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Abstract
A central tool for understanding first-order optimization algorithms is the Kurdyka–
Łojasiewicz inequality. Standard approaches to such methods rely crucially on this
inequality to leverage sufficient decrease conditions involving gradients or subgradi-
ents. However, the KL property fundamentally concerns not subgradients but rather
“slope”, a purely metric notion. By highlighting this view, and avoiding any use of
subgradients, we present a simple and concise complexity analysis for first-order opti-
mization algorithms on metric spaces. This subgradient-free perspective also frames a
short and focused proof of the KL property for nonsmooth semi-algebraic functions.

Keywords Nonsmooth optimization and first-order algorithms · Slope · KL
property · Complexity · Semi-algebraic

Mathematics Subject Classification 90C48 · 49J52 · 65Y20 · 14P10

1 Introduction

Over the last two decades, beginning with pioneering works such as [1, 6], the
Kurdyka–Łojasiewicz inequality has become a central tool for the convergence anal-
ysis of first-order optimization algorithms. Viewing the inequality as a subgradient
property [15, 16] can obscure the essential simplicity of the technique. Factors con-
tributing to the challenge include the profound reasons underlying the inequality’s
validity for a large class of nonsmooth functions (semi-algebraic, for example), and
the sometimes involved arguments applying the inequality to optimization complex-
ity analysis. However, as remarked in [17], the inequality is fundamentally a metric
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space property. This view can be powerful and illuminating, both in non-Euclidean
applications like [14, 30], and—the philosophy we pursue here—in understanding
and proving the inequality, and leveraging it in simple complexity analysis. The orig-
inal motivation for the KL property in analytic [37], more general smooth [33], and
nonsmooth [15] settings was to bound the length of descent trajectories in continuous
rather than discrete time, a topic outside our current scope, but fundamental in general
metric spaces [3].

In this self-contained exposition we present some basic and broadly applicable
complexity consequences of the KL property, with short, elementary proofs. Some
ingredients are familiar from scattered sources, but by reorganizing the proof sequence
and avoiding any use of subgradients or other traditional nonsmooth analysis, we
condense and unify the development. To begin, after introducing the KL inequality, we
immediately prove a rudimentary complexity result about objective value convergence,
valid in any metric space. This new observation, startling in its breadth and simplicity,
illustrates our two central claims.

• A purely metric development of KL-based complexity analysis promotes not just
generality, but also brevity and transparency.

• While classical smooth optimization extends quite naturally to manifolds [2, 20],
nonsmooth developments beyond Euclidean space are technically involved, both
on manifolds [13, 22, 50] and beyond, in Hadamard and Wasserstein spaces [12,
44]. A simpler, subgradient-free complexity analysis is therefore appealing.

For an extended discussion of the technical challenges posed by subgradients in non-
Euclidean spaces, see [34].

Thus motivated, we present a fresh proof of a nonsmooth Kurdyka–Łojasiewicz
property for semi-algebraic (and more general “definable”) functions on Euclidean
spaces. By focusing on the property’s metric rather than subdifferential nature, we
simplify and clarify earlier developments with no essential loss in applicability.

Returning to our development of complexity results, we study sequences of iterates
satisfying a fundamental slope-descent condition, combining a traditional notion of
sufficient decreasewith ametric slope property.We show the satisfiability of this condi-
tion in metric spaces, under mild conditions, and derive local and global convergence
results for the resulting iterates. As an illustration of our framework, we conclude
by analyzing majorization-minimization methods for optimization on Riemannian
manifolds and more general geodesic spaces.

2 The Kurdyka–Łojasiewicz property

Our setting is a metric space X . In practice, X may be a Euclidean or Hilbert space,
or a Riemannian manifold, but our presentation is purely metric. Laying aside the
semi-algebraic setting for our proof of the Kurdyka–Łojasiewicz inequality in Sect. 4,
we make no assumptions akin to finite-dimensionality until Sect. 7, and until the final
examples we use no inner products: our techniques are thus entirely primal in nature.
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The complexity of first-order optimization…

We seek to minimize a lower semicontinuous function f : X → R̄ = [−∞,+∞]
that is proper, meaning it never takes the value −∞ and has nonempty domain

dom f = {x ∈ X : f (x) < +∞}.

In practice, f is ofter regular in some sense—perhaps smooth, or convex, or some
composition thereof—but this development requires no such assumptions.

Denote the metric in the space X by d(·, ·) and the distance function to any point
x ∈ X by dx (·). Following [24], the slope |∇ f |(x) of f at any point x with finite
value f (x) is the infimum of those values ε > 0 for which x locally minimizes the
perturbed function f + εdx . At points x where f (x) = +∞, the slope is defined to
be +∞. The notation is motivated by the following standard example.

Example 2.1 (Submanifolds in Euclidean spaces) In the Euclidean space Rn , con-
sider any C(1)-smooth submanifold M, endowed with the Euclidean metric, and any
differentiable function f : M → R. At any point x ∈ M, the covariant gradient of f
is an element of the subspace of Rn tangent toM at x , and its norm is the slope of f .
In particular, when M = Rn , we have the formula

|∇ f |(x) = |∇ f (x)|.

We denote the nonnegative reals by R+.

Definition 2.2 A desingularizer is a continuous function φ : R+ → R+ with value
φ(0) = 0 and continuous, strictly positive derivative on (0,+∞). The desingularizer
φ has moderate growth if its derivative satisfies φ′(τ ) = o( 1

τ
) as τ ↓ 0.

The following definition follows the idea of [17]. The strategy is to use a desingularizer
to induce a type of “sharpness” by rescaling the gap:

g(·) = f (·) − inf f .

Definition 2.3 Consider a proper function f : X → R̄ that is bounded below. We
say that f has the Kurdyka–Łojasiewicz property (for minimization) if there exists
a desingularizer φ such that all points x ∈ X with small, strictly positive gap g(x)

satisfy |∇(φ ◦ g)|(x) ≥ 1.

For a lower semicontinuous function f , we can rewrite the basic inequality using a
simple chain rule [9, Lemma 4.1]:

|∇(φ ◦ g)|(x) = φ′(g(x)
) · |∇g|(x)

whenever 0 < g(x) < +∞. The proof is a simple application of the classical mean
value theorem.

To compare Definition 2.3 with earlier versions of the KL property [16], and to
prepare for our later convergence theory, we consider an idea more robust than the

123



A. S. Lewis, T. Tian

notion of slope: the limiting slope at any point x̄ ∈ dom f is the quantity

|∇ f |(x̄) = lim inf
x→x̄

f (x)→ f (x̄)

|∇ f |(x).

The results of Sect. 6 concern points x̄ that are critical, by which we mean the limiting
slope there is zero. It is easy to verify that the definition of the KL property above
could equivalently be written with the limiting slope replacing the slope, as could the
subsequent chain rule.When themetric space X is Euclidean, the following remarkable
identity (proved in [31, Proposition 8.5], for example) always relates the limiting slope
and the subdifferential ∂ f [46]:

dist
(
0, ∂ f (x)

) = |∇ f |(x).

This identity leads to an equivalent subdifferential version of the KL property, closely
related to the version in [16]: we discuss the precise relationship at the end of Sect. 4.
We emphasize, however, that we make no use of subgradients in this exposition.

When the metric space X is complete, the KL property is equivalent to an “error
bound”: for all points x with small gap g(x) and all values r satisfying 0 < r < g(x),
the distance from x to the sublevel set g−1[0, r ] is no larger than φ

(
g(x)

) − φ(r). We
make no use of this observation (see [8, Theorem 2.1]), but it offers some compelling
intuition for the power of the inequality.

Results in [15, 16] guarantee that, on a Euclidean space, any lower semicontinuous
semi-algebraic (or, more generally, “globally subanalytic”) function with a bounded
set of minimizers has the KL property for minimization, and some corresponding
desingularizer has moderate growth. Indeed, there exists such a desingularizer of the
form of a concave function φ(τ) = κτ 1−θ , where the exponent θ lies in the interval
[0, 1) and κ > 0. Such desingularizers, for example, feature in the original Łojasiewicz
proof of the KL property for real-analytic functions [37], and its smooth subanalytic
extension in [33]. We will often assume desingularizers to be concave in convergence
proofs: for a discussion, see [5]. The exponent θ is closely related to growth properties
of the gap g, as discussed in detail in [18].

The rather involved original arguments for the nonsmooth KL property in [15,
16], along with a subsequent proof (due to Drusvyatskiy) in [31] that follows more
closely the path laid out in [33], all depend heavily on the geometry of subgradients.
In line with our philosophy in this work, and inspired by another recent proof [47,
Theorem 2.9], in Sect. 4 we derive the nonsmooth result from the smooth version in
[33] using just a simple slope-based argument.

3 Objective value convergence

We next follow a theme with roots in [38], taken up in [1], and promoted in [6, 18,
19, 43]. Many classical optimization algorithms generate sequences in X with the
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following descent property: for some constant δ > 0, successive iterates x, x+ satisfy

f (x) − f (x+) ≥ δ
(|∇ f |(x+)

)2
. (3.1)

Examples of such algorithms include the first-order methods considered in [18] such
as gradient descent, the proximal point method, the proximal gradient method, vari-
able metric and quasi-Newton methods, trust region methods, alternating projections,
Gauss–Seidel schemes and so forth, majorization-minimization procedures consid-
ered in [19], including sequential quadratic programming schemes and the moving
balls method, and some bundle methods [43]. Algorithms outside the Euclidean or
Hilbert setting may also guarantee the same descent condition: as remarked in [35], a
basic example is the proximal point method [11, 32]. For simplicity, we will not dis-
cuss the convergence analysis of accelerated and momentum-based algorithms here,
even though KL-based arguments can also be effective in that domain [10].

The following result illustrates how easy slope arguments can prove convergence
properties quickly and transparently using theKLproperty. The underlying philosophy
is distilled from the Euclidean setting of [4–6], but this basic version and its short proof
seems novel even in that setting. Rather than formal novelty, however, the result’s main
appeal is its striking generality and simplicity.

Theorem 3.1 (Value convergence) On a metric space X, consider any lower semi-
continuous proper function f : X → R̄ that is bounded below and satisfies the KL
property for minimization, and any sequence (xk) in X satisfying the descent property
(3.1) and with initial value f (x0) near inf f . Then the values f (xk) decrease to inf f .
If, furthermore, the corresponding desingularizer has moderate growth, then the gap
satisfies

f (xk) − inf f = o
(1

k

)
.

Proof Consider the gap τk = g(xk) ≥ 0 at iteration k. By assumption, we have

τk−1 − τk ≥ δ
(|∇ f |(xk)

)2
,

so τk is nonincreasing. If τk = 0 at any iteration k then there is nothing to prove, so
we can suppose that τk is small and nonzero for all k.

The proof proceeds by contradiction. If the result fails, then τk decreases to some
limit τ̄ > 0. Using the chain rule, the KL property ensures

φ′(τk) · |∇ f |(xk) ≥ 1

for all k, and hence

τk−1 − τk ≥ δ
(
φ′(τk)

)2 . (3.2)
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But as k → ∞, the left-hand side converges to zero, while the right-hand side
converges to the strictly positive limit δ/

(
φ′(τ̄ )

)2, which is a contradiction.
Suppose now that the desingularizer φ has moderate growth. Given any constant

μ > 0, since 0 < τk ↓ 0, we know τk < μ and τkφ
′(τk) <

√
μδ for all large k. In

particular, there exists an integer m such that whenever k ≥ m,

τk−1 − τk >
1

μ
τ 2k ,

and hence

1

τk−1
<

1

τk
− 1

μ + τk
<

1

τk
− 1

2μ
.

Induction shows

1

τk
≥ 1

τm
+ k − m

2μ

so

kτk ≤ 2μτmk

2μ + τm(k − m)
.

We deduce

lim sup
k→∞

kτk ≤ 2μ.

Since the constant μ > 0 was arbitrary, the result follows. �

The o( 1k ) rate is reminiscent of the behavior of the proximal point method for

convex optimization [29, Theorem 3.1]. In the case of the standard desingularizer
φ(τ) = κτ 1−θ for κ > 0 and 0 ≤ θ < 1, we can refine this result slightly. The key
inequality (3.2) becomes

τk−1 − τk ≥ μτ 2θk

for some constantμ > 0. An elementary induction then shows four different scenarios
(cf. [4]) for the rate at which the gap converges to zero: finite convergence (θ = 0),
superlinear (0 < θ < 1

2 ), linear (θ = 1
2 ), and finally, for 1

2 < θ < 1,

f (xk) − inf f = O

((1
k

) 1
2θ−1

)
.

The first case is immediate, and the second and third follow from the inequality

τk−1

τk
≥ 1 + μτ 2θ−1

k
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for all large k. In the second case, the right-hand side grows indefinitely with k, and in
the third it equals 1+ μ. Suppose the last case fails. For any constant M ≥ 1 suppose
for some k ≥ 2 that

τk−1 ≤ M
( 1

k − 1

) 1
2θ−1

and τk > M
(1

k

) 1
2θ−1

.

We obtain

M
(1

k

) 1
2θ−1 + μM2θ

(1
k

) 2θ
2θ−1

< τk + μτ 2θk ≤ τk−1 ≤ M
( 1

k − 1

) 1
2θ−1

and then convexity for the function t �→ t−
1

2θ−1 implies a contradiction for sufficiently
large M :

1 + μM2θ−1

k
<

(
1 − 1

k

)− 1
2θ−1 ≤

(
1 − 2

k

)
+ 2

k

(1
2

)− 1
2θ−1 = 1 + 2(2

1
2θ−1 − 1)

k
.

The induction follows.

4 A slope-based proof of the KL property

Viewed through the lens of the slope, the fact that nonsmooth semi-algebraic functions
satisfy aKurdyka–Łojasiewicz property is a simple consequence of the original smooth
results due to Łojasiewicz [37] and Kurdyka [33]. Appealing to subgradients, as in the
original nonsmooth arguments [15, 16], obscures this simplicity. In the brief proof we
present here, like [47], we focus entirely on the slope.

Our exposition in fact applies in a setting much broader than that of semi-algebraic
geoemetry, using instead the property known as “definability in an o-minimal struc-
ture”. Readers unfamiliar with definable sets and functions can comfortably focus
on the semi-algebraic special case. The accessible reference [23] gives a concise
introduction to definability.

We fix an o-minimal structure O, with respect to which the various functions and
sets we consider are definable. Our main tool is the following result about smooth
functions on bounded manifolds, generalizing [33, Theorem 1], with an analogous
proof. The result also holds for unbounded manifolds [16, Theorem 11], but this
easier version suffices for us: the proof is shorter, and we present it for completeness.

Theorem 4.1 In the Euclidean space Rn, consider any bounded C(1)-smooth definable
submanifold M, and any differentiable definable function f : M → R. Then there
exists a concave definable desingularizer φ and a constant ρ > 0 such that

|∇M(φ ◦ f )(x)| ≥ 1 whenever 0 < f (x) < ρ, (4.1)

where ∇M denotes the covariant gradient on M.
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Proof Consider the definable function ψ : (0,∞) → R̄ defined as

ψ(t) = inf{|∇M f (x)| : f (x) = t}.

(As usual, the infimum over the empty set is+∞.) We lose no generality in supposing
lim inf t↘0 ψ(t) = 0, since otherwise, for all sufficiently small ρ > 0, the desingular-
izer defined by φ(t) = 1

ρ
t for t ≥ 0 has the desired property. A standard property of

definable functions ( [23, Theorem 2.1]) then implies limt↘0 ψ(t) = 0.
Consider the definable set

S = {(x, t) ∈ M × (0,+∞) : f (x) = t, |∇M f (x)| < ψ(t) + t2}.

Since the manifold M is bounded, an easy argument shows the existence of a
point x̄ ∈ Rn satisfying (x̄, 0) ∈ cl S. Further standard properties (see [23, The-
orems 2.1 and 3.2]) now guarantee that the point (x̄, 0) is accessible by a smooth
curve in S. More precisely, there exists a C(1)-smooth curve γ : (0, 1) → M such
that the composition g = f ◦ γ satisfies

(
γ (s), g(s)

) ∈ S for 0 < s < 1, and as
s ↘ 0, we have (γ (s), g(s)

) → (x̄, 0) and (γ ′(s), g′(s)
)
converges to some limit

(v, r) ∈ Rn ×R+. We can furthermore assume that the derivative g′ is either constant
or strictly monotone.

Whenever 0 < s < 1 we have

g′(s) = 〈∇M f
(
γ (s)

)
, γ ′(s)〉 ≤ |∇M f

(
γ (s)

)| · |γ ′(s)|.

Furthermore, we observe

r = lim
s↘0

〈∇M f
(
γ (s)

)
, γ ′(s)〉

≤ lim
s↘0

(
|γ ′(s)|(ψ(

g(s)
) + g(s)2

)) = 0,

so in fact r = 0. Consequently, the derivative g′ must be strictly increasing, and so g is
also strictly increasing and satisfies g(s) < sg′(s) for all s ∈ (0, 1). Take any constant
ρ in the interval

(
0, lims↗1 g(s)

)
and let ξ : (0, ρ] → (0, 1) denote the restriction of

the inverse function g−1, which is also strictly increasing.
Now consider any point x ∈ M satisfying 0 < f (x) < ρ. Setting t = f (x) and

s = ξ(t), then providing ρ is sufficiently small, we have

|∇M(ξ ◦ f )(x)| = ξ ′( f (x)
) · |∇M f (x)| ≥ ξ ′(t) · ψ(t) = ψ

(
g(s)

)

g′(s)

>
|∇M f

(
γ (s)

)| − g(s)2

g′(s)
>

1

|γ ′(s)| − sg(s) >
1

1 + |v| .
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Note that the derivative ξ ′ = 1
g′◦ξ

> 0 is strictly decreasing, and limt↘0 ξ(t) = 0.
Consequently, the function φ : R+ → R+ defined by

φ(t) =
⎧
⎨

⎩

0 (t = 0)
(1 + |v|) · ξ(t) (0 < t < ρ)

(1 + |v|) · ξ(ρ) (t ≥ ρ)

has the desired property. �

Using a simple stratification argument, we arrive at the following result ofKurdyka–

Łojasiewicz type for nonsmooth definable functions. We do not assume lower
semicontinuity. As we discuss after the proof, this result is closely related to [16,
Theorem 14]. However, the slope-based argument we present here is much more con-
cise and direct than the intricate subgradient-based approach of [16]. It resemblesmore
the globally subanalytic argument of [47], but again is more direct. Furthermore, as
we note later (see algorithm (7.14)), concrete optimization problems are sometimes
not globally subanalytic.

Theorem 4.2 In the Euclidean space Rn, consider any bounded definable set U,
and any definable function f : U → R. Then there exists a concave definable
desingularizer φ and a constant ρ > 0 such that

|∇(φ ◦ f )|(x) ≥ 1 whenever 0 < f (x) < ρ. (4.2)

Proof A standard stratification [48, Chapter 7, Theorem 3.2] partitionsU into finitely-
manyboundedC(1)-smooth definable submanifoldsM1, . . . ,Mk ofRn such that each
restriction f |Mi is a differentiable definable function. Applying Theorem 4.1 to each
restriction f |Mi gives a concave definable desingularizer φi and a constant ρ > 0
such that

|∇Mi (φi ◦ f |Mi )(x)| ≥ 1 whenever x ∈ Mi with 0 < f (x) < ρ.

Applying [23, Theorem 2.1] to the collection of functions φi − φ j with i �= j , by
reducing ρ if necessary, we deduce the existence of a particular index j such that
φ′

j ≥ φ′
i on the interval (0, ρ) for each index i . Take φ = φ j . Now consider any point

x ∈ U with 0 < f (x) < ρ. For some i we have x ∈ Mi , and then

|∇(φ ◦ f )|(x) ≥ |∇(φ ◦ f |Mi )|(x) ≥ |∇(φi ◦ f |Mi )|(x)

= |∇Mi (φi ◦ f |Mi )(x)| ≥ 1

where the first inequality follows from the definition of the slope and the second
follows from the inequality φ′ ≥ φ′

i and the chain rule for differentiable functions. �

Note that when U and f are subanalytic, by the Puiseux expansion we know the
desingularizer can take the form φ(τ) = κτ 1−θ for some exponent θ ∈ [0, 1) and
constant κ > 0 (see [33]).
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The brevity of our proof, compared with [16], comes with a slight cost. As we
remarked earlier, the KL inequality (4.2) can be written equivalently using the limiting
slope, and hence as the following property:

Subgradients of the function φ ◦ f at the point x all have norm at least 1.

By contrast, [16] proves a stronger result, namely the same property for Clarke sub-
gradients. In particular, when the function f is Lipschitz, this ensures that the property
above holds for all convex combinations of subgradients. By relying on the weaker,
limiting-slope-based KL property, we potentially narrow the scope of our convergence
analysis: the basic descent condition (3.1) at the iterate x amounts to requiring the exis-
tence at the next iterate x+ of a subgradient of norm no larger than 1√

δ

√
f (x) − f (x+),

whereas using the stronger KL property is more flexible, allowing Clarke subgradi-
ents instead. On the other hand, concrete methods such as majorization-minimization
algorithms do indeed enforce condition (3.1), so this distinction has no impact. For the
convergence results presented here, we are unaware of any practical impact deriving
from the stronger KL property in [16]: the simpler slope-based version proved here
seems adequate.

5 Convergence to aminimizer

As we have seen, convergence in value follows from the basic descent condition (3.1).
In practice, this condition often follows from two slope-descent conditions: there exist
constants α > 0 and β > 0 such that successive iterates x, x+ always satisfy

f (x) − f (x+) ≥ αd2(x, x+), (5.1)

d(x, x+) ≥ β|∇ f |(x+). (5.2)

We first observe that these conditions, which originated with the seminal analysis of
[38], are always satisfiable. Themetric space argument we present appears to be novel.
We note that the argument relies on completeness.

Proposition 5.1 (Existence of slope descent sequences) On a complete metric space
X, consider any lower semicontinuous function f : X → R̄ that is bounded below.
Then for any point x ∈ dom f and constants α, β > 0 satisfying αβ < 1

2 , there exists
a point x+ ∈ X satisfying the slope-descent conditions (5.1) and (5.2).

Proof In fact we prove a stronger property, with the limiting slope replaced by the
slope. The function h = f + αd2

x is also lower semicontinuous and bounded below.
We claim that, at all points y ∈ X , its slope satisfies

|∇h|(y) ≥ |∇ f |(y) − 2αd(x, y).

To prove this, we can restrict attention to a point y ∈ dom h where |∇h|(y) is finite.
Consider any constants ε′ > ε > |∇h|(y). By definition of the slope, y locally
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minimizes the function h + εdy , so all points z ∈ X sufficiently close to y satisfy

f (y) ≤ f (z) + α
(
d(x, z)2 − d(x, y)2

) + εd(y, z)

≤ f (z) + α
(
2d(x, y)d(y, z) + d(y, z)2

) + εd(y, z)

≤ f (z) + (
2αd(x, y) + ε′)d(y, z).

Consequently y also locally minimizes the function

f + (
2αd(x, y) + ε′)dy

and we deduce |∇ f |(y) ≤ 2αd(x, y) + ε′. Letting ε′ ↓ |∇h|(y) proves the claim.
If x minimizes the function h, then |∇h|(x) = 0 and hence |∇ f |(x) = 0, so we

can choose x+ = x . Otherwise, define t = 1
2 (h(x) + inf h) and note that the distance

δ from x to the sublevel set {y ∈ X : h(y) ≤ t} is strictly positive. The Ekeland
principle [28] implies the existence of a point x+ ∈ X satisfying both the inequalities
h(x+) ≤ t and |∇h|(x+) ≤ ( 1

β
− 2α)δ. We deduce d(x, x+) ≥ δ and

|∇ f |(x+) ≤ |∇h|(x+) + 2αd(x, x+) ≤ 1

β
d(x, x+),

so inequality (5.2) follows. Inequality (5.1) follows from h(x+) ≤ t < h(x). �

The argument above shows in particular that any proximal point x+ (a point that

minimizes the function f + αd2
x ) must satisfy the slope descent conditions (5.1) and

(5.2) assuming αβ < 1
2 . Existence (and uniqueness) of proximal points for lower

semicontinuous convex functions f is guaranteed on a Hilbert space X by Minty’s
Theorem [40], and also in more general metric spaces [11, 32]. However, in general,
unless the metric space X is proper (meaning that all closed balls are compact),
proximal points may not exist.

The following result is well known in the Euclidean case [6].We present this general
version here, condensing the arguments of [6], both for completeness and to highlight
the purely metric nature of the ideas. We assume concavity of the desingularizer, and
use lower semicontinuity of the objective, but rely on no further continuity properties.

Theorem 5.2 (Iterate convergence)On a complete metric space X, consider any lower
semicontinuous function f : X → R̄ that is bounded below and satisfies the KL
property for minimization with a concave desingularizer φ, and any sequence (xk) in
X satisfying the slope-descent conditions (5.1) and (5.2) with initial value f (x0) near
inf f . Then, xk converges to a minimizer of f .

Proof We can assume that no iterate minimizes f , since otherwise the first inequality
would ensure that the sequence is constant thereafter. The objective values f (xk)

decrease monotonically, so, like f (x0), are near inf f , and the KL inequality ensures
that the gap g satisfies

1 ≤ |∇(φ ◦ g)|(xk) = φ′(g(xk)
) · |∇g|(xk).
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We deduce that each limiting slope |∇g|(xk) = |∇ f |(xk) is nonzero, and so the
distances dk = d(xk−1, xk) are nonzero for all k > 0.

Using the concavity of the desingularizer φ, we observe, for all k > 0,

φ
(
g(xk)

) − φ
(
g(xk+1)

) ≥ φ′(g(xk)
)(

g(xk) − g(xk+1)
)

≥ f (xk) − f (xk+1)

|∇ f |(xk)
≥ αd2

k+1

βdk
,

so

β

α

(
φ
(
g(xk)

) − φ
(
g(xk+1)

)) ≥ 2dkdk+1 − d2
k

dk
≥ 2dk+1 − dk .

Define numbers

λk = β

α
φ
(
g(xk)

) + dk > 0 for k > 0.

We have then proved

d(xk, xk+1) ≤ λk − λk+1.

It follows that the sequence (xk) is Cauchy, and hence converges to some limit x∗.
But Theorem 3.1 shows that f (xk) decreases to inf f , so lower semicontinuity now
ensures that x∗ minimizes f . �


In general, we know nothing about how fast the error d(xk, x∗) converges to
zero, even in the canonical case of the proximal point method. However, with some
knowledge of the desingularizer φ, the proof shows more. Following [4, 6], we have

d(xk, x∗) ≤
m−1∑

j=k

d(x j , x j+1) + d(xm, x∗) ≤ λk − λm + d(xm, x∗).

Letting m → ∞ shows

d(xk, x∗) ≤ λk = β

α
φ
(
g(xk)

) + dk ≤ β

α
φ
(
g(xk)

) +
√

g(xk−1)

α
,

and complexity estimates follow. Following the discussion in the earlier section, in
the case of the standard desingularizer φ(τ) = κτ 1−θ for κ > 0 and 0 ≤ θ < 1,
we obtain four different scenarios in terms of the convergence rate: finite (θ = 0),
superlinear (0 < θ < 1

2 ), linear (θ = 1
2 ), and, for the case

1
2 < θ < 1, the scenario

d(xk, x∗) = O

((1
k

) 1−θ
2θ−1

)
. (5.3)
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6 Convergence to a critical point

The previous convergence results rely on the initial value of the objective function
f being close to its infimum. Without that assumption, in the absence of any global
convex-like assumptions on f , we instead resort to seeking a point x∗ ∈ X that is
critical, meaning that the limiting slope |∇ f |(x∗) is zero. For smooth functions on
manifolds, for example, this idea coincides with the classical notion. Clearly, any local
minimizer is a critical point.

In this section, we present conditions guaranteeing a global convergence property:
any sequence satisfying the slope-descent conditions (5.1) and (5.2) must converge to
a critical point. The approach essentially follows [6], in particular relying first on the
following property.

Definition 6.1 Consider a lower semicontinuous proper function f : X → R̄. We call
f a KL-function if, for all points x̄ ∈ X with finite value, there exists a concave
desingularizer φ and a constant ρ > 0 such that

d(x, x̄) < ρ and f (x) − f̄ ∈ (0, ρ) ⇒ |∇(
φ ◦ ( f − f̄ )

)|(x) ≥ 1, (6.1)

where f̄ = f (x̄).

Some remarks about this definition are in order. First, the desired property is auto-
matic at points x̄ that are not critical, as is easy to verify, so the notion really concerns
critical points. Secondly, we note the following well-known result [15, 16, 47], which
follows from Sect. 4.

Corollary 6.2 All lower semicontinuous semi-algebraic (or, more generally, definable)
functions are KL-functions.

Finally, as before, we can equivalently replace the slope in the definition by the limiting
slope.

An important feature of any KL-function f is the possibility of fixing a uniform
desingularizer over any compact set X̄ ⊂ X on which f is constant. More precisely,
there exists a desingularizer φ and constant ρ > 0 such that the KL property (6.1)
holds (in terms of both the slope and limiting slope) for all points x̄ ∈ X̄ . The proof
is a routine compactness argument: using the desingularizers φx̄ and constants ρx̄ for
each point x̄ , the corresponding neighborhoods cover X̄ , so we can select a subcover
corresponding to a finite set of points {xi }, and then set the constant ρ = mini ρxi and
the desingularizer φ = ∑

i φxi . As a consequence of this uniformity property, any KL
function with a compact set of minimizers has the Kurdyka–Łojasiewicz property for
minimization, in the sense of Definition 2.3.

We would not be exaggerating much to assert that all optimization objectives in
practice are KL-functions. The second condition we assume is less universal, but still
common (cf. [3, Theorem 2.3.1] and [26]).

Definition 6.3 A proper function f : X → R̄ is continuous on slope-bounded sets if,
for all points x̄ ∈ dom f and sequences xk → x̄ , if the sequence of values f (xk) and
the sequence of slopes |∇ f |(xk) are both bounded, then f (xk) → f (x̄).
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Clearly this property holds if f is continuous, or more generally, continuous on its
domain, but it also holds for lower semicontinuous functions on a Euclidean space
that are convex or, more generally, “subdifferentially continuous” [46].

Like Theorem 5.2, versions of the following result are well-known in the Euclidean
case [6].

Theorem 6.4 (Global convergence) On a complete metric space X, consider any KL-
function f : X → R̄ that is bounded below and continuous on slope-bounded sets.
Then any relatively compact sequence (xk) in X satisfying the slope-descent conditions
(5.1) and (5.2) must converge to a critical point of f .

Proof The value μ = infk f (xk) is finite. Note f (xk) − f (xk+1) → 0, because the
values f (xk) decrease monotonically to μ. The slope-descent conditions (5.1) and
(5.2) now imply

d(xk, xk+1) → 0 and |∇ f |(xk) → 0. (6.2)

Furthermore, if f (xk) = μ ever holds, then |∇ f |(xk) = 0 and x j = xk for all j ≥ k,
so there is nothing to prove. Thus we can assume f (xk) > μ for all k.

The set X̄ of the limit points of the sequence (xk) is closed, and is contained in the
closure of the sequence, which by assumption is compact. Hence X̄ is nonempty and
compact. An elementary argument implies distX̄ (xk) → 0.

Consider any subsequence K ⊂ N for which the sequence (xk)k∈K converges.
Denote the limit by x̄ . As k → ∞ in K , we know f (xk) → μ and |∇ f |(xk) → 0, so
by the definition of the limiting slope, there exist corresponding points x ′

k for k ∈ K
such that x ′

k → x̄ , f (x ′
k) → μ, and |∇ f |(x ′

k) → 0 as k → ∞ in K . Thus x̄ is critical,
and continuity on slope-bounded sets implies f (x̄) = μ. Thus f is constant on the
set X̄ , which furthermore consists entirely of critical points.

Following the discussion of uniformity after Definition 6.1, since the set X̄ is
compact, there exists a concave desingularizer φ and a constant ρ > 0 such that
property (6.1) holds with f̄ = μ for all points x̄ ∈ X̄ . For all large k, we know

distX̄ (xk) < ρ and f (xk) − μ ∈ (0, ρ),

so

∣∣∇(
φ ◦ ( f − μ)

)∣∣(xk) ≥ 1.

Following exactly the same argument as in the proof of Theorem 5.2, we deduce that
the whole sequence (xk) converges, and the limit is critical since it lies in X̄ . �


7 Majorization-minimizationmethods

To illustrate the philosophy of this work, we present a metric approach to the conver-
gence analysis ofmajorization-minimization (MM)algorithms.The approachparallels
the Euclidean development of [19], and in the Euclidean case the results are similar.
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However, by recasting some key variational-analytic assumptions from [19], we reveal
the purely metric essence of the convergence theory.

MM algorithms are conceptually simple iterative techniques for minimizing an
objective function f : X → R over a set X . At each point x ∈ X we associate a model
subset D(x) of X that contains x , and a majorizing model function hx : that is, hx ≥ f
with equality at the point x . The simplest examples have D(x) identically equal to
X . We then consider the corresponding envelope F : X → R̄ and set-valued iteration
map p : X ⇒ X defined at each point x ∈ X by

F(x) = inf
D(x)

hx and p(x) = argmin
D(x)

hx

and MM sequences, in which successive iterates x, x+ always satisfy x+ ∈ p(x).
Majorization-minimization algorithms have been widely used in practice, originally
in the statistics literature [25]. As discussed in detail in [19], the MM framework is
very versatile, covering, in particular, sequential quadratic programming and convex-
composite optimization.

A fundamental initial question is whether an MM sequence (xk) is a minimizing
sequence for the objective f , by which we simply mean f (xk) → inf f . We first
collect some elementary observations, versions of which can be found in many MM
developments.

Proposition 7.1 Consider an MM method for an objective f over a set X. Then f
majorizes the corresponding envelope F, and inf f = inf F. An MM sequence is a
minimizing sequence for f if and only if it is a minimizing sequence for F. Furthermore,
the iteration map p satisfies

p(argmin F) ⊂ argmin f ⊂ argmin F,

with equality if p is everywhere nonempty-valued and the model satisfies hx (y) > f (y)

for all distinct points x ∈ X and y ∈ D(x).

Proof All x ∈ X satisfy F(x) ≤ hx (x) = f (x), so majorization follows. We also
have

inf
y∈X

F(y) ≤ inf
y∈X

f (y) ≤ inf
y∈D(x)

hx (y) = inf
x

F(x),

so f and F have the same infimum and furthermore argmin f ⊂ argmin F . To
deduce the claim about MM sequences (xk), notice f (xk) ≥ F(xk) ≥ f (xk+1),
because F(xk) = hxk (xk+1). Finally, consider any minimizer x for F . If there exists
a point y ∈ p(x), then we have

inf F = F(x) = hx (y) ≥ f (y) ≥ inf f = inf F .

Hence equality holds throughout, so y minimizes f . If we have the extra strict
domination condition, then the above relationship implies y = x . �
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The final claim may fail if the iteration map is possibly empty-valued. An example is
the objective f (x) = ex for x ∈ X = R, with model subset D(x) = R for all x and
model function hx (y) = (1 + |x − y|)ey for y ∈ R. The envelope F is identically
zero and the iteration map p is always empty-valued.

The proposition above motivates our subsequent analysis. Rather than applying
convergence results like those in Sect. 3 directly to the objective f , Proposition 7.1
opens up the possibility of working instead with the envelope F .

We return to the setting where X is a metric space, and consider bivariate functions
h : X × X → R that are locally Lipschitz, or equivalently, locally Lipschitz with
respect to each variable separately. The novelty in our analysis revolves around the
following strengthening of the Lipschitz property with respect to the first variable,
an intuitive but apparently new notion. The analogous “qualification condition” in
the Euclidean development of [19] relies on subtle use of dual variational-analytic
objects—subgradients and normal cones. By contrast, in keeping with the philosophy
of this work, our condition is purely metric, simplifying and broadening its applicabil-
ity. Even in the Euclidean case, where the applicability of the two conditions largely
overlaps, they appear formally independent.

Definition 7.2 Given ametric space X , an approximator is a locally Lipschitz function
h : X × X → R such that for each point x̄ ∈ X there exists a constant γ ≥ 0 so all
points x, y, z ∈ X near x̄ satisfy the inequality

|h(x, y) − h(z, y)| ≤ γ d(x, z)
(
d(x, y) + d(z, y)

)
. (7.1)

Here are some simple examples.

Example 7.3 (Squared distance) The function defined by h(x, y) = d2(x, y) for x, y ∈
X is an approximator, being locally Lipschitz and satisfying

|h(x, y) − h(z, y)| = |d2(x, y) − d2(z, y)| = |d(x, y) − d(z, y)|d(x, y) + d(z, y)|
≤ d(x, z)

(
(d(x, y) + d(z, y)

)

for all z ∈ X .

Example 7.4 (Threshhold) For any radius ρ > 0, the function defined by

h(x, y) = max{d(x, y) − ρ, 0} = distBρ(x)(y) (x, y ∈ X)

is an approximator. Being a maximum of Lipschitz functions, it too is Lipschitz.
Furthermore, for any point z ∈ X , if d(x, y) ≥ ρ and d(z, y) ≥ ρ, then

h(x, y) − h(z, y) = d(x, y) − d(z, y) ≤ d(x, z) ≤ 1

2ρ
d(x, z)

(
d(x, y) + d(z, y)

)
,

while if d(x, y) ≥ ρ ≥ d(z, y), then

h(x, y) − h(z, y) = d(x, y) − ρ ≤ d(x, y) − d(z, y) ≤ d(x, z)
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≤ 1

ρ
d(x, z)

(
d(x, y) + d(z, y)

)
.

We deduce

h(x, y) − h(z, y) ≤ 1

ρ
d(x, z)

(
d(x, y) + d(z, y)

)
,

the case d(x, y) ≤ ρ being trivial. The desired property now follows by symmetry.

The following example is particularly useful.

Example 7.5 (Linear approximation) In the Euclidean space X = Rn , consider a func-
tion g : Rn → R whose gradient ∇g is L-Lipschitz. Then the function defined from
the linear approximation by

h(x, y) = g(x) + 〈∇g(x), y − x〉 (x, y ∈ X)

is an approximator.

The following observation is simple to verify.

Proposition 7.6 Sums and scalar multiples of approximators are also approximators.

Our development relies on some strong structural assumptions about the underlying
feasible region X .We assume in particular that, as ametric space, X is proper, meaning
that all closed balls are compact. In particular, X is therefore complete and locally
compact.

Proposition 7.7 (Uniform approximators) Consider a proper metric space X and a
function h : X × X → R. Then h is an approximator if and only if for all bounded
subsets X ′ ⊂ X, the function h is Lipschitz on X ′ × X ′ and there exists a constant
γ > 0 such that the approximator inequality (7.1) holds uniformly for all points
x, y, z ∈ X ′.

Proof The given property clearly implies that h is an approximator, so we focus on
the converse. Assuming that h is an approximator, the uniform Lipschitz property on
bounded sets is a standard compactness argument, and the followingproof of inequality
(7.1) is similar. If the property fails, then there exist sequences (xk), (yk) and (zk) in
the bounded set X ′ and constants γk → +∞ satisfying, for all k = 1, 2, 3, . . ., the
inequality

|h(xk, yk) − h(zk, yk)| > γkd(xk, zk)
(
d(xk, yk) + d(zk, yk)

)
. (7.2)

Since X is proper, we can take subsequences and suppose xk → x̄ , yk → ȳ, and
zk → z̄. Denoting by λ a Lipschitz constant for h on X ′ × X ′, we deduce

λ > γk
(
d(xk, yk) + d(zk, yk)

)
,

so both d(xk, yk) and d(zk, yk) converge to zero. Consequently we have x̄ = ȳ = z̄,
and so inequality (7.2) contradicts the definition of an approximator. �
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Lemma 7.8 (Distance functions as approximators) Consider a proper metric space X
and a set-valued mapping D : X ⇒ X such that for each point x ∈ X, the image D(x)

is closed and contains x. Then the function defined by

h(x, y) = distD(x)(y)

is an approximator if and only if h is locally Lipschitz and for each point x̄ ∈ X there
exists a constant γ ≥ 0 such that all points x, y, z ∈ X near x̄ with y ∈ D(z) satisfy
the inequality

distD(x)(y) ≤ γ d(x, z)
(
d(x, y) + d(z, y)

)
.

Proof The direct implication is immediate, so we focus on the converse. For any point
x ∈ X , the function h(x, ·), being a distance function, is 1-Lipschitz. Turning to the
first variable and the approximator inequality, first note that for all points x, y, z ∈ X ,
choosing any u ∈ ProjD(z)(y) and w ∈ ProjD(x)(u), we have

distD(x)(y) − distD(z)(y) = distD(x)(y) − d(u, y) ≤ d(w, y) − d(u, y) ≤ d(w, u)

so

distD(x)(y) − distD(z)(y) ≤ distD(x)(u). (7.3)

Since z ∈ D(z), we deduce d(u, y) ≤ d(z, y). So when x, y, z are all near x̄ , u is also
near x̄ , and our assumption implies

distD(x)(y) − distD(z)(y) ≤ distD(x)(u) ≤ γ d(x, z)
(
d(x, u) + d(z, u)

)

≤ γ d(x, z)
(
d(x, y) + d(u, y) + d(z, y) + d(u, y)

)

≤ γ d(x, z)
(
d(x, y) + 3d(z, y)

)

≤ 3γ d(x, z)
(
d(x, y) + d(z, y)

)
.

The approximator property (7.1) follows by symmetry, with the constant 3γ . �

Example 7.4 illustrates exactly this kind of approximator.

Remark 7.9 The Lipschitz continuity of the function h defined in Lemma 7.8 amounts
to pseudo-Lipschitz continuity for the mapping D: see [45].

In the development that follows, in addition to assuming that the feasible region X
is a proper metric space, we suppose that it is a closed subset of a possibly larger metric
space X̄ , with the inherited metric. The role of X̄ is purely to deploy some convexity
arguments. We use the idea of a geodesic (of unit speed), which is an isometry from
a compact interval of R into X̄ ; the endpoints and midpoint are the images of the
endpoints of the interval and its midpoint respectively. In our discussions, we often
identify a geodesic with its image. We call X̄ a geodesic space if every pair of points
are the endpoints of a geodesic. A subset D is geodesically convex if D contains all
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geodesics whose endpoints lie in D. In that case, a function g : D → R is geodesically
convex if its composition with every geodesic in D is convex, and is geodesically μ-
strongly convex (for μ > 0) if its composition with every geodesic in D is μ-strongly
convex.

A geodesic space X̄ is a CAT(0) space when, for all points x ∈ X̄ , the function
1
2d2(x, ·) is geodesically 1-strongly convex. This latter property is crucial for the prox-
imal point iteration [11, 32]. In particular, it implies that balls in X̄ are geodesically
convex. Complete, locally compact geodesic spaces are proper as a consequence of
a suitable version of the Hopf–Rinow Theorem [41, Theorem 7.2] and [21, Proposi-
tion I.3.7]. Complete CAT(0) spaces are called Hadamard spaces: examples of locally
compact Hadamard spaces include all finite-dimensional Riemannian manifolds that
are complete, simply connected, and having non-positive sectional curvature.

For convenience, we collect our assumptions below.

Assumption 7.10 The feasible region X is a proper metric subspace of a geodesic
space, the objective function f : X → R is bounded below, and the optimization
problem infX f admits the following majorization-minimization tools.

• An approximatingmapping D : X ⇒ X that assigns to each feasible point x ∈ X
a closed and geodesically convex subset D(x) that contains x .

• A constantμ ≥ 0 and amodeling function h : X × X → R assigns to each x ∈ X
a geodesically μ-strongly convex function hx : D(x) → R satisfying

h(x, y) = hx (y) ≥ f (y) for y ∈ D(x), with equality if y = x .

Furthermore, both h and the function defined by

(x, y) �→ distD(x)(y) (x, y ∈ X)

are approximators in the sense of Definition 7.2.

Before proceeding, we make some observations. Implicit in the assumption (as a
consequence of the approximator properties) is that the feasible region X is closed
and the objective f is locally Lipschitz. However, we emphasize that neither need
be geodesically convex. The assumption furthermore ensures that the approximation
mapping D has closed graph, and in fact is continuous, since the function (x, y) �→
distD(x)(y) is continuous. We also see that each approximating set D(x) is a closed
second-order approximation of X , and each model hx is a continuous second-order
approximation of f : for points y ∈ X near x we have

distD(x)(y) = O
(
d2(x, y)

)
and (hx − f )(y) = O

(
d2(x, y)

)
.

Example 7.11 (Proximal Point Method) Consider a locally compact Hadamard space
X and a geodesically convex, locally Lipschitz function f : X → R that is bounded
below. Let D(x) = X for all points x ∈ X , and for any constant μ > 0, define the
associated quadratic penalty modeling function

h(x, y) = f (y) + μ

2
d2(x, y). (7.4)
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Then Assumption 7.10 holds. The associated envelope is the Moreau–Yosida approx-
imation of f , the iteration map is the metric version of the proximal point iteration
[11], and MM sequences are just proximal point sequences.

In any locally compact Hadamard space X , a nontrivial example of an approximating
mapping is defined, for any radius ρ > 0, by D(x) = Bρ(x), as seen in Example 7.4.

MM sequences are just fixed point iterations associated with the iteration map p.
We first study the fixed point property x ∈ p(x). Clearly, every minimizer of the
objective f is a fixed point of p. Moreover, we have the following converse result,
which is an analogue of the Euclidean result [19, Lemma 5].

Proposition 7.12 (Fixed points and zero slope) If Assumption 7.10 holds, then at any
fixed point of the iteration map, the objective has slope zero.

Proof Consider any fixed point x . If the objective f has strictly positive slope, then
there exists a constant σ > 0 and a sequence of points xk �= x converging to x in X
and all satisfying

f (x) − f (xk)

d(x, xk)
> σ.

By our assumptions, there exist points yk ∈ D(x) satisfying d(yk, xk) = o
(
d(xk, x)

)
.

The fixed point property ensures f (x) ≤ hx (yk), so we have

lim inf
k

hx (xk) − f (xk)

d(x, xk)
= lim inf

k

hx (yk) − f (xk)

d(x, xk)
≥ σ,

using Lipschitz property of the model hx . But this contradicts the implication from
our assumptions that hx (xk) − f (xk) = o

(
d(xk, x)

)
. �


Proposition 7.13 On a proper geodesic space, continuous functions that are geodesi-
cally strongly convex have unique minimizers.

Proof Denote the given function by g: we first prove that it is bounded below. Denote
the strong convexity constant byμ. Let S denote the closed ball of unit radius centered
at some point x̄ ∈ X . By assumption, g is continuous on the compact set S, so the
value minS g is finite.

Consider any point y outside S. Let x denote the point on the geodesic segment
[x̄, y] satisfying d(x̄, x) = 1, so x ∈ S. Define a numberλ = 1

d(x̄,y)
∈ (0, 1). Geodesic

strong convexity implies

min
S

g ≤ g(x) ≤ (1 − λ)g(x̄) + λg(y) − μ

2
λ(1 − λ)

1

λ2

and hence

g(y) ≥ g(x̄) − β

λ
+ μ

2λ2
≥ g(x̄) − β2

2μ
,
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where β = g(x̄) − minS g + μ
2 . Thus g is bounded below.

At any point x ∈ X satisfying g(x) ≤ g(x̄), consider a geodesic with endpoints x
and x̄ . The midpoint x ′ satisfies

inf g ≤ g(x ′) ≤ 1

2
g(x) + 1

2
g(x̄) − μ

8
d2(x, x̄) ≤ g(x̄) − μ

8
d2(x, x̄),

so x lies in the closed ball defined by d2(x, x̄) ≤ 8
μ
(g(x̄)− inf g). By continuity, g has

a minimizer x̂ over this compact set, and x̂ must minimize g globally. The preceding
inequality shows uniqueness. �

In fact, in any Hadamard space, any strongly convex lower semicontinuous function
has a unique minimizer [12, Proposition 2.2.17]. Also see [39].

Proposition 7.14 Suppose that Assumption 7.10 holds. Then the iteration map is
single-valued and continuous. Furthermore, for any associated MM sequence that
is bounded, there exists a constant β ≥ 0 such that the envelope F at all successive
triples of iterates x−, x, x+ satisfies the descent conditions

F(x−) − F(x) ≥ μ

2
d2(x, x+), (7.5)

|∇F |(x) ≤ βd(x, x+). (7.6)

Proof The previous result shows that the iteration map p is single-valued. We next
prove the quadratic growth condition

hx (y) − hx
(

p(x)
) ≥ μ

2
d2(y, p(x)

)
whenever y ∈ D(x). (7.7)

To see this, for any point y �= p(x) in the geodesically convex set D(x), consider the
distance δ = d(p(x), y) > 0 and a geodesic γ : [0, δ] → D(x) satisfying γ (0) =
p(x) and γ (δ) = y. By μ-strong convexity, for τ ∈ [0, δ] we have γ (τ) ∈ D(x) and

hx
(
γ (τ)

) − μ

2
τ 2 ≤

(
1 − τ

δ

)
hx

(
p(x)

) + τ

δ

(
hx (y) − μ

2
δ2

)
.

Since p(x) minimizes hx on D(x), for small τ > 0 we deduce

0 ≤ hx
(
γ (τ)

) − hx
(

p(x)
) ≤ τ

δ

(
hx (y) − hx

(
p(x)

) − μ

2
δ2

)
+ μ

2
τ 2.

Dividing by τ and taking the limit as τ ↓ 0 proves the growth condition (7.7).
Consider any sequence (xk) in X converging to a point x̄ . Since p(x̄) ∈ D(x̄), the

continuity of D ensures the existence of points yk ∈ D(xk) satisfying yk → p(x̄).
The growth condition (7.7) implies, for all k, the inequality

hxk (yk) − hxk

(
p(xk)

) ≥ μ

2
d2(yk, p(xk)

)
.
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The left-hand side is no greater than hxk (yk) − inf f . Consequently, the sequence(
p(xk)

)
is bounded, and any limit point z must satisfy

0 ≥ hx̄
(

p(x̄)
) − hx̄ (z) ≥ μ

2
d2(p(x̄), z

)
,

and hence z = p(x̄). Thus p is continuous.
At any point x ∈ X , inequality (7.7) implies

F(x) − F
(

p(x)
) = hx

(
p(x)

) − h p(x)

(
p
(

p(x)
))

≥ h p(x)

(
p(x)

) − h p(x)

(
p
(

p(x)
)) ≥ μ

2
d2

(
p(x), p

(
p(x)

))
.

This proves the descent condition (7.5).
To prove the final descent condition (7.6), we can assume |∇F |(x) > 0, since

otherwise there is nothing to prove, so there exists a sequence of points xk → x in X
with

|∇F |(x) = lim
k

F(x) − F(xk)

d(x, xk)
= lim

k

h
(
x, p(x)

) − h
(
xk, p(xk)

)

d(x, xk)
.

Consider the sequence

αk = d
(
x, p(xk)

) + d
(
xk, p(xk)

)
.

Since p(xk) ∈ D(xk) and the function (x, y) �→ distD(x)(y) is an approximator (and
bearing in mind Proposition 7.7), we know for some constant γ ≥ 0 the inequality

distD(x)

(
p(xk)

) ≤ γαkd(x, xk)

for all k, so there exists a bounded sequence of points yk ∈ D(x) satisfying

d
(
yk, p(xk)

) ≤ γαkd(x, xk).

Increasing γ if necessary, we can also ensure, for all k, the inequalities

h
(
x, p(xk)

) − h
(
xk, p(xk)

) ≤ γαkd(x, xk)

h(x, yk) − h
(
x, p(xk)

) ≤ γ d
(
yk, p(xk)

)
,

since h is also an approximator. Using our assumptions and the continuity of p, we
deduce

|∇F |(x) ≤ lim inf
k

h
(
x, yk

) − h
(
xk, p(xk)

)

d(x, xk)

≤ lim inf
k

h
(
x, p(xk)

) + γ d
(
yk, p(xk)

) − h
(
xk, p(xk)

)

d(x, xk)
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≤ γ (γ + 1) lim inf
k

αk = 2γ (γ + 1)d
(
x, p(x)

)
.

This completes the proof. �

Following the general framework promoted in [27], this result serves to justify the
natural “small step” stopping criterion for MM algorithms, since if two successive
iterates x, x+ are close, then the slope of the envelope at x must be small.

Theorem 7.15 (MM sequence convergence) Suppose that Assumption 7.10 holds. If
the corresponding envelope, when restricted to closed balls, always satisfies the KL
property for minimization, with a concave desingularizer, then any bounded M M
sequence (xk) with initial value f (x0) near inf f converges to a minimizer of f .

Proof The proof follows similar techniques in [19, 43] in imitating that of Theorem5.2.
By our previous results, successive triples of iterates . . . x−, x, x+ . . . satisfy

F(x−) − F(x) ≥ μ

2
d2(x, x+) and d(x, x+) ≥ β|∇F |(x). (7.8)

We can assume that no iterate minimizes F , since otherwise the first inequality would
ensure that the sequence is constant thereafter. Define the gap function g = F − inf F .
The envelope values F(xk) decreasemonotonically, and theKL inequality ensures that
the gap g satisfies

1 ≤ |∇(φ ◦ g)|(xk) = φ′(g(xk)
) · |∇g|(xk).

We deduce that each slope |∇g|(xk) = |∇F |(xk) is nonzero, and so the distances
dk = d(xk−1, xk) are nonzero for all k > 0.

Using the concavity of the desingularizer φ, we observe, for all k > 0,

φ
(
g(xk−1)

) − φ
(
g(xk)

) ≥ φ′(g(xk−1)
)(

g(xk−1) − g(xk)
) ≥ F(xk−1) − F(xk)

|∇F |(xk−1)

≥ μd2
k+1

2βdk
,

so

2β

μ

(
φ
(
g(xk−1)

) − φ
(
g(xk)

)) ≥ 2dkdk+1 − d2
k

dk
≥ 2dk+1 − dk .

We deduce that the positive numbers λk = 2β
μ

φ
(
g(xk−1)

)+dk satisfy the key inequal-
ity d(xk, xk+1) ≤ λk − λk+1, so the sequence (xk), being Cauchy, converges to some
limit x∗. Theorem 3.1 shows that (xk) is a minimizing sequence for F and hence also
for f , so by continuity we deduce that x∗ minimizes f , as required. �

Remark 7.16 This result implies the convergence ofMM sequences for semi-algebraic
optimization in broad generality. More precisely, suppose that the feasible region is
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a semi-algebraic subset of a Euclidean space, and that the approximating mapping
and modeling function are also semi-algebraic. In that case the envelope F is also
semi-algebraic, and so satisfies the condition.

Theorem 7.17 (Global convergence ofMM sequences) Suppose that Assumption 7.10
holds. If the corresponding envelope is a KL function with a concave desingularizer,
as holds in particular if the feasible region, approximating mapping and modeling
function are all semi-algebraic (or, more generally, definable), then any bounded M M
sequence converges to a point where the objective has zero slope.

Proof We follow the proof of Theorem 6.4, but instead using the inequalities (7.8) as in
the previous proof. If the objective f has bounded sublevel sets, then anyMMsequence
must be bounded because the corresponding objective values decrease monotonically.
The proof shows that the sequence generated by the iteration x ← p(x) converges to
some limit x∗. Since the iteration map p is continuous, x∗ must be a fixed point, from
which we deduce |∇ f |(x∗) = 0 by Proposition 7.12. �

Note that MM sequences are always bounded if the objective has bounded sublevel
sets. We end with three illustrations from the literature.

7.1 Convex-composite optimization [36]

Given Euclidean spaces X and W , a C(2)-smooth map G : X → W , a convex function
q : W → R and any constant μ > 0, we consider the composite objective f : X →
R, a function H : X × X → W describing the linear approximation to G, and the
“prox-linearized” function h : X × X → R, defined for points x, y in X by

f (x) = q
(
G(x)

)
,

H(x, y) = G(x) + DG(x)[y − x],
h(x, y) = q

(
H(x, y)

) + μ

2
|x − y|2,

where the linear map DG(x) : X → W is the derivative for G at x . With the trivial
approximating mapping defined by D(x) = X for all points x ∈ X , we show under
reasonable conditions that Assumption 7.10 holds.

We suppose that f is bounded below. We assume too that q is L-Lipschitz, and
that the second derivative of G, the bilinear map D2G(x) : X × X → W , has norm
bounded by a constant M for all x . (For simplicity of exposition, these are global
assumptions; a more refined development allows the constants to depend on a given
bounded domain.) For any point x ∈ X and unit vector w ∈ W , consider the function
e : X → R defined by

e(y) = 〈w, H(x, y) − G(y)〉 (y ∈ X).

Notice for all vectors u ∈ X we have

De(y)[u] = 〈w,
(
DG(x) − DG(y)

)[u]〉.
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By the mean value theorem, there exists a point z ∈ [x, y] such that

e(y) = e(x) + De(z)[y − x] = 〈w,
(
DG(x) − DG(z)

)[y − x]〉,

and furthermore a point u ∈ [x, z] such that

(
DG(x) − DG(z)

)[y − x] = D2G(u)[y − x, x − z].

Hence

∣∣G(x) + DG(x)[y − x] − G(y)
∣∣ ≤ M |y − x | |x − z|,

so
∣∣∣q

(
G(y)

) − q
(
G(x) + DG(x)[y − x])

∣∣∣ ≤ L M |x − y|2.

Providing μ > 2L M we deduce the majorization property.
Turning to the remaining assumptions, fix a point y ∈ X . We first prove that all

points x, z ∈ X satisfy

|H(x, y) − H(z, y)| ≤ M |x − z|(|x − y| + |z − y|). (7.9)

Fix any unit vectorw ∈ W , and define a function c : X → R by c(x) = 〈w, H(x, y)〉.
Then, by the mean value theorem, there exists a point u ∈ [x, z] such that

c(x) − c(z) = Dc(u)[x − z] = 〈w, D2G(u)[y − u, x − z]〉.

Since w was arbitrary, our claim now follows, since |y − u| ≤ |x − y| + |z − y|.
Using inequality (7.9), we deduce

|h(x, y) − h(z, y)| ≤ L M |x − z|(|x − y| + |z − y|) + μ

2

∣∣|x − y|2 − |z − y|2∣∣

= L M |x − z|(|x − y| + |z − y|) + μ

2
|〈x − z, x + z − 2y〉|

≤
(

L M + μ

2

)
|x − z|(|x − y| + |z − y|).

Assumption 7.10 follows.
Suppose in addition that the functions q and G are semi-algebraic. Then for all

sufficiently large constantsμ > 0, any bounded sequence generated by the prox-linear
iteration

x ← argmin
y

{
q
(
G(x) + DG(x)[y − x]) + μ

2
|x − y|2

}

converges to a point where the composite function q ◦ G has slope zero.
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7.2 Moving balls method [7, 19]

For differentiable functions f , f1, f2, . . . , fm : Rn → Rwith Lipschitz gradients, we
consider the problem of minimizing the objective f over the feasible region

X = {x ∈ Rn : fi (x) ≤ 0 for each i}.

We assume that this classical nonlinear program is bounded below, and that the
Mangasarian–Fromovitz constraint qualification (MFCQ) holds: in other words, for
all points x ∈ X , there exists a vector d ∈ Rn satisfying

〈∇ fi (x), d〉 < 0 for all i ∈ I (x) = {i : fi (x) = 0}.

With the aim of constructing an optimization method that maintains feasibility,
our majorization-minimization tools consist of an approximating mapping D and a
modeling function h defined by

h(x, y) = f (x) + 〈∇ f (x), y − x〉 + L

2
‖y − x‖2,

hi (x, y) = fi (x) + 〈∇ fi (x), y − x〉 + Li

2
‖y − x‖2 for each i,

D(x) =
⋂

i

Di (x) with Di (x) = {y ∈ Rn : hi (x, y) ≤ 0} for each i,

where L, L1, . . . , Lm are the Lipschitz moduli of ∇ f ,∇ f1, . . . ,∇ fm respectively.
For each point x ∈ X , the set Di (x) is a closed ball centered at the point x − 1

Li
∇ fi (x)

and with radius

ρi (x) =
√

1

L2
i

‖∇ fi (x)‖2 − 2

Li
fi (x).

Hence the name of the method. Our aim is to show that Assumption 7.10 holds,
ensuring convergence of the method under reasonable conditions.

It suffices to verify that both the functions h and (x, y) �→ distD(x)(y) (for points
x, y ∈ Rn) are approximators, since the other conditions easily follow from the
standard quadratic upper bound for L-smooth functions g : Rn → R:

g(y) ≤ g(x) + 〈∇g(x), y − x〉 + L

2
‖y − x‖2.

The fact that h is an approximator follows from Examples 7.3 and 7.5, along with
Proposition 7.6. In fact, it is easy to verify directly that all points x, y, z ∈ Rn satisfy
the inequality

|h(x, y) − h(z, y)| ≤ 3L

2
|x − z|(|x − y| + |z − y|) (7.10)
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along with the corresponding inequality for the functions hi .
To show that the function (x, y) �→ distD(x)(y) is also an approximator, we need

the following elementary fact [42]: for closed convex sets S1, S2, . . . , Sm ⊂ Rn , each
containing the ball Bδ(0), all points x ∈ Rn satisfy

dist∩i Si (x) ≤ ‖x‖
δ

max
i

{
distSi (x)

}
. (7.11)

Fix a point x̄ ∈ X . By the MFCQ condition, there exists a unit vector d ∈ Rn

satisfying

〈∇ fi (x̄), d〉 < 0 for all i ∈ I (x̄).

For any constant ε ∈ (0,mini 2Li ) sufficiently small, all points x ∈ Bε(x̄)∩ X satisfy
the inequalities

fi (x) ≤ −ε for all i /∈ I (x̄) and ∇ fi (x)�d ≤ −ε for all i ∈ I (x̄).(7.12)

and, for sufficiently large M ≥ maxi Li , the inequalities ‖∇ fi (x)‖ ≤ M for each
i = 1, 2, . . . , m.

Define constants t = min{1, ε
4M } and δ = min{1, ε

2M }t . For any point x ∈ Bε(x̄)∩
X and any vector e ∈ Bδ(0), consider the quantity

hi (x, x + td + e) = fi (x) + 〈∇ fi (x), td + e〉 + Li

2
‖td + e‖2.

For all i /∈ I (x̄), the left-hand side is no larger than −ε + 4Mt , and for all i ∈ I (x̄) it
is no larger than − ε

2 t + 2Mt2, so in either case it is nonpositive. We deduce

Bδ(x + td) ⊂
⋂

i

Di (x) = D(x).

Property (7.11) therefore implies that all points y ∈ Rn satisfy the inequality

distD(x)(y) ≤ ‖y − x − td‖
δ

max
i

{
distDi (x)(y)

}
. (7.13)

Consider points x ∈ Bε(x̄) ∩ X , z ∈ X and y ∈ D(z). If y /∈ Di (x), then

distDi (x)(y) = ∥∥y − x + 1

Li
∇ fi (x)

∥∥ − ρi (x)

= 2

Li
· hi (x, y)
∥∥y − x + 1

Li
∇ fi (x)

∥∥ + ρi (x)

≤ 2

Li
· hi (x, y) − hi (z, y)
∥∥y − x + 1

Li
∇ fi (x)

∥∥ + ρi (x)
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≤ hi (x, y) − hi (z, y)
√‖∇ fi (x)‖2 − 2Li fi (x)

≤ 1

ε

(
hi (x, y) − hi (z, y)

)

≤ 3Li

2ε
|x − z|(|x − y| + |z − y|),

the penultimate inequality following from the inequalities (7.12). Property (7.13) now
implies

distD(x)(y) ≤ 3M‖y − x − td‖
2εδ

|x − z|(|x − y| + |z − y|).

Since the above inequality holds for all y ∈ D(z), it along with (7.3) implies the local
Lipschitz continuity of the function (x, y) �→ distD(x)(y). Hence, by Lemma 7.8,
the function (x, y) �→ distD(x)(y) is an approximator, completing our verification of
Assumption 7.10.

7.3 A local proximal point method

We end with a simple non-Euclidean illustration. Given a locally compact Hadamard
space X , a geodesically convex locally Lipschitz function f : X → R that is bounded
below, and any radius ρ > 0, we consider a localized version of the proximal point
iteration

x ← argmin
y

{
f (y) + 1

2
d2(x, y) : d(x, y) ≤ ρ

}
. (7.14)

Suppose that the Hadamard space X is a definable subset of a Euclidean space
(E, | · |), and that the metric d is also definable. Suppose, furthermore, that given
any point in X , there exists a neighborhood U ⊂ X and constants α, β > 0 such
that all points x, y ∈ U satisfy α|x − y| ≤ d(x, y) ≤ β|x − y|. It is then easy to
check that the KL properties with respect to the metric d and the Euclidean metric
are equivalent. As an example, we might consider the manifold of positive-definite
matrices with its affine-invariant metric [20, Section 11.7]: although that metric is not
globally subanalytic, the manifold and metric are definable in a suitable o-minimal
structure (specifically [49], the structure Ran,exp).

Suppose, finally, that the objective f is definable, with bounded sublevel sets. By
Theorems 4.2 and 7.17, the iterates must converge to a point where f has slope zero.

Funding Research of A.S. Lewis supported in part by National Science Foundation Grant DMS-2006990.

Declarations

Conflict of interest The authors declare that the results presented are new, and there is no Conflict of
interest.

123



The complexity of first-order optimization…

References

1. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic
cost functions. SIAM J. Optim. 6(2), 531–547 (2005)

2. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton
University Press, Princeton (2008)

3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability
Measures, 2nd edn. Birkhäuser, Basel (2008)

4. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for non-smooth functions
involving analytic features. Math. Program. 116, 5–16 (2009)

5. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection
methods for nonconvex problems: an approach based on the Kurdyka–Lojasiewicz inequality. Math.
Oper. Res. 35, 438–457 (2010)

6. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods.
Math. Program. 137(1–2), 91–129 (2013)

7. Auslender, A., Shefi, R., Teboulle, M.: A moving balls approximation method for a class of smooth
constrained minimization problems. SIAM J. Optim. 20(6), 3232–3259 (2010)

8. Azé, D., Corvellec, J.-N.: Characterizations of error bounds for lower semi-continuous functions on
metric spaces. ESAIM COCV 10, 409–425 (2004)

9. Azé, D., Corvellec, J.-N.: Nonlinear error bounds via a change of function. J. Optim. Theory Appl.
172, 9–32 (2017)

10. Barakat, A., Bianchi, P.: Convergence rates of a momentum algorithm with bounded adaptive step size
for nonconvex optimization. Proc. Mach. Learn. Res. 129, 225–240 (2020)

11. Bac̆ák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194, 689–701 (2013)
12. Bac̆ák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)
13. Bento, G.C., Ferreira, O.P., Melo, J.G.: Iteration-complexity of gradient, sub-gradient and proximal

point methods on Riemannian manifolds. J. Optim. Theory Appl. 173, 548–562 (2017)
14. Blanchet, A., Bolte, J.: A family of functional inequalities: Lojasiewicz inequalities and displacement

convex functions. J. Funct. Anal. 275, 1650–1673 (2018)
15. Bolte, J., Daniilidis, A., Lewis, A.S.: The Łojasiewicz inequality for nonsmooth subanalytic functions

with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
16. Bolte, J., Daniilidis, A., Lewis, A.S., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM

J. Optim. 18(2), 556–572 (2007)
17. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient

flows, talweg, convexity. TAMS 362, 3319–3363 (2010)
18. Bolte, J., Nguyen, T.P., Peypouquet, J., Suter, B.: From error bounds to the complexity of first order

descent methods for convex functions. Math. Program. 165, 471–507 (2017)
19. Bolte, J., Pauwels, E.: Majorization-minimization procedures and convergence of SQP methods for

semi-algebraic and tame programs. Math. Oper. Res. 41, 442–465 (2016)
20. Boumal, N.: An Introduction to Optimization on Smooth Manifolds. Cambridge University Press,

Cambridge (2023)
21. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)
22. Chen, S., Ma, S., So, A.M.C., Zhang, T.: Proximal gradient method for nonsmooth optimization over

the Stiefel manifold. SIAM J. Optim. 30, 210–239 (2020)
23. Coste, M.: An Introduction to O-minimal Geometry. In: RAAG Notes, Institut de Recherche

Mathématiques de Rennes, November 1999
24. DeGiorgi, E.,Marino, A., Tosques,M.: Problems of evolution inmetric spaces andmaximal decreasing

curve. Atti. Accad. Naz. Lincei Rend Cl Sci. Fis. Mat. Nat. 68, 180–187 (1980)
25. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM

algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)
26. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Curves of descent. SIAM J. Control Optim. 53(1), 114–138

(2015)
27. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Nonsmooth optimization using Taylor-like models: error

bounds, convergence, and termination criteria. Math. Program. 185, 357–383 (2021)
28. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

123



A. S. Lewis, T. Tian

29. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J.
Control Optim. 29, 403–419 (1991)

30. Hauer, D., Mazón, J.M.: Kurdyka–Lojasiewicz-Simon inequality for gradient flows in metric spaces.
TAMS 372, 4917–4976 (2019)

31. Ioffe, A.D.: Variational Analysis of Regular Mappings. Springer, Berlin (2017)
32. Jost, J.: Convex functionals and generalized harmonic maps into spaces of non positive curvature.

Comment. Math. Helvetici 70, 659–673 (1995)
33. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble)

48(3), 769–783 (1998)
34. Lewis, A.S., López, G., Nicolae, A.: Basic convex analysis in metric spaces with bounded curvature.

SIAM J. Optim. arxiv:2302.03588 (2023)
35. Lewis, A.S., Tian, T.: Identifiability, the KL property in metric spaces, and subgradient curves.

arXiv:2205.02868 (2022)
36. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. 1–46

(2015)
37. Łojasiewicz, S.: Ensembles Semi-analytiques. IHES (1965)
38. Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: a general

approach. Ann. Oper. Res. 46/47(1-4):157–178 (1993). Degeneracy in optimization problems
39. Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun.

Anal. Geom. 6, 199–253 (1998)
40. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
41. Myers, S.B.: Arcs and geodesics in metric spaces. Trans. Am. Math. Soc. 57, 217–227 (1945)
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