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BACKPROPAGATION THROUGH BACK SUBSTITUTION
WITH A BACKSLASH*

ALAN EDELMAN', EKIN AKYUREK}, AND YUYANG WANG?

Abstract. We present a linear algebra formulation of backpropagation which allows the calcu-
lation of gradients by using a generically written “backslash” or Gaussian elimination on triangular
systems of equations. Generally, the matrix elements are operators. This paper has three contri-
butions: (i) it is of intellectual value to replace traditional treatments of automatic differentiation
with a (left acting) operator theoretic, graph-based approach; (ii) operators can be readily placed in
matrices in software in programming languages such as Julia as an implementation option; (iii) we
introduce a novel notation, “transpose dot” operator “{}7*” that allows for the reversal of operators.
We further demonstrate the elegance of the operators approach in a suitable programming language
consisting of generic linear algebra operators such as Julia [Bezanson et al., STAM Rev., 59 (2017),
pp. 65-98], and that it is possible to realize this abstraction in code. Our implementation shows how
generic linear algebra can allow operators as elements of matrices. In contrast to “operator over-
loading,” where backslash would normally have to be rewritten to take advantage of operators, with
“generic programming” there is no such need.
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1. Preface: Summary and the challenge. This paper provides the mathe-
matics to show how an operator theoretic, graph-based approach can realize back-
propagation by applying back substitution to a matrix whose elements are operators.

As a showcase result, one can back-propagate to compute the gradient on feed-
forward neural networks (or multilayer perceptron (MLP)) [5] with

(L1) vJ=MT((I-L)"\g),
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where M (source to nonsource nodes) and L (within nonsource nodes) are blocks
of the adjacency matrix of the computational graph (see section 3.2.2 for precise
definitions), ¢ is the vector of gradients of the loss function, and I is the identity
matrix. For readers unfamiliar with the backslash notation, an equivalent expression
of (1.1) is VJ=MT(I — L) Tg.

We then set up a challenge to ourselves. Could we correctly implement (1.1)
by simply typing the command (after basic setup but without overloading of
backslash)

V]l =M x (ImL' \ g) |

We demonstrate that indeed the backpropagation can be achieved, almost by
magic, in a programming language armed with generic programming allowing for
operators as elements of matrices. The software in section 6.1 is by itself interesting
not for the usual reasons of what it does, but in this case how it does it: how a
powerful language with generic programming and multiple dispatch can allow this
abstract mathematical formulation to be realized.

2. Introduction: Linear algebra, graphs, automatic differentiation,
operators, and Julia. Automatic differentiation (AD) is fundamental to gradient-
based optimization of neural networks and is used throughout scientific computing.
There are two popular approaches to AD:, namely, forward and backward (reverse)
modes [6, 7, 2, 13|, the latter of which is also known as backpropagation in the ma-
chine learning literature.! A common high-level description of AD is that it is really
“only” the chain rule. The centuries old technology of taking derivatives is taking
on a modern twist in the form of differentiable programming [8, 11]. Who would
have thought that one of the most routine college course subjects would now be
the subject of much renewed interest both in applied mathematics and computer
science?

This paper introduces the notion that AD is best understood with a matrix-based
approach. The chain-rule explanation, in retrospect, feels to us as a distraction or
at least extra baggage. We suspect that while the chain rule is well known, it is
understood mechanically rather than deeply by most of us. We argue that a linear al-
gebra based framework for AD, while mathematically equivalent to other approaches,
provides a simplicity of understanding, and equally importantly a viable approach
worthy of further study.

Regarding software, while most high-level languages allow for matrices whose
elements are scalars, the ability to work with matrices whose elements might be oper-
ators without major changes to the elementwise software is an intriguing abstraction.
We discuss a Julia implementation that makes this step particularly mathematically
natural.

It is our view that a linear algebraic approach sheds light on how backpropa-
gation works in its essence. We theoretically connect backpropagation to the back

I Despite similar terminology, the term forward propagation (or forward pass) in machine learning
has no connection to forward mode AD. Instead, it refers to the process where a neural network
calculates its output by sequentially passing input data through each layer, applying weighted sums
and activation functions, until it reaches the output layer. In later sections, Algorithm 5.1 and 5.2
illustrate such a procedure. Whereas “backpropagation” (backward pass or reverse mode AD) is so
named because information flows backwards through the network during this process.
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substitution method for triangular systems of equations. Similarly, forward substitu-
tion corresponds to the forward mode calculation of AD. As is well documented in
the preface to the book Graph Algorithms in the Language of Linear Algebra [10],
there have been many known benefits to formulate mathematically a graph algorithm
in linear algebraic terms.

The ability to implement these abstractions while retaining performance is demon-
strated using Julia, a language that facilitates abstractions, multiple dispatch, the type
system, and which offers generic operators.

3. A matrix method for weighted paths.

3.1. “Forward and back” through graphs and linear algebra. In the
spirit of reaching the mathematical core, let us strip away the derivatives, gradients,
Jacobians, the computational graphs, and the “chain rule” that clutter the story of
how is it possible to compute the same thing forwards and backwards. We set ourselves
the goal of explaining the essence of forward mode versus backward mode in AD with
a single figure. Figure 3.1 is the result. Note that “forward mode” differentiation is
not to be confused with the forward computation of the desired quantity.

3.1.1. Path weights on directed graphs. Consider a directed acyclic graph
(DAG) with edge weights as in Figure 3.1 where nodes 1 and 2 are sources

acd
(L]
Y bcd
a Forward Path Weights
c d
9
b
GCO,
Directed Acyclic Graph (DAG) o
=
Backward Path Weights
060109
a . . 1 . acd
.o | bed
I=9o. . . ¢ . I—-rH'=1. . 1 ¢
d 1
o\ . . . |
Edge Weights Matrix Path Weights Matrix

Fic. 3.1. Legend: Purple: target weights; blue: forward computation; orange: backward com-
putation. The dots in matrices denote zeros. (Upper left) Multiply the weights along the paths
from source node 1 to sink node 5 and also source node 2 to sink node 5 to obtain acd and bcd.
(Right blue) The obvious forward method. (Right orange) A backward method that requires one
fewer multiplication. (Below) A matriz method: if LiTj = the weight on edge ij, then (I — LT)~!
stmultaneously exhibits the forward (i.e., a — ac — acd and b — bc — bed) and backward methods
(i.e., d— cd — bed — acd/bed). (Note: color appears only in the online article.)
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Two Equivalent Ways to Compute the Path Weights in Figure 3.1:

o\ [ 10

0 0 1

Forward Substitution: of (1—=L)"*]0 0
0 0 0

1) | 0 0

1 oY 0

0 1 0

Back Substitution: 0 0ol|I-LT)t]o
0 0 0

0 0 1

Fic. 3.2. The forward and backward methods compared: Both are seen equivalently as a choice
of parenthesizing (3.1) or as forward substitution versus back substitution. Generally speaking, when
the number of sources is larger than the number of sinks, one might expect the backward method to
have less complexity.

(starting nodes), and node 5 is a sink (end node). The problem is to compute the
path weights, which we define as the products of the weights from every start node to
every sink node.

Evidently, the path weights that we seek in Figure 3.1 may be obtained by
calculating

1 0 0
0 1 0
(3.1) path weights= |0 0| (I—-L")"' |0/,
0 0 0
0 0 1
——— ——
sources sink

where LT, the adjacency matrix (edge weight matrix), is displayed in the lower left
of Figure 3.1. One explanation of why (3.1) works for calculating the path weights is
that (LT)fj sums the path weights of length k from node i to node j and (I — L)~ =
I+ LT+ 4+ (LT)"~! then counts path weights of all lengths from i to j.

If one follows step by step the linear algebra methods of forward substitution
for lower triangular matrices or back substitution for upper triangular matrices, one
obtains path weights algorithms as summarized in Figure 3.2. We remind the reader
that forward and back substitutions are the standard methods to solve lower and
upper triangular systems, respectively.

3.1.2. Generalizing forward and back to a Catalan number of pos-
sibilities. Continuing with the same L matrix from section 3.1, we can begin to
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understand all of the possibilities including the forward method, the backward method,
the mixed-modes methods, and even more possibilities:

1 o0\" 0

0 1 0

0 ol -2 |0

0 0 0

0 0 1
N 2 TP Vs S Y/ B V| .

1 1 b 1. 1
0 1 0
1 1 1 ¢ 1
—lo o 0l
1 1. 1 1 d

00 1 1 1 )
0 0 1

It is well known [14] that there are a Catalan number, C5 = 42, ways to paren-
thesize the above expression. One of the 42 choices evaluates left to right; this is
forward substitution which computes the graph weights forward. Another evaluating
from right to left is backward substitution. There are three other “mixed-modes”
[12] which combine forward and backward methods. The remaining 37 methods re-
quire matrix-matrix multiplication as a first step. We encourage the reader to work
out some of these on the graph. Partial products correspond to working through
subgraphs. Perhaps readers might find cases where working from the middle out-
ward can be useful. For example it would be possible to go from the middle out-
ward using the Example of Figure 3.1: we would go from ¢ to cd then compute acd
and bcd.

3.1.3. Edge elimination. It is possible to eliminate an edge (and preserve the
path weights) by moving the weight of the edge to the weights of the incoming edges.
We illustrate this in Figure 3.3 by eliminating the edge from node 3 to node 4, moving
the weight ¢ to the incoming edges by multiplication. The corresponding linear algebra
operation on L7 is the deletion of column 3 and row 3 and the rank 1 update based on
this column and row with the (3,3) element deleted. The corresponding linear algebra
operation on (I — LT)~1 is merely the deletion of column 3 and row 3. This example
is representative of the general case.

3.1.4. Edge addition at the sink node. We will be interested in the case
where the edge weight graph is modified by adding one edge to the sink node. Con-
tinuing our example from Figure 3.3, we will add an edge “e” by starting with

S

1 0 0
0 1 0
(3.2) path weights= [ 0 0 (I—-1")™! 0
0 0 path weights matrix 0
0 1
—_——— ——
sources sink
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eliminate edge 3-4

Directed Acyclic Graph
a c d ac d
b bc
Forward Path Weights
acd
° ° acd
bcd bed
(2} (2}
Backward Path Weights
GCO' ‘900'
5] (>}
\0(;6 v(lb
Edge Weights Matrix
T
a ac
b bc .
LT = e— | + c = d
d
Path Weights Matrix
1 . acd
1 . acd
.1 bed
( I— LT) -1 _ . _ 1 bed
— < 1
1 1
1

Fic. 3.3. Elimination of the edge from node 3 to node 4 on the graphs and with matrices. The
matrix versions involve a rank one update to a row and column deleted matriz in the case of the edge
weights matriz and only a deletion of a row and column in the path weights matriz. (Note: color
appears only in the online article.)

and then updating by augmenting the graph with one end node to become

(3.3)

1 0\ 1. 0
0 1 1 0
. 10 0 (I- LT)_1 1 0
updated path weights = 00 < 1 1 0
0 0 1 e 0
0 0 1 1
————
sources updated path weights matrix sink
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The update from the path weights matrix in (3.2) to the updated path weights
matrix in (3.3) can be verified in many ways. One simple way is to look at the explicit
elements of the path weights matrix before and after and then notice that the new
matrix has a column with one more element e augmented with a 1.

It is an easy exercise in linear algebra to show that (3.3) is the same as (3.4)
which folds the added edge e multiplicatively into the sink vector:

1o\’
01
(3.4) updated path weights = [0 0| (I —L")7!
0 0
0 0 e
m sink

3.2. Examples of DAGs and weighted paths.

3.2.1. The “complete DAG” and weighted paths. Consider as an example
in Figure 3.4, the complete DAG on four nodes with graph weights evaluated through
a forward and backward method. There is one source and one sink. We find that this
complete DAG example reveals most clearly the equivalence between path weights
and the inverse matrix.

We see that the forward path weights folds in the edges labeled “a,” then “b,”
then “c.” This works through the matrix LT by columns. The backward mode folds
in the edges with subscript “3,” then “2,” then “1.” This works through the matrix
LT by rows from bottom to top.

asbycy +
a;cy +
bics +
Ct
(1] » > °
Forward Path Weights
a; by Cy
abycy +
by C2 a,Cp T
b,cs +
¢ ¢

L]
Backward Path Weights

Complete DAG

bocs + aqco
ay b1 C1 1 > , Ja102¢ <
b e +bics + ¢
LT = o 2 21 g-chHt=]. 1 by
. . . c3 |’ . . 1
L] 1
Edge Weights Matrix Path Weights Matrix

F1c. 3.4. The complete DAG on four nodes illustrates a symmetric situation where forward
and backward have the same complexity but arrive at the same answer through different operations.
(Note: color appears only in the online article.)
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N . . wabc
/ zhe_
// /// >~ - yc 2]
Scalar neural network with edge weights R / / ’/ " 5 ‘
Sources = 1,2,3,4 Sink=8 / 6 @/ 6/ é/ N
2 b Forward Path Weights
w T y
18]
wabc zbe yc z
Backward Path Weights
0-0-9-9-6—0-0—06 0—-060—6—06——0—06
L. w . r . .. > - » wabce
R 1 > > xbe
P A . » Yy
T e e ..z _7Ty-1 _
L= L. a .. (I=L%) . . . . 1 a ab
... .. b L. 1 b
Lo . c . 1
(8] 1
Edge Weights Matrix Path Weights Matrix

FiG. 3.5. This diagram contains most of what is needed to understand forward and backward
propagation of derivatives through an MLP. The details of what the weights look like will come later.
If we take n = 4 for the pictured network, the sources are labeled 1:n and the sink is labeled 2n.
Forward mode requires n(n—1)/2 multiplications while backward mode requires 2n—3 multiplications.
(Note: color appears only in the online article.)

3.2.2. The “MLP DAG” and weighted paths. Figure 3.5 is the DAG for
the derivatives in a MLP. It may be thought of as a spine with feeds for parameters
(nodes 1,2,3, and 4 in the figure).

If sources are labeled 1,...,s (in Figure 3.5, s = 4), then the top left s by s matrix
in LT is the zero matrix as there are no connections. We can then write

0 MT
T _ ~
where
w a .
T X . =T b
M = L' =
y ) c )
z

where the matrix M7 corresponds to connections between the sources and internal
nodes, and L7 corresponds to internal connections. In this example M7 is diagonal
corresponding to a bipartite matching between nodes 1,2,3,4 and 5,6,7,8. The LT
matrix represents internal connections; in this case it is the “spine” linearly connecting

nodes 5,6,7,8.
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Now we have

(I—L7)= (é I_METT) and (I — LT)" ! = (é M:}(f _if)T_)l_1> .

If the last node is the one unique sink, then we obtain the useful formula
0

(3.6) path weights = M7 (I — LT)™?
0
1

We can now take a close look at Figure 3.5 and fully grasp the path weight struc-
ture. The spine consisting of a,b, ¢, and 1 (understood) requires the computation of
the cumulative suffix product 1, ¢, bec,abc. What follows is an elementwise multiplica-
tion by z,y,x,w, from which we can calculate the last column of M7 (I — I~/T)’1:

0 wabc

T _FTy-1 0 . {EbC

(3.7) M*(I-L") ol = ye
1 z

3.3. Computational graphs, derivative graphs, and their superposition.
Many treatments of AD introduce computational graphs at the start of the discus-
sion. Our treatment shows that this is not necessary. However, in the end the key
application of edge weights will be as derivatives of computed quantities. To this end,
we define the following.

DEFINITION 3.1. A computational graph is a node labeled DAG, where leaf nodes
consist of variable names, and nonleaf nodes contain variable names and formulas
that depend on incoming variables.

We remark that there are variations on where the variable names and formulas
live on a computational graph, but we believe the definition here is the cleanest when
wishing to incorporate derivative information.

3.3.1. The chain rule, derivatives, and Jacobians. Here we say explicitly
how the edge weights and path weights relate to derivatives in a computation.

Consider the computation from Figure 3.6; the next three algorithms show the
computation, the derivatives of each line of code, and the overall derivatives. We see
that the one step derivatives are edge weights and the overall derivatives are path
weights.

If the final output is a scalar, we immediately have that the gradient with respect
to the source x and y (in Figure 3.6) is exactly the path weight defined in (3.6),

(3.8) gradient = the last column of M7T (I — LT)™!,
which corresponds to the output in Algorithm 3.8 with
. 2p .
MT — (y ' ) , f/ — . . _e_q
m ’ ’ . . .

Equation (3.8) fully describes backpropogation. Table 1 summarizes the transition
from the graph elements to AD. For completeness, the term “forward propagation”
(forward pass) describes the process of executing the computational graph in a forward
direction (left to right), storing the intermediate values that are subsequently utilized
in backpropagation (backward pass).
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computational graph derivative (edge weight) graph
O 6000 ®ee-e

&@/ ~ N ‘/

Superimposed: computational and derivative graph

‘O e =0

X [)7/\\ q—/r
)

r=e?

Fi1G. 3.6. An example of computational (node) graph, derivative (edge) graph,

“superposition.” (Note: color appears only in the online article.)

TABLE 1
A dictionary translating graph elements to AD (cf. Figure 3.6).

and their

Player Description

Edge weight from node 7 and 7  These are the derivatives of one step of a computation. These can
be scalars but in general these are Jacobian matrices (or

operators).

Path weight from node i to j These are the derivatives that reach back into a chain of
computations. The chain rule states that if you multiply (“chain
together”) the derivatives at each step you get the dependence of

one variable on an earlier variable.

Source The sources in the graph are typically parameters in real
computations, as many modern applications are interested in the

derivatives with respect to the input parameters.

Sink The sink is usually what is known as a loss function in modern

applications.

Algorithm 3.1. Simple algorithm example from Figure 3.6.

1: p + multiply(z,y)
2: q <+ square(p)

3: r < exp-neg(q)

4: output r

Algorithm 3.2. Edge weights (derivatives of one line of code).

1: d{multiply(x,y)}/de=y (= %)
2. a{multiply(z, )}y =2 (= 22)
3: dfsquare(p)}/dp=2p (= 22)

4: d{expneg(q)}/dr=—e"1 (= g;)

Algorithm 3.3. Path weights (chained derivatives).

1: dr/de =y x 2p x (—e~?) (chain lines 1,3, and 4 of Algorithm 3.2)
2: dr/dy=x x 2p x (—e~?) (chain lines 2,3, and 4 of Algorithm 3.2 )
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4. Linear operators as elements of matrices. We will illustrate in sec-
tion 6.1 the value of software that allows linear operators as elements of matrices.
Here we set the mathematical stage, starting with a question.

Consider a matriz transformation of X such as Ta p: X — BXAT, how should
we represent the Jacobian 0T p/0X ¢

Before we answer, we remind the reader how the Kronecker product works. One
view of the Kronecker product A® B of two matrices is that it multiplies every element
in A times every element of B placing the elements in such a way that we have the
identity

(A® B)vec(X) =vec(BX AT),

where vec denotes the flattening of a matrix X into a vector by stacking its columns.
We may abuse notation when there is no confusion and write

(A® B)(X)=BXAT

for the linear operator T4 p that sends X to BXAT. Identifying the matrix A ® B
with the operator is more than a handy convenience, it makes computations prac-
tical in a software language that allows for this. Table 2 defines some operators of
interest.

Consider the inner product (matrix dot product) (X,Y) = Tr(XTY'). The identity
(X,AY) = (ATXY) implies(Ar)T = (AT)r; in words, the operator adjoint with
respect to the operator Az (left multiplication by A) is left multiplication by AT.
The operator transposes are (Ap)T = (A1), (Br)T = (BT)g, and (My)T = My
(symmetric).

We wish to propose a carefully thought out notation for another useful operator,
GT+ (“G transpose dot”), the matrix inner (or dot) product with G.

DEFINITION 4.1. Let GT* denote the matriz inner (or dot) product with G. This

operator takes a matriz X of the same size as G and returns the scalar, GT*X :=
Tr(GT X)= vec(G )T vec(X) = > GiXij-

Many communities choose a notation where small Roman letters denote a column
vector, so that x — g7z denotes a linear function of x. Those who are used to this
notation no longer “see” the transpose so much as turning a column into a row, but
rather they see the linear function g7 as an object that acts on (“eats”) vectors and
returns scalars. In the same way we propose that one might denote a linear function
of a matrix X ~ Tr(GT X) with the operator notation X — G7* X, an operator that
eats matrices and returns scalars.

TABLE 2
Matriz operators and the size of their dense representations assuming X : m X n, A:nj X n,
B:mj Xm, M:m Xxn, and G:m xn. We overload AR B to be both the operator and the matrizx.

Symbol Definition Dense representation
Kronecker product of A, B A®B X +— BXAT A®B miny X mn
Left multiplication by B By, X+— BX I®B min X mn
Right multiplication by A AR X—XA AT @I mni X mn
Hadamard product with M Mg X—>MxX diag(vec(M)) mn X mn
Matrix inner product with G GTe X — Tr(GTX) vec(G)T 1 x mn
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LEMMA 4.1. If the superscript “()T 7 is overloaded to denote real operator adjoint
or matrix transpose as appropriate, L is a linear operator and G is a matriz, then we
have the operator identity: (LTG)Ts = G™* L. Notice that if we pretend all letters are
just matrices and you ignore the dot, the notation has the appearance of the familiar
transpose rule.

Proof. We have that for all X,
(LT x =(£"G, X)) = (G, LX) =G" LX,

showing that as operators (LT G)Te = GT+L. ad

As an example, we have
(ATA)Te =X > Tr((ATG)TX) and GT*Ap =X — Tr(GT AX),

which shows that (AZG)T* = GT* A,. We encourage the reader to follow the matri-
ces A, G, AT and the operators AL AL (ATG)T+ GT+. (See section 5.4 for why this
notation can be valuable.)

5. Operator methodology. We proceed from matrices of scalars to matrices
of vectors to matrices of operators in sections 5.1, 5.2, and 5.3. ultimately taking
advantage of Julia’s capabilities. We encourage the reader to compare the matrices
in each of these sections. Section 5.4 illustrates the power of the GT* notation, while
section 5.5 shows the relationship to the adjoint method that is well known in the
field of scientific computing.

5.1. Matrices of scalars. The simple case of scalar neural networks (shown in
Algorithm 5.1 and Figure 5.1) without bias shows the power of the graph approach.
However, the full power is revealed in the coming sections. Here we remind the
reader of the algorithm, draw the graphs, and instantly write down the linear algebra
that provides the gradients through backpropogation. (The graphs and matrices are
illustrated for N =4 for ease of presentation.)

Starting with

62101 . . 511‘0
d3w2 M= 0271

—
L"= 032

)

daws
043

it is an immediate consequence of our graph theory methodology which concluded
with (3.4) and (3.7) that the backpropagated gradient is computed by evaluating
efficiently

Algorithm 5.1. Scalar MLP without bias (forward propagation).
: Input data zq, initial weights w;, ¢=1,...,N
: Select activation functions h;(-) such as sigmoid, tanh, ReLU, etc.
: fori=1to N do
T; < hl (wixi_l)
(0; = hi(wizi—1))
end for
: Output zn
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Scalar MLP: computational graph Scalar MLP: (edge weight) derivative graph
5w, % W,
Xo /\-]\ Q /\ 2W2 ‘ W3 ‘ Wy ‘

D e
hy(wyxg) hy(wyxz)
5wy dwy 3w, O4wy

hy(wyx;) hy(wyx,)

oo o0 o0

Scalar MLP: computational graph superimposed

Fic. 5.1. Top left: computational graph of a scalar MLP. This computation, which has nothing
to do with derivatives, is often referred to as forward propagation because of its direction. Evaluation
must generally necessarily go from left to right. Top right: derivative edge weights. Since derivatives
are linear, multiple directions are possible to evaluate the products. Bottom: the superimposed graph
showing both the forward computation and the derivative edge weights. (Note: color appears only in
the online article.)

(511‘0 1 -T

Jomq —d2w1 1
53172 —5311)2 1 .
(54%3 7(54’(1)3 1 L:/(CE4)

5.2. Matrices of vectors. As a baby step towards the matrices of operators
approach, we show how one can (optionally) group weights and biases that appear
in a neuron. Algorithm 5.1 is modified so that w;z;_1 is replaced with w;x;_1 + b;.
In the interest of space, we will simply write the answer of Vi, ;£ and discuss its
format:

T -T

[51:130 (51] 1
[521’1 52] 762’101 1
[(53(E2 (53] —(53'102 1 .
[543?3 54] —64’[1}3 1 ﬁ/($4)

We see we have an ordinary matrix back substitution followed by multiplication
by a diagonal matrix of row vectors of length 2 so that the result is a vector of
column vectors of length 2 which nicely packages the gradients with respect to the
weight and bias in each neuron. We remark that the transpose applies recursively
in the diagonal matrix. The transpose is overkill in this case but is critical in the
next section.
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Algorithm 5.2. Matrix MLP (forward propagation).

1: Input data Xy (ng x k), and initial weight matrices and corresponding bias terms
Wi(ni X ni_l),Bi(ni X k‘)

: Select activation functions h;(-) such as sigmoid, tanh, ReLU, etc.

: for :=1to N do

(Az — h;(WZ * X1+ Bz))

: end for

: output Xy

ANl

5.3. Matrices of operators. Letting Z denote the identity operator and empty
space the zero operator, we have the following,

Viw,p £

[Arg o Xor Arp]
[Aog o X1k Aoyl
[Asp o Xog Aszy]
[AypoX3r Aspl
-7

v
7A2H OWQL T
_A3H o WSL A .
—AggoWy T Vx,L

X

for the matrix neural network in Algorithm 5.2. The entries of our matrix of operators
may be read immediately from the differential of line 4 of Algorithm 5.2,

dX;=d[h;(W;X;_1 + B]
=(AigoXi_15)dW; + AjgdB; + (Ajg o Wir)dX;_1,

where A; is the gradient matrix, and the definitions of the operators A; g, W;, and
X;_1p are given in Table 2.

5.4. The power of notation. We read directly off the edge weight graph in
Figure 5.2 that for a matrix neural network we have

FORWARD MODE OPERATORS (RIGHT TO LEFT)

(61) o =GB (Wa)s - (Wes2) s (Been) i (Wesn) (A (X 1)
08— G AN W)L (Wara) (A (W) (A

or going the other way we have

BACKWARD MODE OPERATORS (RIGHT TO LEFT)

T,
(5.2) {8812[61} ={(X ) r(A) W) (A ) g (W)L (WE)L(AN)HG}T. )
T,
E R LSRN PR SN IS
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Matrix MLP: (edge weight) derivative graph

Matrix MLP: computational graph

Azy Wz;_ Agpy e WxL Ay WAL

hy(W,X; + By)
°Xop [0y 0 X1 Aoyl a0 Xop Al By 0 Xa Ag)

H

m(WiXo+B) (WX, +By) /hy(WsX, + B3)

OO0 00 e e e @

Matrix MLP: computational graph superimposed

hy(WXs + By)

h(WiXo+B)) /hy(WyX, +By) /hy(WX, + B3)

(B2 Xig Doyl [y o Xop Byl [Bayy 0 Xy Byy)

e e e ]

Fic. 5.2. Computational and derivative graphs of a matriz MLP with their superimposed ver-
ston. Compared to Figure 5.1 of the scalar MLP, everything remains the same except for two
changes: the elements in the computational graph are now matrices, and the edges in the derivative
graph have been replaced by operators. (Note: color appears only in the online article.)

Understanding these operators. The forward operators in (5.1) may be
thought of as sensitivity operators or as a means of computing the full gradient.
As a sensitivity operator, one can state that the directional derivative of £ in the
direction AW; is g—vﬁi(AWi). Alternatively, each operator can be written out as a
(large) matrix and, ultimately, a gradient can be computed. The backward operator
is intended to be evaluated from right to left inside the braces. Doing so computes
the gradient directly.

We hope the reader appreciates the power of the “IT,” notation, whereby one
feels we are taking transposes of matrices and reversing order, but in fact we
are transposing the operators. Either way the operators can be read right off the
graphs.

5.5. Relationship to the adjoint method of scientific computing. We will
show how to derive (3.8) and (3.7) using the adjoint method so-named because of its
focus on the transpose (the adjoint) of the Jacobian. We encourage interested readers
to see [9] and [4] to learn more about adjoint methods in numerical computation.

We find it satisfying that the graph theoretic interpretation of backward mode
AD and the adjoint method of scientific computing yield the same answer from two
very different viewpoints.

Consider a general computation with known constant input zo € R and parame-
ters p= Lplu s 7pk]'

Algorithm 5.3 is an explicit computation. The function ¢; computes the value of

the variable x;. The notation ‘f
J

algorithm. By contrast, the notatlon d glves the partial derivatives across multlple

steps of the algorithm. Algorithm 5.3 1s the general case of Algorithm 3.1, the 4 dz
and d¢', dz7

are general cases of what is seen in Algorithm 3.2, and the generahze

What is seen in Algorithm 3.3.
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Algorithm 5.3. General Computation.

1: Input constant xq

2: Input parameters p1,...,px

3z P1(;p1,- - DE; X0)

4. xg(—q)g(l'l;pl,...,pk;l'o)

5:

6: on  On(21,. ., EN_1;D1,- -, Pk;T0)
7: Output =z

We note that the adjoint method literature tends to consider a yet more general
implicit approach. Placing section 3 of [9] in an explicit setting, we define a function
f such that f(z,p)=0. To this end, let

Ty @1 (5 p;w0)
) o (w135 70)
(53) f(x,p)zx—q)(x,p) = : - .
TN PN (z1,.- -, TN-1;P;T0)
Clearly, given p, the computed x = (z1,...,zN) from Algorithm 5.3 is a solution

to f(x,p) =0. Our goal is to reproduce (3.8), which is the derivative of zy w.r.t. to
the parameter p.

Let us first consider the derivation for x,, which is the derivative of x, implicitly
defined by f(z,p) =0, w.r.t. to p. To connect the viewpoints a table of notation for
various Jacobians is helpful.

Adjoint method Nabla notation Matrix Size

fo Vaf I-L NxN
fo Vpf —MT N x k
Tp Vpt (I-L)*MT N xk

The matrices themselves are explicitly

= P, .
L{a ] , 1>3,7=1,....N—1,
dxj |, ;

J

and

D; i . )
MT_P } , vpx_[az} . iel,...,N,jel,... k.
;i li; Wil

The matrix L that contains the partials 0®;/0x; is strictly lower triangular ex-
actly because Algorithm 5.3 is an explicit computation, whereas an implicit function
would generally have a dense Jacobian. Since f(z,p) = z — ®(x,p), the Jacobian
V.f =1 — L. Differentiating 0 = f(z,p) with respect to p we get 0 = fx, + f, or
z,=—f'f, which is (I — f/)’lMT in matrix notation explaining the bottom row of
the above table.

If g(x) is any scalar function of z, then the key adjoint equation is

Vg = gaTp= _gacfgg_lfp = _)‘Tfpa
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where ) satisfies the so-called adjoint equation fI'\=gZ. Since g, is a 1 by k vector,

by computing the adjoint A first, we reduce the computation of a matrix-matrix mul-

tiplication and a matrix-vector multiplication to two matrix-vector multiplications.
If we take g(z) = xn then g, =10,...,0,1]. The gradient is then

Vog(z)=10,...,0,1](I — L)*MT,

achieving our goal of reproducing (3.7).

So much is happening here that it is worth repeating with other notation. We
can use the Jacobian of f with respect to z and p to differentiate (5.3):

0 0 0
dl‘l (9@2 0 0 dxl % @ dp1
0 dJZQ 873;1 dx2 8])1 8pk dpg
z s R ot so |
drn 0Py 0Py 0 drn 7 al 9 al dpy,
0z, 0rN_1 P1 Pk
which can be solved to obtain
-1
0 0 ... 0
o 022 0 ? ? b
dxo s Oy o ].)1 Z.)k dp2
: : : 0P 9P :
d{EN 8¢)N a(pN ) N p) N dpk
011 T Orny P1 Pk

Some readers unfamiliar with the notation of differentials might prefer what
amounts to a notational change, but avoids the notation of differentials:

-1

drr om oo, ! 0% 0
opp T Op Er 0 .0 opr " Opk
: : S e A . : : : :
Ory OJzy 0by  0by 0P N 0Py
om Opi, 921 Orni op1 Opx,

6. Julia, the power of language.

6.1. The challenge. This section provides a complete realization of the chal-
lenge described in the preface (section 1). The question we asked is whether we could
bring to life the linear algebra mathematics expressed in

VJ=M"((I-L)"\g)
by typing the command

V]l =M'x (ImL" \ g)

and computing the backpropagated gradient of a matrix neural network almost by
magic?
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We remark that it is common to see code in papers. Code can serve the purpose
of specifying details, facilitating reproducibility, and verifiability. Code can also allow
users to adapt methods to their own situations. In addition to all of the above, we
have a further purpose. We believe the code example we provide shows the power,
elegance, and utility of the Julia programming language in ways that may be difficult
or impossible to imagine in other languages.

At the risk of showing the end of the code before the start, 63 lines of setup
culminate in exactly what we wanted: code which looks just like the math of ma-
trices with operators that correctly calculates the gradient fulfilling our title goal of
backpropagating through back substitution with a backslash:

M = Diagonal([ [#(6[i]) o #(X[i-1]) »#(6[il)] for i=1:N])

ImL = Bidiagonal([s() for i in 1:N], -[#(6[i]) o £(Ws_and_bs[i] [1]) for i=2:N] , :L)

1
g = [ fill(e,N-1) ; [#" (XIN],y)] 1]

V3 = M' % (ImL' \ g)

The first 28 lines elegantly set up the mathematics very much like a mathematician
defining operators and algebraic axioms:

using LinearAlgebra

struct Operator
op
adj
sym

trix) = Operator(X—>AxX , X—>A'kX, "z$(size(A))" )
Matrix) = Operator(X—>XxA , X->X*A', "®$(size(A))")

Matrix) = Operator(X->X.xA , X—>X.*A, "#$(size(A))")

= Operator(X->X 9 X=>X, "I")
= Operator(X->zero(X) , X->zero(X),"6")

import Base: zero, show, adjoint, %, \, o, +, -

show(io: M::Operator) = print(io, M.sym)

zero( y t ! T T r |

adjoint(A: erator) = Operator(A.adj, A.op, "("xA.symk")'")

adjoint( nal) = Bidiagonal(adjoint.(B.dv),adjoint.(B.ev), (B.uplo == 'U') ? :L : :U)
perator(X->-A.op(X), X->-A.adj(X),"-"*A.sym)

*B.sym)

Operator, B::Operator) = Operator(A.op o B.op, B.adj o A.adj, A.symx
| mehc L BCI

Matrix{Operator}},v::Array) = M .x [v]

Lines 10-14 above define matrix operators and their adjoints. Lines 16—28 define
various math operations, such as the negative operator on line 21, or the composition
of operators on line 25.
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using OffsetArrays

h(x) = exp(-x) #
h”(x) = -exp(-x)

function neural_net(params,Xe;h=h,h’= h")
Matrix{Float64}

length(params)
OffsetArray(Vector{T}(undef,N+1),0:N)
Vector{T}(undef, N)

] = Xeo

first. (params)

last. (params)

=

- i=1:N
X[i] h. (W[il+X[i-1] .+ BI[il)
Ali] h' o (W[i]*X[i-1] .+ B[i])

X, A

[5,4,3,1]
3
N = length(n)-1 #should b iti
init(sizes...) = 0.0@1lrandn(sizes...)
Ws_and_bs =[ [init(n[i+1],n[i]) , init(n[i+1])] for i=1:N]
Xeo = init(n[1],k)
y = dinit(nlend]l,k);
X,6 = neural_net(Ws_and_bs,Xe) #

£(x,y) = sum(abs2,x-y)/2
£ (x,y) = X.-y;

For completeness we list lines 29 through 63 which constitute the setup of a basic
forward pass through a matrix neural net. We remark that lines 30 and 38 allow an
index origin of 0. The readers are encouraged to try the code at https://github.com/
alanedelman /BackBackBack.

6.2. Modern computer science meets linear algebra. The venerable
position of numerical linear algebra libraries cannot be undersold. Years of rigor-
ous mathematical and algorithmic research have culminated in the modern LAPACK
library [1] which represents a crowning achievement of value to a huge number of users
who call LAPACK perhaps from, for example, Julia, NumPy, or MATLAB. In most
cases the users are unaware of the scientific bedrock of which they are beneficiaries.

Continuing this grand tradition, we wish to highlight some of the computer science
innovations that allow for the code in section 6.1 to look so deceptively simple.

Generic programming or how can the backslash just work? We invite the reader
to consider how the innocent backslash on line 75 of the code in section 6.1 could
possibly perform a backpropogation of a derivative. We believe this would be impos-
sible in, for example, NumPy or MATLAB as these packages currently exist. From
a computer science point of view, Julia’s multiple dispatch mechanism and generic
programming features allow the generic backslash to work with matrices and vec-
tors whose elements are operators and compositions of operators. We remind the
reader that the operators are not language constructs, but are created in software on
the first 28 lines of code. The backslash, however, is not the LAPACK backslash,
as the LAPACK library is constrained to floating point real and complex numbers.
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TABLE 3
Algebraic structure for an MLP when the parameters (i.e., the set of leaf nodes collectively re-
ferred to as p) are (i) only scalar weights, (ii) a weight/bias vector, and (iii) a vector of weight/bias
matrices. We emphasize the common algebraic structure and the benefit of software that can repre-
sent matrices of vectors and matrices of operators. (Note: color appears only in the online article.)

6900

VoL = MT X (I-L)™* x g

Gradient

w.r.t.  pa-
rameters p
(leaf nodes)

mi I
mo « —ly I
ms —ls I .
my 7[4 I g4

(i) Scalar
p = {w;} m; = 0;Ti—1 l; = djw; g4 = L' (x4)

(ii) Vector

i

{[ws, bs]} | mi = [dizioa 6

(iii) Matri-
ces

I{)[Wi Bi]}i m; =[AigoXi—1p Ainl li=AigoWip 91=Vx,L

T Operators -

The Julia backslash currently runs LAPACK when dispatched by matrices of floats,
but, as is the case here, the generic algorithm is called. We are fascinated by the fact
that the author of the generic algorithm would not have imagined how it might be
used. We are aware of backslash being run on quaternion matrices, block matrices,
matrices over finite fields, and now matrices with operators. Such is the mathematical
power of abstraction and what becomes possible if software is allowed to be generic.
In the context of backpropagation, replacing the “for loops” with the backslash helps
us see backpropogation from a higher viewpoint.

The significance of transpose all the way down. Not without controversy, Julia
implements transpose recursively. We believe this is the preferred behavior. This
means a block matrix of block matrices of matrices (etc.) will transpose in the ex-
pected manner. Similarly matrices of complex numbers or quaternions will perform
conjugate transposes as expected. In this work the M as seen in line 66 of the code in
section 6.1 is diagonal, but is not symmetric. In line 75 we are transposing a diagonal
matrix of 1 x 2 matrices of composed operators M’ while in that same line we are also
transposing a bidiagonal matrix of operators. Because the operator adjoint is defined
on lines 10-14 of the code and the adjoint for a composed operator is defined on line
25, Julia’s generic implementation, again, just works. We are not aware of any other
linear algebra system whereby the transpose would just work this readily. The page
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https://discourse. julialang.org/t/why-is-transpose-recursive/2550 docu-
ments some of the controversy. We are extremely grateful that the recursive definition
won the day.

A quick word about performance. There is nothing in the backslash formulation
that would impede performance.

Possible extensions to the example code in section 6.1. We deliberately only used
as an example the matrix neural network. We also have implemented a fully connected
neural network where the matrix I — L is a Julia triangular type, whereas the reference
example was bidiagonal. We also implemented a square case where the W parameter
was constant from one iteration to the next. We also conceived of the case of being
restricted to a manifold. We thus stress that we did not build a fully functional
package at this time, and thus emphasize that this could be future research, but we
have not yet seen any roadblock to this methodology.

Concluding moral. Exciting new innovations in numerical algorithms are emerging
from software developments. Critical elements for creativity include generic program-
ming (generic operators), abstract representations, fast performance without waste,
multiple dispatch, and an aggressive type system.

Abstraction matters. Software matters. Language matters.
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