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ABSTRACT

We report the epitaxial growth of (010) f-(AlyGa; _«),O; using tritertiarybutylaluminum (TTBAI) as an aluminum gas precursor in a hybrid
molecular beam epitaxy (h-MBE) system. In conventional MBE systems, a thermal effusion cell is typically used to supply Al. However, in an
oxide MBE system, using a conventional Al effusion cell can cause difficulties due to the oxidation of the Al source during growth. This often
requires breaking the vacuum frequently to reload Al. Our approach utilizes TTBALI, a gaseous Al source, via a h-MBE to circumvent the oxi-
dation issues associated with traditional solid Al sources. We investigated the growth conditions of f-(Al,Ga; _4),0s3, varying TTBAI supply
and growth temperature. For this purpose, we utilized both elemental Ga and Ga-suboxide as Ga precursors. Controllable and repeatable
growth of ff-(AlyGa; _4),0; with Al compositions ranging from 1% to 25% was achieved. The impurity incorporation and crystal quality of
the resulting f-(AlyGa;_),05 films were also studied. Using TTBAI as a gaseous precursor in h-MBE has proven to maintain stable Al sup-

ply, enabling the controlled growth of high-quality -(Al;Ga; _),05 films.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0227366

f-Ga,05 has emerged as a material of significant interest for the
next generation high-power electronic applications and solar-blind
ultraviolet (UV) detectors and as a substrate for UV light-emitting
diodes (LEDs) due to its outstanding properties such as ultrawide
bandgap (E;=4.8¢eV) and the availability of producing low-cost,
large-scale high-quality single crystal substrates.' '’ B-Ga,Os-based
power devices, including Schottky barrier diodes,”"''* metal-semi-
conductor field-effect transistors (MESFETSs),"” and metal-oxide field-
effect transistors (MOSFETs) with promising performance have
already been demonstrated.”'* >

Furthermore, considerable research has been conducted on epi-
taxial growth of f-(AliGa; _4),0O; to enable design and fabrication of
p-(ALGa,_,),05/-Ga,O5 heterostructures. Such heterostructures
pave the way for the development of advanced high-performance devi-
ces such as modulated doped field-effect transistors (MODFETs).”* **
The interface of the f(-(ALGa,_,),03/f-Ga,O; heterostructure can
enable carrier confinement, forming a two-dimensional electron gas
(2DEG) with enhanced electron mobility.293 “ Therefore, developing
p-(ALGa, _,),0; epitaxial thin films is crucial.

The growth of f-(Al,Ga;_,),0O; epitaxy with varying Al compo-
sitions has been reported using metal-organic chemical vapor deposi-
tion (MOCVD)”"" " and molecular beam epitaxy (MBE)
techniques.”*** However, the conventional oxide MBE system faces
an oxidation challenge when employing solid sources for elements
with high-melting-point oxides, such as AL* The Al flux diminishes
over time at a constant source temperature due to the formation of a
solid AL, O; layer on the Al surface. After each growth cycle, a higher
source temperature is required to achieve the same Al flux, until even-
tually, the Al source is completely encapsulated by solid Al,Os, result-
ing in no flux. Various strategies have been employed to extend source
life, including using a crucible with narrow orifice or inserting an end-
plate into the crucible.’ " Nonetheless, these methods only reduce
the effects of source oxidation without completely resolving the issue.

Epitaxial growth of perovskites using conventional MBE has
faced similar challenges due to oxidation of solid elemental sources
and difficulties in controlling stoichiometry in ternary oxides due to
suboxide desorption. Hybrid MBE, which integrates elemental
and chemical gas sources, has been employed to address these
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issues."”"* *° One significant breakthrough in this area was the use of

titanium-tetraisopropoxide (TTIP) in conjunction with strontium for
the growth of SrTiO;."” This approach allowed for the self-regulated
growth of high-quality films, demonstrating the potential of h-MBE
for producing oxide materials with fewer defects and higher reproduc-
ibility. The success of h-MBE has since extended to other complex
oxides, including rare earth titanates and vanadates,”*"’ providing a
robust and adaptable method for material synthesis. Recently, we
reported using diluted disilane as a silicon source for Si-doping of
f-Ga,0; to avoid challenges associated with the oxidation of solid sili-
con source.” "

In this study, we propose the growth of f-(Al, Ga;_),0; via
h-MBE. To choose a proper metal-organic Al precursor, we considered
two important properties: (i) vapor pressure and (ii) unintentional car-
bon incorporation due to metal-organic precursor. In particular, MBE
system is an ultra-high vacuum (UHV) system, with the chamber pres-
sure being approximately 10 '* Torr during the idle state and about
10> Torr during growth. Therefore, a gas precursor with relatively
low vapor pressure is required to enable precise control of gas flow in
the system. Common metal-organic Al gas precursors include trime-
thylaluminum (TMAL), triethylaluminum (TEAI), tritertiarybutylalu-
minum (TTBAI), aluminum-triisopropoxide (ATIP), and tri-n-
octylaluminum (TNOAI). Among these precursors, TTBAI and
TNOAI have relatively low vapor pressure at room temperature
(~3 Torr for TTBAI and ~0.75 Torr for TNOAI). Since, compared to
TNOAI TTBAI has a lower carbon and hydrogen density, TTBAI was
used as the Al precursor in our studies.

All samples were grown in a RIBER 32 hybrid MBE system
equipped with conventional Ga, Ga-suboxide (Ga,O), and Ge thermal
effusion cells. The Ga,O was made by mixing 99.999 99% (7 N) pure
Ga with 99.999% (5N) Ga,0; powder, and a 5:2 molar ratio of Ga to
Ga,O3 was added into the container and mixed in a heated water
bath. The oxygen source consisted of ultra-high purified oxygen
(> 99.999%) and was activated by the RIBER RF-O 50/63 oxygen RF
plasma source. A plasma power and oxygen flow rate of 410 W and
2 sccm were used for all the growths discussed in this work. TTBAI is
supplied through a specially designed gas delivery system. The TTBAI
bubbler is placed in a container that is maintained at 0 °C by an ice-
water mixture and is connected to a high-vacuum gas line. Upon
opening, the TTBAI vapor enters the gas line, driven by the pressure
differential. At 0°C, the vapor pressure of TTBAI is 1.1 Torr. This
vapor pressure is then regulated by an MKS 600 Series Pressure
Controller, capable of maintaining and adjusting the vapor pressure
within a 1 mTorr to 100 mTorr range. A flow restrictor, with different
orifice diameters ranging from 100 um to 3 mm, is utilized in this setup
to further moderate the flow prior to its introduction into the ultra-
high vacuum environment of the MBE chamber. The TTBAI vapor
pressure delivered into the MBE chamber via a gas injector for the
growth process is below 5 x 10”7 Torr, as measured by the ion gauge
within the chamber. The gas injector is maintained at 60 °C during the
growth to prevent the condensation of TTBAI gas. The Ga flux is mea-
sured by beam equivalent pressure (BEP) by the ion gauge. The sche-
matic of our hybrid MBE system can be found in Ref. 50.

All epi-structures were grown on Sn-doped bulk (010) -Ga,O;
substrates. Prior to the growth, 500 nm thick Ti layer was deposited on
the backside of the substrates for better heat transfer as well as better
adhesion to the silicon wafer via indium-bonding. The substrates were

ARTICLE pubs.aip.org/aip/apl

then diced into 5x 5mm?* or 5 x 10 mm” pieces and after solvent-
cleaning were indium-bonded to 3-in. Si wafers before being trans-
ferred into the growth chamber. The growth was initiated with 30 min
of oxygen polishing (oxygen flow rate and RF power of 1sccm and
350 W, respectively) followed by 30 min of Ga etching, using Ga BEP
of 1 x 10~ ®Torr, at 800 °C to remove impurities on the substrate sur-
face.””® Ga etching followed by O polishing can also help to remove
the plasma damage related to O polishing.”’ Subsequently, (AL,Ga),0;
films were grown in the h-MBE. For the secondary ion mass spectrom-
etry (SIMS) stack, a 200 nm Ga,O; unintentionally doped (UID) layer
was first grown on the substrate to separate it from the SIMS layers.

The surface morphology and roughness of the grown layers were
studied by atomic force microscopy (AFM). Secondary ion mass spec-
trometry (SIMS) was utilized to measure the Al composition and
quantify unintentional incorporation of impurities such as hydrogen
and carbon. High-resolution x-ray diffracion (HRXRD) and
Rutherford backscattering spectrometry (RBS) analysis were used to
determine the Al composition and layer thickness. The growth rate
(GR) was then determined from the layer thickness measured by SIMS
or XRD, knowing the duration of growth.

First, a series of samples were grown at 525 °C varying the TTBAI
supply from BEP=1.2 x 10" to 4.2 x 10~ " Torr while using a fixed
Ga BEP of 1x 10 ®Torr. The last sample was grown at TTBAI
BEP =4.2 x 10~ Torr but with a Ga BEP of 5 x 10~ Torr. The XRD
®-20 triple-axis profiles were recorded along the (020) direction on
these samples and are shown in Fig. 1. By changing TTBAI pressure
from 1.2 X 10~ 7 to 42 x 10~ Torr, f-(ALGa;_,),05 composition was
changed from 1.8% to 14.9%, while the growth rate remained
unchanged. For a maximum TTBAI pressure of 4.2 x 10”7 Torr, when
Ga BEP was reduced to 5 x 10”7 Torr to further increase TTBAl/Ga
ratio, i~y phase segregation occurred, which has been widely observed
on fi-(Al, Ga),0; films grown by PAMBE with Al content higher
than 15%.”

Next, a series of samples was grown using a TTBAI pressure of
4.3 x 10~ Torr and a Ga BEP of 8 x 10™° Torr, varying the substrate
temperature (Tg,,) from 525 to 725°C. Figure 2 shows the AFM
images taken on these samples along with the corresponding root
mean square (rms) surface roughness. The sample grown at
Tsup =525 °C exhibited a relatively rough surface with the presence of

(020) B-Ga,0, (020) B-(Al,Ga;.,),0;

A TTBALBEP GaBEP T,

- : B-y Phase segregation J (Torr) (Torr) (°C)
3
& W"’% e
2
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c -7
% bt . 4.2x10
o[ Al=8.27% .
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FIG. 1. HRXRD of (010) S-(AlyGa;_4)>03 grown using TTBAI, Ga, and O plasma in
h-MBE system at substrate temperature =525°C. Al composition ranges from
1.8% to 14.9% with different TTBAI/Ga ratios at Tgy, = 525 °C. i~ phase segrega-
tion is observed when the TTBAI/Ga ratio is further increased at Ty, = 525 °C.
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FIG. 2. AFM of f5-(Al,Ga,_),03 at different Tg,. TTBAI pressure = 4.3 x 107 Torr; Ga BEP = 8 x 107 Torr were used during all the growths here.

pinholes. During growth, Al, Ga, and O atoms move across the sub-
strate surface, requiring energy to bond into the final AlGaO com-
pound. At lower temperatures, the energy provided to the substrate
may be insufficient to allow adequate adatom mobility for the Al
atoms, which can lead to pinholes on the surface. As the growth tem-
perature increased, the surface roughness initially decreased, reaching
a minimum rms of 0.247 nm at 625 °C before subsequently increasing
again.

Figure 3 shows the HRXRD profile of the grown samples using
Ga and Ga-suboxide as Ga precursor. Our previous studies showed
that replacing the Ga source with Ga,O almost doubled the maximum
GR of Ga,05.”" Ga,O was produced by mixing 7N pure Ga with 5N
Ga,03 powder in a 5:2 molar ratio of Ga to Ga,0s. A set of samples
was grown using Ga,O BEP of 1 x 1077 Torr and TTBAI pressure of
4.3 x 10”7 Torr, with the growth temperature varying from 525 °C to
725°C. Table I summarizes Ty, Al composition, and GR for each
sample.

From Fig. 3(a), the samples grown by Ga source at temperatures
ranging from Ty, = 525 to 575 °C, the composition and GR remained
approximately constant. As the temperature increased further, the GR
of f-(Al, Ga),03 decreased and the Al composition increased accord-
ingly. The lower growth rate at higher temperatures is due to the for-
mation and thermal desorption of volatle Ga,O.”” The Al
composition reached 25.4% at Ty, = 675°C, with a GR of 40 nm/h.
Growth ceased when Ty, reached 725°C due to the high desorption
of Ga,O at high growth temperatures.

As shown in Fig. 3(b), similar to the samples grown by Ga source,
the Al composition and GR remained the same at 200 nm/h from
Teup =525 to 575 °C using Ga-suboxide as precursor, with Al compo-
sition around 6.3%-7.2%. The growth rate doubled compared to the

TABLE 1. Summary of f-(Al,Gas_4),O3 samples grown by Ga and Ga-suboxide
at different growth temperatures. The Al% and GR are extracted from HRXRD
presented in Fig. 3.

Precursor Ga Ga-suboxide

Teup (°C) GR (nm/h) Al (%) GR (nm/h) Al (%)
725 Null Null 51 16.3
675 40 25.4 83 11.8
625 60 21.8 113 8.9
575 86 14.2 200 6.9
550 84 14.9 200 6.3
525 83 14.9 200 7.2

GR measured on samples grown using the Ga source, which conse-
quently halved the Al composition. No thickness fringes were observed
in the XRD profile of the sample grown at Ty, = 525°C, indicating
relatively poor quality at this temperature. As the growth temperature
increased further, the GR dropped, and Al composition increased. It is
worth noting that, as discussed earlier, no epitaxial growth occurred at
Tsup =725 °C using the Ga source, whereas (Al,Ga; _),0; films with
a GR of 51 nm/h and an Al composition of 16.3% were achieved using
the Ga,O source. This may be attributed to the increased partial pres-
sure of Ga,O in the chamber when Ga,O is used as the Ga precursor,
which leads to a shift in thermal equilibrium favoring the formation of
Ga,05 from desorption. This equilibrium shift results in the growth of
(AlyGa; _4),05 even at the high temperature of 725 °C, where desorp-
tion would typically prevent epitaxial growth using the Ga source.

(020) B-Ga,0; (020) B-(ALGa,,),0;

(020) B-Ga,0; (020) B-(Al,Ga,.,),0;5
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To analyze unintentionally incorporated impurities in (Al
Ga),0; films, a SIMS stack was grown with the epi-structure shown in
Fig. 4. In this sample, a 200 nm thick layer of unintentionally doped
(UID) Ga,O3 was grown to isolate (Al, Ga),O; layers from the sub-
strate. Subsequently, each (Al, Ga),0O; layer was grown over a period
of 2h, with variations TTBAI pressures or growth temperatures, sepa-
rated by 100 nm of UID Ga,Os. The SIMS analysis was conducted by
EAG Laboratories. However, reliable calibrations for Al content in
(AlyGa; _4),05 (where 1 <x < 30) have yet to be demonstrated. To
achieve more accurate Al composition, RBS analysis was performed on
these samples instead. The Al compositions determined by RBS were
in good agreement with the results obtained from XRD measurements.
The Al composition for each layer of the SIMS stack was characterized
by RBS. The RBS spectra of the sample are shown in the supplemen-
tary material. The results are presented in Fig. 4(b). At Tg,=575°C,
increasing the TTBAI supply from 2.1 x 107 to 4.3 x 10~ Torr
resulted in an increase in Al composition from 6.0% to 18.8%.
Simultaneously, the concentrations of impurities such as C and H,
likely originating from TTBAI increased from 4 x 10¥ to
1% 10* cm ™ and from 1.3 x 10'® to 8 x 10" cm ™, respectively. In
the final two layers, where Ty, was increased to 625 and 675 °C while
maintaining the TTBAI at 4.3 x 10~ Torr, the Al composition contin-
ued to increase and the GR decreased, corroborating previous XRD
results. Interestingly, at these higher temperatures, both C and H den-
sities decreased. C density dropped from 1 x 10* to 2.8 x 10" cm 2,
and H density decreased from 8 x 10'® to 2.5 x 10'” cm ™. While a C
incorporation of 2.8 x 10" cm ™ is still considered high, H incorpora-
tion reached levels nearly identical to those of the substrate. However,
a significant decrease in the growth rate was observed with increasing
Tsup> and no epitaxial growth occurred at Ty, = 725 °C. The incorpo-
ration of carbon and hydrogen is influenced by the substrate tempera-
ture, indicating that the reaction mechanism (including the bonding
and debonding processes) of TTBAI during growth is temperature
dependent. Further analysis is needed to fully understand this mecha-
nism and to reduce the C and H impurities in the grown thin film.
Investigating alternative gas sources for Al may be beneficial in future
studies.

In summary, we demonstrated the growth of f-(AliGa; 4),0s
using TTBAI as a gaseous aluminum source in h-MBE, which presents a
promising solution for overcoming the traditional challenges of Al
source oxidation in oxide MBE. Our studies show that 3-(ALGa;_,),03

compositions can be controlled from 1% to 25% by adjusting the
TTBAI pressure and substrate temperature. Additionally, we showed
that growth at higher temperatures can reduce the incorporation of
impurities such as carbon and hydrogen. This growth technique not
only provides a repeatable and controllable method for growing
p-(Al,Ga; )05 films with varying Al composition but also extends
the potential for future research into other complex oxide materials
using h-MBE systems.

See the supplementary material for the RBS results are shown in
Fig. S1. Both RBS and SIMS analysis were done by Eurofins EAG
Laboratories.
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