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Abstract
Identifiability, and the closely related idea of partial smoothness, unify classical active
set methods andmore general notions of solution structure. Diverse optimization algo-
rithms generate iterates in discrete time that are eventually confined to identifiable sets.
We present two fresh perspectives on identifiability. The first distills the notion to a
simple metric property, applicable not just in Euclidean settings but to optimization
over manifolds and beyond; the second reveals analogous continuous-time behavior
for subgradient descent curves. The Kurdyka–Łojasiewicz property typically gov-
erns convergence in both discrete and continuous time: we explore its interplay with
identifiability.

Keywords Variational analysis · Subgradient descent · Partly smooth · Active
manifold · Identification · KL property

Mathematics Subject Classification 49J52 · 49Q12 · 90C56 · 65K10 · 37C10

1 Introduction

Contemporary optimization involves notions of structure, such as sparsity and rank,
that have prompted a re-examination of classical active-set philosophy. Early general-
izations and terminology such as [25, 27, 40, 67] motivated the idea of an identifiable
set for an objective function f over Euclidean spaces [35, Definition 3.10].
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Foundations of Computational Mathematics

Consider, for example, the nonsmooth nonconvex function on R2 defined by

f (x) = 5|x2 − x21 | + x21 . (1.1)

The set M = {x : x2 = x21 } is identifiable at the minimizer x̄ = 0 because, in the
language of subgradients [66], a quick calculation shows

dist
(
0, ∂ f (xk)

) → 0 ⇒ xk ∈ M eventually. (1.2)

A wide variety of algorithms for nonsmooth or constrained optimization gener-
ate convergent sequences of iterates that behave well with respect to some merit
function. Specifically, some corresponding sequence of subgradients of the merit
function converges to zero. Consequently, the algorithm identifies some associated
structure — in example (1.1), the set M. Examples include classical projected gra-
dient or subgradient methods [27, 40, 67], the proximal point method [43] and
composite generalizations such as the proximal gradient method [56], alternating
projection and Gauss-Seidel schemes [5, 19], some bundle methods [64], and the
broad majorization-minimization framework [20], including sequential quadratic
programming. Interesting contemporary examples include [58, 59].

Within optimization and its interface with machine learning, interest in non-
Euclidean settings has grown rapidly, supported by expositions like [1, 21]. In
particular, [69] proved complexity bounds for the projected subgradient approach to
geodesically convex optimization on Hadamard manifolds. Earlier work had already
extended the proximal point philosophy far beyond Euclidean settings, in particular to
Hadamardmanifolds: [12, 39, 57] study geodesically convex and nonconvex optimiza-
tion, and alternating projection schemes. Extensions to more general geodesic spaces
include [9, 10, 48] (in the case of nonpositive curvature) and [54]. A reappraisal of the
fundamentals of identifiability from a purely metric perspective is therefore appealing.

A complementary perspective on identifiability arises through analogues of itera-
tive algorithms like the proximal point method but in continuous time [22]. The same
identification behavior illustrated above in discrete time also manifests itself in contin-
uous time. In the example, as we shall see later, locally absolutely continuous curves
x : R+ → Rn with initial points x(0) near zero and satisfying

x ′(t) ∈ −∂ f
(
x(t)

)
for almost all times t > 0

(following standard variational-analytic terminology [66]) always converge to zero
and are eventually confined to M. Figure1 shows plots of two randomly initialized
examples of these subgradient curves.

We pursue three main themes around the idea of identifiability for an objective
f . First, we reframe the idea in purely metric terms, using the slope |∇ f |, which
measures instantaneous rate of decrease [31]. For example, property (1.2) becomes

|∇ f |(xk) → 0 ⇒ xk ∈ M eventually.
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Fig. 1 Subgradient curves for the objective 5|x2 − x21 | + x21

By switching from the sophisticated dual perspective of subgradient vectors to the
simple primal scalar perspective of the slope, we highlight the intuitive nature of
identifiability and extend its applicability to more general settings like optimization
over manifolds [1, 21]. This setting also allows us to highlight a new linear growth tool
(Theorem 4.2), on which our whole development fundamentally depends. Secondly,
in the Euclidean setting, we demonstrate quite generally that subgradient curves are
eventually confined to identifiable manifolds. In the Euclidean setting, our metric
definition of identifiability is equivalent to the usual subgradient-based definition, and
closely related to partial smoothness [52]. Thirdly, motivated by the crucial role of
the “Kurdyka–Łojasiewicz property” in the convergence of optimization algorithms
and dynamics [5, 15, 17, 19], including those in metric-space settings [44], we show
how the KL property is controlled entirely by the KL property for the restriction of
the objective to any identifiable set. Optimization problems we encounter in practice
are semi-algebraic or, more generally, tame [46], and for generic problem instances
in such settings, local minimizers lie on identifiable analytic manifolds on which the
objective function is analytic [16, 34]. The KL property for analytic functions on
analytic manifolds is classical [49, Section 9], so our results apply, shedding a fresh
light on the KL property in nonsmooth optimization.

We present our development in two parts. Part I—Sects. 2 through 5—studies iden-
tifiability and its interplay with the KL property in metric spaces; Part II—Sects. 6
through 10—focuses on the special case of Euclidean space.
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Part I begins in Sect. 2 by reviewing the notion of slope in metric spaces, and its
relationship with subgradients in the Euclidean case.We introduce the idea of a critical
sequence, noting the prevalence of such sequences in optimization as proximal images
of minimizing sequences. Thus motivated, Sect. 3 presents our new metric definition
of identifiability: sets in which all critical sequences are eventually contained. In
particular, expanding on a Euclidean precedent [35], we study minimal identifiable
sets. In Sect. 4, in striking contrast to previous subgradient-based developments, we
deploy the Ekeland variational principle to explain the fundamental geometry of linear
objective growth around identifiable sets in complete metric spaces. Our new linear
growth result explains, in broad generality, how objective growth aroundminimizers is
governed entirely by growth on the identifiable set. As Sect. 5 explains, a particularly
important growth condition is the Kurdyka–Łojasiewicz property, which we newly
reframe in terms of identifiability. We prove that the KL property is inherited from the
analogous property on an identifiable set, a useful tool for understanding the property
in practice.

Moving to the Euclidean setting of Part II, we begin in Sect. 6 with a quick review of
some variational analysis. Section7 develops the basic example of “max functions”:
pointwise maxima of finitely many continuously differentiable functions. Section8
studies identifiability from a variational-analytic perspective, throwing a fresh and
intuitive light on the equivalence between identifiable manifolds and partial smooth-
ness [35]. We return in particular to the KL property, now relying on analytic settings.
In Sect. 9 we move to the continuous time setting, presenting a result that explains for
the first time the identification behavior illustrated in Fig. 1. We end in Sect. 10 with a
proof of this result.

Part I

Identifiability in Metric Spaces

2 Critical Sequences in Metric Spaces

Our setting is a metric space (X , d). For any point x ∈ X , the function dx : X → R
is defined by dx (y) = d(x, y) for points y ∈ X . On X , we consider a function f
which, unless otherwise stated, takes values in (−∞,+∞]. We focus on a point x̄ in
the domain

dom f = {x : f (x) < +∞}.

We are mainly concerned with points x̄ that are local minimizers for f . First, however,
we recall a fundamental definition [31] leading to a weaker property.

Definition 2.1 For a function f on a metric space, the slope |∇ f |(x̄) at a point x̄ ∈
dom f is zero if x̄ is a local minimizer, and otherwise is the quantity

lim sup
x̄ �=x→x̄

f (x̄) − f (x)

d(x̄, x)
.

At points outside of the domain, the slope is +∞.
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Thenotation is suggestive of the easy case of a differentiable function on aEuclidean
space, when |∇ f |(x) = |∇ f (x)| [31, Observation 4.3]. Notice that the slope may be
infinite at points in the domain: for example, |∇ 3

√·|(0) = +∞. An easy exercise
shows an equivalent definition:

|∇ f |(x̄) = inf{δ > 0 : x̄ is a local minimizer for f + δdx̄ }.

(The infimum of the empty set is defined to be+∞.) By definition, the slope is zero at
any local minimizer. However, the converse may fail: for example, on R, the function
f (x) = −x2 has slope zero at zero but is not locally minimized there. The following
result [47, Proposition 3.3] collects some simple tools for the slope.

Proposition 2.2 Functions f and g on a metric space always satisfy

|∇( f + g)|(x) ≤ |∇ f |(x) + |∇g|(x) and |∇(δ f )|(x) = δ|∇ f |(x)

for all points x and scalars δ > 0. Furthermore, if f is L-lipschitz, then |∇ f |(x) ≤ L.

By Proposition 2.2, all points x, y in the metric space X satisfy |∇dx |(y) ≤ 1. When
X is a length space, meaning that the distance d(x, y) is always the infimum of the
lengths of curves joining x and y, we can say more.

Theorem 2.3 (Slope characterization of length spaces [7]) A complete metric space
(X , d) is a length space if and only if all distinct points x, y ∈ X satisfy |∇dx |(y) = 1.

Any connected Riemannian manifold with its Riemannian distance is a length space
[51, Theorem 2.55]. We also observe the following easy inequality.

Proposition 2.4 On any metric space, the squared distance function satisfies

|∇d2x |(y) ≤ 2d(x, y) and |∇(−d2x )|(y) ≤ 2d(x, y)

for all points x, y ∈ X.

Proof Since

lim sup
y �=z→y

d2x (y) − d2x (z)

d(y, z)
= lim sup

y �=z→y

(
d(y, x) − d(z, x)

)(
d(y, x) + d(z, x)

)

d(y, z)

≤ lim sup
y �=z→y

(
d(y, x) + d(z, x)

) = 2d(y, x),

the first inequality follows. The second inequality follows similarly. ��
Aproperty evenweaker than the slope being zero is the criticality idea thatwe define

next. Following [66], for any function f and any point x̄ ∈ X , we write xr → f x̄ to
denote f -attentive convergence: xr → x̄ and f (xr ) → f (x̄). Furthermore, for any
function g, we define the quantity

lim inf
x→ f x̄

g(x) = inf{lim inf
r

g(xr ) : xr → f x̄},

which by definition is no larger than g(x̄).
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Definition 2.5 Given a function f , a critical sequence for a point x̄ ∈ dom f is a
sequence xr → f x̄ such that |∇ f |(xr ) → 0, and x̄ is critical if such a sequence
exists.

For example, any sequence xr → x in X is critical for the function d2x , by Proposi-
tion 2.4. OnR, the function f (x) = min{x, 0} has slope 1 at the point 0, but that point
is critical because the local minimizers 1

r for r = 1, 2, 3, . . . form a critical sequence.
The notion of a critical point is related to the following more robust version of the
slope [47, Definition 8.4].

Definition 2.6 The limiting slope of f at a point x̄ ∈ dom f is the quantity

|∇ f |(x̄) = lim inf
x→ f x̄

|∇ f |(x).

With this terminology, critical points are exactly those where the limiting slope is
zero. Notice that the limiting slope is never larger than the slope.

Our development of identifiability in metric spaces studiously avoids the use of
subgradients. However, in the special case when the underlying space is Euclidean,
readers familiar with standard variational analysis (for example [66]) will find the
following formula [47, Proposition 8.5] illuminating. It relates the limiting slope of a
closed function with the usual subdifferential ∂ f in the terminology of [66].

Proposition 2.7 (Distance formula) On Rn, any closed function f and any point
x ∈ dom f satisfy |∇ f |(x) = dist

(
0, ∂ f (x)

)
.

In Euclidean space, critical points are therefore those at which zero is a subgradient.
A wide variety of optimization procedures generate critical sequences, because

the procedures involve projection or proximal operations corresponding to closed
functions f : X → (−∞,+∞]:

prox f (x) = argmin
{
f + 1

2
d2x

}
. (2.8)

In Euclidean settings, this observation is very familiar [5, 19, 27, 40, 43, 56, 58, 59, 64,
67]. However, the phenomenon persists in non-Euclidean settings such as Hadamard
manifolds [12, 39, 57, 69] and more general geodesic spaces [9, 10, 48, 54]. We next
discuss this property from a purely metric perspective.

The proximal operator is single-valued for closed convex functions f on a Hilbert
space (by Minty’s Theorem [63]) and in some more general metric spaces [9, 48].
However, for general spaces and closed functions, the value inf{ f + 1

2d
2
x } can be−∞,

and even when finite can be unattained. We do, however, have the following routine
result in proper metric spaces (meaning that all closed balls are compact).

Lemma 2.9 On a proper metric space X, if a closed function f : X → (−∞,+∞]
is not identically +∞ and is bounded below, then the operator prox f is everywhere
nonempty-valued.
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Proof Consider any lower bound α for f and any point z ∈ X for which f (z) is
finite. Given any point x ∈ X , the function g = f + 1

2d
2
x is closed, so the level

set L = {y : g(y) ≤ g(z)} is closed. Notice that L contains z, and furthermore is
bounded, since all points y ∈ L satisfy 1

2d
2
x (y) ≤ g(z)−α. Hence L is nonempty and

compact, so the set prox f (x) = argminLg is nonempty. ��
The proximal operator has the obvious property that any minimizer of the function

f is a fixed point: x ∈ prox f (x), and more generally, x ∈ prox 1
α
f (x) for any constant

α > 0. In turn, f has slope zero at any such fixed point. In Euclidean space this follows
from the property that y ∈ prox f (x) implies x − y ∈ ∂ f (y). More generally, it is a
consequence of the following easy tool.

Lemma 2.10 For any closed function f on a metric space, any points x ∈ dom f and
y ∈ prox f (x) satisfy |∇ f |(y) ≤ d(x, y). Consequently, f has slope zero at any fixed
point of prox f .

Proof Propositions 2.2 and 2.4 and the fact that
∣
∣∇(

f + 1
2d

2
x

)∣∣(y) = 0 imply

|∇ f |(y) ≤ ∣∣∇(
f + 1

2
d2x

)∣∣(y) + ∣∣∇( − 1

2
d2x

)∣∣(y) ≤ d(x, y).

The final claim follows by setting y = x . ��
We next show that the proximal operator, when nonempty-valued, allows us to

associate a critical sequence with any minimizing sequence. Special cases of this
mechanism, which underlies a great deal of the identification literature that we dis-
cussed after equation (2.8), date back at least to [13], although this simple metric
version seems a new perspective.

Proposition 2.11 (Proximal images of minimizing sequences) For a closed function
f on a metric space and constants α > β > 0, consider any point x̄ that minimizes
f , or more generally, is a fixed point of the proximal operator prox 1

β
f . Then, for

any sequence of points xr → f x̄ , any sequence of points yr ∈ prox 1
α
f (xr ) for r =

1, 2, 3, . . . is critical for x̄ .

Proof We have

f (xr ) − f (x̄) ≥ f (yr ) + α

2
d(yr , xr )

2 − f (x̄) ≥ α

2
d(yr , xr )

2 − β

2
d(yr , x̄)

2

≥ α

2
d(yr , xr )

2 − β

2

(
d(yr , xr ) + d(xr , x̄)

)2

≥ α − β

2
d(yr , xr )

2 − βd(yr , xr )d(xr , x̄) − β

2
d(xr , x̄)

2.

Rearranging gives

f (xr ) − f (x̄) + αβ

2(α − β)
d(xr , x̄)

2 ≥ α − β

2

(
d(yr , xr ) − β

α − β
d(xr , x̄)

)2
.
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Since the left-hand side converges to zero, so does the right-hand side, so we deduce
d(yr , xr ) → 0, and hence yr → x̄ . Since the function f is closed, we know
lim inf f (yr ) ≥ f (x̄). But since f (yr )+α

2 d(yr , xr )2 ≤ f (xr ) for each r ,we alsoknow
lim sup f (yr ) ≤ f (x̄), so f (yr ) → f (x̄). Finally, Proposition 2.2 and Lemma 2.10
complete the proof: |∇ f |(yr ) ≤ αd(yr , xr ) → 0. ��

Althoughminimizers are always fixed points of the proximal operator, points where

the slope is zero may not be. For example, the real function f (x) = −|x | 32 has slope
zero at the point x̄ = 0, but x̄ is not a fixed point of prox 1

β
f for any value β > 0.

However, when the space X is Euclidean, for well-behaved functions f , any critical
point is a fixed point of prox 1

β
f for all sufficiently large β > 0. Specifically, following

the standard terminology of [66], this property holds if f is both “prox-regular” and
“prox-bounded” [66, Proposition 13.37].

3 Identifiable Sets in Metric Spaces

In the previous section we saw how minimizing sequences are often associated with
critical sequences. As we discussed in the introduction, many optimization problems
possess inherent structure around critical points that restricts the possible correspond-
ing critical sequences. To formalize this phenomenon, and unify many precedents
in the literature (originating with [28]), [35] used the language of subgradients in
Euclidean spaces to develop the notion of an “identifiable set”, and to study when
such sets are “locally minimal” [35, Definitions 3.10 and 3.11]. The terminology orig-
inated with [27]. Our contribution is a fresh view and extension of this theory from a
simple metric space perspective.

Definition 3.1 Given a function f on a metric space X , consider a point x̄ ∈ dom f
and a set M ⊂ X containing x̄ .

• M is identifiable at x̄ if its complement contains no critical sequence for x̄ .
• M is strongly critical at x̄ if all sequences (xr ) in M satisfying xr → f x̄ are
critical for x̄ .

• The modulus of identifiability forM at x̄ is

lim inf
x→ f x̄, x /∈M

|∇ f |(x). (3.2)

Notice that M is identifiable if and only if the modulus of identifiability is strictly
positive. Furthermore, if the point x̄ ∈ dom f is not critical, then every set containing x̄
is identifiable, so our interest in identifiable sets focuses on critical points. Identifiable
sets always exist. In particular, for any radius ε > 0, setting Bε(x̄) = {x ∈ X :
d(x, x̄) ≤ ε}, the f -attentive neighborhood

B f
ε (x̄) = {x ∈ Bε(x̄) : | f (x) − f (x̄)| ≤ ε} (3.3)

is identifiable. The following tools are easy to verify.
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Proposition 3.4 On a metric space, at any point in the domain of a function, finite
intersections of identifiable sets are identifiable, and finite unions of strongly critical
sets are strongly critical.

Proposition 3.5 On any metric space, consider functions f ≥ g, a point x̄ ∈ dom f
and a set M containing x̄ . Suppose that f and g are equal on M around x̄. At x̄ , if
M is strongly critical for g, then M is also strongly critical for f .

Proof For any sequence xr → f x̄ in M since g ≤ f and g(xr ) = f (xr ), strong
criticality for g implies 0 ≤ |∇ f |(xr ) ≤ |∇g|(xr ) → 0, so (xr ) is critical for f . ��
Remark 3.6 If a set M is identifiable at a point x̄ , then it is easily seen to be iden-
tifiable at every point in the intersection of M with some f -attentive neighborhood
of x̄ . Moreover, the modulus of identifiability σx , as a function of x ∈ M, is lower
semicontinuous with respect to f -attentive convergence:

lim inf
x→ f x̄, x∈M

σx ≥ σx̄ .

Identifiable sets are not unique: any superset of an identifiable set at a point x̄ is also
identifiable. Identifiability is a local property ( f -attentively): if a set is identifiable, so
is its intersection with any f -attentive neighborhood. Our interest in strongly critical
sets stems from the fact that smaller identifiable sets are more informative tools than
larger ones. To be precise, any strongly critical identifiable set at x̄ must be locally
minimal (in an f -attentive sense) among identifiable sets. A subgradient-based version
of the following result appeared in [35, Proposition 3.12].

Proposition 3.7 (Locally minimal identifiable sets) Given a function f on a metric
space, suppose that a set M is identifiable at a point x̄ . Then M is strongly critical
at x̄ if and only if the following property holds:

{
For any identifiable set M′ at x̄, there exists an f -attentive

neighborhood B f
ε (x̄) with ε > 0 satisfying M ∩ B f

ε (x̄) ⊂ M′. (3.8)

Proof Suppose that the set M is strongly critical at x̄ but that property (3.8) fails for
some setM′ that is identifiable at x̄ . Then, for each r = 1, 2, 3, . . ., there exists a point
xr in the setM∩ B f

1/r (x̄) but outside the setM′. Consequently we have xr → f x̄ in
M, so by definition, the sequence (xr ) is critical, contradicting the identifiability of
M′.

Conversely, if the set M is identifiable but not strongly critical at x̄ , then there
exists a sequence xr → f x̄ in M that is not critical. After taking a subsequence, we
can suppose that there exists a value δ > 0 such that |∇ f |(xr ) > δ for all r . We claim
that the set defined by M′ = M \ (xr ) is identifiable. If not, there exists a critical
sequence (ys) for x̄ outside M′. Since M is identifiable, ys ∈ M for all large s, and
hence ys ∈ (xr ), from which we deduce |∇ f |(ys) > δ, contradicting the criticality of
(ys). But now we note that for all ε > 0, the point xr lies in the set M ∩ B f

ε (x̄) for
all large r but lies outside M′, contradicting property (3.8). ��
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Identifiability and strong criticality play symmetric roles here: a result analogous to
Proposition 3.7 is easy to derive for locally maximal strongly critical sets.

We next note an immediate consequence of Proposition 3.7: strongly critical iden-
tifiable sets (or equivalently, locally minimal identifiable sets), if they exist, must be
locally unique. A subgradient-based version, with stronger assumptions, appeared in
[42, Corollary 4.2].

Proposition 3.9 (Uniqueness of strongly critical identifiable sets) Given a function f
on a metric space, for any two strongly critical identifiable setsM andM′ at a point
x̄ , there exists an f -attentive neighborhood B f

ε (x̄) with ε > 0 such that

M ∩ B f
ε (x̄) = M′ ∩ B f

ε (x̄).

To illustrate the idea of a strongly critical identifiable set, we consider some simple
examples. At any point x̄ ∈ X , any neighborhood of x̄ is a strongly critical identi-
fiable set for the squared distance function d2x̄ , by Proposition 2.4: the modulus of
identifiability is +∞. On the other hand, if X is a length space, then the setM = {x̄}
is a strongly critical identifiable set for the distance function dx̄ , by Theorem 2.3:
the modulus of identifiability is 1. A simple concrete example to keep in mind is the
following.

Example 3.10 On R2, the function f (u, v) = |u| + v2 has slope

|∇ f |(u, v) =
{√

1 + 4v2 (u �= 0)
2v (u = 0).

The set M = {(u, v) : u = 0} is a strongly critical identifiable set at the minimizer
zero, and the modulus of identifiability is 1.

Unfortunately, as the following example [35, Example 4.13] shows, even continuous
convex functions do not always admit strongly critical identifiable sets at minimiz-
ers. In such cases, among the collection of sets that eventually capture every critical
sequence, no one particular example stands out: more precisely, there is no locally
minimal element.

Example 3.11 The function f (u, v) = √
u2 + v4 has slope zero at itsminimizer (0, 0),

and

|∇ f |(u, v) =
√
u2 + 4v6

u2 + v4
for (u, v) �= (0, 0).

Consider any constant α > 0. Close to (0, 0) and outside the set

Mα = {(u, v) : |u| ≤ αv2},

the slope is bounded below by α√
1+α2 > 0, so the set Mα is identifiable at (0, 0).

These sets shrink to the setM0 as α ↓ 0. However,M0 is not identifiable, because the
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critical sequence (k−3, k−1) for k = 1, 2, 3, . . . approaches (0, 0) from outside M0.
Thus no locally minimal identifiable set exists at (0, 0), and hence, by Proposition 3.7,
neither does a strongly critical identifiable set.

The limiting slope gives an equivalent definition of the modulus of identifiability.

Proposition 3.12 (Identifiability via limiting slope) In Definition 3.1, if the set M is
closed, then the modulus of identifiability is

lim inf
x→ f x̄, x /∈M

|∇ f |(x). (3.13)

Proof We just need to show that the modulus (3.2) is no larger than the quantity (3.13),
the reverse inequality being immediate. If the claim fails, then there exists a constant
ε > 0 such that the modulus is at least |∇ f |(xr ) + ε for some sequence xr /∈ M
satisfying xr → f x̄ . Since M is closed, each distance δr = dist(xr ,M) is strictly
positive, so there exist points x ′

r ∈ X satisfying

d(xr , x
′
r ) < min

{
δr ,

1

r

}
, | f (xr ) − f (x ′

r )| <
1

r
, |∇ f |(x ′

r ) < |∇ f |(xr ) + ε

2
.

Since x ′
r /∈ M and x ′

r → f x̄ , we have arrived at a contradiction. ��
This result may fail if the set M is not closed. For example, consider the function
f : R2 → R defined by f (u, v) = min{u, 0} at the point x̄ = (0, 0) in the set M
whose complement is {(0, v) : v �= 0}. The modulus (3.2) is 1, so M is identifiable
at x̄ , but the quantity (3.13) is zero.

As a consequence of Proposition 3.12, in the special casewhen the underlying space
is Euclidean, the following result shows that our new metric notion of identifiability
coincides with the original version [35, Definition 3.10].

Corollary 3.14 (Identifiability in Euclidean spaces) Consider a closed function f on
Rn and a point x̄ contained in a closed set M ⊂ Rn. Then the set M is identifiable
at x̄ if and only if there exists no sequence (xr ) outside M satisfying xr → f x̄ and
with subgradients yr ∈ ∂ f (xr ) converging to zero. The modulus of identifiability is

lim inf
x→ f x̄, x /∈M, y∈∂ f (x)

|y|.

Proof The formula for the modulus follows from Proposition 3.12 by applying
Proposition 2.7. The characterization of identifiability follows. ��
We defer a more detailed investigation of the Euclidean case until Part II.

4 Linear Growth Around Identifiable Sets

A crucial geometric feature of objective functions around identifiable sets is often
described as “sharpness”. An early appearance of this idea was [26], and it was a
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core ingredient of precursors of identifiability like VU-decomposition [62] and partial
smoothness [52]. Loosely speaking, near a local minimizer, the objective grows in
a manner determined entirely by its behavior on any identifiable set, because as we
leave this set, the objective grows at a linear rate.

The original approaches to this linear growth property, including [52, Proposition
2.10], [42, Theorem 6.2], and [30, Theorem D.2], rely on smoothness assumptions
on the identifiable set M and the restriction of the objective function f to M. These
assumptions fail in even some simple examples like

f (x) = |x | 32 (x ∈ R), x̄ = 0, M = R

f (x) = x21 + ∣∣|x1| 32 − x2
∣∣ (x ∈ R2), x̄ = 0, M = {x : |x1| 32 = x2}.

By contrast, we develop a simple new linear growth tool for identifiable sets that
does not rely on manifolds, subgradients, Euclidean structure, or even nearest-point
projections. Our approach is applicable in any complete metric space, and reveals for
the first time the close connection between identifiability and the Ekeland variational
principle, which we use in the following form [68, Theorem 1.4.1].

Theorem 4.1 (Ekeland variational principle [37]) On any complete metric space, if a
closed function f is bounded below, then for any value ε > 0 and any point x ∈ dom f ,
there exists a point v satisfying f (v) + εd(v, x) ≤ f (x) and |∇ f |(v) ≤ ε.

Theorem 4.2 (Linear growth) On a complete metric space, consider a closed function
f with slope zero at a point x̄ , an identifiable setM at x̄ , and any nonnegative constant
ε strictly less than the modulus of identifiability. Then, for any sequence of points
xr → f x̄ , there exists a sequence of points vr → f x̄ inM such that, for all large r ,

f (vr ) + εd(vr , xr ) ≤ f (xr ).

Proof Denote the modulus of identifiability by σ . It suffices to prove the result when
0 < ε < σ , since the case ε = 0 then follows.

Suppose first that x̄ is a local minimizer. By redefining f to take the value +∞
outside a closed ball centered at the local minimizer x̄ , we can assume that x̄ is a global
minimizer, and so f is bounded below. Applying the Ekeland principle to each point
xr ensures the existence of points vr satisfying |∇ f |(vr ) ≤ ε and

εd(vr , xr ) ≤ f (xr ) − f (vr ) ≤ f (xr ) − f (x̄) → 0.

We deduce vr → x̄ and f (vr ) → f (x̄), so our assumption about ε ensures vr ∈ M
for all r larger than some r̄ . Redefining vr = x̄ for all r ≤ r̄ gives the desired sequence.

Now consider the general case where |∇ f |(x̄) = 0. Fix any constant δ > 0 satisfy-
ing 2δ < σ −ε. The point x̄ locallyminimizes the function f̃ = f +δdx̄ . Furthermore,
since f = f̃ + (−δdx̄ ), and the function−δdx̄ is δ-Lipschitz, Proposition 2.2 implies,
for all points x , the inequality |∇ f̃ |(x) ≥ |∇ f |(x) − δ. Taking the lim inf of both
sides as x → f x̄ (or equivalently as x → f̃ x̄) outside the setM shows thatM is also

identifiable for the function f̃ , with modulus at least σ − δ > ε + δ.
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We can now apply the result proved by the first argument, using the function f̃ in
place of the function f and constant ε + δ in place of ε. We deduce that there exists a
sequence of points vr → x̄ inM satisfying f̃ (vr ) → f̃ (x̄) and

f̃ (vr ) + (ε + δ)d(vr , xr ) ≤ f̃ (xr ) for all large r .

Consequently f (vr ) → f (x̄), and for all large r we have

f (vr ) + δd(vr , x̄) + (ε + δ)d(vr , xr ) ≤ f (xr ) + δd(xr , x̄).

Our conclusion follows by the triangle inequality. ��
The slope zero assumption inTheorem4.2 cannot be relaxed to criticality. For example,
the function f (x) = min{0, x} for x ∈ R has a critical point x̄ = 0 for which the set
M = R+ is identifiable, but the result fails for the sequence xr = − 1

r .
We next derive simple optimality conditions from Theorem 4.2 (Linear growth).

We model these on [42, Theorem 6.2] and [35, Proposition 7.2 and Corollary 7.3], but
replacing the subdifferential arguments for those Euclidean results with our simpler
Ekeland-based approach, valid in an arbitrary complete metric space. In the case of
max functions (Sect. 7), the results reduce to classical active-set properties.

Corollary 4.3 (Sufficient condition for optimality) On a complete metric space, sup-
pose that a closed function f has slope zero at a point x̄ , and consider any identifiable
setM at x̄ . Then x̄ is a local minimizer if and only if it is a local minimizer relative to
M. Furthermore, x̄ is a strict local minimizer if and only if it is a strict local minimizer
relative toM.

Proof To prove the first equivalence, suppose that x̄ is not a local minimizer, so there
exists a sequence xr → x̄ such that f (xr ) < f (x̄). Closedness implies f (xr ) → f (x̄),
so using Theorem 4.2 (Linear growth), we deduce the existence of a constant ε > 0
and a sequence of points vr → x̄ inM satisfying, for all large r ,

f (vr ) ≤ f (vr ) + εd(vr , xr ) ≤ f (xr ) < f (x̄),

so x̄ is not a local minimizer relative to M. The converse is trivial. The second
equivalence concerns strict local minimizers of f , namely points x̄ such that f (x) >

f (x̄) for all points x �= x̄ near x̄ . The proof is very similar. ��
As a further illustration along classical lines, we show that quadratic growth rates

are determined by the growth rate on any identifiable set.

Corollary 4.4 (Quadratic growth) On a complete metric space, suppose that a closed
function f has slope zero at a point x̄ , and consider any identifiable setM at x̄ . Then
f has quadratic growth around x̄ if and only if it has quadratic growth around x̄
relative toM. Indeed, the two growth rates are identical:

lim inf
x→x̄
x �=x̄

f (x) − f (x̄)

d(x, x̄)2
= lim inf

x→x̄, x∈M
x �=x̄

f (x) − f (x̄)

d(x, x̄)2
.
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Proof Denote the left-hand and right-hand sides by α and β respectively. Clearly
α ≤ β. Suppose in fact α < β. Choose any value γ in the interval (α, β). Since
γ > α there is a sequence of points xr → x̄ satisfying f (xr ) − f (x̄) < γ d(xr , x̄)2.
Taking the lim sup of both sides shows lim supr f (xr ) ≤ f (x̄). Since f is closed, we
also know lim infr f (xr ) ≥ f (x̄), so we deduce f (xr ) → f (x̄). By Theorem 4.2
(Linear growth), there exists a constant ε > 0 and a sequence of points vr → x̄ inM
satisfying f (vr ) + εd(vr , xr ) ≤ f (xr ) for all large r . Hence vr �= x̄ for all large r ,
since otherwise we arrive at the contradiction f (x̄)+εd(x̄, xr ) < f (x̄)+γ d(xr , x̄)2.
Since γ < β, for all large r we must have

γ d(vr , x̄)
2 < f (vr ) − f (x̄) ≤ f (xr ) − εd(vr , xr ) − f (x̄)

< γ d(xr , x̄)
2 − εd(vr , xr ) ≤ γ

(
d(vr , x̄) + d(vr , xr )

)2 − εd(vr , xr ).

Wededuce the inequality 0 < d(vr , xr )
(
2d(vr , x̄)+d(vr , xr )−ε

)
, which is impossible

for r sufficiently large. ��

In Sect. 5, we prove an analogous result for a growth condition fundamental to
convergence analysis for optimization algorithms.

Theorem 4.2 asserts only the existence of a “shadow” sequence vr . If the underlying
space is Euclidean andM is a smooth manifold restricted to which f is smooth, then
[30, Theorem D.2] is more geometrically descriptive: for small ε we can take as vr the
nearest-point projection projM(xr ). However, we cannot expect this more generally.
First, unless the metric space X is proper, the requisite nearest points may not exist.
Secondly, the argument of [30, Theorem D.2] relies on smoothness of M and the
corresponding restriction of f , and furthermore on a characterization of identifiable
manifolds using subgradients [36] that is very Euclidean in spirit.

However, by relaxing our notion of projection,we can leverageTheorem4.2 (Linear
growth) to prove an analogous result in great generality. This new result uses approxi-
mate projections of points x ontoM: after fixing a constantC ≥ 1, we consider points
v ∈ M such that d(v, x) ≤ Cdist(x,M).

We need some standard metric space notions. As usual, we consider a metric space
(X , d), a subset M, and a function f : X → (−∞,+∞]. By restricting the original
metric d to M, we arrive at the induced metric on M, also denoted d for simplicity.
On the resulting metric space (M, d), we denote the restriction of f by f |M. In
M, if any two points can be joined by a rectifiable curve in M, then we can also
define the intrinsic metric dM: the intrinsic distance between any two points is the
infimum of the lengths of curves joining them. If there exists a constant μ > 0
such that dM(x, y) ≤ μd(x, y) for all points x, y ∈ M, then we say that M is
normally embedded [14]. (By the triangle inequality, d(x, y) ≤ dM(x, y) always
holds.) Clearly the property is preserved by bi-Lipschitz homeomorphisms. Examples
include convex sets and compact submanifolds in Rn . Curves in normally embedded
sets have the same length with respect to both the induced and intrinsic metrics [24,
Proposition 2.3.12], and furthermore, when rectifiable, can be reparametrized to have
unit speed (with respect to both metrics) [24, Proposition 2.5.9].
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Theorem 4.5 (Linear growth from approximate projection) On a complete metric
space, consider a closed function f with slope zero at a point x̄ , and a normally
embedded identifiable set M at x̄ such that the restriction f |M is continuous.

• IfM is strongly critical at x̄ , then the slope |∇( f |M)| is continuous at x̄ .
• Conversely, if |∇( f |M)| is continuous at x̄ , then for any constant C ≥ 1, there
exists a constant ε > 0 such that all points x close to x̄ with value f (x) close to
f (x̄) satisfy the property

v ∈ M and d(v, x) ≤ Cdist(x,M) ⇒ f (v) + εd(v, x) ≤ f (x).

If, furthermore,M is locally closed, then M is strongly critical at x̄ .

Proof The first claim is clear, because |∇ f |(x) ≥ |∇( f |M)|(x) for all points x ∈ M.
Turning to the converse direction, by way of contradiction, consider sequences of
points xr → f x̄ and vr in M satisfying the inequalities d(vr , xr ) ≤ Cdist(xr ,M)

and f (vr ) + 1
r d(vr , xr ) > f (xr ) for all r . By Theorem 4.2 (Linear growth), there

exists ε > 0 and a sequence wr → x̄ in M satisfying f (wr ) + εd(wr , xr ) ≤ f (xr )
for all large r . From the inequalities d(vr , xr ) ≤ Cdist(xr ,M) ≤ Cd(wr , xr ), we
deduce

d(wr , vr ) ≤ d(wr , xr ) + d(xr , vr ) ≤ (1 + C)d(wr , xr ).

Combining the inequalities shows, for all large r ,

f (vr ) − f (wr ) > εd(wr , xr ) − 1

r
d(vr , xr ) ≥ (

ε − C

r

)
d(wr , xr ) ≥ ε

2
d(wr , xr )

≥ ε

2(1 + C)
d(wr , vr ).

Since the set M is normally embedded, there exists a number μ > 0 such that
the intrinsic metric dM satisfies dM(w, v) ≤ μd(w, v) for all points w, v ∈ M. In
particular, since wr , vr ∈ M, we have

dM(wr , vr ) ≤ μd(wr , vr ) ≤ 1

δ

(
f (vr ) − f (wr )

)

where δ = ε
2μ(1+C)

, so there exist unit-speed curves γr : [0, lr ] → M from wr to vr

with length lr ≤ 2dM(wr , vr ) ≤ 2
δ

(
f (vr ) − f (wr )

)
. The corresponding continuous

functions gr = f ◦ γr satisfy gr (lr ) − gr (0) > δ
2 lr . Let tr be the smallest number

t ∈ [0, lr ] such that

gr (s) ≥ gr (lr ) − δ

2
(lr − s) for all s ∈ [t, lr ].

Continuity implies tr > 0 and gr (tr ) = gr (lr ) − δ
2 (lr − tr ). Moreover, for each large

r , there exists a sequence of points srk ↗ tr such that gr (srk ) < gr (lr ) − δ
2 (lr − srk ) for
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all k = 1, 2, 3, . . .. We deduce

lim sup
t↗tr

gr (tr ) − gr (t)

tr − t
≥ lim sup

k→∞
gr (tr ) − gr (srk )

tr − srk
≥ δ

2
.

Consider the points yr = γr (tr ) ∈ M. Since γr is unit-speed, we have

|∇( f |M)|(yr ) = lim sup
x M−−→yr , x �=yr

f (yr ) − f (x)

d(yr , x)
≥ lim sup

x M−−→yr , x �=yr

f (yr ) − f (x)

dM(yr , x)

≥ lim sup
t↗tr

f (yr ) − f
(
γr (t)

)

dM
(
γr (tr ), γr (t)

) ≥ lim sup
t↗tr

gr (tr ) − gr (t)

tr − t
≥ δ

2
.

Furthermore we have

d(yr , x̄) ≤ dM(yr , wr ) + d(wr , x̄) ≤ 2dM(vr , wr ) + d(wr , x̄) → 0,

contradicting the continuity of the slope |∇( f |M)| at x̄ .
It remains to prove that the setM is strongly critical at the point x̄ . Fix any constant

δ > 0. By the slope continuity assumption, there exists a constant ε > 0 such that
|∇( f |M)|(x) < δ for all points x in the ball B2ε(x̄). Since M is locally closed,
we can furthermore assume that such x have approximate projections v ∈ M with
d(v, x) ≤ 2dist(x,M). Our argument so far shows that, after shrinking ε, we can
assume that these approximate projections satisfy f (v) ≤ f (x).

We claim |∇ f |(x) ≤ 3δ for all points x ∈ M∩ Bε(x̄). We can assume that x is not
a local minimizer for f , since otherwise the claim is immediate. Choose a sequence
xr → x in Bε(x̄) such that

qr = f (x) − f (xr )

d(x, xr )
→ |∇ f |(x)

and choose approximate projections vr ∈ M with d(vr , xr ) ≤ 2dist(xr ,M). By
definition, these points satisfy d(vr , xr ) ≤ 2d(x, xr ) and hence

d(x, vr ) = (
d(x, vr ) − d(vr , xr )

) + d(vr , xr ) ≤ 3d(x, xr ),

implying in particular vr → x . Moreover, as we have seen, f (vr ) ≤ f (xr ) for all
large r . Since |∇( f |M)|(x) < δ, we know f (x) − f (vr ) < δd(x, vr ) for all large r ,
and hence

qr <
δd(x, vr )

d(x, xr )
≤ 3δ.

Letting r → ∞ proves the claim. Since δ was arbitrary, the result follows. ��
While we have assumed, for simplicity that the setM is normally embedded, we only
need that assumption to hold locally around the point x̄ , in the obvious sense.
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In the most basic case, the underlying space is Euclidean and the identifiable set
M is a smooth submanifold, so the nearest point projection mapping projM is single-
valued near any point x̄ ∈ M. Setting v = projM(x) in Theorem 4.5, we then recover
[30, Theorem D.2] as a special case. However, this new result applies more broadly,
including situations when M is not a manifold, as we illustrate later.

5 The Kurdyka–Łojasiewicz Property

Our initial motivation for the preceding section was the idea of sharpness, a notion
highlighted in the optimization literature in [26]. We now return to that idea in order
to discuss the nonsmooth Kurdyka–Łojasiewicz inequality [15, 17], a property that
has had far-reaching impact on complexity analysis for optimization. We begin with
the simple idea of sharpness at a point.

Definition 5.1 On a metric space (X , d), a point x̄ is a sharp local minimizer of a
function f : X → (−∞,+∞] if there exists a constant ε > 0 such that x̄ locally
minimizes f − εdx̄ .

For example, any point x̄ ∈ X is a sharp local minimizer of the distance function dx̄ .
Notice that any sharp local minimizer is also a strict local minimizer. An immediate
consequence of Theorem 4.2 (Linear growth) is the following result.

Corollary 5.2 (Sharp minimizers) On a complete metric space, if a closed function
f has slope zero at a point x̄ , and the set {x̄} is identifiable, then x̄ is a sharp local
minimizer.

The following example shows that the converse may fail.

Example 5.3 (Sharp minimizers may not be identifiable) The locally Lipschitz func-
tion defined on R by f (0) = 0 and f (x) = |x | + x2 sin 1

x for x �= 0 satisfies
f (x) ≥ 1

2 |x | for all small x , and hence has a sharp minimizer at 0. However, f has
derivative zero at each point 1

2πr for r = 1, 2, 3, . . .. These points approach zero, so
the set {0} is not identifiable.

To handle the more practical situation where minimizers may not be strict, [26]
introduced the following weaker property, which we use in a local form.

Definition 5.4 On a metric space X , a point x̄ is aweak sharp minimizer (locally) for a
function f : X → (−∞,+∞] if there exists a constant ε > 0 such that, for the level
setL = {x : f (x) ≤ f (x̄)}, the point x̄ locally minimizes the function f −εdist(·,L).

By analogy with Corollary 5.2, we now draw a new relationship between weak
sharpness and identifiability.

Corollary 5.5 (Weak sharpminimizers) Ona completemetric space, consider a closed
function f and a local minimizer x̄ . If the level set of points x with value f (x) ≤ f (x̄)
is identifiable at x̄ for f , then x̄ is a weak sharp minimizer.

123



Foundations of Computational Mathematics

Proof Denote the level set by L. Suppose ε > 0 is strictly less than the modulus of
identifiability of L for the function f at the point x̄ :

lim inf
x→ f x̄, f (x)> f (x̄)

|∇ f |(x) > ε.

If the result fails, then there exists a sequence of points xr → x̄ in X satisfying

f (xr ) < f (x̄) + ε · dist(xr ,L). (5.6)

Since x̄ is a local minimizer, for large r we have f (xr ) ≥ f (x̄) and so inequality
(5.6) implies xr /∈ L. The right-hand side converges to f (x̄), whence so does f (xr ).
By Theorem 4.2 (Linear growth), there exists a sequence of points vr → x̄ in L
satisfying, for large r , the inequality f (vr ) + εd(vr , xr ) ≤ f (xr ). For large r we
know f (vr ) ≥ f (x̄), so εd(vr , xr ) ≤ f (xr ) − f (x̄), contradicting inequality (5.6). ��
Example 5.3 shows that the converse of Corollary 5.5 may fail.

The Kurdyka–Łojasiewicz property may be thought of as a modification of the
assumption of Corollary 5.5, obtained by first shifting and truncating the function f ,
replacing each value f (x) by [ f (x) − f (x̄)]+, where u+ denotes the positive part of
the value u, and then rescaling those new function values using the following standard
tool.

Definition 5.7 A desingularizer is a function φ : [0,+∞] → [0,+∞] that is contin-
uous on [0,+∞), satisfies φ(0) = 0 and φ(τ) → φ(+∞) as τ → +∞, and has
continuous strictly positive derivative on (0,+∞).

Typically we use desingularizers of the form φ(τ) = τ 1−α , where the KL exponent
α lies in the interval [0, 1). Such desingularizers, for example, suffice for the original
Łojasiewicz proof of the KL property for real-analytic functions on Euclidean spaces
[60], and hence also for real-analytic functions on analytic manifolds [49, Section 9].
Unlike some definitions, we do not explicitly require concavity.

We now present a definition of the Kurdyka–Łojasiewicz property in metric spaces.
Our definition is inspired by a version of the KL property from [18, Corollary
4], reframed in the language of identifiability. In the Euclidean case, some earlier
subgradient-based versions of the KL property [4] reduce precisely to this metric def-
inition; the original nonsmooth property [15, 17] (again subgradient-based) is slightly
stronger, as we shortly discuss. Researchers on Riemannian nonsmooth optimization
have proposed generalizations to manifolds [11, 45], but by comparison with the sub-
gradient approach in general, the metric definition we present is simple and direct. By
contrast with [18, Section 2], which aimed to illuminate the KL inequality as a metric
regularity property, the new connection to identifiability that we present allows us to
deploy the linear growth results of Sect. 4.

Definition 5.8 On a metric space X , a function f : X → (−∞,+∞] satisfies the KL
property at a point x̄ ∈ dom f if there exists a desingularizer φ such that the level set
of points x satisfying f (x) ≤ f (x̄) is identifiable at x̄ for the composite function g
defined on X by g(x) = φ

([ f (x) − f (x̄)]+)
.
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We make some immediate comments. The level set for f in the definition is also
the level set defined by g(x) ≤ 0, for the composite function g. Hence, by Corollary
5.5, when the metric space X is complete and f is closed, the KL property implies
that the point x̄ is a weak sharp minimizer of the composite function g.

For closed functions f , the KL property amounts to the existence of δ > 0 such
that

∣∣∇(
φ( f (·) − f (x̄))

)∣∣(x) ≥ δ for all points x near x̄ with value f (x) near and
strictly larger than f (x̄), as stated in [18, Corollary 4]. Using a simple chain rule [8,
Lemma 4.1], we can rewrite the left-hand side as φ′( f (x) − f (x̄)

) · |∇ f |(x). When
the underlying space X is Euclidean, Proposition 2.7 transforms our definition into an
equivalent but more familiar inequality:

φ′( f (x) − f (x̄)
) · dist(0, ∂ f (x)

) ≥ δ. (5.9)

The original Euclidean nonsmooth property [17] (sometimes called the strong KL
inequality [64]),while theoretically stronger, since it replaces the subdifferential ∂ f (x)
in inequality (5.9) by the larger Clarke subdifferential, in practice seems no stronger:
for more discussion, see [55]. In Euclidean spaces, the strong KL property always
holds for functions f that are semi-algebraic, or, more generally, tame [17].

Remarkably, by-now-standard KL-based convergence analyses like [18, Theorem
24] often transpire on inspection to be entirely metric in nature. This new perspective
clarifies proofs and extends their reach to settings such as manifolds and more general
metric spaces. Before illustrating this view, we require a standard definition.

Definition 5.10 A function f on a metric space is continuous on slope-bounded sets
[2] if sequences of points xr → x with values f (xr ) and slopes |∇ f |(xr ) uniformly
bounded must satisfy f (xr ) → f (x).

In particular, on Euclidean spaces, all closed convex functions are continuous on slope-
bounded sets, as, more generally, are all closed functions that are subdifferentially
continuous in the sense of [66].

We next illustrateKL-based analysis inmetric spaces by proving convergence of the
proximal point method. The argument follows that for [18, Theorem 24]. In that result,
the setting is a Hilbert space and the objective must be weakly convex. However, on
inspection, as we show, the result has an entirely metric version. For comparison, [9]
also proves convergence of the proximal point method in metric spaces, but requires
the space to be of nonpositive curvature and the objective to be geodesically convex;
furthermore, the argument only guarantees a notion of convergence weaker than the
convergence in distance that we prove next.

Example 5.11 (Proximal sequences in metric spaces) On a complete metric space, we
consider a closed function f that is bounded below, and continuous on slope-bounded
sets. We assume that there exists a value ρ > inf f and a desingularizer φ such that

inf f < f (x) < ρ ⇒ ∣∣∇(
φ( f (·) − inf f )

)∣∣(x) ≥ 1.

A simple open cover argument (cf. [3, Lemma 1(ii)]) shows that this uniform version
of the KL property holds if the level set {x : f (x) ≤ ρ} is compact and the KL
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property holds at every minimizer. We consider a sequence of points (xk) arising from
the proximal point iteration:

xk+1 ∈ prox f (xk) (k = 0, 1, 2, . . .).

As we discussed in Sect. 2, in quite general settings there exist such sequences starting
from any initial point x0 ∈ dom f . The values f (xk) are nonincreasing and bounded
below, and Lemma 2.10 implies |∇ f |(xk+1) ≤ d(xk+1, xk) for all k. We furthermore
assume the initial value satisfies f (x0) < ρ.Weclaim that the iterates xk must converge
to a critical point.We lose no generality in supposing f (xk) > inf f for all k. Consider
the level sets Lk = {x : f (x) ≤ f (xk)}. By definition, all points x ∈ X satisfy

f (xk+1) + 1

2
d2(xk, xk+1) ≤ f (x) + 1

2
d2(xk, x),

so all x in the level set Lk+1 satisfy d(xk, x) ≥ d(xk, xk+1). We deduce the equation
d(xk, xk+1) = dist(xk, Lk+1). The right-hand side is no larger than the Hausdorff dis-
tance between the sets Lk and Lk+1, which by [18, Corollary 4] is bounded above by
φ
(
f (xk)

)−φ
(
f (xk+1)

)
. Thus trajectory

∑
k d(xk, xk+1) has finite length, so by com-

pleteness, xk converges to some point x∗ and furthermore |∇ f |(xk) → 0. Continuity
on slope bounded sets implies f (xk) → f (x∗), so x∗ is a critical point.

We are now ready for one of our main new results. In the previous section, we
used Theorem 4.2 (Linear growth) to show how a function, around any point where
its slope is zero, inherits various growth properties from the corresponding properties
restricted to any identifiable set. We now extend that list to include the KL property.
The possibility of such an extension is perhaps not surprising: in general metric spaces,
the KL inequality is closely related to a growth property [18, Corollary 4], and in the
convex Euclidean case the ideas are essentially equivalent [19, Section 3]. However,
this powerful technique for recognizing the KL property through identifiability is
new even in the Euclidean case. Furthermore, we show that the unrestricted property
holds with the same desingularizer (and, in particular, KL exponent) as the restricted
property.

Recall that on any subset M of the metric space (X , d), we can consider the
induced metric, where the distance between points x, y ∈ M is just d(x, y). The set
M equipped with the induced metric then forms a metric space (M, d).

Theorem 5.12 (Identifiability and the KL property) On a complete metric space
(X , d), suppose that a closed function f has slope zero at a point x̄ . Consider any
identifiable set M at x̄ , and a desingularizer φ that is concave (or, more generally,
that satisfies lim infτ↘0 φ′(τ ) > 0). Then the following properties are equivalent.

(a) The function f has the KL property at x̄ with desingularizer φ.
(b) On the metric space (M, d), the function f |M has the KL property at x̄ with

desingularizer φ.
(c) The function f + δM has the KL property at x̄ with desingularizer φ.
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Proof Properties (b) and (c) differ only in notation. Observe that identifiability ensures
the existence of a constant ε > 0 such that |∇ f |(x) > 2ε for all points x /∈ M near
x̄ with value f (x) near f (x̄). Without loss of generality assume f (x̄) = 0.

Suppose that property (b) holds. Then there exists a constant δ > 0 such that∣∣∇(
φ ◦ f |M

)∣∣(x) ≥ δ for all points x ∈ M near x̄ satisfying 0 < f (x) < δ. From
this inequality, the definition of slope then implies

∣∣∇(
φ ◦ f

)∣∣(x) ≥ δ, (5.13)

since the left-hand side is no smaller than the previous left-hand side.
On the other hand, consider points x /∈ M near x̄ satisfying 0 < f (x) < δ.

Shrinking δ if necessary, we can ensure φ′( f (x)
) ≥ δ and |∇ f |(x) > 2ε. The chain

rule implies
∣∣∇(

φ ◦ f
)∣∣(x) ≥ δ · 2ε > 0. Property (a) follows from inequality (5.13).

Conversely, if property (a) holds, then there exists a constant δ > 0 such that both the
inequalities

∣∣∇(
φ◦ f

)∣∣(x) > δ and φ′(t
) ≥ δ hold for all points x satisfying d(x, x̄) <

δ and 0 < f (x) < δ, and all t ∈ (0, δ). Shrinking δ if necessary, identifiability ensures
that all such points x outside M also satisfy |∇ f |(x) > 2ε. On the other hand, for
any such point x in M, there exists a sequence of points xr → x , each satisfying
φ
(
f (x)

) − φ
(
f (xr )

)
> δ · d(x, xr ). By Theorem 4.2 (Linear growth), there exist

points vr ∈ M, satisfying f (vr ) + εd(vr , xr ) ≤ f (xr ) for all large r , so

φ
(
f (x)

) − φ
(
f (vr )

)
> δ · d(x, xr ) + φ

(
f (xr )

) − φ
(
f (vr )

)

= δ · d(x, xr ) + φ′(tr )
(
f (xr ) − f (vr )

)

for some value tr ∈ [ f (vr ), f (xr )], by the mean value theorem. Hence we deduce

φ
(
f (x)

) − φ
(
f (vr )

)
> δ · d(x, xr ) + δ · ε · d(vr , xr ) ≥ γ · d(x, vr ),

where γ = δ · min{1, ε} > 0, so |∇(φ ◦ f |M)|(x) ≥ γ . Property (b) follows. ��
Remark 5.14 By restricting attention to desingularizers φ satisfying the condition
lim infτ↘0 φ′(τ ) > 0, we lose no essential generality. If a desingularizer φ fails
this condition, then the function defined by ϕ(t) = ∫ t

0 max{1, φ′(τ )}dτ,∀ t ≥ 0, is
another desingularizer, and it maintains the KL property and satisfies the condition.

Talweg Curves and Identifiability

In [18], the authors explore characterizations of the KL property via the finite length
of “talweg” curves (German for “valley paths”). For a suitably isolated critical point x̄ ,
given any constant R > 1, they consider the mapping χ : (

f (x̄),+∞) →→ X defined,
for a closed bounded neighborhood D of x̄ , by

χ(r) =
{
x ∈ D : f (x) = r , |∇ f |(x) ≤ R inf

y∈D
f (y)=r

|∇ f |(y)
}
.
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A talweg is a curve x : (
f (x̄), ρ

) → X satisfying x(r) ∈ χ(r) for all r .
Consider, for example, Example 3.10, where f (u, v) = |u|+v2. The unique critical

point x̄ = (0, 0) is also the strict global minimizer, with value f (x̄) = 0. Let D be
the unit disk. Suppose 0 < r < 1

4R2 . Then we have

R inf
y∈D
f (y)=r

|∇ f |(y) = 2R
√
r < 1,

so χ(r) = {(0,±√
r)}. Thus any talweg curve x : (0, r) → R2 lies in the identifiable

setM = {0} × R for all small r > 0.
We can generalize this observation using the following assumption.

Assumption 5.15 At some strict local minimizer x̄ , the set M is strongly critical,
identifiable, and locally connected. Furthermore, x̄ is not an isolated point ofM, and
the restriction f |M is continuous.

With this assumption, we claim

inf
y∈D
f (y)=r

|∇ f |(y) → 0 as r ↓ f (x̄). (5.16)

If not, then there exists a value δ > 0 and a sequence f (x̄) < ri ↓ f (x̄) such that

|∇ f |(y) > δ for all y ∈ D such that f (y) = ri for some i . (5.17)

We can assume the existence of points yi ∈ M approaching x̄ and satisfying f (yi ) =
ri for all i . Otherwise, taking a subsequence, there would exist an open neighborhood
U of x̄ such that f (x) �= ri for all x ∈ U and all i . We can assume, after shrinking, that
U is connected and f (x) > f (x̄) whenever x̄ �= x ∈ U . But the image f (U ) must
then be connected, and hence contained in the interval (−∞, f (x̄)]. We have arrived
at the contradiction U = {x̄}. Since M is strongly critical, we know |∇ f |(yi ) → 0,
contradicting inequality (5.17). Property (5.16) follows.

We note that the identifiability of M ensures that any talweg x : ( f (x̄), r) → X
lies inM for all r near f (x̄). This correlates with our observation that the KL property
is determined just by the behavior of f on M.

Part II

Identifiability in Euclidean spaces

6 Four Classes of Nonsmooth Functions

The second part of this work focuses on identifiable sets in Euclidean space. We
focus initially on four objective classes, consisting of functions that are, in increasing
order of strength, prox-regular, primal lower nice, strongly amenable, or “smoothly
embedded”. The first three are broad classes, familiar from earlier literature [65, 66].
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The last class, consisting just of smooth functions, indicator functions of manifolds,
and their sums, is much narrower. Nonetheless, we shall see in Part II that, from
the perspective of identifiability and its continuous-time analog, smoothly embedded
functions often model the behavior of much more general functions.

We begin by reviewing standard variational analysis [66]. Throughout Part II, the
term“smooth”meansC(2)-smooth. For a function f : Rn → (−∞,+∞] and a point
x̄ ∈ dom f , a vector y ∈ Rn is a regular subgradient of f at x̄ , written y ∈ ∂̂ f (x̄), if
f (x) ≥ f (x̄) + 〈y, x − x̄〉 + o(|x − x̄ |) as x → x̄ . If furthermore we can replace the
term o(|x− x̄ |) by the term O(|x− x̄ |2), then we instead call y a proximal subgradient,
written y ∈ ∂P f (x̄). We say that y is a subgradient of f at x̄ , written y ∈ ∂ f (x̄), if
there are sequences xr → f x̄ and yr ∈ ∂̂ f (xr ) with yr → y. As we observed after
Proposition 2.7, x̄ is critical if and only if 0 ∈ ∂ f (x̄). By contrast, it is easy to check
that f has slope zero at x̄ if and only if 0 ∈ ∂̂ f (x̄). We define the regular normal cone
of a set M ⊂ Rn at a point x̄ ∈ M by N̂M(x̄) = ∂̂δM(x̄), and the normal cone by
NM(x̄) = ∂δM(x̄). WhenM is convex, riM denotes its relative interior, and parM
denotes the unique linear subspace that is a translate of its affine span. We denote the
closed unit ball by B.

We next summarize some basic ideas about manifolds: more details may be found
in standard references such as [50]. In parallel with our terminology for functions,
throughout Part II, the term “manifold” means a C(2)-smooth manifold. Given a
manifoldM ⊂ Rn and a point x̄ ∈ M, there exists a smooth map F : Rn → Rm with
F(x̄) = 0 and surjective Jacobian ∇F(x̄) such that

x ∈ M ⇔ F(x) = 0 for all x ∈ Rn near x̄ . (6.1)

Consequently [66, Example 6.8] both the normal cone NM(x̄) and the regular normal
cone N̂M(x̄) coincide with the classical normal space to M at x̄ . The nearest-point
projection ProjNM(x)(y) is well-defined and depends continuously on points x, y near
x̄ with x ∈ M. A function h : M → R is smooth around x̄ if there exists a smooth
function h̃ : Rn → R such that h(x) = h̃(x) for all points x ∈ M near x̄ . We then
call h̃ a smooth extension of h at x̄ , and the Riemannian gradient of h at x̄ , denoted
∇Mh(x̄), is the orthogonal projection of the gradient ∇h̃(x̄) onto the tangent space
TM(x̄). The projected vector is in fact independent of the choice of extension h̃.
For example, the set M ⊂ R2 defined by the equation x2 = x21 is a manifold, and
the restriction f |M of the function f defined by equation (1.1) is smooth because it
agrees with the smooth function f̃ (x) = 5x2 − 4x21 on M. At the point 0 ∈ R2, the
Riemannian gradient ∇M( f |M), which we abbreviate to ∇M f , is zero.

We consider four objective classes of interest, beginning with prox-regularity [66].

Definition 6.2 A closed function f : Rn → (−∞,+∞] is prox-regular at a point x̄
for a subgradient ȳ ∈ ∂ f (x̄) if there exists a constant ρ ≥ 0 such that all points x, x ′
near x̄ with f (x) near f (x̄) and subgradients y ∈ ∂ f (x) near ȳ satisfy the inequality
f (x ′) ≥ f (x) + 〈y, x ′ − x〉 − ρ|x ′ − x |2.
The second class [65] is clearly more restrictive than prox-regularity.
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Definition 6.3 A closed function f : Rn → (∞,+∞] is primal lower nice at a point
x̄ ∈ Rn if there exist constantsα andβ such that all points x, x ′ near x̄ , and subgradients
y ∈ ∂ f (x) satisfy

f (x ′) ≥ f (x) + 〈y, x ′ − x〉 − (α + β|y|)|x ′ − x |2. (6.4)

If this property holds for all x̄ ∈ dom f , then we simply call f primal lower nice.

The third class, discussed in [66, Definition 10.23 and Proposition 13.32], while
versatile, is more restrictive still [65, Theorem 5.1].

Definition 6.5 At a point x̄ ∈ Rn , a function f is strongly amenable if it has the local
representation f = g ◦ F for some closed convex function g : Rm → (−∞,+∞]
and smooth map F : Rn → Rm such that F(x̄) lies in dom g and the normal cone to
cl(dom g) there intersects the null space of the adjoint map ∇F(x̄)∗ trivially.

In the scenario of Definition 6.5, a standard chain rule [66] implies

∂ f (x̄) = ∂̂ f (x̄) = ∇F(x̄)∗∂g
(
F(x̄)

)
.

The final class can be seen, via property (6.1), to consist of particularly simple strongly
amenable functions.

Definition 6.6 At a point x̄ ∈ Rn , a function f is smoothly embedded if it has the
local representation f = g + δM for some smooth function g : Rn → R and some
manifold M containing x̄ .

In the scenario of Definition 6.6, a standard sum rule [66, Corollary 10.9] implies

∂ f (x̄) = ∂̂ f (x̄) = ∇g(x̄) + NM(x̄). (6.7)

The function (1.1) is strongly amenable at zero, becausewe can represent it using the
smoothmap F(x) = (x2−x21 , x1) and the convex function g(u, v) = 5|u|+v.Weakly
convex functions — those of the form g − ρ| · |2, for proper closed convex functions
g and constant ρ (see for example [29]) — are easily seen to be strongly amenable.
For locally Lipschitz functions, prox-regularity, the primal lower nice property, and
strong amenability are equivalent, each coinciding with the “lower C2 property” [66].
Indeed, a locally Lipschitz f has each of these properties at a point if and only if it
equals a weakly convex function locally [66, Exercise 10.36, Proposition 13.33].

In general, however, prox-regular functions may not be primal lower nice, even if
they are continuous. For example, the function f (x) = √|x | is prox-regular at zero,
but not primal lower nice there. To see this, assume that inequality (6.4) holds. For
any small t > 0, we can set x = t2, x ′ = 4t2, y = 1

2t , to deduce

2t ≥ t + 1

2t
3t2 −

(
α + β

1

2t

)
(3t2)2.
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This gives a contradiction for t sufficiently small. Also worth noting is that primal
lower nice functions may not be weakly convex: a smoothly embedded function as
described in Definition 6.6 is weakly convex if and only if the setM is locally affine.

We prove two simple tools for later use. First, the primal lower nice property is
preserved by addition of smooth functions.

Proposition 6.8 (Primal lower nice preservation) For a function g : Rn → R that is
smooth around the point x̄ ∈ Rn, if a closed function f : Rn → (−∞,+∞] is primal
lower nice at x̄ , then so is the sum f + g.

Proof Using the notation above, we can assume that inequality (6.4) holds. Since g is
smooth, its gradient is Lipschitz around x̄ . (In fact this property suffices for our proof.)
Hence, for some constants γ, λ > 0, all points x and x ′ near x̄ satisfy

g(x ′) ≥ g(x) + 〈∇g(x), x ′ − x〉 − γ |x ′ − x |2 (6.9)

and |∇g(x)| ≤ λ.
Now consider the sum h = f + g. For any points x and x ′ near x̄ and subgradient

w ∈ ∂h(x), the sum rule [66, Corollary 10.9] ensures the existence of a subgradient
y ∈ ∂ f (x) satisfying w = y + ∇g(x). Adding the inequalities (6.4) and (6.9), we
deduce

h(x ′) ≥ h(x) + 〈w, x ′ − x〉 − (
γ + (α + β|y|))|x ′ − x |2.

Since |y| ≤ λ + |w|, the primal lower nice property for h follows. ��
Secondly, we show that when considering primal lower nice functions, we lose no

generality in assuming that they are bounded below.

Lemma 6.10 (Localization) If a closed function f : Rn → (−∞,+∞] is primal
lower nice at a point x̄ ∈ Rn, then there is another proper closed function that is
primal lower nice and bounded below, and that agrees identically with f near x̄ .

Proof For simplicity, suppose x̄ = 0. By definition, f is primal lower nice throughout
the ball 2δB for some δ > 0. Since f is closed, we can shrink δ > 0 if necessary to
ensure f is bounded below on 2δB. The function g : Rn → R defined by

g(x) =

⎧
⎪⎨

⎪⎩

0 (|x | ≤ δ)
(|x |2−δ2)3

4δ2−|x |2 (δ < |x | < 2δ)

+∞ (|x | ≥ 2δ)

is smooth on the interior of 2δB, so, by Proposition 6.8, the function f + g is pri-
mal lower nice throughout its domain. But f + g is also bounded below and agrees
identically with f on the ball δB, as required. ��

A particularly simple class of strongly amenable functions f arise when the convex
function g in Definition 6.5 is given by g(y) = maxi yi . The resulting functions f
illustrate well the theory of identifiability: we discuss them in the next section.
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7 Max Functions

We consider the important basic example of max functions: those functions of the
form x �→ maxi fi (x) for x ∈ Rn , where the index i ranges over some finite index set
and each function fi is continuously differentiable. Identifiable sets for max functions
were studied in [52, Corollary 4.8], but under nondegeneracy conditions that often
fail in practice [38]. By contrast, [35, Corollary 4.11] dispenses with nondegeneracy,
but omits important details in the result and proof. Here we present a short and direct
argument. We start with the smooth case.

Proposition 7.1 If a function f on Rn is continuously differentiable around a point x̄ ,
with ∇ f (x̄) = 0, then any set containing x̄ is strongly critical at x̄ .

Proof As noted, |∇ f |(x) = |∇ f (x)| at all points x near x̄ . The result follows. ��
The next result uses Proposition 2.7 and standard variational analysis: [66, Theorem

10.31] reveals the property G(x) = ∂ f (x). A direct proof is also short.

Proposition 7.2 (Slope for max functions) Consider a nonempty finite index set I and
continuously differentiable functions fi : Rn → R for i ∈ I . For each point x ∈ Rn,
define the value f (x) = maxi fi (x), and sets

I (x) = {i : fi (x) = f (x)} and G(x) = conv{∇ fi (x) : i ∈ I (x)}.

Then the slope and limiting slope of f at x both equal dist
(
0,G(x)

)
.

Proof Elementary calculus shows

|∇ f |(x) = max|y|=1
min
i∈I (x) 〈∇ fi (x), y〉.

A simple limiting argument then shows that the slope and limiting slope agree
everywhere, and the result then follows from the separating hyperplane theorem. ��

For any index set I , the support set of a vector λ ∈ R I is the set {i ∈ I : λi �= 0}.
Theorem 7.3 (Identifiable sets formax functions) With the assumptions of Proposition
7.2, consider a critical point x̄ for the max function f . Let Ī = I (x̄), and denote by
� the finite set consisting of support sets of vectors λ ∈ R Ī+ satisfying

∑

i∈ Ī
λi = 1,

∑

i∈ Ī
λi∇ fi (x̄) = 0. (7.4)

Then the union of the sets MJ = {x : I (x) ⊃ J } as the support set J ranges over �

is strongly critical and identifiable at x̄ .

Proof We first prove identifiability. Consider a sequence xr → x̄ satisfying
|∇ f |(xr ) → 0 and with xr /∈ MJ for r = 1, 2, . . . and all J ∈ �. For large r , con-
tinuity implies I (xr ) ⊂ Ī , and Proposition 7.2 then implies the existence of a vector
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λr ∈ R Ī+ satisfying
∑

i λ
r
i = 1 and λri = 0 for all i /∈ I (xr ), with

∑
i λ

r
i ∇ fi (xr ) → 0.

After taking a subsequence, λr converges to some vector λ̄ ∈ R Ī+ with support set
J̄ ⊂ Ī . Since λ̄ satisfies equation (7.4), by continuous differentiability, J̄ ∈ �. Con-
sequently I (xr ) �⊃ J̄ for each r , and hence there exists an index i(r) /∈ I (xr ) with
λ̄i(r) > 0. Taking a further subsequence, some index i ∈ Ī satisfies λ̄i > 0 and
i /∈ I (xr ) for all r . This gives the desired contradiction: 0 = λri → λ̄i > 0.

Turning to strong criticality, by Proposition 3.4, it suffices to prove, for each support
set J ∈ �, that the setMJ is strongly critical. Some corresponding solution λ ∈ R Ī+ of
equation (7.4) has support set J . The continuously differentiable function g = ∑

i λi fi
satisfies the inequality g ≤ f , with equality throughoutMJ . Strong criticality follows
by Propositions 3.5 and 7.1. ��

To illustrate, consider the max function on R2 with the two ingredients defined by
(u, v) �→ v2 ± u at the critical point (0, 0). Theorem 7.3 then recovers Example 3.10.
Although in this example the strongly critical identifiable set is a manifold (defined
by u = 0), that might not be true more generally. For example, the function onR with
ingredients the zero function and the function x �→ −x , at the critical point 0, has R+
as a strongly critical identifiable set. Furthermore, in general, the set � in Theorem
7.3 may contain several distinct supports. Consider, for example, the function on R
with ingredients the zero function and the function x �→ x3, at the critical point 0,
in which case R is a strongly critical identifiable set. When the gradients ∇ fi (x̄) for
i ∈ Ī are affinely independent, however, equation (7.4) has a unique solution λ̄. If we
fix some index i in the index set I> = {i ∈ Ī : λ̄i > 0}, then M is defined around x̄
by the constraints

f j (x) − fi (x) = 0 for j ∈ I> \ {i}
f j (x) − fi (x) ≤ 0 for j ∈ Ī \ I>.

The functions on the left-hand side are continuously differentiable, with linearly
independent gradients, by the affine independence assumption. The inverse function
theorem therefore guarantees that, locally, the setM is diffeomorphic to a polyhedral
cone. Consequently, around x̄ , the strongly critical identifiable set M is normally
embedded, so Theorem 4.5 applies.

8 Identifiability and Partial Smoothness

In Euclidean space, identifiability, an idea inspired by explorations in [25, 27, 40, 67],
was introduced in [35, Definition 3.10]: by Corollary 3.14, that original definition
coincides with ours. A primary aim of [35] was to relate identifiability and the idea of
partial smoothness introduced in [52]. We now revisit that relationship using a fresh
proof scheme, replacing the intricate proximal epigraphical analysis suggested in [35]
by a direct and natural argument based on Theorem 4.2 (Linear growth). The next
result, following a pattern observed in [36, Section 10], is the key tool.
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Proposition 8.1 (Identifiable sets and subgradients) Suppose that the closed function
f : Rn → (−∞,+∞] has slope zero at the point x̄ . Consider a closed, normally
embedded set M ⊂ Rn that is strongly critical and identifiable at x̄ , and has contin-
uous restriction f |M. Then for all points x near x̄ with value f (x) near f (x̄) and
small vectors y ∈ Rn, the following two properties are equivalent:

(a) y ∈ ∂ f (x)
(b) x ∈ M and y ∈ ∂( f + δM)(x).

The same equivalence holds for both regular and proximal subgradients. Furthermore,
prox-regularity at x for y holds for f if and only if it holds for f + δM.

Proof Wefirst prove the regular subdifferential result. In that case, property (a) implies
x ∈ M, by identifiability, and then property (b) follows from the inclusion ∂̂ f (x) ⊂
∂̂( f + δM)(x). Hence, in the regular case, we just need to prove (b) implies (a). By
Theorem 4.5, there exists ε > 0 such that all points x ∈ B f

2ε(x̄) and nearest points
v ∈ ProjM(x) satisfy f (v) + ε|v − x | ≤ f (x). To complete the proof, we claim

x ∈ M ∩ B f
ε (x̄), y ∈ ∂̂( f + δM)(x), and |y| < ε ⇒ y ∈ ∂̂ f (x).

Assume x and y satisfy the left-hand side properties. Then points v ∈ M satisfy

f (v) ≥ f (x) + 〈y, v − x〉 + o(|v − x |) as v → x .

If y /∈ ∂̂ f (x), then there exists δ > 0 and a sequence zs → x satisfying

f (zs) − f (x) − 〈y, zs − x〉 < − δ|zs − x |.

For all large s, since f is closed, f (zs) > f (x)−ε, andwe also have f (zs) < f (x)+ε,
so in fact zs ∈ B f

ε (x) ⊂ B f
2ε(x̄). Choosing vs ∈ ProjM(zs), we have

f (zs) ≥ f (vs) + ε|vs − zs |
≥ f (x) + 〈y, vs − x〉 + ε|vs − zs | + o(|vs − x |)
= f (x) + 〈y, zs − x〉 + 〈y, vs − zs〉 + ε|vs − zs | + o(|vs − x |)
≥ f (x) + 〈y, zs − x〉 + o(|vs − x |),

so −δ|zs − x | > o(|vs − x |), and hence in fact |zs − x | = o(|vs − x |), contradicting

|vs − x | ≤ |vs − zs | + |zs − x | ≤ 2|zs − x |.

This completes the proof in the regular case. The analogous proof for proximal sub-
gradients is almost identical, and the result for subgradients follows from the regular
case by a simple limiting argument. Finally, prox-regularity of f at x for a proximal
subgradient y depends only on the behavior of f -attentive localizations of themapping
∂ f around (x, y) [66, Theorem 13.36], so the final claim follows. ��
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Definition 8.2 Given a closed function f : Rn → R, consider a point x̄ ∈ dom f and
a manifoldM containing x̄ . Then f is partly smooth at x̄ for a subgradient ȳ ∈ ∂ f (x̄)
relative toM if it satisfies the following properties:

Prox-regularity: the function f is prox-regular at x̄ for ȳ.
Restricted smoothness: the restriction f |M is smooth around x̄ .

Sharpness: the subspace par ∂̂ f (x̄) is just the normal space NM(x̄).
Inner semicontinuity: for all y ∈ ∂ f (x̄) near ȳ and sequences xr → x̄ in M,

there exist yr ∈ ∂ f (xr ) converging to y.

This definition, from [36], slightly refined the original [52]. We note an easy example.

Proposition 8.3 Any smoothly embedded function is partly smooth at every point in
its domain M relative toM.

Proof As we have observed, any smoothly embedded function f = g + δM, for a
smooth function g and amanifoldM, must be prox-regular. The restricted smoothness
condition is immediate. The sharpness condition follows from formula (6.7). Finally,
given any subgradient y ∈ ∂ f (x̄), define a vector ỹ = y − ∇g(x̄) ∈ NM(x̄). Given
any sequence xr → x̄ inM, we have

∇g(xr ) + ProjNM(xr )(ỹ) → ∇g(x̄) + ProjNM(x̄)(ỹ) = ∇g(x̄) + ỹ = y.

The left-hand side vector lies in ∂ f (xr ), so inner semicontinuity follows. ��
We focus on partial smoothness for the subgradient ȳ = 0. By Theorem 2.7, the

following result follows immediately from the inner semicontinuity condition.

Proposition 8.4 If a closed function f : Rn → (−∞,+∞] is partly smooth for zero
at a point x̄ relative to a manifold M, then M is strongly critical at x̄ .

Although the properties required for partial smoothness appear at first to comprise
a complex list, remarkably, in semi-algebraic optimization, partial smoothness holds
generically [34], along with the nondegeneracy condition 0 ∈ ri ∂̂ f (x̄). More pre-
cisely, for all vectors y in a dense open semi-algebraic subset of Rn , the perturbed
function f + 〈y, ·〉 is partly smooth at all critical points x , each of which further-
more must be nondegenerate. Consequently, the perturbed function has an identifiable
manifold at each critical point, for zero. Thus, for generic semi-algebraic optimiza-
tion problems, we expect to see identifiable manifolds around the solutions. Partial
smoothness and nondegeneracy also imply an important constant-rank property for
the subdifferential operator ∂ f [53, Theorem 6.5].

Most striking from our current perspective is the following result [36, Propo-
sition 10.12]: partial smoothness and nondegeneracy together are equivalent to a
seemingly simpler identifiability property with respect to a manifold. The argument
is now a straightforward application of Proposition 8.1.

Theorem 8.5 (Identifiability and partial smoothness) Consider a closed function
f : Rn → (−∞,+∞] with slope zero at a point x̄ lying in a manifold M. Suppose
that f |M is smooth around x̄. Then M is identifiable at x̄ if and only if f is partly
smooth at x̄ for zero relative to M with 0 ∈ ri ∂̂ f (x̄).
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Proof Suppose that the manifoldM is identifiable at the point x̄ . By assumption, the
restriction f |M has a smooth extension f̃ at x̄ . Like the Euclidean case, it is easy to
verify that the slope |∇( f |M)|(x) is just given by |∇( f |M)(x)|, at all points x near x̄ ,
and hence is continuous at x̄ . Applying Theorem 4.5, we knowM is strongly critical
at x̄ . Consider the function h = f + δM = f̃ + δM. We have

0 ∈ ∂̂ f (x̄) ⊂ ∂̂h(x̄) = ∇ f̃ (x̄) + NM(x̄),

so ∇ f̃ (x̄) ∈ NM(x̄) and ∂̂h(x̄) = NM(x̄). Using Proposition 8.1, the convex sets
∂̂h(x̄) and ∂̂ f (x̄) are identical near zero so the nondegeneracy condition 0 ∈ ri ∂̂ f (x̄)
and the sharpness condition follow, and since h is smoothly embedded, it is prox-
regular at x̄ for 0, whence so is f . Restricted smoothness holds by assumption.

Inner semicontinuity also holds by Proposition 8.1. To see this claim, note that any
small subgradient y ∈ ∂ f (x̄) also lies in ∂h(x̄). Given any sequence xr → x̄ in M,
since the smoothly embedded function h is partly smooth by Proposition 8.3, there
exist subgradients yr ∈ ∂h(xr ) approaching y. For all large r we have yr ∈ ∂ f (xr ),
so the claim follows.

Our proof in the converse direction is more standard, following [42] but shorter. If
the result fails, then by Corollary 3.14 there exists a sequence of points xr → f x̄ in
Mc with subgradients yr ∈ ∂ f (xr ) → 0. For large r , the point xr has a unique nearest
point x ′

r in M. Normalizing the vector xr − x ′
r gives a unit vector wr ∈ NM(x ′

r ),
which, taking a subsequence, we can suppose converges to a unit vector w ∈ NM(x̄).
The sharpness and nondegeneracy conditions imply the existence of a constant ε > 0
such that εw ∈ ∂ f (x̄), and the continuity condition then implies the existence of a
sequence of subgradients y′

r ∈ ∂ f (x ′
r ) → εw. Since f is prox-regular at x̄ for 0, there

exists a constant C > 0 such that, for all large r we have

f (x ′
r ) ≥ f (xr ) + 〈yr , x ′

r − xr 〉 − C |x ′
r − xr |2 and

f (xr ) ≥ f (x ′
r ) + 〈y′

r , xr − x ′
r 〉 − C |x ′

r − xr |2,

and hence 〈y′
r − yr , wr 〉 ≤ 2C |xr − x ′

r |. But in this inequality, the left-hand side
converges to ε, contradicting the convergence of the right-hand side to zero. ��
The original result, [36, Proposition 10.12], concerns partial smoothness for an arbi-
trary subgradient, rather than zero specifically. This more general result follows
immediately by adding a linear perturbation to the objective f .

Partly Analytic Functions

We end this section by discussing an important special case of Theorem 8.5. We
present a simple tool that often suffices for verifying the KL property of Sect. 5 and
helps find desingularizers. We describe how the KL property can decouple, becoming,
like partial smoothness, a simple and intuitive hybrid of smooth and sharp behavior.
In general, semi-algebraic (or tame) functions always have the KL property, but the
proof [17] is not straightforward, revealing little about desingularizers. For generic
semi-algebraic objectives, on the other hand— specifically for the sum of any specific
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semi-algebraic function and a generic linear perturbation — the situation is simpler:
[16, 34] prove the existence of an identifiable analytic manifold on which the objective
is analytic. We call this situation the partly analytic case.

We can equip any manifold M in Euclidean space with two natural metrics: the
metric d induced by the Euclidean distance, and the Riemannian distance dRie. For
any points x, y ∈ M, dRie(x, y) is the infimum of the length of paths inM from x to
y [51]. We can move easily between these metrics using the following technique.

Proposition 8.6 Given a manifold M in Euclidean space, consider a function
g : M → (−∞,+∞], a point x̄ ∈ dom g, and a desingularizer φ. Then, with respect
to the Riemannian and induced Euclidean metrics dRie and d, the KL properties for g
at x̄ with desingularizer φ are equivalent.

Proof This is a consequence of the following fact, proved in [32, Proposition 3.1]:

lim
x,y→x̄
x �=y

dRie(x, y)

d(x, y)
= 1.

��
In the partly analytic case, the KL property follows from the following result.

The result does not in fact require tameness. For example, it applies to the objective
x �→ f (x)+|x |, for the function f defined in Example 5.3. This objective is not tame,
but does satisfy the KL property at zero, since {0} is an identifiable set.

Corollary 8.7 (Partly analytic functions) Suppose that f : Rn → (−∞,+∞] is closed
and has slope zero at a point x̄ . If some analytic manifoldM is identifiable at x̄ and the
restriction f |M is analytic, then the KL property for f holds at x̄ , with K L exponent
equal to that of f |M at x̄ .

Proof Analytic functions on analyticmanifolds satisfy theKLproperty [49, Section 9].
The conclusion then follows from Theorem 5.12 and Proposition 8.6. ��

9 Subgradient Curves and Identification

The property of identifiability fundamentally concerns critical sequences. We now
move on from that discrete-time perspective to study continuous-time trajectories.
Consider once again the question of minimizing an objective function f on a metric
space. The central continuous-time analogue of the sequences considered thus far is
the family of curves of “maximal slope” [2, 31]. Around some given point x∗, we
pose the question of the existence of a small setM such that curves of maximal slope
converging to x∗ always remain inM eventually.

Figure1 illustrates this behavior for the simple nonsmooth nonconvex objective
5|x2 − x21 | + x21 , around the minimizer x∗ = 0: the associated small setM is defined
by x2 = x21 . The behavior is the precise analogue of the phenomenon we observed in
preceding sections, where various iterative procedures for minimizing f identify an
associated set M around x∗: sequences of iterates converging to x∗ must eventually
lie inM, thereby revealing some solution structure like constraint activity, sparsity, or
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matrix rank. For objectives f on general metric spaces, the question of identification in
continuous time remains open.As afirst step, therefore,we focus on theEuclidean case,
f : Rn → (−∞,+∞]. Following the arguments of [33], for interesting functions f
the question then typically reduces to the behavior of subgradient curves: locally
absolutely continuous maps x : R+ → dom f satisfying

x ′(t) ∈ −∂ f
(
x(t)

)
for almost all times t > 0.

Our main continuous-time result, Theorem 9.2, demonstrates for the first time
identification behavior for subgradient curves.

The significance of subgradient curves from an optimization perspective has been
highlighted in [3, 6]. Existing literature covers a wide class of nonsmooth and non-
convex functions f for which they must converge. In particular, the existence and
uniqueness of subgradient curves, given any initial point x(0) in dom f , was shown
for convex functions f in a well-known 1973 monograph of Brézis [22]. In fact this
result holdsmore generally, under the assumption that f is primal lower nice, as shown
in the following theorem from [61].

Theorem 9.1 (Existence and uniqueness of subgradient curves) If the closed function
f : Rn → (−∞,+∞] is primal lower nice and bounded below, then there exists a
unique subgradient curve x(·) corresponding to any initial point x(0) ∈ dom f . The
curve furthermore satisfies

∫ ∞

0
|x ′(t)|2 dt < + ∞.

For closed convex functions with minimizers, following [22], Bruck proved that
subgradient curves converge to minimizers [23]. Subgradient curves are known to
converge more generally, assuming some version of the KL property, holding in par-
ticular for closed semi-algebraic (or subanalytic) functions on bounded domains [15,
17]. Such convergence results hold for all closed convex functions, “lower C2" func-
tions, andweakly convex functions that are bounded below [15, 18].We note that these
results generalize: for a primal lower nice function f that is bounded below, if the KL
property holds throughout some subgradient curve, then a simple argument using [61,
Theorem 3.2] shows that the curve must have finite length and hence converge. We
deduce, for example, that all subgradient curves for the function (1.1) converge to
the minimizer at zero. To summarize, we can reasonably focus our current study on
subgradient curves that converge.

The following is our main continuous-time result.

Theorem 9.2 (Identification for subgradient curves) Consider a closed function
f : Rn → (−∞,+∞] and a subgradient curve x(·) converging to a point x̄ at which
f is primal lower nice and has a closed identifiable set M. Then, after a finite time,
x(·) lies on M, and becomes a subgradient curve for the function f + δM.

To derive continuous-time identification results of this general type, we must prove
that the speed of any subgradient curve always converges (essentially) to zero. In the
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convex case, this essential convergence property is well known. Indeed, the convex
special case of Theorem 9.2 is part of the identification folklore, although we do not
know a reference. In the next section, we prove essential convergence in the primal
lower nice case, and hence deduce Theorem 9.2.

In Theorem 9.2, if the identifiable set M is a manifold, then we deduce that the
dynamic of the subgradient curves is eventually governed by a smooth system. Before
stating the general result, we consider a special case.

Proposition 9.3 (Smooth restrictions) Suppose that the set M ⊂ Rn is a manifold
around the point x̄ , and that the function f : Rn → (−∞,+∞] is smooth around x̄.
Then, near x̄ , subgradient curves x(·) for the function f + δM are just smooth curves
inM solving the classical differential equation

x ′(t) = −∇M f
(
x(t)

)
. (9.4)

Proof Bydefinition, at all times t forwhich x(t) is near x̄ , wemust also have x(t) ∈ M,
and furthermore, by the sum rule for subdifferentials [66],

x ′(t) ∈ − ∇ f
(
x(t)

) + NM
(
x(t)

)
almost surely.

At such times t we must have x ′(t) ∈ TM
(
x(t)

)
since x(s) ∈ M for all time s near

t . Therefore we deduce equation (9.4). The smoothness of x(·) now follows from
classical smooth initial value theory [41]. ��

The general case asserts the same eventual behavior for a broader class of functions.

Theorem 9.5 (Subgradient curves on manifolds) Consider a closed function
f : Rn → (−∞,+∞] and a subgradient curve x(·) converging to a point x̄ at which
f is primal lower nice and has an identifiable manifoldM. If f |M is smooth around
x̄, then, after a finite time, x(·) becomes a smooth curve onM, satisfying

x(t) ∈ M and x ′(t) = −∇M f
(
x(t)

)
.

Proof Manifolds are locally closed. By Theorem 9.2, the curve x(·) eventually lies
in M and becomes a subgradient curve of the function f + δM. Let f̃ be a smooth
extension of f . Then f + δM = f̃ + δM. The result follows by Proposition 9.3. ��

10 Trajectories for Primal Lower Nice Functions

Theorem 9.1 listed several important properties of subgradient curves for primal lower
nice functions. For our main result, Theorem 9.2, we rely crucially on one more
property. We prove that velocity vectors x ′(·) for bounded subgradient curves x(·)
essentially converge to zero: in other words, for all ε > 0, there exists a time T such
that for almost all times t ≥ T we have |x ′(t)| < ε.
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Theorem 10.1 If a closed function f : Rn → (−∞,+∞] is primal lower nice and
bounded below, then the velocity of any bounded subgradient curve for f essentially
converges to zero.

Proof Consider a bounded subgradient curve x(·). Suppose x([0,∞)) ⊂ r B. A stan-
dard compactness argument guarantees constants α, β and δ > 0 such that the primal
lower nice inequality (6.4) holds for all points x, x ′ ∈ r B with |x − x ′| < 2δ.

By assumption, there exists a full-measure subset � of the interval [0,+∞) such
that x ′(t) ∈ −∂ f

(
x(t)

)
for all t ∈ �. Consider the measure ρ on R+ with density

|x ′(·)|. By [61, Lemma 2.1], the primal lower nice property ensures the existence of
constants μ, ν > 0 such that

|x ′(s)| ≤ |x ′(t)| exp(μ(s − t) + νρ[t, s])

for all times t < s in � satisfying x([t, s]) ⊂ x(t) + δB.
If the result fails, there is a constant ε > 0 and a sequence of times s j → +∞ in

the set � satisfying |x ′(s j )| > ε for all j . Taking a subsequence, we can suppose, for
each j , the inequality s j+1 − s j > 1, from which we deduce either

|x ′(s j )| ≤ |x ′(t)| exp(μ + νρ[t, s j ]) for all t ∈ [s j − 1, s j ] ∩ �, (10.2)

or there exists t ∈ [s j − 1, s j ] such that

|x(t) − x(s j )| > δ. (10.3)

Assume (10.2) holds. Then |x ′(t)| exp(νρ[t, s j ]) > εe−μ for all t ∈ [s j − 1, s j ] ∩ �.
Hence either some time t satisfies νρ[t, s j ] ≥ 1, in which case ρ[s j − 1, s j ] ≥ 1

ν
, or

there is no such time t , in which case all t ∈ [s j − 1, s j ] ∩ � satisfy the inequality
|x ′(t)| > εe−μ−1, implying ρ[s j − 1, s j ] ≥ εe−μ−1. On the other hand, if (10.3)
holds, we easily deduce

ρ[s j − 1, s j ] ≥ ρ[t, s j ] ≥ |x(t) − x(s j )| > δ.

We have thus shown the existence of a constant ε > 0 such that ρ[s j−1, s j ] ≥ ε for
each j , and hence, by Hölder’s inequality,

∫ s j

s j−1
|x ′(τ )|2dτ ≥ ε2.

But this contradicts the conclusion of Theorem 9.1. ��

Theorems 9.1 and 10.1 concern functions that are bounded below. However, our
analysis here is local, so Lemma 6.10 shows that the boundedness assumption involves
no loss of generality. The following result is a local version of Theorem 10.1.
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Theorem 10.4 (Essential convergence)
If a closed function f : Rn → (−∞,+∞] is primal lower nice at a point x̄ ∈ Rn,
and a subgradient curve x(·) for f converges to x̄ , then x̄ is critical, the function value
f
(
x(·)) converges to f (x̄), and the velocity x ′(·) essentially converges to zero.

Proof The first two conclusions essentially appear in [61], and the third appears in
Theorem 10.1, all under the additional assumption that f is bounded below and primal
lower nice throughout its domain. More generally, we can apply Proposition 6.10 to
replace f by a function that is primal lower nice and bounded below, and that is
unchanged near the point x̄ . The original subgradient curve converges to x̄ , so it
coincides eventually with a subgradient curve for the new function. ��

The proof of our main continuous-time result is now straightforward.

Proof of Theorem 9.2 By Theorem 10.4, the function value f
(
x(·)) converges to f (x̄),

and there exists a full-measure set � ⊂ R+ such that x ′(t) ∈ −∂ f
(
x(t)

)
for all t ∈ �

and x ′(t) → 0 as t → +∞ in�. Hence by Corollary 3.14, we know x(t) ∈ M for all
large t ∈ �. Note that since f is primal lower nice at the critical point x̄ , it has slope
zero there. We then deduce by Proposition 8.1 that x ′(t) ∈ −∂( f + δM)

(
x(t)

)
for all

large t ∈ �. Since the set M is closed, the subgradient curve x(·), being continuous,
eventually lies inM. ��

An alternative approach to Theorem 9.5 bypasses the essential convergence result.
We proceed as follows. By the square integrability of the velocity x ′, there exists a
sequence of times tk → ∞ for which x(tk) ∈ −∂ f (x(tk)) for all k and x ′(tk) →
0. We deduce x(tk) ∈ M for all large k, and hence, by [36, Proposition 10.12],
∇M f (y) ∈ ∂ f (y) for all points y ∈ M near x̄ . Consequently, for sufficiently large
k, by the uniqueness of the subgradient curve starting at the point x(tk), we know that
the trajectory x(tk + ·) coincides with the solution x̃ : R+ → M of the initial value
problem x̃ ′(t) = −∇M f

(
x̃(t)

)
with x̃(0) = x(tk).
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