticity. However, archi-
tectures such as RNNs and Transformers routinely
achieve state of the art performance on time-series
forecasting benchmarks and may be necessary when
using MPC on large coupled networks.

Controlling networks may also require the inclu-
sion of a state estimator in the control loop. In a
whole-cell preparation, measurement noise is very
low [40] and one can assume that the measured val-
ues of the membrane voltage and injected current are
the true values. In a neural circuit, it is not possible
to achieve whole-cell access to more than a couple
neurons at best, so it is necessary to use extracellu-
lar electrophysiology, which only reveals the timing
of action potentials, or optical signals of calcium con-
centration, which tend to be slow and much nois-
ier. Similarly, optogenetic stimulation of neural activ-
ity is much less precise than direct current injection.
These sources of variability can corrupt the measure-
ments of the system’s state, leading to incorrect cal-
culations of the optimal control inputs. If the struc-
ture of the noise can be assumed, techniques from
robust MPC may lead to improved performance [63].
Robust MPC can provide a safer control scheme since
the effect of disturbances is explicitly modeled and the
controller tries to ensure the system does not enter a
region of state space that is infeasible or potentially
dangerous [21]. State estimators can also transform
the spike times arising from extracellular recording
into estimates of a continuous latent state [64]. Latent
factor models could also be used as a latent state
estimator which would reduce the dimensionality of
the cost function thereby reducing the computational
complexity of the optimization. Instead of using MPC
to control the activity of every unit in the network,
the factor model could express the coordinates of the
network state and reference trajectory in the lower
dimensional space [65] (often referred to as the neural
manifold [66]).

As our ability to collect vast quantities of neural
data has surpassed our theoretical knowledge of the
system dynamics, data-driven methods will be essen-
tial in increasing our ability to control the activity of
the nervous system. By using nonlinear DDF models
to approximate system dynamics, MPC has the poten-
tial to advance the field of neural control without
needing a deep a priori knowledge of the biophysics.
This would allow for new experimental designs and
reduce the need to have hand-engineered patterns
of neural stimulation. Instead of the usual methods
where an input is given to the system and the result-
ing behavior recorded, a complex and precise beha-
vior could be defined in advance with the necessary
stimulation found via MPC. There would be numer-
ous therapeutic uses as well, with applications of
MPC in neuroprosthetics being an especially prom-
ising area of research [67-70]. Other therapeutic
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applications that would require network-level con-
trol include driving neural activity away from poten-
tially pathological areas in state space (e.g. epilepsy
[71, 72]). Because MPC is an anticipatory controller,
the dynamics model could forecast this activity before
it happens and preemptively send a control signal to
prevent the pathological state from occurring. The
ability to have this level of control over therapeutic
and experimental interventions will allow researchers
to explore and validate new theories of neural dynam-
ics as well as the relationship between extrinsic and
intrinsic modulation of network activity.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOL https://
github.com/melizalab/mpc-hh.

Appendix

A.1. DDF model derivation
We assume that the continuous time dynamics of the
membrane voltage are given by
dv

CE ZF(V7X,@7t)+IinJ’. (15)
Let ¢, denote the nth time sample of measurement.
Following [45], we can construct a DDF model by
integrating over some time interval At =t — t,,,

1 tug1
Vip1 =V, = —/ F(V,X,0,t")dt
C tn
1 tug1
+ */ Iinj (t/) dt’ (16)
CJi

n

where we denote V(#,) as V, for notational
convenience.

Since the injected current I, is set by the
researcher, it can be approximated by the trapezoidal
rule,

1 tht1
Vi1 — V, = E/ F(V,X,0,t")dt
1,

+O{(In+1 +In) (17)

where o = 4!

S¢- We can now approximate the
unknown integral with radial basis function network

(RBFN) denoted by Fggp,
Vn+1 = Vn +FRBF (Sn)+a(1n+l +In) (18)

where S, is a time-delay embedding of the mem-
brane voltage. The time delay of each embedding 7
and the number of delays D, are hyperparameters that
must be tuned. For all simulations, we set 7* = 1 and
D, =2,i.e.S, = (V,,V,_1). The weights of the RBFN
can be obtained by minimizing the cost function

N

> [Vigr = Vi = Free (Si) — alipy — o] (19)
i=0

C Fehrman and C D Meliza

which can be obtained using standard least squares
methods.

A.2. Connor-stevens neuron

CS model equations

dv
Ca = INa + IK + IA + Il + Inoise + Iinj
INa = gNam3h (ENa - V)
Ix = gxn' (Ex — V)
I, = gAa3b(EA - V)

L=g(E~-V)

CS model parameters

Parameter Type-I (Type-II)
C 1 pFem 2

Ena 50 mV

Ex —77 mV

Ea 80 mV

E —22(—72.8) mV
Na 120 mSem ™2

gK 20 mScm ™2

gA 47.7 (0) mSem 2
g 0.3 mScm 2

The full list of parameter values and first-order
kinetic equations can be found in [41].

A.3. MPC Hyperparameters

Table 1. MPC controller hyperparameters used for each
experiment.

q s r T
Experiment I
Type-1 5 1 7 5
Type-II 1 0 100 5
Experiment II
Type-1 5 1 7 5
Type-II 1 0 100 5
Experiment I1I
Type-1 5 1 7 5
Type-II 5 1 50 5
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