

Online movements reflect ongoing deliberation

Jan A. Calalo¹, Truc T. Ngo², Seth R. Sullivan², Katy Strand², John H. Buggeln²,
Rakshith Lokesh², Adam M. Roth¹, Michael J. Carter³, Isaac L. Kurtzer⁴, Joshua G.A.
Cashaback^{1,2,5,6}

¹ Department of Mechanical Engineering, University of Delaware

² Department of Biomedical Engineering, University of Delaware

³ Department of Kinesiology, McMaster University

⁴ Department of Biomedical Sciences, New York Institute of Technology

⁵ Biomechanics and Movements Science Program, University of Delaware

⁶ Interdisciplinary Neuroscience Graduate Program, University of Delaware

Abbreviated Title:

Movements Reflect Deliberation

Funding:

National Science Foundation (NSF #2234748) awarded to JGAC

National Sciences and Engineering Research Council (NSERC) of Canada (RGPIN-2018- 05589)
awarded to MJC

Correspondence:

Jan Calalo

Mechanical Engineering

University of Delaware

STAR Campus, Room 122

Newark, DE 19711, U.S.A

Email: Jan.Calalo@gmail.com

Or

Joshua G. A. Cashaback, PhD

Biomedical Engineering

University of Delaware

STAR Campus, Room 201J

Newark, DE 19711, U.S.A

Email: cashabackjga@gmail.com

1 ABSTRACT

2 From navigating a crowded hallway to skiing down a treacherous hill, humans are constantly
3 making decisions while moving. Insightful past work has provided a glimpse of decision delib-
4 eration at the moment of movement onset. Yet it is unknown whether ongoing deliberation
5 can be expressed during movement, following movement onset and prior to any decision. Here
6 we tested the idea that an ongoing deliberation continually influences motor processes—prior
7 to a decision—directing online movements. Over three experiments, we manipulated evidence
8 to influence deliberation during movement. The deliberation process was manipulated by hav-
9 ing participants observe evidence in the form of tokens that moved into a left or right target.
10 Supporting our hypothesis we found that lateral hand movements reflected deliberation, prior to
11 a decision. We also found that a deliberation urgency signal, which more heavily weighs later
12 evidence, was fundamental to predicting decisions and explains past movement behaviour in a
13 new light. Our paradigm promotes the expression of ongoing deliberation through movement,
14 providing a powerful new window into understanding the interplay between decision and action.

15 INTRODUCTION

16 When presented with the option of a sweet candy or chocolate, our hand may move back and
17 forth over the two tempting options before we finally make a decision. In this example our
18 online hand movement seems to provide a readout of our ongoing deliberation before a decision.
19 Over the past two decades both behavioural^{1,2,3,4} and neural^{5,6} findings support the idea that
20 deliberation and motor planning are intertwined. Yet it has not been shown that the *ongoing*
21 deliberation—prior to a decision—is expressed throughout online movement execution.

22 Past work has helped to illuminate the interplay between motor planning and decision-
23 making. During the go-before-you-know paradigm, participants are required to initiate a reaching
24 movement towards multiple potentially correct targets^{7,8,1,2,3,4}. At movement onset, participants
25 launched their reaches between or directly at the potentially correct targets. These initial move-
26 ments reflect priors of the deliberation process, such as representations of the probability of each
27 potential target and movement speed constraints, known during motor planning before move-
28 ment onset. The correct target is then indicated during the reach via an abrupt and discrete
29 change of evidence (e.g. target colour, phonological input, etc.), where participants would of-
30 ten immediately select and rapidly redirect their movement towards one of the targets. In a
31 different paradigm, humans have similarly been shown to make a "change-of-mind" by rapidly
32 redirecting their movement towards one target⁹ following an initial reach to the other target.
33 These rapid movement redirections were based on evidence provided prior to reaching, demon-
34 strate delayed processing times, and have been interpreted to reflect a second decision. Rapid
35 movement redirections would reflect a final decision, but would obscure a short deliberation and
36 its potential influence on movement. These studies have collectively provided important insights
37 into how priors of deliberation influence motor planning and the timing of midreach decisions,
38 but have not shown that a continuous and ongoing deliberation process directly influences the
39 online movement.

40 Perceptual decision-making studies manipulate uncertain and continuous evidence, such as
41 the movement of dots^{10,11,12,13} or tokens^{14,15,16} towards or into potential targets over time, to

42 influence a more prolonged deliberation and subsequent decision. A plethora of work suggests
43 that during deliberation, humans and animals accumulate (integrate) evidence over time to make
44 a decision.^{17,18,19,20,11,21,22} Another competing theory is that an urgency signal increasing over
45 time is multiplied by evidence to cause a decision.^{14,15,16,22,23} A feature of perceptual decision-
46 making tasks is that there is no movement during the deliberation period, a decision is made,
47 and subsequently there is a movement to indicate choice. Thus, even though there is a prolonged
48 deliberation, it does not have the opportunity to be expressed with movement.

49 Previous studies have collectively provided important insights, but not on how a continuous
50 and ongoing deliberation process directly influences online movement. The goal of this work was
51 to elucidate whether the deliberation process influences online movements, prior to a decision. To
52 investigate we developed a novel paradigm that allows an expression of the ongoing deliberation
53 via movement, prior to a decision. Across three experiments, we permitted movement while
54 concurrently providing uncertain and continuous evidence in the form of 15 tokens that jumped
55 into a left or right target.¹⁴ In **Experiment 1** we provided participants evidence during posture
56 to test whether the ongoing deliberation can elicit movement onset and subsequently influence
57 online movements, prior to a decision. In **Experiment 2** we provided participants evidence after
58 movement onset, when the motor system was already actively engaged, to determine whether
59 the ongoing deliberation can influence the online movements prior to a decision. In **Experiment**
60 **3**, we replicated the results from **Experiment 2** while additionally testing the role of urgency
61 on deliberation. For all experiments we predicted that lateral hand movements would reflect
62 the deliberation process, following movement onset and prior to a decision. Collectively our
63 findings show that the ongoing deliberation, which includes urgency, directly influences online
64 movements.

65 **RESULTS**

66 **Experimental Design**

67 In **Experiment 1** ($n = 17$), **Experiment 2** ($n = 17$), and **Experiment 3** ($n = 17$), partic-
68 ipants made reaching movements while deliberating between two potential targets. For each

69 experiment, there were 15 tokens that moved laterally into either a left or right target (**Fig.** 70 **1**). Tokens moved in 160 ms intervals. Each trial was 2400 ms. Participants were instructed to 71 select the target that would finish with the most tokens. They had to make their decision prior 72 to the final token movement. Participants indicated their decision by simultaneously pressing 73 a hand trigger in their non-dominant hand and moving their cursor into their selected target. 74 The hand trigger was crucial in dissociating movements caused by deliberation or a decision. 75 The tokens disappeared once participants pressed the hand trigger to prevent the participants 76 from changing their decision with later evidence. Critically, participants were free to move their 77 hand laterally during each trial, allowing us to measure whether deliberation—prior to a final 78 decision— influenced movement.

79 The goal of **Experiment 1** was to determine if ongoing deliberation can elicit and sub- 80 sequently influence movements, prior to a final decision, when evidence was initiated during 81 posture. The targets were placed on the right and left side of the start position (**Fig. 1A**). 82 The trial began after participants held their hand within a 2 cm wide start position for 400 83 ms. Participants experienced 216 randomly interleaved trials consisting of pseudo-random token 84 patterns and bias token patterns (See **Methods, Supplementary A**). The bias token patterns 85 allowed us to probe how controlled patterns of evidence influenced deliberation and consequently 86 movement. During the bias token patterns the first three tokens moved individually into the left 87 or right target (i.e., left bias or right bias), the next three tokens moved individually into the 88 opposite target, and the remaining tokens moved with an 80% probability into the left or right 89 target (i.e., left target or right target; **Fig. 2A-D**).

90 The goal of **Experiment 2** was to determine if ongoing deliberation was reflected in 91 movements, prior to a final decision, after movement onset when the motor system was already 92 actively engaged. In this experiment, the targets were placed forward and either side relative 93 to the start position (**Fig. 1B**). To actively engage the motor system, the trial began when 94 participants moved forward out of the start position. Similar to others,^{3,4} participants were 95 instructed to not stop moving forward after leaving the start position. **Experiment 2** used the

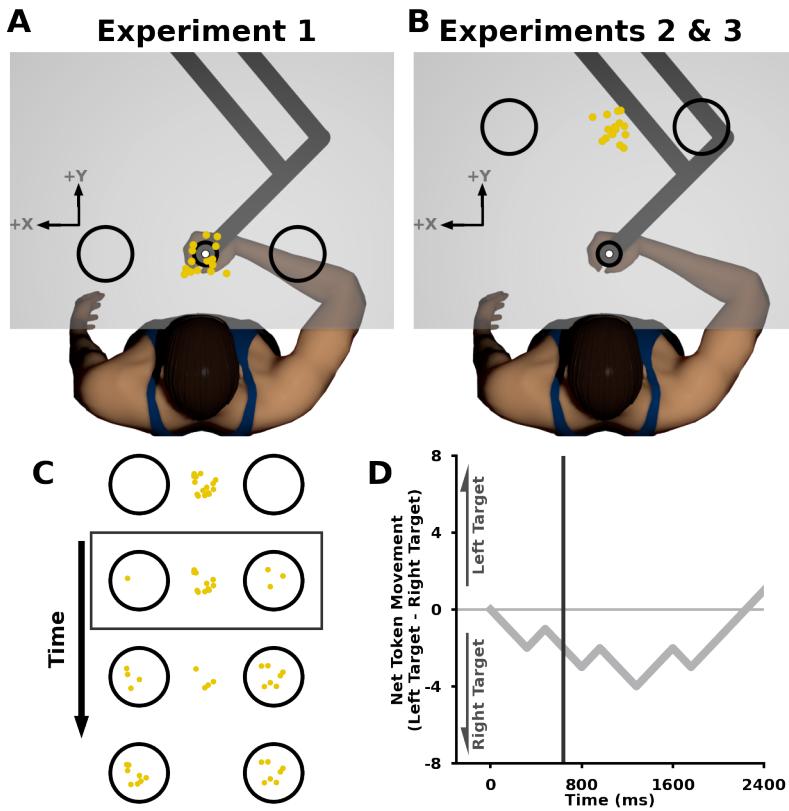


Figure. 1: Experimental Design. **A,B)** Participants grasped a robotic manipulandum (Kinarm) using their dominant hand and a hand trigger in their non-dominant hand. A semi-silvered mirror projected images from an LCD screen above. A cursor (white circle) represented their hand position. **A)** In **Experiment 1**, participants began with the cursor within a start position (small black circle) between two targets (large black circles) that were 20 cm to the left and right of the start position. After 400ms in the start position, the trial would begin and fifteen tokens would appear (yellow circles) between the two targets. The tokens moved individually into the left or right target over time. Participants were instructed to select the target which would finish with the most tokens as soon as they were confident. They indicated their decision by simultaneously pressing the hand trigger in their non-dominant hand and moving the cursor into the corresponding target. **B)** In **Experiments 2** and **Experiment 3**, the targets were placed 30 cm forward of the start position as well as 20 cm to the left and right. Tokens began moving once participants left the start position. Participants were also instructed not to stop or move backwards. **C)** An example of the participant display while the tokens moved into the left or right target over time (y-axis). **D)** Net token movement (left target - right target tokens, y-axis) over time (x-axis) of an example token pattern. The dark grey box in **(C)** and the dark grey vertical line **(D)** correspond to the same time point.

96 same token patterns as **Experiment 1**.

97 The goal of **Experiment 3** was to replicate the results found in **Experiment 2** while
98 also elucidating the roles of evidence accumulation or urgency on deliberation and consequent
99 movement. **Experiment 3** was the same as **Experiment 2**, except we used different bias token
100 patterns. In **Experiment 3**, participants experienced 336 randomly interleaved trials consisting
101 of pseudorandom token patterns, slow rate bias token patterns and fast rate bias token patterns.

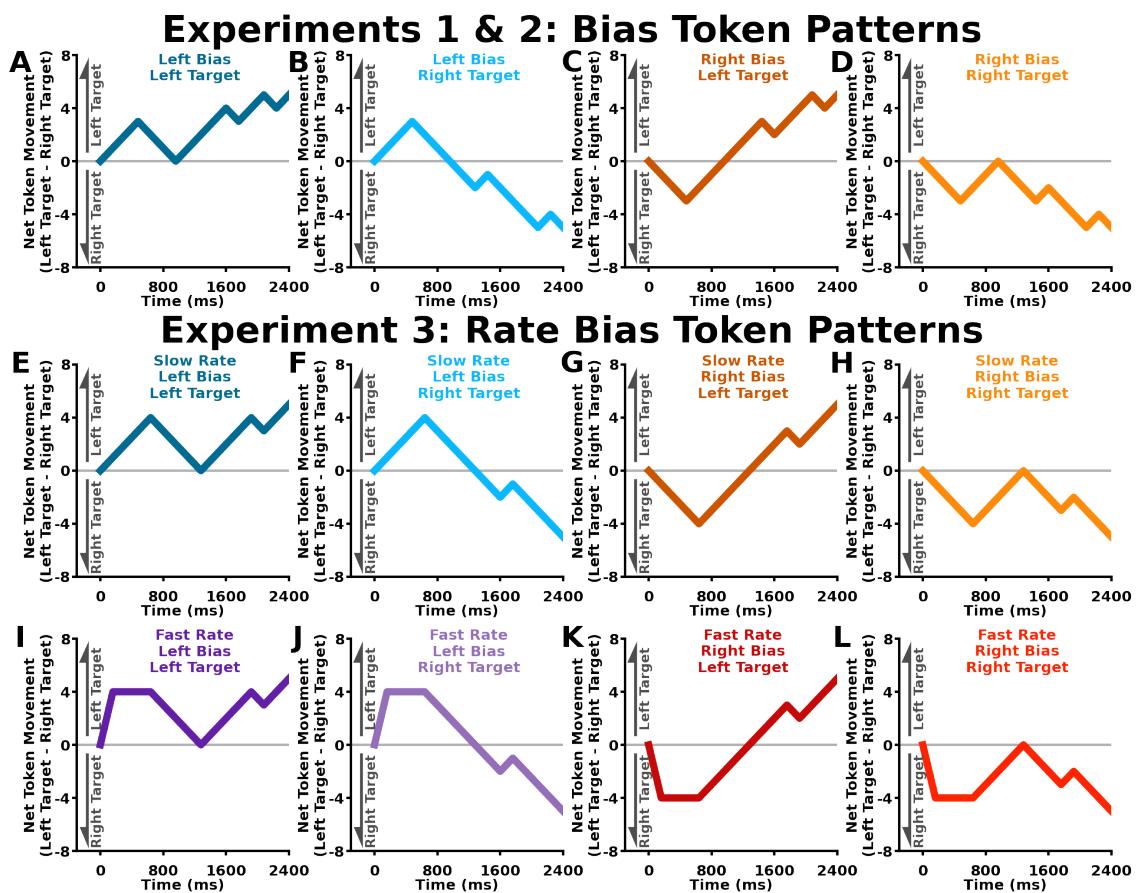


Figure. 2: Bias Token Patterns. **A-L)** Net Token Movement (left target - right target tokens, y-axis) over time (x-axis) for sample bias token patterns. **A-D)** Bias token patterns in **Experiment 1** and **Experiment 2**.

A-D) Bias token patterns: the first three tokens moved individually into the left or right "bias" target, the next three tokens moved individually into the opposite target, and then the remaining tokens moved with an 80% probability into the left or right target. **E-L)** Rate bias token patterns in **Experiment 3**. **E-H)** Slow rate bias token patterns: the first four tokens moved individually into the left or right "bias" target, the next four tokens moved individually into the opposite target, and then the remaining tokens moved with an 80% probability into the left or right target. **I-L)** For the fast rate bias token patterns: the first four tokens moved together into the left or right "bias" target at 160 ms after the beginning of the trial. No other tokens moved until 800 ms after the beginning of the trial. The slow rate and fast bias token patterns were identical past 800 ms after the beginning of the trial. For each experiment, the bias token patterns were interleaved with pseudorandom token patterns.

102 In the slow rate bias token patterns, the first four tokens moved individually into the left or right
 103 bias target, the next four tokens moved individually into the opposite target and the remaining
 104 tokens moved with an 80% probability into the left or right target (**Fig 2E-H**). The fast rate
 105 bias token patterns were identical to the slow rate bias token pattern except the first 4 tokens
 106 moved at once into the corresponding bias target (**Fig. 2I-K**). Critically, the slow rate and
 107 fast rate token patterns lead to unique decision times depending on how humans accumulate

108 evidence and or rely on urgency during deliberation.

109 Individual Movement Behaviour

110 We were primarily interested in the lateral hand position at the estimated decision time. Lateral
111 hand position at estimated decision time provided a measure of the influence of ongoing delib-
112 eration on the movement. In other words, the lateral hand position at estimated decision time
113 precludes movement that is a result of a final decision and subsequent action. Estimated decision
114 time was calculated by subtracting a neural plus mechanical delay from the trigger time on each
115 trial (see Methods; Fig. 3A,B). We examined lateral hand position at estimated decision time
116 to compare between conditions (Fig. 3C).

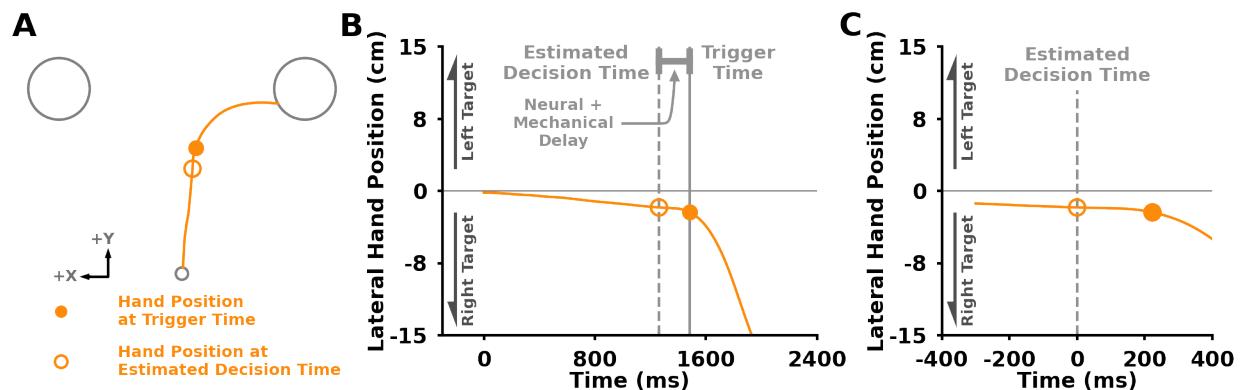


Figure. 3: Analysis Description. **A)** Hand path for a single example trial in **Experiment 2**. Solid circles represent the hand position when the participant pressed the hand trigger (trigger time). Empty circle represents the hand position at estimated decision time. Estimated decision time was calculated by subtracting a neural and mechanical delay from the trigger time on a trial-by-trial basis. Neural + mechanical delay was estimated for each participant using a reaction time task (see **Supplementary A**). **B)** Lateral hand movement (y-axis) over time (x-axis). Solid grey line represents when the hand trigger was pressed. Dashed grey line represents estimated decision time. **C)** Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision time. The lateral hand position at the estimated decision time allows us to look at the influence of deliberation on movement, prior to a final decision.

117 Figure 4 presents results by representative individuals in each experiment. In **Experiment**
118 **1**, this participant did not initiate lateral movements prior to their estimated decision time (Fig
119 **4A-D**). In **Experiment 2**, the participant displayed lateral movements aligned with token bias
120 direction prior to the estimated decision time (Fig. **4E-H**), which reflects movement that
121 occurred before their final decision. Moreover, their lateral hand position aligned with the token
122 bias direction (Fig. **4H**). In **Experiment 3**, the representative participant displayed lateral
123 movements that aligned with the direction of the bias in both slow rate bias (Fig. **4I-L**) and

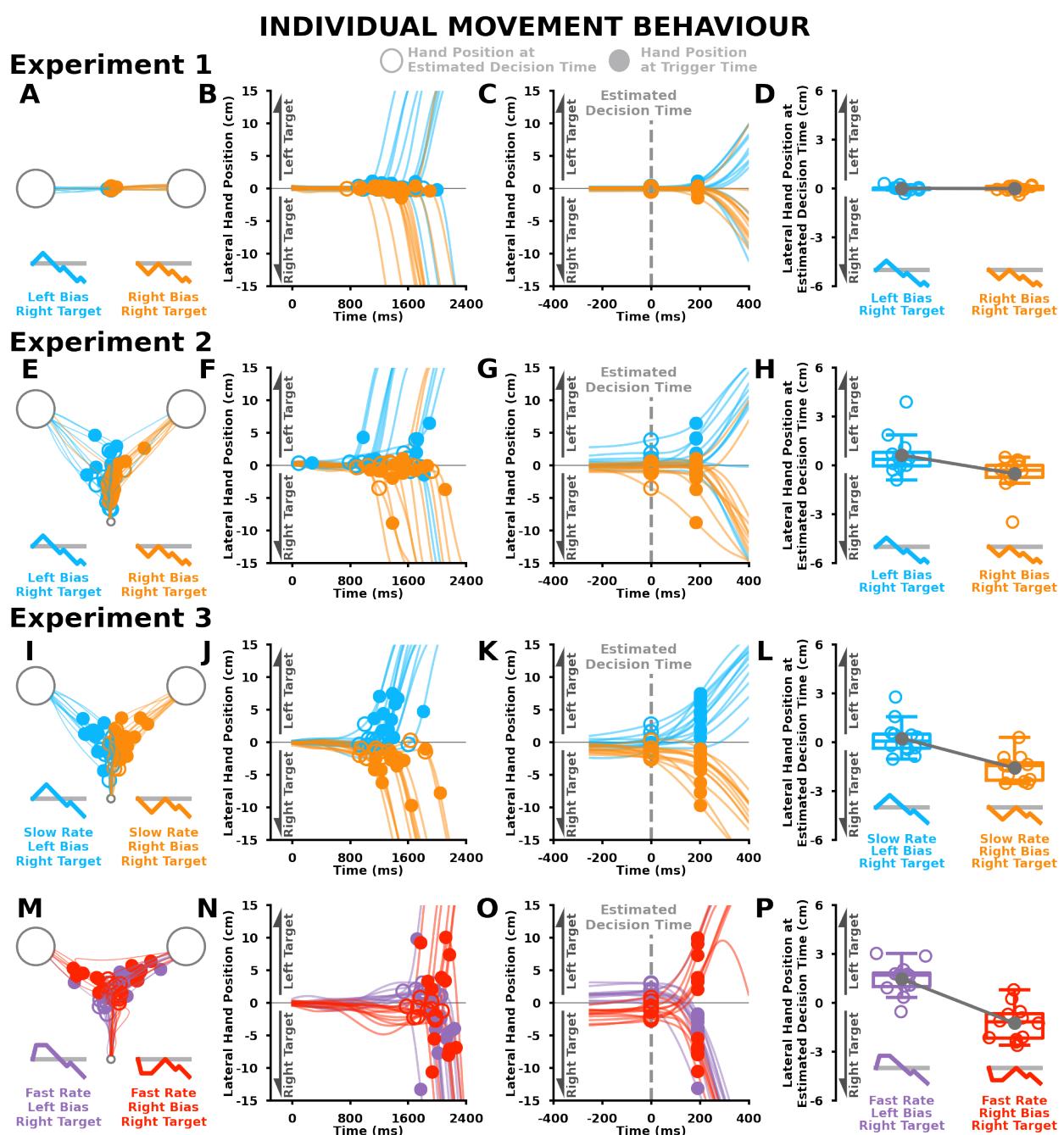


Figure 4: Individual Movement Behaviour. **A-H)** Individual participant movement behaviour for left bias, right target (light blue) and right bias, right target (light orange) token patterns in **Experiment 1 (A-D)** and **Experiment 2 (E-H)**. **I-P)** Individual participant movement behaviour in **Experiment 3** for **I-L)** slow rate, left bias, right target (light blue) and slow rate, right bias, right target (light orange) token patterns. **M-P)** Fast rate, left bias, right target (light purple) and fast rate, right bias, right target (light red) token patterns. Solid circles represent hand position at trigger time. Empty circles represent hand position at estimated decision time. **A,E,I,M)** Individual participant reaching trajectories. **B,F,J,N)** Individual participant lateral hand positions (y-axis) over time (x-axis). **C,G,K,O)** Individual participant lateral hand positions (y-axis) over time (x-axis) time aligned to estimated decision time. Vertical grey dashed line at 0 ms represents estimated decision time. **D,H,L,P)** Individual participant lateral hand positions at estimated decision time (y-axis) between bias token patterns (x-axis). In **Experiment 1**, this participant did not display differences in lateral hand position at estimated decision time between conditions. Participants in **Experiment 2** and **Experiment 3** show differences in lateral hand positions at estimated decision time between left and right bias conditions.

124 fast rate bias (**Fig. 4M-P**) token patterns. That is, the displayed participants in **Experiments**
125 **2** and **3** moved with the evidence prior to a final decision, suggesting that their movements were
126 influenced by the ongoing deliberation.

127 **Group Movement Behaviour**

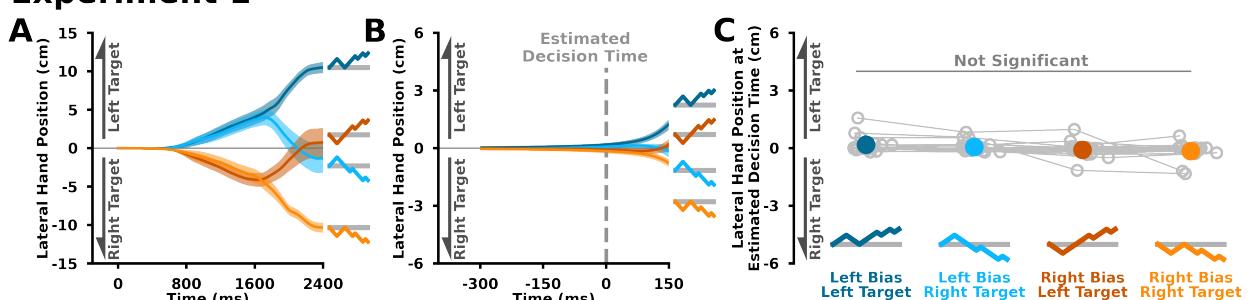
128 **Figure 5** displays the average group movement behaviour for the three experiments. We pre-
129 dicted that the lateral hand movements would be influenced by the ongoing deliberation, prior
130 to a decision. For example, a participant that is considering the left target will move towards
131 the left target, prior to their final decision. We show the average lateral hand trajectories over
132 time for **Experiment 1**, **2**, and **3** (**Fig. 5A,D,G,J**). However, it is important to examine lateral
133 hand positions at the estimated time (**Fig. 5B,E,H,K**), which reflects movement caused by
134 deliberation prior to a final decision.

135 ***Hand movements are influenced by deliberation when the motor system is actively***
136 ***engaged.***

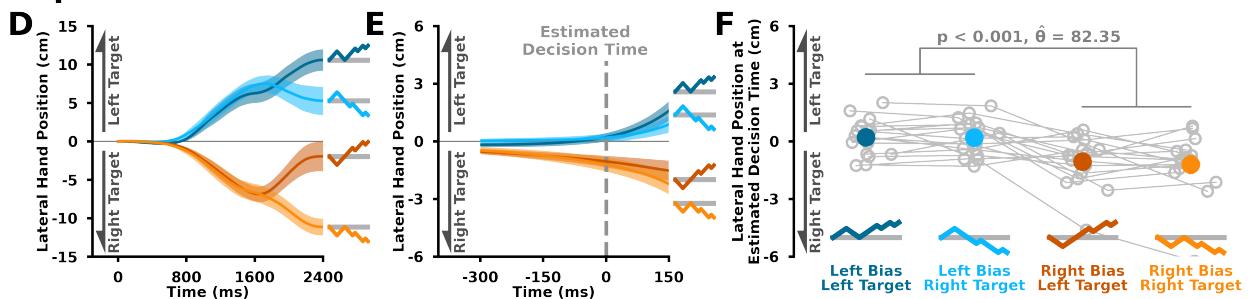
137 In **Experiment 1**, lateral hand position at the estimated decision time was not impacted by
138 the token patterns (**Fig. 5B**). We did not find a significant main effect of bias [$F(1,16) =$
139 $3.681, p = 0.073$], main effect of target [$F(1,16) = 1.016, p = 0.328$], or an interaction between
140 bias and target [$F(1,16) = 0.067, p = 0.799$] on lateral hand position at estimated decision
141 time (**Fig. 5C**). The results in **Experiment 1** do not support the idea that the deliberation
142 process continuously interacts with the motor control processes to influence online movements,
143 specifically when evidence is initially presented while in posture. In **Experiment 2**, we examined
144 the influence of ongoing deliberation on the motor control system when the motor system was
145 actively engaged. Here participants displayed lateral hand positions at estimated decision time
146 that was aligned with the direction of the token bias (**Fig. 5E**). Specifically, we found a significant
147 main effect of bias [$F(1,16) = 11.533, p = 0.004$] on lateral hand position at estimated decision
148 time. We did not find an interaction between bias and target [$F(1,16) = 0.300, p = 0.591$] nor a
149 main effect of target [$F(1,16) = 0.255, p = 0.620$]. When collapsing across target, as expected
150 we found significantly different lateral hand positions at estimated decision time between left

Experiment 1

Group Movement Behaviour



Experiment 2



Experiment 3

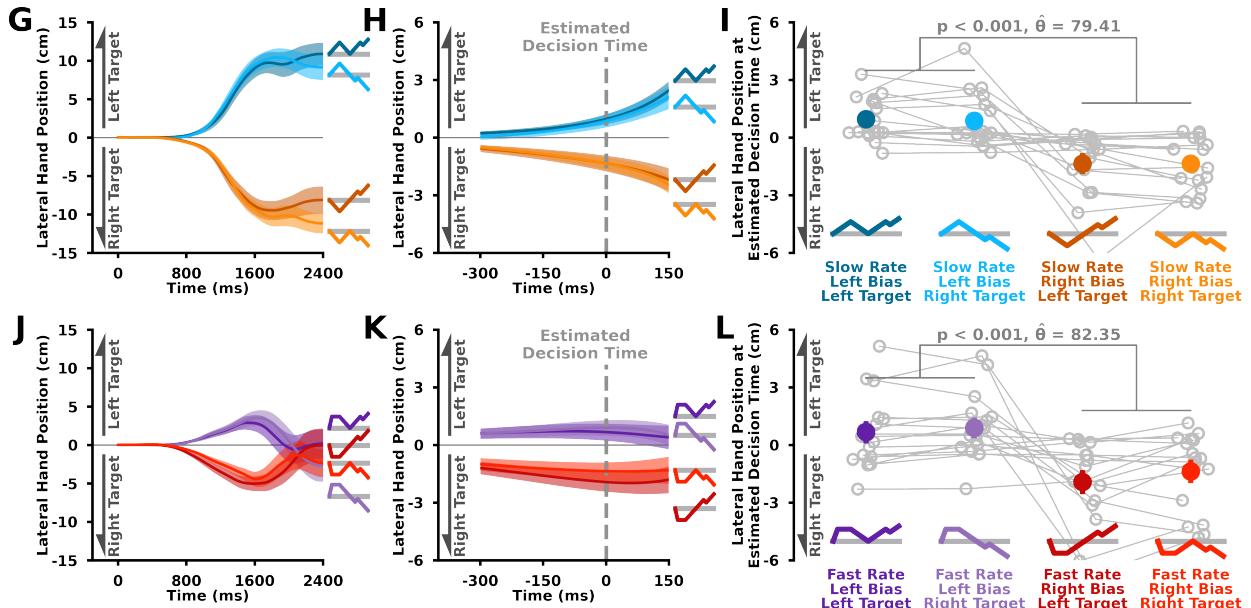


Figure 5: Group Movement Behaviour. **A-F**) Average participant movement behaviour for bias token patterns in **Experiment 1** (**A-C**) and **Experiment 2** (**D-F**). **G-L**) Average participant movement behaviour in **Experiment 3** for **G-I**) slow rate bias token patterns and **J-L**) fast rate bias token patterns. Solid lines represent group mean trajectories for each condition. Shaded regions represent ± 1 standard error. **A,D,G,J**) Average participant lateral hand positions (y-axis) over time (x-axis). **B,E,H,K**) Average participant lateral hand positions (y-axis) over time (x-axis) time aligned to estimated decision time. Vertical grey dashed line at 0 ms represents estimated decision time. **C,F,I,L**) Average participant lateral hand positions at estimated decision time (y-axis) across bias token patterns (x-axis). In **Experiment 1**, there were no significant differences in lateral hand positions at estimated decision time between bias token patterns. Participants in **Experiment 2** and **Experiment 3** were significantly more towards the left target in left bias token patterns compared to right bias token patterns at the estimated decision time ($p < 0.001$ for all comparisons). Taken together, these results suggest that lateral hand movements reflect the ongoing deliberation during movement prior to a decision.

151 bias and right bias token patterns (**Fig. 5F**; $p < 0.001$, $\hat{\theta} = 82.35$). Moreover, our findings
152 and interpretation were consistent when we very conservatively looked further back in time (See
153 **Supplementary B**), along with pseudorandom token patterns (e.g., 20%, 35%, 50%, 75%, and
154 80% left target probability; see **Supplementary C**). The findings in **Experiment 2** support
155 the hypothesis that the ongoing deliberation process influences online movements, prior to a
156 decision, when the motor system is actively engaged.

157 In **Experiment 3** we replicated the movement behaviour findings of **Experiment 2**. We
158 analyzed lateral hand position at estimated decision times separately for slow rate and fast rate
159 token patterns, since they had different decision times (see **Group Decision-Making Behaviour**
160 below). For the slow rate token patterns we found a significant main effect of bias [$F(1,16) =$
161 14.663 , $p = 0.001$] on lateral hand position at estimated decision time, but no main effect of
162 target [$F(1,16) = 0.0875$, $p = 0.771$] or bias and target interaction [$F(1,16) = 0.040$, $p = 0.844$].
163 For the fast rate token patterns we found a significant main effect of bias [$F(1,16) = 9.114$, p
164 $= 0.008$] and a significant main effect of target [$F(1,16) = 4.834$, $p = 0.043$] on lateral hand
165 position at estimated decision time, and not a bias and target interaction [$F(1,16) = 1.297$,
166 $p = 0.272$]. We found significantly different lateral hand position at estimated decision time
167 between left bias and right bias conditions for both slow rate bias token patterns ($p < 0.001$, $\hat{\theta}$
168 $= 79.41$, **Fig. 5I**) and the fast rate bias token patterns ($p < 0.001$, $\hat{\theta} = 82.35$, **Fig. 5L**). Again,
169 differences in lateral hand position support the hypothesis that ongoing deliberation influences
170 movement, prior to a decision, when the motor system is actively engaged.

171 Taken together, our results from **Experiments 1, 2, and 3** support the idea that the
172 ongoing deliberation process influences hand movement—prior to a decision—when the motor
173 system is actively engaged but not during posture.

174 **Group Decision-Making Behaviour**

175 **Humans relied less on early evidence when making decisions.**

176 We were also interested in the processes that underscore the deliberation. **Figure 6** shows the
177 estimated decision times for each bias token pattern and experiment. In **Experiment 1**, we

178 found a significant main effect of bias [$F(1,16) = 7.222, p = 0.016$] on estimated decision time,
179 but there were no significant differences in followup mean comparisons ($p = 0.053, \hat{\theta} = 61.76$,
180 **Fig. 6A**). We did not find a significant main effect of target [$F(1,16) = 0.606, p = 0.447$]
181 or an interaction between bias and target [$F(1,16) = 0.930, p = 0.349$] on estimated decision
182 time. In **Experiment 2**, we did not find a significant main effect of bias [$F(1,16) = 0.989$,
183 $p = 0.335$], significant main effect of target [$F(1,16) < 0.001, p = 0.993$], or an interaction
184 between bias and target [$F(1,16) = 0.154, p = 0.700$] on estimated decision time (**Fig. 6B**).
185 Interestingly, participants made faster decisions during **Experiment 2** compared to **Experiment**
186 **1** ($p < 0.003$,
187 $hat{\theta} = 67.76$). One possibility for our result is that decisions are made faster when the motor
188 system is actively engaged, supporting bidirectional interactions between decision and motor
189 processes. In **Experiment 3**, we found a significant main effect of rate [$F(1,16) = 27.18, p <$
190 0.01] on estimated decision time (**Fig. 6C**). Counterintuitively, we found that participants made
191 earlier decisions in slow rate compared to fast rate token patterns ($p < 0.001, \hat{\theta} = 89.71$, **Fig.**
192 **6C,7A**). We did not find main effects of target [$F(1,16) = 0.689, p = 0.419$], main effect of
193 bias [$F(1,16) = 0.588, p = 0.454$], nor any significant interactions ($p > 0.105$). The selection
194 rates for each token pattern are shown in **Supplementary D**.

195 Above we did not find a significant bias and target interaction on estimated decision time.
196 This pattern is consistent with past work by Cisek (2009) that proposed that urgency is involved
197 with deliberation. As a reminder, urgency represents less reliance on early evidence compared
198 to later evidence when making a decision. Interestingly and counterintuitively, we found that
199 participants made earlier decisions with a slow rate token pattern compared to the fast rate
200 token pattern. This finding strongly align with the idea that decision making processes more
201 heavily value information that is presented later in time (i.e., second, third and fourth tokens in
202 the slow rate token pattern) compared to the same information presented earlier in time (i.e.,
203 second, third and fourth tokens presented earlier in time during the fast rate token pattern).
204 However, as shown below in **Decision-making models**, the presence of both urgency and

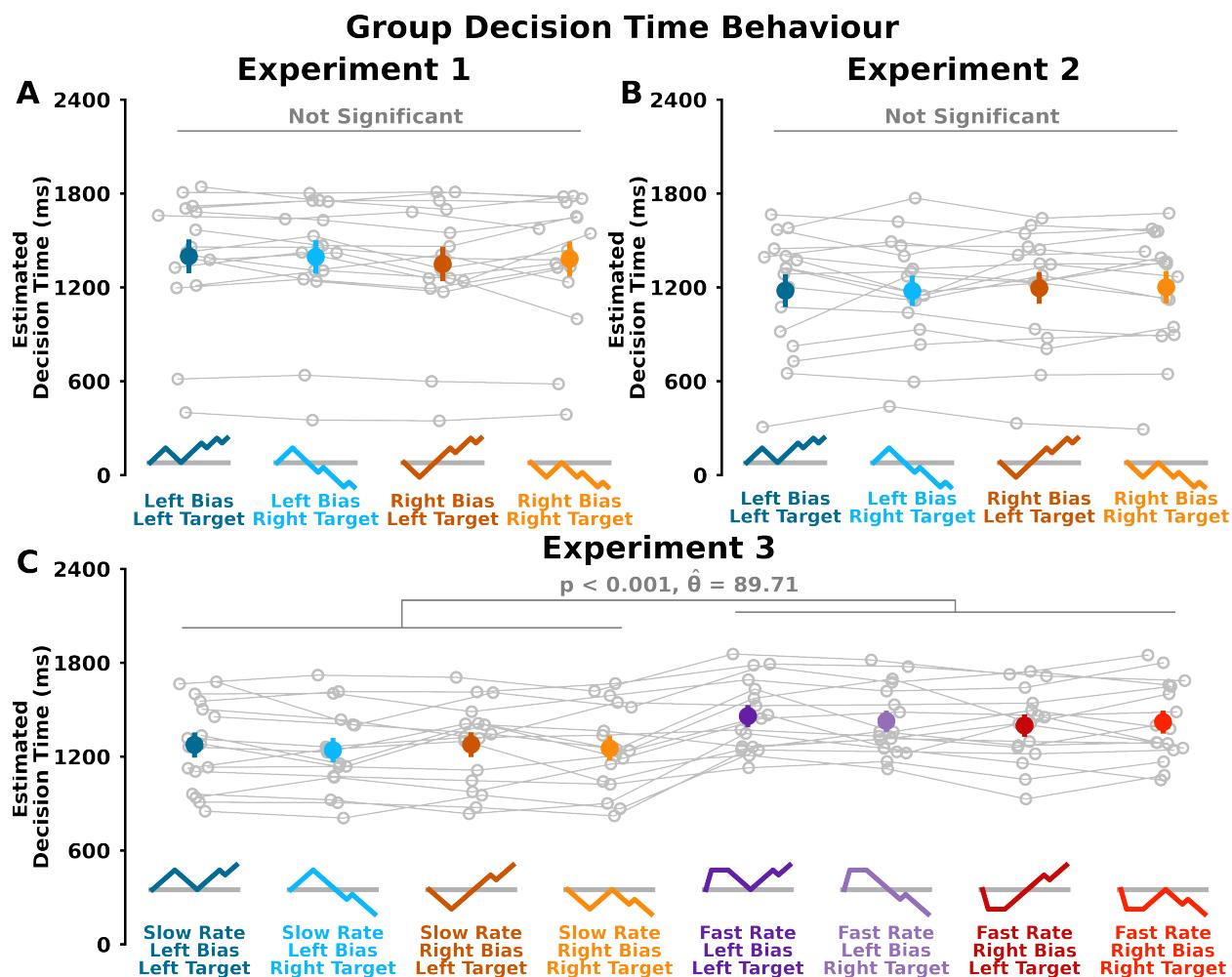


Figure 6: Group Decision Time Behaviour. Estimated decision time (ms; y-axis) in **A) Experiment 1**, **B) Experiment 2**, and **C) Experiment 3** across bias token patterns (x-axis). Open grey circles and connected grey lines represent individual participants. Closed coloured circles (and error bars) represent mean (and standard error of the mean) for each token pattern. Estimated decision time did not change between bias token patterns in **A) Experiment 1** ($p > 0.05$) and **B) Experiment 2** ($p > 0.05$). **C)** Participants had earlier estimated decision times in **Experiment 3** for slow rate token patterns (blue and orange colours) compared to fast rate token patterns (purple and red colours; $p < 0.001$), suggesting a greater temporal weighing of later evidence in the decision-making process.

205 evidence integration best explain the reported estimated decision times.

206 Computational Modelling

207 Our central focus was to investigate the interaction between the decision-making and motor
208 control processes. To this end, we used a computational framework that combines a decision-
209 making model and an optimal feedback control model.

210 **Decision-making models**

211 Before combining decision and motor models, we first sought to determine the decision-making
212 model that would best explain estimated decision times and selection rate proportions. Evidence
213 was based on the current correct probability for a target given the number of tokens within the
214 left, right and center locations (eq. 1, see **Methods**). We tested five decision-making models
215 (drift-diffusion model, drift diffusion model with leak, Trueblood (2021), urgency-gating model,
216 urgency-gating model with a low-pass filter that used either novel evidence (eq. 3) or current
217 evidence (eq. 2) to make a decision; see **Supplementary E**)^{14,24} Here we focus on **Experiment**
218 **3 (Fig. 7)** since there was a significantly earlier estimated decision time in the slow rate token
219 patterns compared to the fast rate token patterns (see **Supplementary E** for **Experiment 1**
220 and **2** results).

221 We found the Trueblood model with novel evidence and the urgency-gating model with
222 a low-pass filter with novel evidence were the only two models which could capture the earlier
223 decision times in the slow rate token patterns relative to the slow rate patterns (**Fig. 7A**). The
224 other best-fit models found decision times that were similar between the two different sets of
225 rate token patterns.

226 To give insight into the mechanisms of the models, we show representative model behaviour
227 in **Figure 7C-D**. In **Fig. 7B**, we show examples of fast rate right bias left target and slow rate
228 right bias left target token patterns. These two token patterns were similar except for the different
229 rates of token movement for the initial bias. For both the Trueblood model with novel evidence
230 (**Fig. 7C**) and the urgency-gating model with a low-pass filter on novel evidence (**Fig. 7D**), we
231 see similar decision variable trends. Both the Trueblood model and the urgency-gating model
232 with a low-pass filter utilize urgency and integrate evidence leading to similar behaviour. For
233 the fast rate token pattern there is some initial integration of evidence, either through evidence
234 accumulation or the low-pass filter. However, urgency is low early when the first four tokens
235 move, so that the decision variable does not immediately cross the decision threshold. Conversely
236 for the slow rate token pattern, each individual token movement leads to some integration of

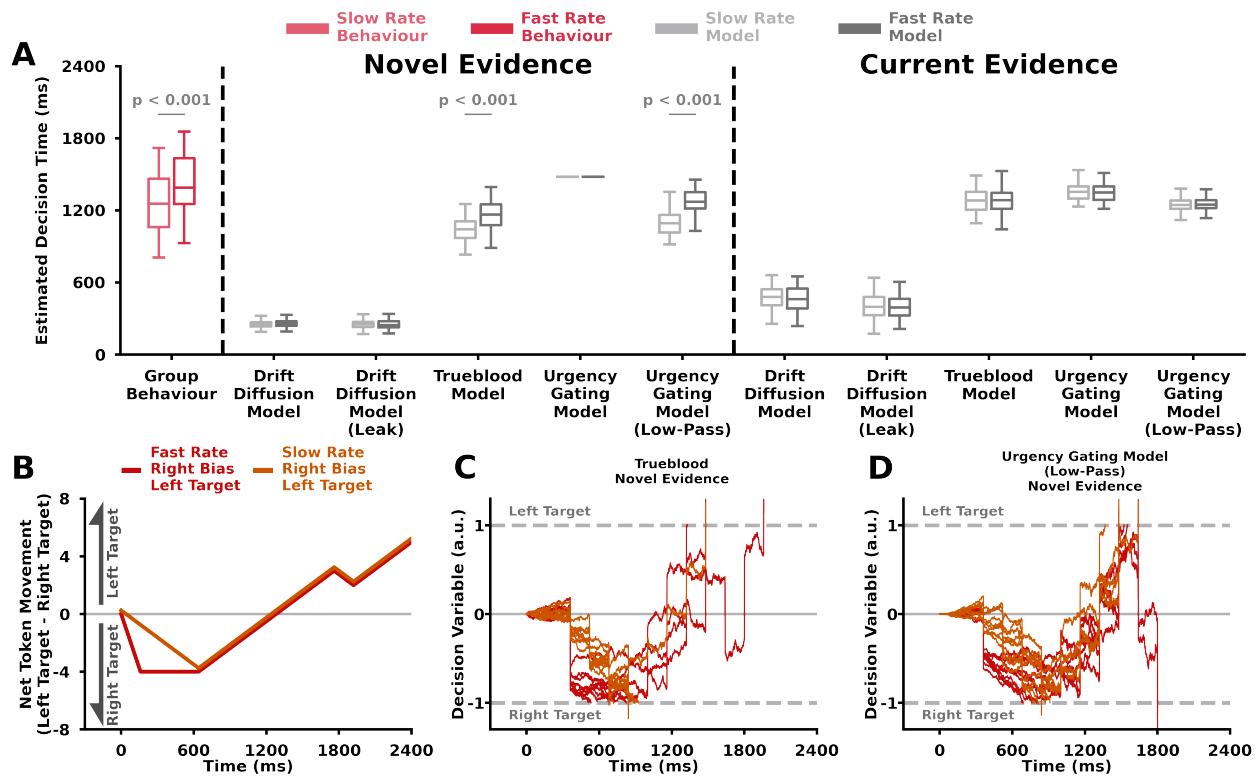


Figure 7: Best-Fit Decision-Making Model Simulations. A) Experiment 3 estimated decision time (y-axis) for group behaviour (pink) and Decision-Making Models (grey; x-axis). Group participant estimated decision times are shown for slow rate token patterns (light pink) and fast rate token patterns (dark pink). Best-fit model simulations of decision times are shown for slow rate token patterns (light grey) and fast rate token patterns (dark grey). Box and whisker plots show 25%, 50% and 75% quartiles. Decision-making models simulated decisions using novel sensory evidence or current sensory evidence. As described above in **Figure 6**, participants made earlier decisions with slow rate token patterns compared to fast rate token patterns. Only the Trueblood model using novel sensory evidence and the urgency-gating model with a low-pass filter on novel sensory evidence were able to capture the behavioural difference in decision time between slow rate token patterns and fast rate token patterns. The Trueblood model and urgency-gating model with a low-pass filter both contain a temporally increasing (urgency) component and an integration of evidence. **B)** Net Token Movement (y-axis) over time (x-axis) for Slow Rate, Right Bias, Right Target (Dark Orange) and Fast Rate, Right Bias, Right Target (Dark Red) token patterns. **C-D)** Example simulations of decision-making models showing decision variables (y-axis) over time (x-axis). Each trace represents a single decision-making trial for either slow rate, right bias, right target (dark orange) and fast rate, right bias, right target (dark red) token patterns. The dashed grey lines represent decision thresholds for a left target decision or right target decision. **C)** Trueblood model using novel evidence. **D)** Urgency-gating model with a low-pass filter using novel evidence. Our model results suggest that the deliberation process likely includes an urgency signal, or temporal scaling, component as well as the integration of novel evidence.

237 evidence. Crucially, individual token movements later in time are more heavily weighted by
 238 urgency, which compounded over time leads to an earlier crossing of the decision variable over
 239 the decision threshold. Note for the drift diffusion models, the best solution to capture the
 240 trend was achieved by having high noise parameters since they would be unable to produce the
 241 observed faster decision time with the slow rate token pattern. We chose to use the Trueblood
 242 model as an input into the decision-making and movement model, described directly below,
 243 because it explicitly defines both urgency and evidence accumulation.

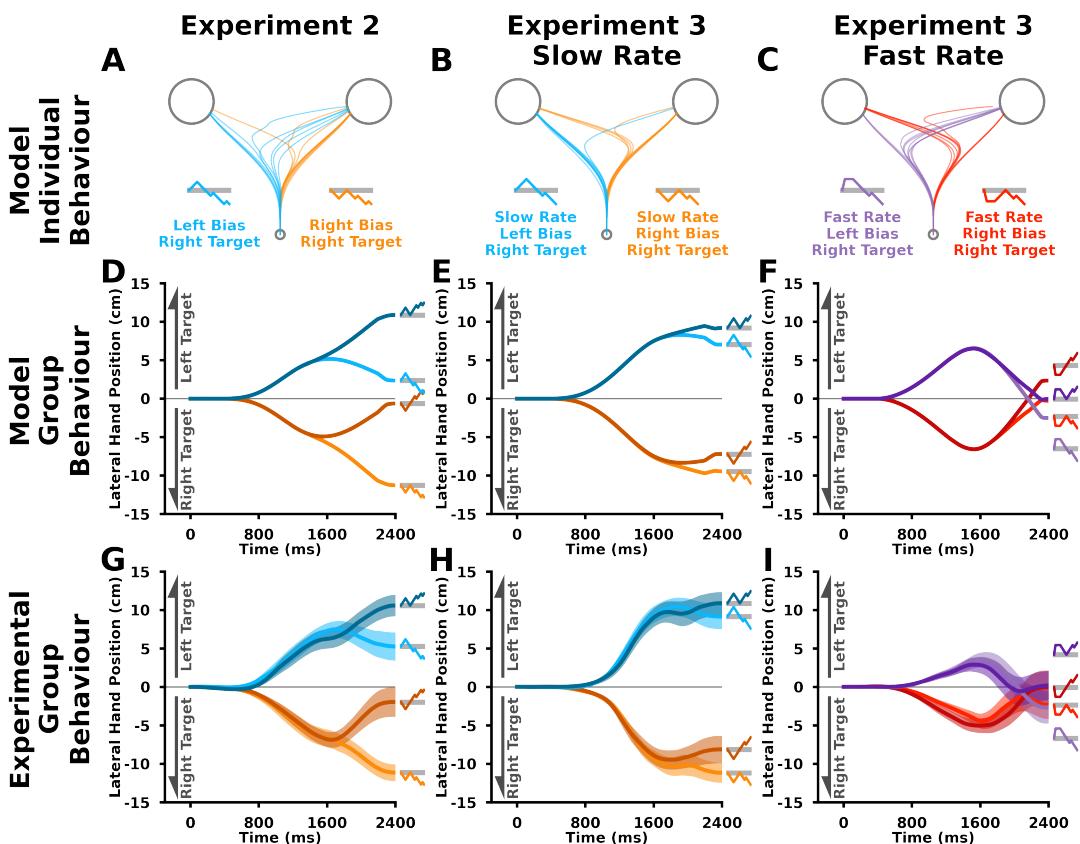


Figure 8: Best-Fit Movement Model Simulations. We fit a decision and movement model across the movement trajectories in biased token patterns in **Experiment 2** and **Experiment 3**. The models utilized a weighted average of the targets to control the feedback responses. For each trial and time step, the weighting for each target was calculated from a decision variable generated by the Trueblood model using novel sensory information. **A-C)** Model Individual Behaviour. **D-F)** Model Group Behaviour Lateral Hand Position (y-axis) over time (x-axis). **G-I)** Experimental Group Behaviour Lateral Hand Position (y-axis) over time (x-axis; repeated from Figure 4). The model was able to capture the trends found in the experimental group behaviour. This model supports the idea that online movements reflect the ongoing deliberation process.

244 *Decision-Making and Movement Model*

245 We found that ongoing deliberation influenced online movement. To capture this movement
246 behaviour, we developed an optimal feedback control model^{25,26,27,28,29,30} that used the evolving
247 decision variable to influence the ongoing movements. The decision variable was simulated using
248 the Trueblood model with novel evidence. In short, an optimal feedback controller directed
249 the hand towards an evolving and weighted averaged target that was a function of deliberation
250 (see **Supplementary E** for further details). This model is able to capture individual movement
251 behaviour (**Fig. 8A-C**) and group movement behaviour (compare **Fig. 8D-F** to **Fig. 8G-I**).

252 *Replicating previous work with the movement model.*

253 Using our decision-making and movement model, we were also able to replicate the results from
254 a go-before-you-know task by Wong and Haith (2017).³ The researchers defined reaches that
255 were not directly at one of the two targets as intermediate movements. They found that slow
256 reaching movements resulted in more intermediate movements compared to fast reaches (**Fig.**
257 **9**). The authors interpreted these findings to indicate a single flexible plan that maximized task
258 performance, since an averaging of static motor plans would always launch as an intermediate
259 movement regardless of movement speed.¹

260 We replicated their findings (**Fig. 9C,D**) by using an urgency signal that was inversely
261 proportional to allowable reach time, as well as proportional to the distance between the targets
262 since this would be more energetically costly (**eq. 27**).³¹ In particular when comparing slow and
263 fast movement speeds, our decision-making and movement model suggests that the proportion
264 of intermediate movements arises due to the urgency to make a decision. For example, urgency
265 is higher in the fast movement condition since there is less time to reach the target. As a con-
266 sequence during these fast movements, a target is more quickly selected even without evidence,
267 since the deliberation noise is multiplied by a high urgency signal and crosses a decision threshold
268 (i.e., guessing). Conversely in the slow movement condition, the lower urgency does not push
269 the noise over a decision threshold and the participant can wait for evidence of the correct target.

270 Collectively our empirical and computational results suggest that deliberation, which in-

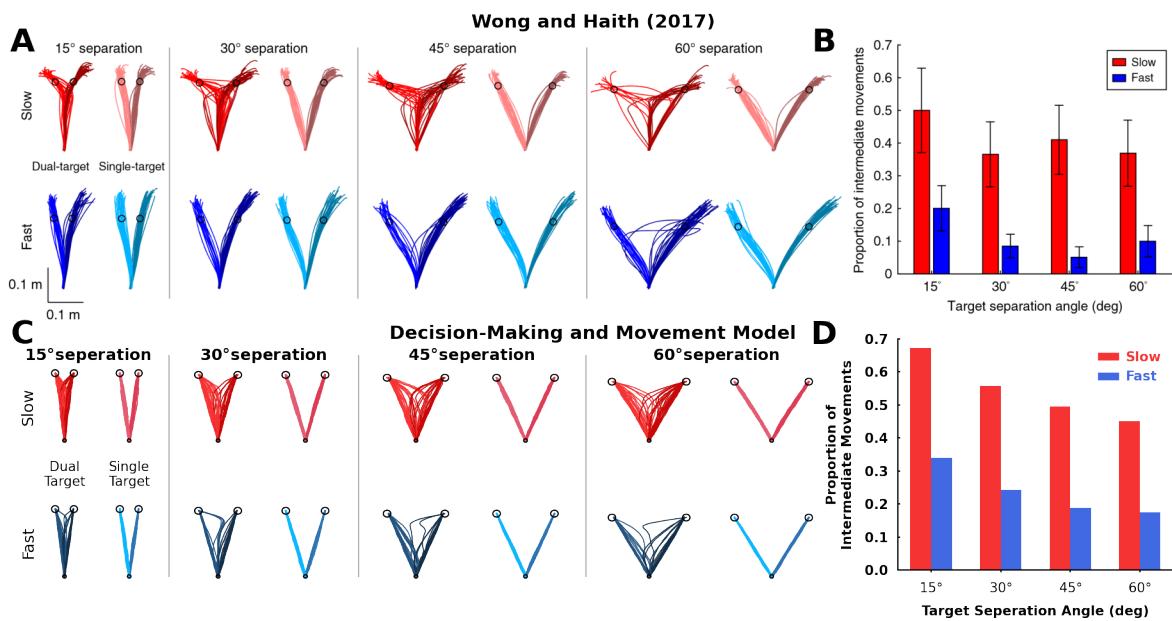


Figure. 9: Replicating Previous Work. A,B) Behavioural data from Wong and Haith (2017; reprinted with permission) showing that required movement speed and target separation affect the proportion of intermediate movements. **A)** Individual single trajectories for dual-target and single target reaches with different target separation angles. Red and blue represent movements in the slow and fast conditions respectively. **B)** Group proportion of intermediate movements (y-axis) between target separation angles (x-axis). In **C,D)**, our model predicts that differences in urgency between conditions can lead to differences in the proportion of intermediate movements. Here, we modulated urgency as a function of the relative cost of an intermediate movement and the time to get to the target. **C)** Model single trajectories for dual-target and single target reaches with different target separation angles. Red and blue represent movements in the slow and fast conditions respectively. **D)** Model Average proportion of intermediate movements (y-axis) between target separation angles (x-axis). Our model was able to replicate the influence of required movement and target separation angle on the proportion of intermediate movements by manipulating the urgency in the deliberation process.

271 involves urgency, directly influences online movements.

272 DISCUSSION

273 We show that ongoing deliberation is reflected in movements—prior to a decision—when the
 274 motor system is actively engaged. We also find that urgency was necessary to explain decision
 275 times in the third experiment, as well as predicting movement behaviour in the literature. Col-
 276 lectively, our work supports the idea that decision-making processes continuously interact with
 277 motor processes, such that deliberation is expressed via movement.

278 In **Experiment 2** and **Experiment 3**, we were able to elucidate the influence of the ongo-
 279 ing deliberation of uncertain and continuous evidence on movements. Prior literature has utilized
 280 a "go-before-you-know" paradigm where participants were presented multiple potential targets

281 and initiated their movements without complete knowledge of the correct target.^{7,1,32,33,2,3,4} In
282 these studies, the correct target was indicated partway through the reach via a sudden and dis-
283 crete change of evidence (e.g. target colour or location, phonological input, etc.) that resulted
284 in participants making rapid movement redirections. These rapid movement redirections reflect
285 a rapid decision in response to a sudden and discrete change of evidence. Similar rapid move-
286 ment redirections have been seen following uncertain and continuous evidence (i.e., random dot
287 motion task) that is presented prior to movement initiation.^{9,34,35} In a small subset of trials,
288 participants displayed "changes of mind" where they rapidly redirected towards the other target.
289 It has been suggested that these changes of mind reflect a second decision based on delayed
290 sensory information. Due to the sudden decisions and rapid movement redirections in the above
291 works, it would be difficult to dissociate whether movement was caused either from deliberation
292 or acting solely on a second decision.

293 There has also been increased interest in mid-reach decisions, such as when using the
294 target-split paradigm by Kurtzer and colleagues (2020).³⁶ In this task, participants would move
295 their hand to one target and this would occasionally change to two target options during the
296 movements. Participants showed a preference toward the options nearest the original target.
297 Others have shown that mid-reach decisions are sensitive to other factors such as relative target
298 frequency,³⁷ reward magnitude,³⁸ and biomechanics.^{39,40,41} In these mid-reach decision tasks,
299 participants indicate their choice with a rapid movement redirection. Again however, it would
300 be difficult to dissociate whether movement was caused either from deliberation or the final
301 decision.

302 Unlike the above works and others,^{42,43} a key aspect of our design was using the hand
303 trigger to estimate the decision time, allowing us to separate whether movement was caused
304 either from deliberation or action selection following a final decision. Future work could adapt
305 this paradigm during reaching or gait to study the influence of reward, energetics, and other
306 factors that may impact decision-making to gain an understanding of the ongoing deliberation
307 via movement.

308 In **Experiment 1** we found that the ongoing deliberation did not induce movements prior
309 to a decision, at least to a significant level, when initially in posture. Conversely, in both
310 **Experiment 2** and **Experiment 3** we found that when the motor system was already actively
311 engaged that there was an expression of the deliberation process via movement. Being able
312 to express deliberation in movement but not in posture aligns with previous results showing
313 differential configuration and engagement of motor circuits for movement and posture.^{44,45,46}
314 One possibility is the decision processes have a larger influence on movement circuits than
315 postural circuits. While our paradigm allows for a continuous expression of deliberation during
316 movement execution, past work has shown that it is possible to elicit an instantaneous expression
317 of deliberation from a postural state. Selen and colleagues were able to gain a momentary
318 expression of deliberation at the moment of movement onset.^{47,34} Specifically, they perturbed
319 the upper limb while in posture and measured the resulting long-latency stretch reflex. They
320 found that the long-latency stretch reflex reflected deliberation at the time of perturbation while
321 in posture. Although we did not find that evidence was enough to elicit movement initiation from
322 a postural state, we did find that deliberation can be continually expressed during movement.

323 In this work, we have primarily investigated the influence of deliberation on movement.
324 We also found that participants made faster decisions when already moving in **Experiment**
325 **2** compared to when in posture for **Experiment 1**. This finding may reflect 'embodied de-
326 cisions, where the current and future states of the motor system can influence decision mak-
327 ing.^{48,49,50,51,52,39,53,54,55,56,41} Korbisch and colleagues (2022) had participants select between short
328 or long walking durations or shallow and steep walking inclines.⁵⁴ When participants looked at
329 depictions of the various options, the researchers found higher saccade vigor (i.e., velocity) to-
330 wards the depictions associated with less effort. These results suggest that potential energy
331 costs are embodied and can be reflected during deliberation with eye movement. In their study,
332 evidence of potential effortful options was discrete and did not change during the course of the
333 eye movement. Here saccade vigor provides a glimpse of deliberation reflecting past evidence ac-
334 quired from previous eye movements. Building on this work, we show the online movement itself

335 is influenced by an ongoing deliberation. It would be interesting for future work to manipulate
336 both potential energetic costs over time and evidence during movement to further understand
337 embodied decisions.

338 In this study, we were interested in the influence of deliberation on movement. In **Experi-
339 ment 1** and **Experiment 2** we found no difference in decision times between the bias token
340 patterns, which replicates previous findings and is consistent with the urgency-gating hypoth-
341 esis.¹⁴ For **Experiment 3**, we used slow rate and fast rate token patterns to manipulate the
342 rate of evidence and further understand deliberation. The standard evidence accumulation (with
343 or without leak) and pure urgency-gating model (without a low pass filter) would predict that
344 the fast rate token patterns would respectively cause earlier or similar decision times compared
345 to the slow rate token patterns. Counterintuitively, we found that the slow rate token patterns
346 made faster decisions compared to the faster rate token patterns. We were able to capture faster
347 decisions with the slow rate token patterns with both the Trueblood model and urgency-gating
348 model with a low-pass filter. Both these models are similar mathematically and have terms that
349 relate to urgency and an integration of evidence. Conceptually, the Trueblood model integrates
350 to accumulate evidence towards a decision, whereas the integration from the low-pass filter of
351 the urgency-gating model is intended to reflect an estimate of evidence from sensory processes.
352 Neural activity during perceptual decision-making in monkeys has been attributed to either ev-
353 idence accumulation towards a decision.^{17,11,21} or the scaling of low-pass filtered estimate of
354 evidence with an urgency signal that arises from the basal ganglia.^{14,16} An important future
355 direction, such as through neural recordings in animals, is to determine where and why there is
356 an integration of evidence. Irrespective of evidence integration, urgency was needed to predict
357 decision times and replicate reaching trajectories from past work.³

358 Here developed a movement model that reflected deliberation, by combining the Trueblood
359 decision-making model and optimal feedback control. This differs from past work that has
360 used dynamic programming,⁵⁷ bayesian methods,⁵⁸ only optimal feedback control,⁴⁹ and relative
361 desirability of multiple options.⁵⁹ While these other modelling approaches have been insightful

362 and motivated the current work, they do not have a deliberation process that includes urgency.
363 Urgency was a critical component to capture decision making time and reaching movements
364 from past literature. However, it would be possible to include an urgency term in these previous
365 modelling approaches. A limitation of our model as currently formulated is that it only allows for
366 the deliberation process to influence the movement. That is, it does not allow the motor states to
367 directly influence the deliberation process. This model design reflects our experiments where we
368 manipulate the deliberation process to test its influence on movement. However, several of the
369 aforementioned models would be able to capture some of the bidirectional relationships between
370 cognitive and motor processes during embodied decisions reported in the literature.^{48,51,53,52,54,41}
371 Moving forward, it will be important to have a computational model of embodied decisions that
372 captures several important features of both motor behaviour (e.g., bell shaped velocity profiles,
373 vigor) and decision-making behaviour (e.g., skewed reaction time, speed accuracy tradeoff, Hicks
374 law, urgency).

375 Overall, we have shown that the motor system is influenced by the deliberation of multiple
376 targets. Prior literature has examined how the decision-making and motor systems interpret and
377 act on multiple potential options.^{4,3,60,6} In the go-before-you-know task, intermediate movements
378 between two targets have been suggested to be an outcome of parallel averaged motor plans^{1,2,59}
379 or a single flexible motor plan that optimizes task performance.^{3,61,4} Wong and Haith (2017)
380 interpreted more intermediate movements with slow hand speeds compared to fast hand speeds
381 to reflect a single flexible motor plan.³ Here we provide an alternative perspective by considering
382 urgency. When one also considers urgency, it is possible to explain different proportions of
383 intermediate movements between slow or fast hand speeds with either a single flexible motor
384 plan or parallel averaged motor plans.

385 It is important to consider that a single flexible motor plan or parallel averaged motor plans
386 are a combination of two factors: i) single versus parallel average, and ii) static versus flexible.
387 Obviously a single static motor plan is not a viable option to handle multiple potential goals.
388 Alhussein and colleagues (2021) rule out a parallel average of static motor plans, since their

389 prediction was based on the initial reach angle to each target.⁴ Yet their finding does not rule
390 out the possibility of a parallel average of flexible motor plans, where each motor plan (more
391 specifically, control policy) could contain a safety margin. As shown above, we were able to
392 replicate the results of Wong and Haith (2017) by considering urgency.³ It is mathematically
393 equivalent to have a single flexible motor plan that reflects a weighted average of two targets
394 based on evidence, compared to flexible parallel plans (control policies) that are weighted based
395 on evidence (see **Supplementary E**). It is not clear how to behaviourally dissociate between a
396 single flexible motor plan or parallel average of flexible motor plans through movement execution.
397 There has been conflicting neural support with regards to parallel motor plans or a single flexible
398 motor plan.^{5,6} It would be useful for future work involving neural recordings to determine where,
399 when, and how multiple target representations and deliberation processes finally converge to
400 produce a single executed movement.

401 Humans often must make decisions while moving. We found that deliberation was reflected
402 in ongoing movements—prior to a decision—when the motor system was actively engaged.
403 We found that an urgency signal, which more heavily weighted evidence later in time, was
404 fundamental to predicting decision times and explaining previous reaching behaviour. Our results
405 support the hypothesis that the decision-making process influences movements prior to a decision.
406 Understanding the integration of decision and motor processes may allow us to better understand
407 neurological disorders where cognitive and motor processes and deficits may be entangled.

408 **METHODS**

409 **Participants**

410 In total we collected 51 participants across three experiments. 17 individuals (24.8 ± 2.37
411 years old) participated in **Experiment 1**, 17 individuals (21.4 ± 1.76 years old) participated
412 in **Experiment 2**, and 17 individuals (23.2 ± 2.93 years old) participated in **Experiment**
413 **3**. Participants reported they were free of musculoskeletal or neuromuscular disorders. All
414 participants provided informed consent to participate in the experiment and the procedures were

415 approved by the University of Delaware's institutional review board. Participants were provided
416 \$10 USD compensation.

417 **Apparatus**

418 For all three experiments, participants grasped the handle of a robotic manipulandum with
419 their dominant hand (**Fig. 1A**; KINARM, BKIN Technologies, Kingston, ON, Canada) to
420 perform reaching movements in the horizontal plane. Participants held a hand trigger in their
421 nondominant hand. A semi-silvered mirror projected images (start position, left and right targets,
422 tokens) from an LCD screen onto the horizontal plane of motion. To assess muscle activity,
423 we recorded electromyography (EMG) signals with bipolar surface electrodes (single differential
424 electrode, Trigno system, Delsys, Natick, MA) from the flexor pollicis brevis of the nondominant
425 hand. To obtain an estimated decision time, a voltage signal indicated when the thumb pushed
426 the hand trigger. Kinematic, EMG, and hand trigger data were recorded at 1,000 Hz and stored
427 offline for data analysis.

428 **Protocol**

429 **General Task Protocol**

430 For each trial, participants were visually presented with a white start position (2 cm diameter)
431 and two targets (5 cm diameter). The left and right targets were respectively 20 cm to the left
432 and right of the start position (**Fig. 1A**). A yellow cursor (1 cm diameter) provided real-time
433 feedback of their hand position. The participants were instructed to move their cursor into the
434 start position. After holding the cursor with the start position for 400 ms, participants heard a
435 beeping sound and 15 yellow tokens appeared between the left and right targets. At trial onset
436 (0 ms), the tokens jumped from the center into the left target or right target in 160 ms time
437 intervals¹⁴ (**Fig. 1C**). Participants had to make their decision prior to 2400 ms, corresponding to
438 the final token moving into one of the targets. Once they felt confident which target would end
439 up with the most tokens, they were instructed to simultaneously i) press a trigger with their non-
440 dominant hand and ii) move towards and hit the selected target. As soon as participants pressed
441 the hand trigger, the remaining token movements were not visible to the participant to prevent

442 them from changing their decision with later evidence. If participants selected the correct target,
443 they would hear a pleasant ding and their selected target would turn blue. If participants selected
444 the incorrect target, they would hear an unpleasant buzzer and their selected target would turn
445 red. When participants did not press the hand trigger and/or enter a target within 2400 ms of
446 the beginning of the trial, both targets would turn red. Further, unknown to participants, that
447 the trial would be repeated later on during the experiment.

448 ***Experiment 1 Task Protocol***

449 The goal of **Experiment 1** was to determine if ongoing deliberation can elicit and subsequently
450 influence movements, prior to a final decision, when evidence was initiated during posture. The
451 targets were directly to the left and right of the start position (**Fig. 1A**). The participant waited
452 in the start position for 400 ms. After this wait period, trial onset (0 ms) was indicated with a
453 beep. The tokens moved into the left or right target one at a time in 160 ms intervals. In total,
454 participants experienced 216 trials in the main experiment. We used bias, pseudorandom, late,
455 and null token patterns (**Fig. SA1**).

456 We were primarily interested in the bias token patterns, since we tightly controlled the
457 token movement and consequently the experienced uncertain and continuous evidence. During
458 the bias token patterns the first three tokens moved individually into the left or right target (i.e.,
459 left bias or right bias), the next three tokens moved individually into the opposite target, and
460 the remaining tokens moved with an 80% probability into the left or right target (i.e., left target
461 or right target; **Fig. 2A-D**). These bias token patterns, we had each of the four combinations
462 of left bias or right bias and left target or right target. Each bias token pattern was presented
463 12 times, which resulted in 48 bias token patterns.

464 We also had psuedorandom token patterns where each token had the same probability
465 of going to the left target. We had 20%, 35%, 50%, 65% or 80% probability psuedorandom
466 token patterns. Each psuedorandom token pattern was presented 12 times except for the 50%
467 condition which was presented 24 times, which resulted in 72 psuedorandom token patterns.
468 Additionally, we had null token patterns (24 trials), late token patterns (48 trials), and late

469 null token patterns (24 trials). Similar to the ambiguous token patterns used by Cisek (2009),
470 the null bias token patterns had a net token movement that was close to zero throughout the
471 beginning portion of a trial.¹⁴

472 ***Experiment 2 Task Protocol***

473 The goal of **Experiment 2** was to determine if ongoing deliberation was reflected in movements,
474 prior to a final decision, after movement onset when the motor system was already actively
475 engaged. Tokens were initiated when the participant left the when evidence was initiated by
476 movement. In **Experiment 2**, the targets were 30 cm forward and 20 cm to the left and right
477 of the start position. The participant waited in the start position for 400 ms, after which they
478 heard a beep. The beep indicated the participant may leave the start position. Trial onset (0
479 ms) occurred once the participant left the start position. **Experiment 2** used the same token
480 patterns as **Experiment 1**.

481 ***Experiment 3 Task Protocol***

482 The goal of **Experiment 3** was to replicate the results found in **Experiment 2**, while also eluci-
483 dating the roles of evidence accumulation or urgency on deliberation and consequent movement.
484 The experimental setup was the same as **Experiment 2**, except for the specific token patterns
485 (**Fig. SA 2**). Participants experienced 336 total trials. Trials included slow rate bias (**Fig. 2**
486 **E-F**), fast rate bias (**Fig. 2I-L**), pseudorandom, late, and null token patterns.

487 In this experiment, we were primarily interested in the slow rate and fast rate bias token
488 patterns because we tightly controlled their movement and the experienced uncertain and contin-
489 uous evidence. Further, the slow rate and fast rate token patterns lead to unique decision times
490 depending on how humans accumulate evidence and / or rely on urgency during deliberation.
491 During the slow rate bias token patterns, the first four tokens moved individually into the left
492 or right target (i.e., left bias or right bias), the next four tokens moved individually into the
493 opposite target and the remaining tokens moved with an 80% probability into the left or right
494 target (i.e., left target or right target; **Fig. 2E-F**). In the fast rate bias token patterns the first
495 four tokens moved at the same time into the left or right target (i.e., left bias or right bias), the

496 next four tokens moved individually into the opposite target and the remaining tokens moved
497 with an 80% probability into the left or right target (i.e., left target or right target; **Fig. 2I-L**).
498 For these bias token patterns, we had each of the eight combinations of fast rate or slow rate,
499 left bias or right bias, and left target or right target. Each bias token pattern was presented 12
500 times, which resulted in 96 bias token patterns.

501 The pseudorandom token patterns were the same as **Experiment 1** and **2** (**Fig. SA**
502 **2I-M**). Similar to **Experiment 1** and **2**, we also had late and null token patterns.

503 **Reaction Time Task.**

504 Prior to any of the experiments described above, participants performed a reaction time task
505 to determine the sensory and motor delays involved in making and indicating a decision (**Fig.**
506 **SA 3A**). In the reaction time task, the targets were in the same location as the corresponding
507 main experiment (as described in **Experiment Task Protocols** above). The reaction time task
508 used the same trial onset as the corresponding experiment. At trial onset (0 ms), all 15 tokens
509 jumped into either the left or right target (**Fig. SA 3B,C**). Participants were instructed to
510 select the target that all of the tokens jumped into as fast as they could (**Fig. SA 3D**). Again,
511 participants indicated their decision by pressing the hand trigger and moving the cursor into
512 their selected target (**Fig. SA 3E,F**). Participants performed at minimum 20 familiarization
513 trials in the reaction time paradigm to become accustomed to the experimental setup. After the
514 familiarization trials, participants performed 24 reaction time trials. There were 12 left reaction
515 time trials and 12 right reaction time trials that were presented in a randomly interleaved order.

516 **Data Analysis**

517 **Estimated Decision Time**

518 Trigger time was determined when the voltage of the hand trigger crossed 3 volts for each
519 trial. We found an estimated decision time on each trial to determine when decisions were
520 made independent of reaching movements. We estimated a Neural + Mechanical Delay for each
521 participant using their reaction time trials. For each muscle per trial, we subtracted the global
522 mean muscle activity across all the reaction time trials. Flexor pollicis brevis muscle activity was

523 full wave rectified and then dual-pass, sixth order, lowpass (20 Hz), Butterworth filtered. We
524 determined EMG onset time with a dual-threshold method given a critical amplitude threshold
525 and a 10 ms temporal threshold.⁶² We defined a critical amplitude threshold of mean + three
526 standard deviations of the flexor pollicis brevis muscle activity in the 400 ms before the trial
527 onset across all trials. EMG onset time was determined when the EMG activity rose and stayed
528 above the critical amplitude threshold for 10 ms. The onset time was calculated using the dual-
529 threshold method and verified by human inspection per reaction time trial (**Fig. SA 4A,B**).
530 We found the average difference between Trigger Time and EMG onset time for the reaction
531 time trials per subject (**Fig. SA 4C**). The Neural + Mechanical delay for each participant
532 was defined as the average difference between Trigger Time and EMG onset time plus a nerve
533 propagation delay of 20 ms.⁶³ We calculated the estimated decision time on each trial during
534 the main experiments as the trigger time minus the neural + mechanical delay (**Fig. SA 4D**).

535 ***Movement Analysis***

536 Hand position data were digitally dual-pass, second order, lowpass (20 Hz cutoff), Butterworth
537 filtered. Our primary focus was to determine whether the deliberation process influences move-
538 ments, prior to a final decision. We were interested in the movement prior to the influence of
539 the final decision and subsequent actions. To this end, we looked at the lateral hand position at
540 estimated decision time (**Fig. 2**).

541 ***Statistical Analysis***

542 All statistical tests were performed in Python 3.8.5. We used repeated measures analysis of
543 variance (rmANOVA) as the omnibus tests for each dependent variable. We were primarily
544 interested in estimated decision time, lateral hand position at estimated decision time, and
545 selection rate metrics for the bias token patterns. In **Experiment 1** and **Experiment 2**, we
546 used a 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision time, lateral
547 hand position at estimated decision time, and selection rate. In **Experiment 3**, we used a 2
548 (Rate: Fast or Slow) x 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision
549 time and selection rate. For lateral hand position at estimated decision time we performed

550 separate 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVAs for fast bias patterns
551 and slow bias patterns. Here we used separate rmANOVAs, since we found significantly different
552 decision times between slow rate and fast rate bias token patterns. For **Experiments 1, 2**, and
553 **3**, we were also interested in the pseudorandom token patterns and used a 1-way rmANOVA
554 (Probability of Left Target: 20%, 35%, 50%, 65%, and 80%) for estimated decision time, lateral
555 hand position at estimated decision time, and selection rate. For all experiments, we performed
556 nonparametric bootstrap hypothesis testing for mean comparisons ($n = 1,000,000$).^{64,65,66,67,68}
557 Holm-Bonferroni corrections were used to control for Type 1 error. We computed Common
558 Language Effect Size ($\hat{\theta}$) for all mean comparisons.^{69,68} Statistical significance was set to $p <$
559 0.05.

REFERENCES

1. Chapman, C. S., Gallivan, J. P., Wood, D. K., Milne, J. L., Culham, J. C., & Goodale, M. A. (2010a). Reaching for the Unknown: Multiple Target Encoding and Real-Time Decision-Making in a Rapid Reach Task. *Cognition*, 116 (2), 168–176.
2. Gallivan, J. P., & Chapman, C. S. (2014). Three-Dimensional Reach Trajectories as a Probe of Real-Time Decision-Making between Multiple Competing Targets. *Frontiers in Neuroscience*, 8 , 215.
3. Wong, A. L., & Haith, A. M. (2017). Motor Planning Flexibly Optimizes Performance under Uncertainty about Task Goals. *Nature Communications*, 8 (1), 14624.
4. Alhussein, L., & Smith, M. A. (2021). Motor Planning under Uncertainty. *eLife*, 10 , pmid: 34486520.
5. Cisek, P., & Kalaska, J. F. (2005). Neural Correlates of Reaching Decisions in Dorsal Premotor Cortex: Specification of Multiple Direction Choices and Final Selection of Action. *Neuron*, 45 (5), 801–814.
6. Dekleva, B. M., Kording, K. P., & Miller, L. E. (2018). Single Reach Plans in Dorsal Premotor Cortex during a Two-Target Task. *Nature Communications*, 9 (1), (1): 3556.
7. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous Attraction toward Phonological Competitors. *Proceedings of the National Academy of Sciences*, 102 (29), 10393–10398.
8. Hudson, T. E., Maloney, L. T., & Landy, M. S. (2007). Movement Planning With Probabilistic Target Information. *Journal of Neurophysiology*, 98 (5), 3034–3046.
9. Resulaj, A., Kiani, R., Wolpert, D. M., & Shadlen, M. N. (2009). Changes of Mind in Decision-Making. *Nature*, 461 (7261), (7261): 263–266.
10. Britten, K., Shadlen, M., Newsome, W., & Movshon, J. (1992). The Analysis of Visual Motion: A Comparison of Neuronal and Psychophysical Performance. *The Journal of Neuroscience*, 12 (12), 4745–4765.

11. Shadlen, M. N., & Newsome, W. T. (2001). Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey. *Journal of Neurophysiology*, 86 (4), 1916–1936. pmid: 11600651.
12. Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. *Neural computation*, 20 (4), 873–922. pmid: 18085991.
13. Winkel, J., Keuken, M. C., Van Maanen, L., Wagenmakers, E.-J., & Forstmann, B. U. (2014). Early Evidence Affects Later Decisions: Why Evidence Accumulation Is Required to Explain Response Time Data. *Psychonomic Bulletin & Review*, 21 (3), 777–784.
14. Cisek, P., Puskas, G. A., & El-Murr, S. (2009). Decisions in Changing Conditions: The Urgency-Gating Model. *Journal of Neuroscience*, 29 (37), 11560–11571. pmid: 19759303.
15. Thura, D., Beauregard-Racine, J., Fradet, C.-W., & Cisek, P. (2012). Decision Making by Urgency Gating: Theory and Experimental Support. *Journal of Neurophysiology*, 108 (11), 2912–2930.
16. Thura, D., & Cisek, P. (2014). Deliberation and Commitment in the Premotor and Primary Motor Cortex during Dynamic Decision Making. *Neuron*, 81 (6), 1401–1416.
17. Ratcliff, R. (1978). A Theory of Memory Retrieval. *Psychological Review*, 85 (2), 59–108.
18. Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. (2003). A Role for Neural Integrators in Perceptual Decision Making. *Cerebral Cortex (New York, N.Y.: 1991)*, 13 (11), 1257–1269. pmid: 14576217.
19. Usher, M., & McClelland, J. L. (2001). The Time Course of Perceptual Choice: The Leaky, Competing Accumulator Model. *Psychological Review*, 108 (3), 550–592.
20. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The Physics of Optimal Decision Making: A Formal Analysis of Models of Performance in Two-Alternative Forced-Choice Tasks. *Psychological review*, 113 (4), 700.
21. Roitman, J. D., & Shadlen, M. N. (2002). Response of Neurons in the Lateral Intraparietal Area during a Combined Visual Discrimination Reaction Time Task. *The Journal of Neuroscience*, 22 (21), 9475–9489.

22. Lokesh, R., Sullivan, S., Calalo, J. A., Roth, A., Swanik, B., Carter, M. J., & Cashaback, J. G. A. (2022). Humans Utilize Sensory Evidence of Others Intended Action to Make Online Decisions. *Scientific Reports*, 12 (1), 8806.
23. Fievez, F., Cos, I., Carsten, T., Derosiere, G., Zenon, A., & Duque, J. (2023). *Task Goals Shape the Relationship between Decision and Movement Speed*. URL: <http://biorxiv.org/lookup/doi/10.1101/2023.12.29.573524> (visited on 08/16/2024). Pre-published.
24. Trueblood, J. S., Heathcote, A., Evans, N. J., & Holmes, W. R. (2021). Urgency, Leakage, and the Relative Nature of Information Processing in Decision-Making. *Psychological Review*, 128 (1), 160–186.
25. Todorov, E., & Jordan, M. I. (2002). Optimal Feedback Control as a Theory of Motor Coordination. *Nature Neuroscience*, 5 (11), 1226–1235. pmid: 12404008.
26. Scott, S. H. (2004). Optimal Feedback Control and the Neural Basis of Volitional Motor Control. *Nature Reviews Neuroscience*, 5 (7), (7): 532–545.
27. Liu, D., & Todorov, E. (2007). Evidence for the Flexible Sensorimotor Strategies Predicted by Optimal Feedback Control. *Journal of Neuroscience*, 27 (35), 9354–9368. pmid: 17728449.
28. Nashed, J. Y., Crevecoeur, F., & Scott, S. H. (2012). Influence of the Behavioral Goal and Environmental Obstacles on Rapid Feedback Responses. *Journal of Neurophysiology*, 108 (4), 999–1009.
29. Kasuga, S., Crevecoeur, F., Cross, K. P., Balalaie, P., & Scott, S. H. (2022). Integration of Proprioceptive and Visual Feedback during Online Control of Reaching. *Journal of Neurophysiology*, 127 (2), 354–372.
30. Lokesh, R., Sullivan, S. R., St. Germain, L., Roth, A. M., Calalo, J. A., Buggeln, J., Ngo, T., Marchhart, V. R. F., Carter, M. J., & Cashaback, J. G. A. (2023). Visual Accuracy Dominates over Haptic Speed for State Estimation of a Partner during Collaborative Sensorimotor Interactions. *Journal of Neurophysiology*, 130 (1), 23–42.

31. Carland, M. A., Thura, D., & Cisek, P. (2019). The Urge to Decide and Act: Implications for Brain Function and Dysfunction. *The Neuroscientist*, 25 (5), 491–511.
32. Chapman, C. S., Gallivan, J. P., Wood, D. K., Milne, J. L., Culham, J. C., & Goodale, M. A. (2010b). Short-Term Motor Plasticity Revealed in a Visuomotor Decision-Making Task. *Behavioural Brain Research*. Behavioural and Neural Plasticity, 214 (1), 130–134.
33. Wood, D. K., Gallivan, J. P., Chapman, C. S., Milne, J. L., Culham, J. C., & Goodale, M. A. (2011). Visual Salience Dominates Early Visuomotor Competition in Reaching Behavior. *Journal of Vision*, 11 (10), 16.
34. Visser, Y. F., Medendorp, W. P., & Selen, L. P. J. (2023). Muscular Reflex Gains Reflect Changes of Mind in Reaching. *Journal of Neurophysiology*, 130 (3), 640–651.
35. Moher, J., & Song, J. H. (2014). Perceptual Decision Processes Flexibly Adapt to Avoid Change of Mind Motor Costs. *Journal of Vision*, 14 (8), 1–13. pmid: 24986186.
36. Kurtzer, I. L., Muraoka, T., Singh, T., Prasad, M., Chauhan, R., & Adhami, E. (2020). Reaching Movements Are Automatically Redirected to Nearby Options during Target Split. *Journal of Neurophysiology*, 124 (4), 1013–1028.
37. Ulbrich, P., & Gail, A. (2023). Deciding While Acting Mid-Movement Decisions Are More Strongly Affected by Action Probability than Reward Amount. *eNeuro*, 10 (4), ENEURO.0240–22.2023. pmid: 36963835.
38. Marti-Marca, A., Deco, G., & Cos, I. (2020). Visual-Reward Driven Changes of Movement during Action Execution. *Scientific Reports*, 10 (1), (1): 15527.
39. Cos, I., Pezzulo, G., & Cisek, P. (2021). Changes of Mind after Movement Onset Depend on the State of the Motor System. *eNeuro*, 8 (6), ENEURO.0174–21.2021. pmid: 34772692.
40. Michalski, J., Green, A. M., & Cisek, P. (2020). Reaching Decisions during Ongoing Movements. *Journal of Neurophysiology*, 123 (3), 1090–1102.
41. Canaveral, C. A., Lata, W., Green, A. M., & Cisek, P. (2024). Biomechanical Costs Influence Decisions Made during Ongoing Actions. *Journal of Neurophysiology* , jn.00090.2024.

42. Dotan, D., Meyniel, F., & Dehaene, S. (2018). On-Line Confidence Monitoring during Decision Making. *Cognition*, 171, 112–121. pmid: 29128659.
43. Song, J.-H., Takahashi, N., & McPeek, R. M. (2008). Target Selection for Visually Guided Reaching in Macaque. *Journal of Neurophysiology*, 99 (1), 14–24.
44. Kurtzer, I., Herter, T. M., & Scott, S. H. (2005). Random Change in Cortical Load Representation Suggests Distinct Control of Posture and Movement. *Nature neuroscience*, 8 (4), 498–504.
45. Cluff, T., & Scott, S. H. (2016). Online Corrections Are Faster Because Movement Initiation Must Disengage Postural Control. *Motor Control*, 20 (2), 162–170.
46. Shadmehr, R. (2017). Distinct Neural Circuits for Control of Movement vs. Holding Still. *Journal of neurophysiology*, 117 (4), 1431–1460.
47. Selen, L. P. J., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the Motor System: Reflex Gains Track Evolving Evidence Leading to a Decision. *Journal of Neuroscience*, 32 (7), 2276–2286. pmid: 22396403.
48. Cos, I., Bélanger, N., & Cisek, P. (2011). The Influence of Predicted Arm Biomechanics on Decision Making. *Journal of Neurophysiology*, 105 (6), 3022–3033.
49. Nashed, J. Y., Crevecoeur, F., & Scott, S. H. (2014). Rapid Online Selection between Multiple Motor Plans. *Journal of Neuroscience*, 34 (5), 1769–1780. pmid: 24478359.
50. Marcos, E., Cos, I., Girard, B., & Verschure, P. F. M. J. (2015). Motor Cost Influences Perceptual Decisions. *PLOS ONE*, 10 (12), e0144841.
51. Morel, P., Ulbrich, P., & Gail, A. (2017). What Makes a Reach Movement Effortful? Physical Effort Discounting Supports Common Minimization Principles in Decision Making and Motor Control. *PLoS biology*, 15 (6), e2001323. pmid: 28586347.
52. Reynaud, A. J., Saleri Lunazzi, C., & Thura, D. (2020). Humans Sacrifice Decision-Making for Action Execution When a Demanding Control of Movement Is Required. *Journal of Neurophysiology*, 124 (2), 497–509.

53. GrieSSbach, E., Incagli, F., Herbort, O., & Cañal-Bruland, R. (2021). Body Dynamics of Gait Affect Value-Based Decisions. *Scientific Reports*, 11 (1), (1): 11894.
54. Korbisch, C. C., Apuan, D. R., Shadmehr, R., & Ahmed, A. A. (2022). Saccade Vigor Reflects the Rise of Decision Variables during Deliberation. *Current Biology*, 32 (24), 5374–5381.e4. pmid: 36413989.
55. Daniels, K. A. J., & Burn, J. F. (2023). Human Locomotion over Obstacles Reveals Real-Time Prediction of Energy Expenditure for Optimized Decision-Making. *Proceedings of the Royal Society B: Biological Sciences*, 290 (2000), 20230200.
56. Carsten, T., Fievez, F., & Duque, J. (2023). Movement Characteristics Impact Decision-Making and Vice Versa. *Scientific Reports*, 13 (1), (1): 3281.
57. Haith, A. M., Huberdeau, D. M., & Krakauer, J. W. (2015). Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision. *PLOS Computational Biology*, 11 (3), e1004171.
58. Priorelli, M., Stoianov, I. P., & Pezzulo, G. (2024). *Embodied Decisions as Active Inference*. URL: <https://www.biorxiv.org/content/10.1101/2024.05.28.596181v1> (visited on 08/08/2024). Pre-published.
59. Christopoulos, V., & Schrater, P. R. (2015). Dynamic Integration of Value Information into a Common Probability Currency as a Theory for Flexible Decision Making. *PLOS Computational Biology*, 11 (9), ed. by O'Reilly, J. X.: e1004402.
60. Cisek, P. (2007). Cortical Mechanisms of Action Selection: The Affordance Competition Hypothesis. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 362 (1485), 1585–1599. pmid: 17428779.
61. Nashed, J. Y., Diamond, J. S., Gallivan, J. P., Wolpert, D. M., & Flanagan, J. R. (2017). Grip Force When Reaching with Target Uncertainty Provides Evidence for Motor Optimization over Averaging. *Scientific Reports*, 7 (1), 11703.
62. Walter, C. B. (1984). Temporal Quantification of Electromyography with Reference to Motor Control Research. *Human Movement Science*, 3 (1), 155–162.

63. Jo, H. J., & Perez, M. A. (2019). Changes in Motor-Evoked Potential Latency during Grasping after Tetraplegia. *Journal of Neurophysiology*, 122 (4), 1675–1684.
64. Gribble, P. L., & Scott, S. H. (2002). Overlap of Internal Models in Motor Cortex for Mechanical Loads during Reaching. *Nature*, 417 (6892), (6892): 938–941.
65. Cashaback, J. G., McGregor, H. R., Mohatarem, A., & Gribble, P. L. (2017a). Dissociating Error-Based and Reinforcement-Based Loss Functions during Sensorimotor Learning. *PLoS Computational Biology*, 13 (7), e1005623.
66. Cashaback, J. G., McGregor, H. R., Pun, H. C., Buckingham, G., & Gribble, P. L. (2017b). Does the Sensorimotor System Minimize Prediction Error or Select the Most Likely Prediction during Object Lifting? *Journal of Neurophysiology*, 117 (1), 260–274.
67. Roth, A. M., Calalo, J. A., Lokesh, R., Sullivan, S. R., Grill, S., Jeka, J. J., Van Der Kooij, K., Carter, M. J., & Cashaback, J. G. A. (2023). Reinforcement-Based Processes Actively Regulate Motor Exploration along Redundant Solution Manifolds. *Proceedings of the Royal Society B: Biological Sciences*, 290 (2009), 20231475.
68. Calalo, J. A., Roth, A. M., Lokesh, R., Sullivan, S. R., Wong, J. D., Semrau, J. A., & Cashaback, J. G. A. (2023). The Sensorimotor System Modulates Muscular Co-Contraction Relative to Visuomotor Feedback Responses to Regulate Movement Variability. *Journal of Neurophysiology*, 129 (4), 751–766.
69. McGraw, K. O., & Wong, S. P. (1992). A Common Language Effect Size Statistic. *Psychological Bulletin*, 111, 361–365.
70. Brown, I. E., & Loeb, G. E. (2000). Measured and Modeled Properties of Mammalian Skeletal Muscle: IV. Dynamics of Activation and Deactivation. *Journal of Muscle Research & Cell Motility*, 21 (1), 33–47.
71. Roth, A. M., Lokesh, R., Tang, J., Buggeln, J. H., Smith, C., Calalo, J. A., Sullivan, S. R., Ngo, T., Germain, L. S., Carter, M. J., & Cashaback, J. G. (2024). Punishment Leads to Greater Sensorimotor Learning But Less Movement Variability Compared to Reward. *Neuroscience*, 540, 12–26.

Supplementary A

Methods

Token Patterns

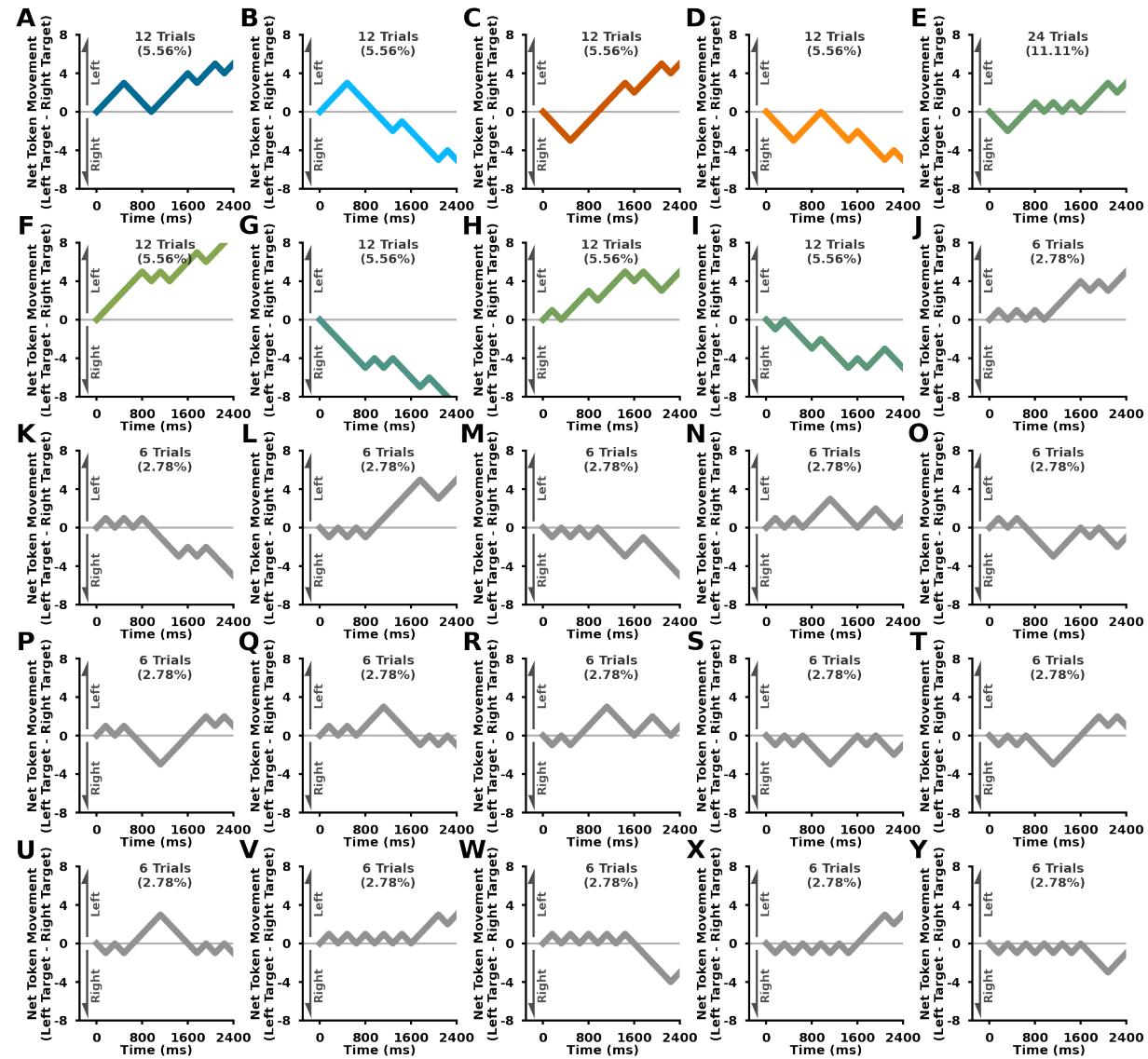
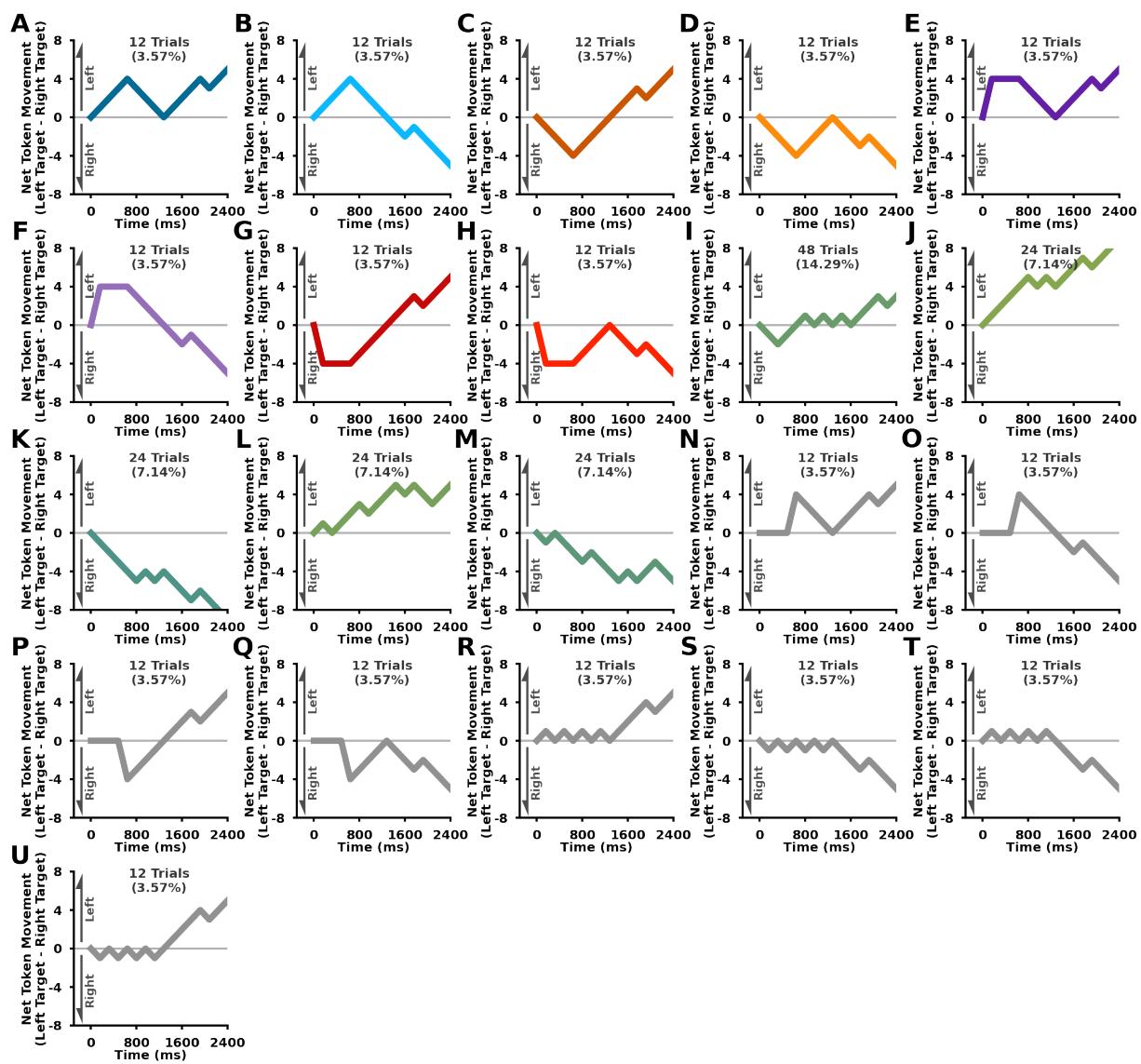


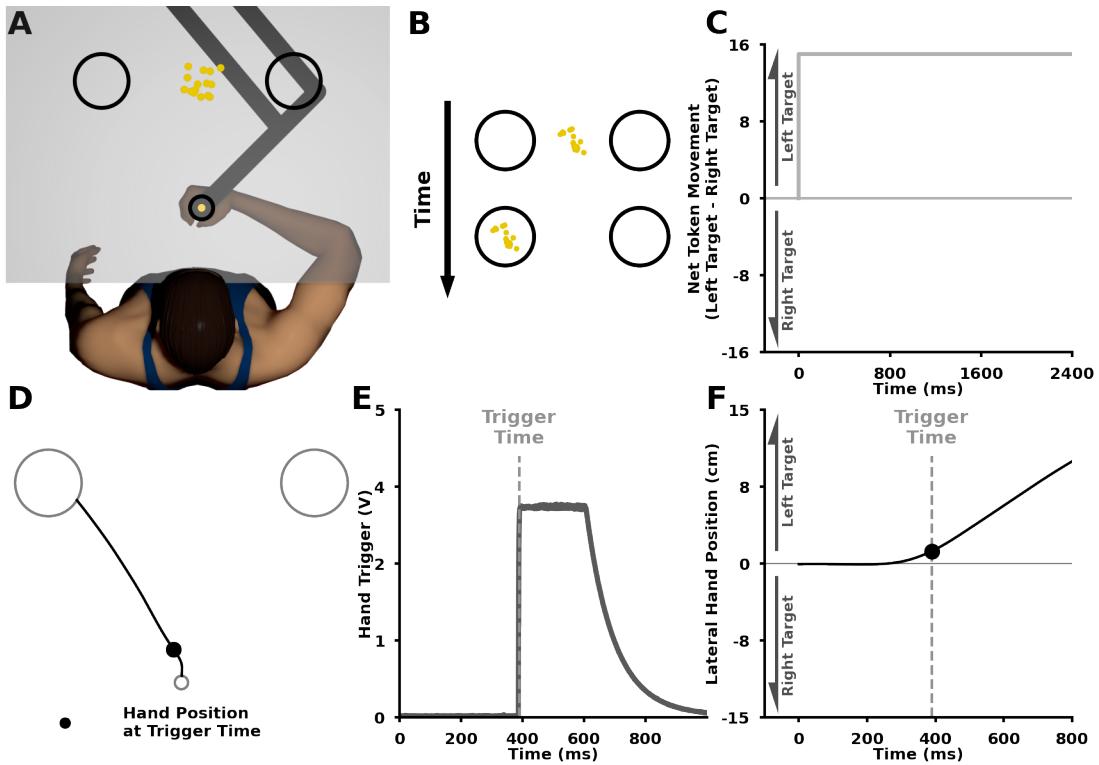
Figure SA1: Experiment 1 and 2 Token Patterns. Net Token Movement (y-axis; left target - right target) over time (x-axis). Inset text for each token pattern shows the number of occurrences and percentage out of all trials.



566 **Figure SA2: Experiment 3 Token Patterns.** Net Token Movement (y-axis; left target - right target) over
567 time (x-axis). Inset text for each token pattern shows the number of occurrences and percentage out of all trials.

568 Reaction Time Task

569

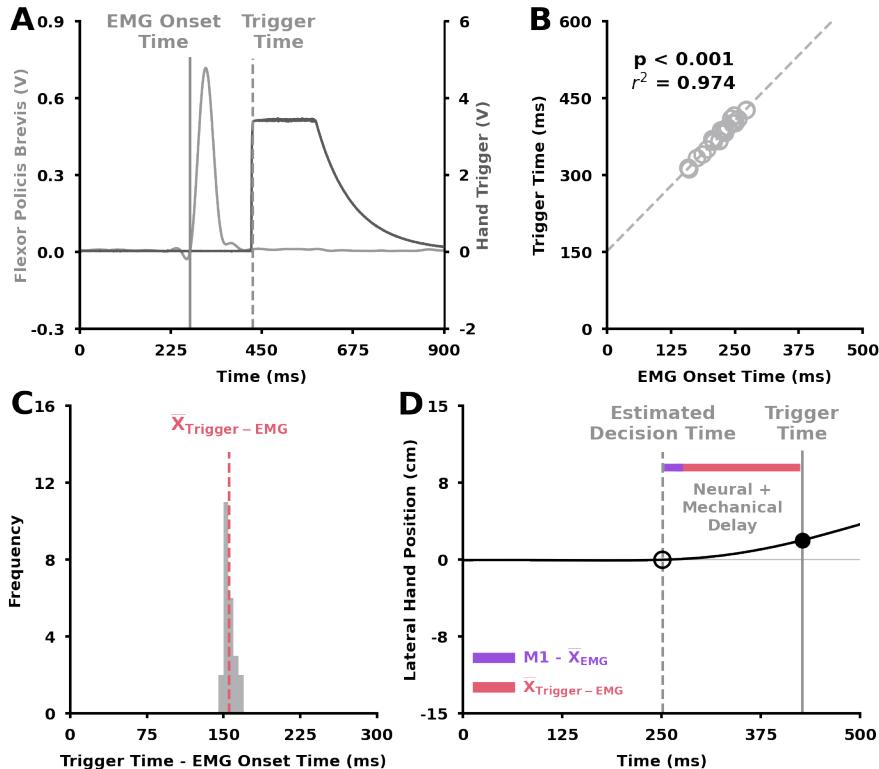


570

Figure SA3: Reaction Time Design. In the reaction time trials, we wanted to measure how quickly participants could respond to goal-related stimulus. The participant initiated the reaction time trial by leaving the start position. As soon as participants left the start position, all the tokens jumped into one of the two targets. Participants were instructed to select the target which all of the tokens moved into as fast as they could. The participants indicated their by pressing the hand trigger in their non-dominant hand and moving into the corresponding target. **A**) The reaction time task setup was identical to the experimental conditions for **Experiment 2** and **Experiment 3**. **B**) An example of the participant display while the tokens moved into the left or right target over time. **C**) Net Token Movement (left tokens minus right tokens, y-axis) over time (x-axis) of an example token pattern. **D**) Individual reaction time trial reaching trajectory. Solid black circle represents the hand position at the trigger time. **E**) Hand trigger voltage (y-axis) over time (x-axis) for the trial shown in (D). The trigger time was the defined as the first time point the hand trigger voltage crossed a 3V threshold. **F**) Lateral hand position (y-axis) over time (x-axis) for the trial shown in (D). The vertical grey line in (E) and (F) indicates the measured trigger time.

584 **Estimated Decision Time**

585

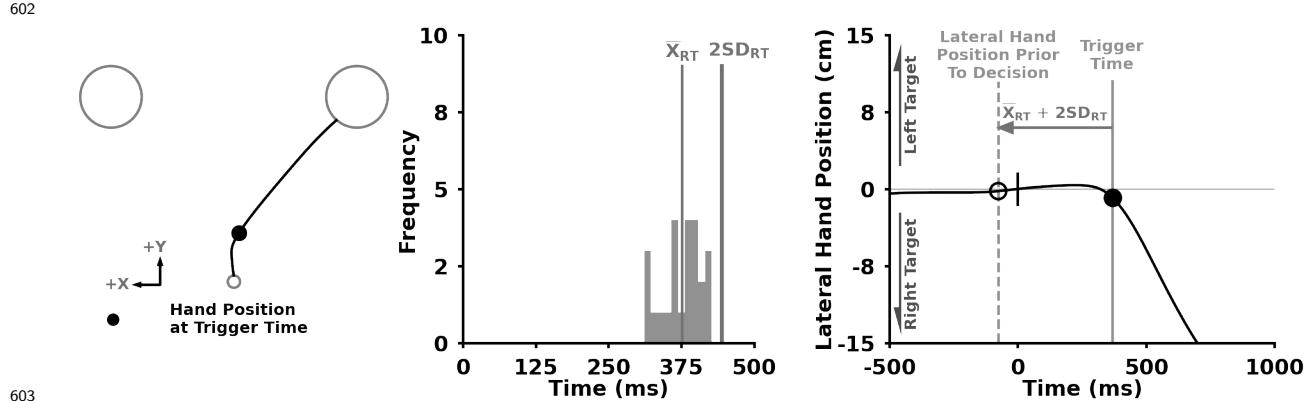


586

587 **Figure SA4: Neural and Mechanical delay calculation for example participant.** **A)** Example single
 588 reaction time trial behaviour. Flexor pollicis brevis activity (left y-axis; light grey) and hand trigger voltage (right
 589 y-axis; dark grey) over time (x-axis). Vertical solid grey line represents EMG onset time. Vertical dashed grey
 590 line represents trigger time. **B)** Single participant trigger time (y-axis) vs EMG onset time (x-axis) for all reaction
 591 time trials. **C)** Histogram of difference between trigger time and EMG onset time (x-axis) for example participant
 592 reaction time trials. Vertical dashed pink line represents average difference between trigger time and EMG onset
 593 time. Average difference between trigger time and EMG onset time is used to calculate estimated decision time
 594 for each trial in experimental conditions. **D)** Lateral hand position (y-axis) over time (x-axis) for example reaction
 595 time trial. We define the neural + mechanical delay as the sum of average difference between trigger time and
 596 EMG onset time and an estimated 20ms neural propagation delay from the M1 brain region to the flexor pollicis
 597 brevis. From the trigger time on a single trial, we subtract the neural + and mechanical delay to calculate the
 598 estimated decision time. The estimated decision time allows us to look at the influence of ongoing deliberation
 599 prior to final decision-related movements.

600 **Supplementary B**

601 **Conservative Estimate**

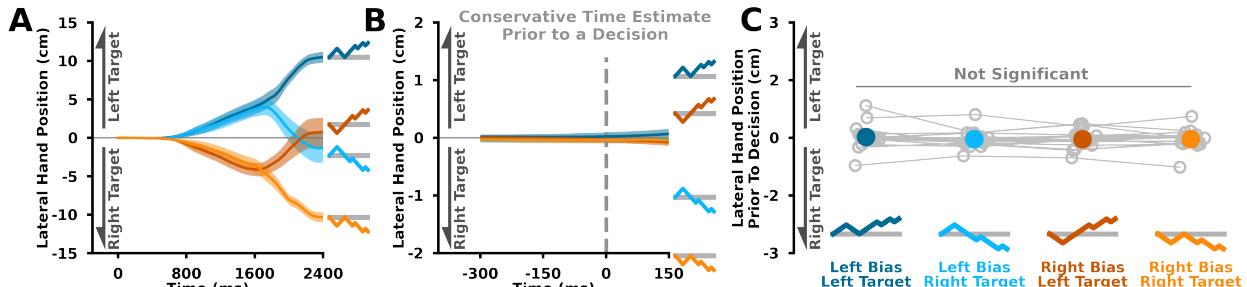


604 **Figure SB1: Conservative Time Estimate Prior to a Decision Example.** **A)** Example single trial trajectory
605 for a reaction time task. **B)** Histogram of trigger time for reaction time trials for a single participant. Vertical
606 lines represent mean reaction time and mean + 2 standard deviations of reaction time. The mean + 2 standard
607 deviations of reaction time are used to conservatively estimate a time point prior to any decision related behaviour.
608 **C)** Lateral hand position (y-axis) over time (x-axis) for example reaction time trial. 0 ms is when participants left
609 the start position in the reaction time trial. Vertical solid grey line represents the trigger time. Vertical dashed
610 grey line represents the conservative time estimate prior to a decision. The short black line at 0 ms represents
611 the beginning of the reaction time trial. We subtract the mean + 2 standard deviations of reaction time from
612 the trigger time to conservatively estimate a time point prior to any final decision-related behaviour. In this trial,
613 our conservative estimate is prior to the beginning of the reaction time trial.

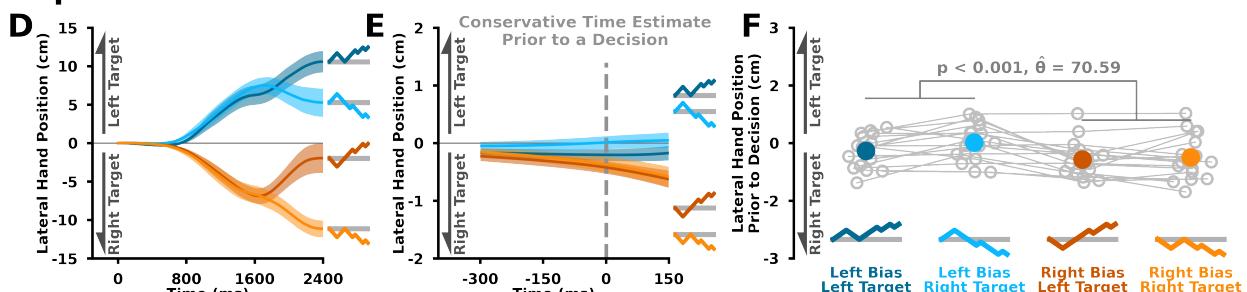
614 Lateral Hand Position Prior to Decision

615

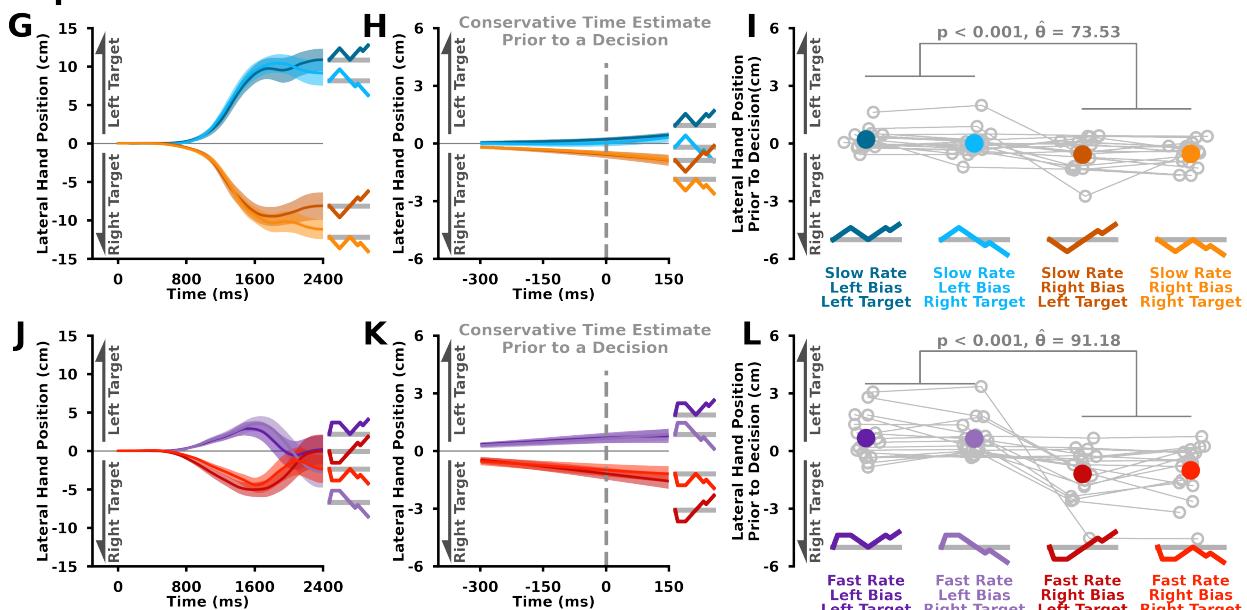
GROUP MOVEMENT BEHAVIOUR - Conservative
Experiment 1



Experiment 2



Experiment 3



616

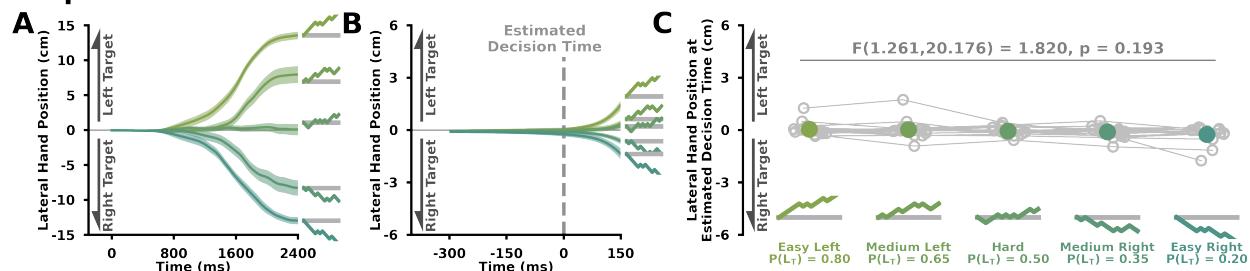
617 **Figure SB2: Group Movement Behaviour relative to Conservative Time Estimate Prior to a Decision.**
618 The figure is similar to **Figure 5** but for movement behaviour at the conservative time estimate prior to a decision.
619 The results for the conservative time estimate prior to a decision are consistent with the results found using the
620 estimated decision time (**Figure 5**).

621 Supplementary C

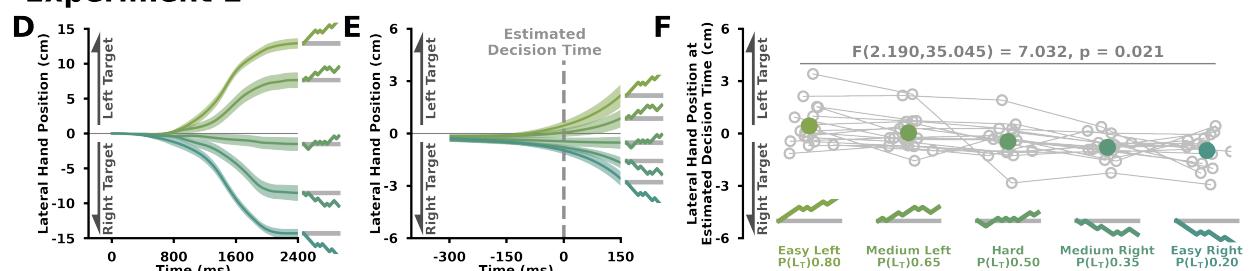
622 Group Behaviour - Pseudorandom Token Patterns

623 Group Movement Behaviour

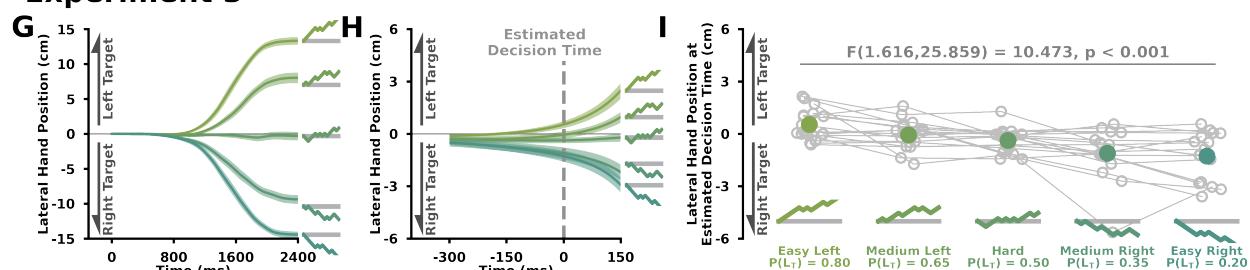
Experiment 1



Experiment 2



Experiment 3

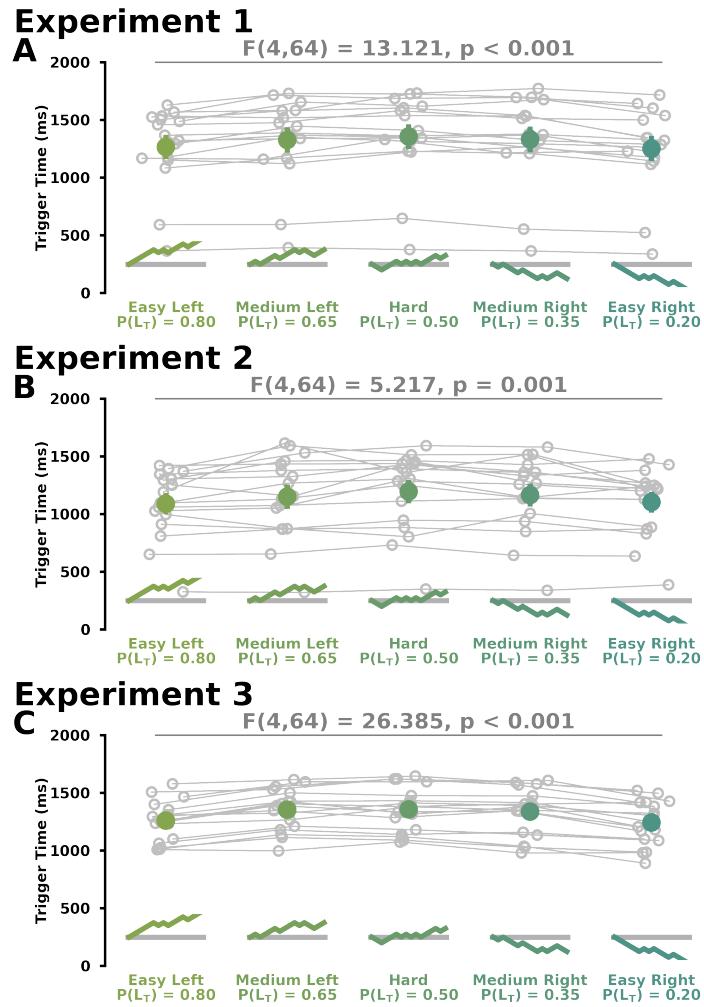


624

625 **Figure SC2: Group Movement Behaviour for Pseudorandom Token Patterns.** A, D, G) Lateral hand
 626 position (y-axis) over time (x-axis) for pseudorandom token patterns in A) Experiment 1, D) Experiment 2,
 627 and G) Experiment 3. B, E, H) Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision
 628 time for pseudorandom token patterns in B) Experiment 1, E) Experiment 2, and H) Experiment 3. C, F, I)
 629 Lateral hand position (y-axis) at estimated decision time across pseudorandom token patterns (x-axis) in C)
 630 Experiment 1, F) Experiment 2, and I) Experiment 3. Inset text shows the f-statistic for a main effect of the
 631 pseudorandom token pattern from an rmANOVA. These results are consistent with the findings shown in Figure
 632 4. Again we see an influence of the token patterns on the movement prior to a decision in Experiment 2 and
 633 Experiment 3 but not Experiment 1.

634 Decision Time

635

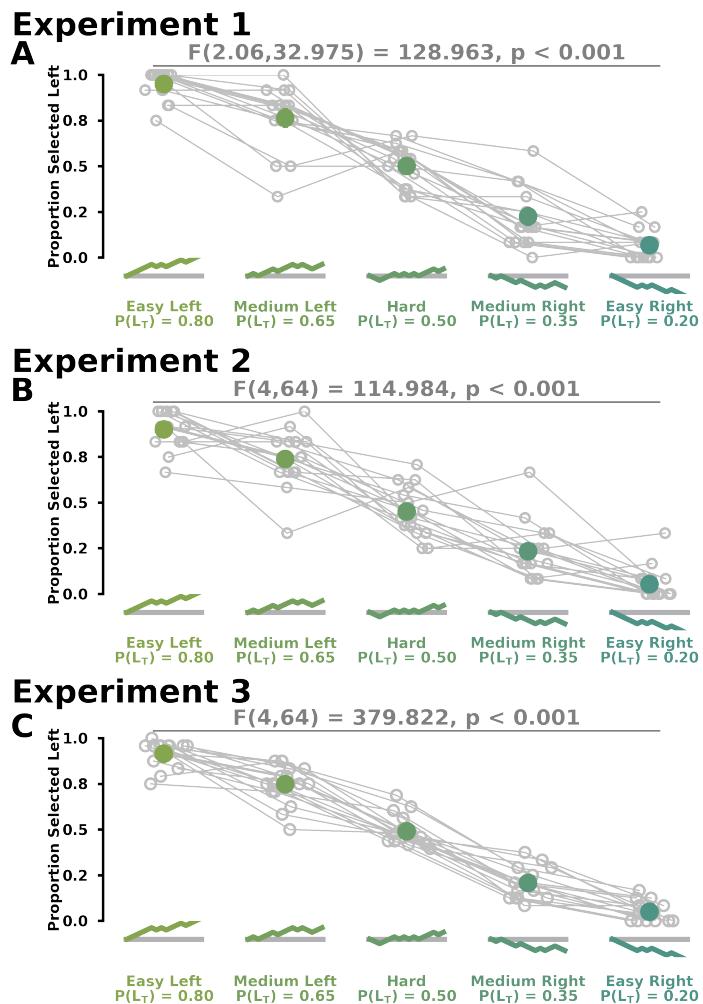


636

637 **Figure SC1: Group Estimated Decision Time Behaviour for Pseudorandom Token Patterns.** Estimated
638 decision time (y-axis) across pseudorandom token patterns (x-axis) in **A** Experiment 1, **B** Experiment 2, and
639 **C** Experiment 3. Inset text shows significant effects from an rmANOVA.

640 Group Selection Rate Behaviour

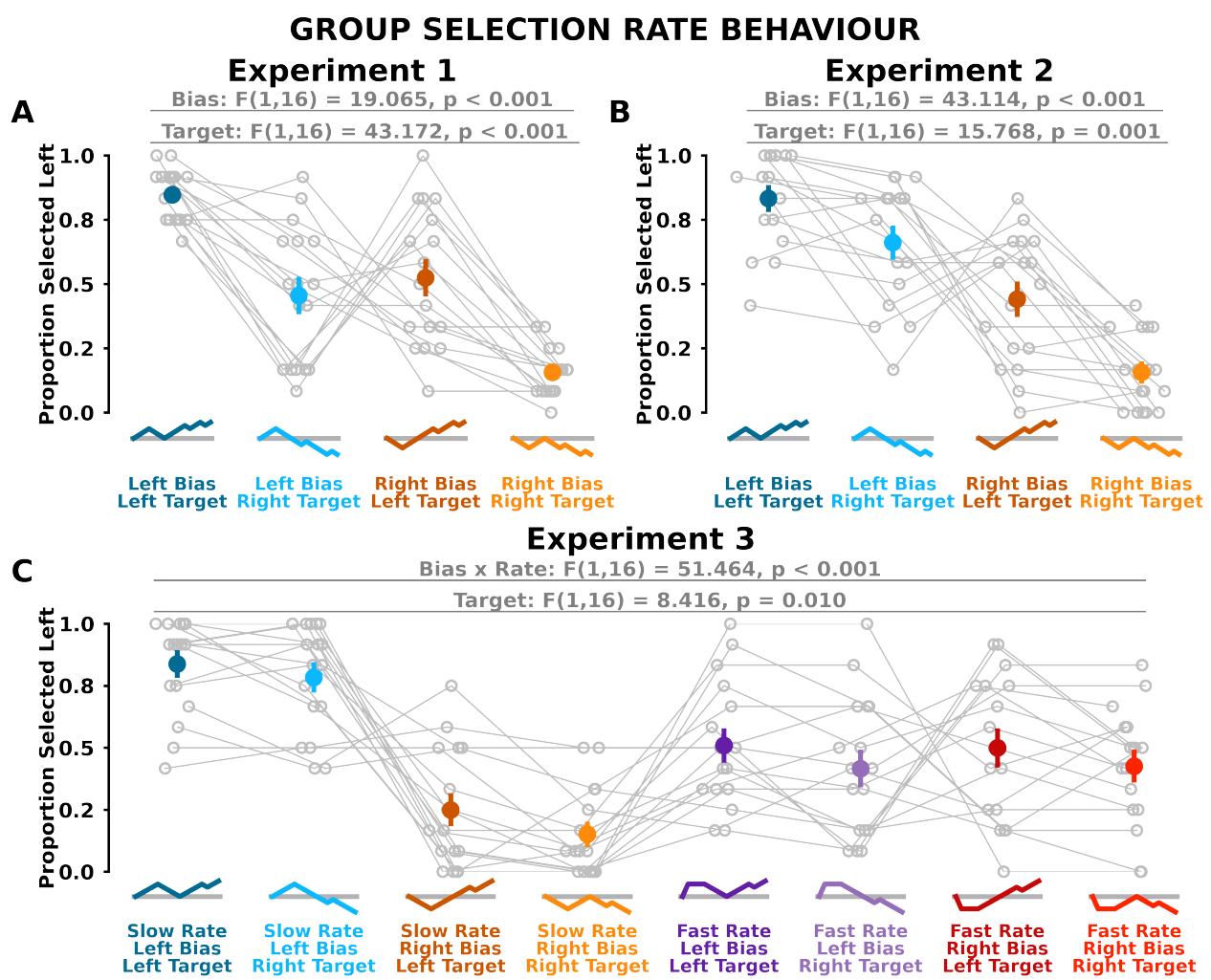
641



642

643 **Figure SC3: Group Selection Rate Behaviour for Pseudorandom Token Patterns.** Proportion of Left
644 Selections (y-axis) across pseudorandom token patterns (x-axis) in **A) Experiment 1**, **B) Experiment 2**, and
645 **C) Experiment 3**. Inset text shows significant effects from an rmANOVA.

646 **Supplementary D**
 647 **Selection Rate Behaviour**
 648 **Bias Pattern Selection Rates**

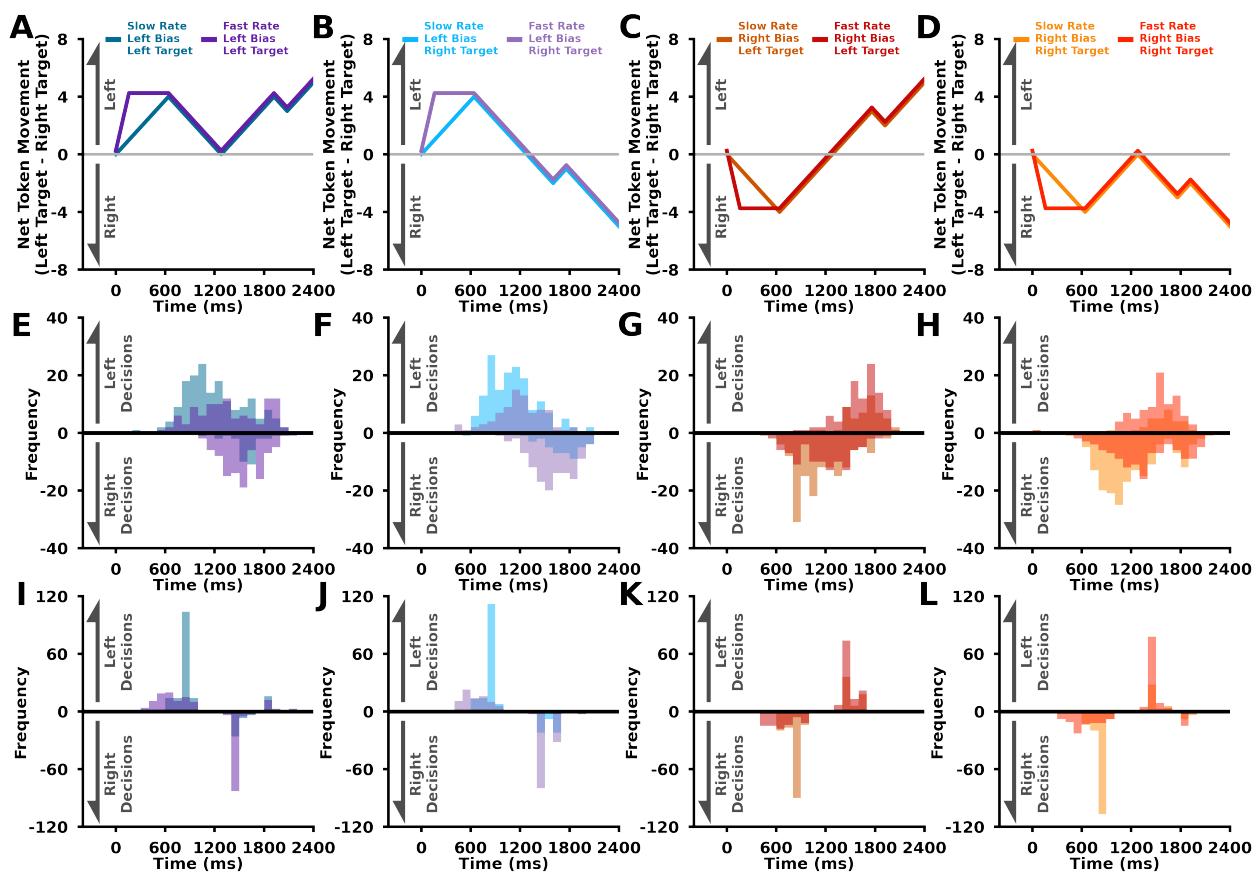


650

651 **Figure SD1: Selection Rates for Bias Token Patterns.** Proportion of left target selection trials (y-axis)
 652 across bias token patterns (x-axis) in **A) Experiment 1**, **B) Experiment 2**, and **C) Experiment 3**. Inset text
 653 shows significant effects from ANOVA analysis.

654 Bias Pattern Selection Rate Over Time

655



656

657 **Figure SD2: Selection Rate Distributions for Rate Bias Token Patterns in Experiment 3.** **A-D)** Net
 658 token movement (left target - right target; y-axis) over time (x-axis). Each plot shows the slow rate and fast rate
 659 token patterns for the same bias and final target. **E-H)** Histogram of group behaviour estimated decision time
 660 (x-axis) for left and right decisions. **I-L)** Trueblood (2001) model with novel evidence using best-fit parameters.
 661 Histogram of model predicted estimated decision time (x-axis) for left and right decisions. Histogram colors are
 662 representative of the token patterns in the plot directly above. Positive and negative histograms represent left
 663 decisions and right decisions respectively.

664 Supplementary E 665 Modelling Methods 666 Decision-Making and Movement Model

667 Here we compared five types of decision-making models which predicted target selections and
668 decision times given sensory information or evidence for a given target. We also compared two
669 types of evidence, current or novel, as input into the decision-making models.

670 Evidence

671 As inputs to the decision-making models, we used novel evidence or current evidence. Evidence
672 is based on the correct probability ($p(L|N_L, N_C, N_R)$) for the left target

$$p(L|N_L, N_R, N_C) = \frac{N_C!}{2^{N_C}} \sum_{k=0}^{\min(N_C, 7-N_R)} \frac{1}{k!(N_C - k)!} \quad (1)$$

673 given the number of tokens in the left target (N_L), number of tokens between the targets (N_R),
674 and the number of tokens in the right target (N_R ; Equation 1), and ! represents a factorial.¹⁴
675 Current evidence ($E_{curr}(t)$) is defined as the correct probability at the current time with added
676 sensory noise

$$E_{curr}(t) = p(t) + N(t) - .5 \quad (2)$$

677 where t is time, $N(t)$ is sensory noise modelled with a gaussian that has a zero mean and a
678 standard deviation (σ_{ev}). Novel evidence ($E_{novel}(t)$) is defined as the rate of change (d/dt) of
679 the correct probability with added sensory noise (Equation 3).

$$E_{novel}(t) = \frac{dp(t)}{dt} + N(t) \quad (3)$$

680 Decision Making Models

681 In our decision making models, we simulate a decision variable that interprets the evidence used
682 to make a decision. We define a decision as the time when the decision variable crosses a

683 threshold of +1.0 for a left target decision or -1.0 for a right target decision.

684 Drift-diffusion model.^{17,18} The rate of change of the decision variable (DV) is equal to a gain
685 (g) multiplied by the evidence.

$$\frac{dDV}{dt} = gE(t) \quad (4)$$

686 Drift diffusion model with leak^{19,20,14} The rate of change of the decision variable is similar to
687 equation 4, but with a leak (L) term that represents forgetting.

$$\frac{dDV}{dt} = gE(t) - LDV(t) \quad (5)$$

688 Trueblood model (2021).²⁴ The rate of change of the decision variable is a function of urgency
689 (k) and leak (L; eq. 6). It can be seen that the urgency term k is scaled by time (t) to influence
690 the weightings of incoming evidence (second term on right side of the equation) and previously
691 accumulated evidence (first term on right side of the equation).

$$\frac{dDV}{dt} = \left(\frac{k}{1+kt} - L \right) DV(t) + E(t)(1+kt) \quad (6)$$

692 Urgency-gating model.¹⁴ The decision variable is equal to the evidence scaled by a temporally
693 increasing urgency signal ($U(t)$); eq. 7). The urgency signal is a scalar (g) multiplied by the
694 current time (eq. 8).

$$DV(t) = U(t)E(t) \quad (7)$$

$$U(t) = gt \quad (8)$$

695 Urgency-gating model with a low-pass filter.^{14,15} The decision variable is equal to an estimate of
696 the evidence (E_{est}) scaled by a temporally increasing urgency signal ($U(t)$; eq. 9). The estimate
697 of evidence is a low-pass filtered version of the incoming evidence (eq.10). The urgency signal

698 is a scalar (g) multiplied by the current time (eq. 11).

$$DV(t) = U(t) * E_{est}(t) \quad (9)$$

$$\tau \frac{dE_{est}}{dt} = -E_{est}(t) + E(t) \quad (10)$$

$$U(t) = gt \quad (11)$$

699 We simulated each trial until either the decision variable crossed a decision threshold or
700 the trial deadline (2400 ms). Evidence was input into the decision making models with a 200ms
701 delay. We used a time step of 1 ms for all decision-making simulations.

702 Movement Model

703 Here we use a linear quadratic gaussian optimal feedback controller,^{25,26,27,28,29,30} which used
704 the decision variable from the Trueblood model to weight potential goals. The dynamics of the
705 hand are

$$m\ddot{p}(t) = -G\dot{p}(t) + F(T) \quad (12)$$

$$\tau\dot{F}(t) = u(t) - F(t) \quad (13)$$

706 where m is mass (1 kg), p(t) is the position of the hand, and G is the viscous constant
707 ($0.1 N \cdot \text{kg}^{-1} \cdot \text{m}^{-2}$). u(t) is a control signal (e.g., muscle activity). F(t) represents internal forces
708 (e.g., muscle force) that move the hand. τ is a low-pass filter time constant (40 ms) that
709 approximates the rate of internal forces given some control signal.^{70,28} Single and double dots
710 refer to single and double differentiation.

711 We transformed the decision variable into a weighting (α , (eq. 12)) for each option using
712 a logistic function

$$\begin{aligned}\alpha_L &= \frac{1}{1 + e^{-\lambda DV(t)}} \\ \alpha_R &= \frac{1}{1 + e^{\lambda DV(t)}}\end{aligned}\tag{14}$$

713 where λ is the steepness parameter and t is the current time step.

714 We also define the location of the reaching target as (p_G) where alpha is the weighting for
 715 each target from eq. 12. $p_{x,L}$ and $p_{y,L}$ correspond to the forward and lateral position of the left
 716 target. $p_{x,R}$ and $p_{y,R}$ correspond to the forward and lateral position of the right target.

$$p_{x,GOAL} = \alpha_L p_{x,L} + \alpha_R p_{x,R}\tag{15}$$

$$p_{y,GOAL} = \alpha_L p_{y,L} + \alpha_R p_{y,R}\tag{16}$$

717 We combine the states into a state vector (x) in eq. 17.

$$\mathbf{x}^T = [p_x \ p_y \ \dot{p}_x \ \dot{p}_y \ F_x \ F_y \ p_{x,GOAL} \ p_{y,GOAL}]\tag{17}$$

718 The dynamics of the system is then discretized with added state noise in eq. 18. The
 719 covariance matrix of the state noise is a matrix with $[0,0,0,0,1e-3,1e-3]$ on the diagonals and
 720 zeros elsewhere.

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \boldsymbol{\xi}_k\tag{18}$$

721 We define a standard quadratic cost function with a (\mathbf{Q}_N) terminal cost, running state
 722 cost (\mathbf{Q}), and control costs (\mathbf{R}). Note that \mathbf{Q} was constant for all time steps. N is the total
 723 number of time steps in the trial (240).

$$J = \mathbf{x}_N^T \mathbf{Q}_N \mathbf{x}_N + \sum_{k=0}^{N-1} (\mathbf{u}_k^T \mathbf{R} \mathbf{u}_k + \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k)\tag{19}$$

724 We define \mathbf{Q} and \mathbf{Q}_N such that

$$\mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k = Q_1(p_{x,k} - p_{x,GOAL,k})^2 + Q_2(p_{y,k} - p_{y,GOAL,k})^2 + Q_3(\dot{p}_{x,k})^2 + Q_4(\dot{p}_{y,k})^2 + Q_5(F_{x,k})^2 + Q_6(F_{y,k})^2 \quad (20)$$

$$\mathbf{x}_N^T \mathbf{Q} \mathbf{x}_N = Q_7(p_{x,N} - p_{x,GOAL,N})^2 + Q_8(p_{y,N} - p_{y,GOAL,N})^2 + Q_9(\dot{p}_{x,N})^2 + Q_{10}(\dot{p}_{y,N})^2 + Q_{11}(F_{x,N})^2 + Q_{12}(F_{y,N})^2 \quad (21)$$

725 The sensory feedback signal (\mathbf{x}) is equal to the current state with added sensory noise (η ;
 726 eq. 20).

$$\mathbf{y}_k = \mathbf{x}_k + \boldsymbol{\eta}_k \quad (22)$$

727 The covariance matrix for the sensory noise is a matrix with [1e-3,1e-3,1e-3,1e-3,1e-3,1e-3]
 728 on the diagonals and zeros elsewhere.

729 We used a Kalman filter (\mathbf{K}) to estimate the current state (eq. 23).^{27,28} We used the
 730 standard calculation of the Kalman filter.^{25,26,27,28,29,30} Note we did not consider signal dependent
 731 noise, which would not have a large influence on our results given the very large target sizes.

732 Here, $\hat{\mathbf{x}}_{k+1}^P$ is the prior belief of the next state, based on $\hat{\mathbf{x}}_k$ and the control signal u_k . The
 733 state estimate ($\hat{\mathbf{x}}_{k+1}$) is dependent on the prior $\hat{\mathbf{x}}_{k+1}^P$, the kalman filter (\mathbf{K}), and the sensory
 734 feedback (\mathbf{y}_{k+1}).

$$\hat{\mathbf{x}}_k^P = \mathbf{A} \hat{\mathbf{x}}_k + \mathbf{B} u_k \quad (23)$$

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k^P + \mathbf{K}_{k+1}(\mathbf{y}_{k+1} - \hat{\mathbf{x}}_k^P) \quad (24)$$

735 We solved for an optimal feedback policy (\mathbf{L}) as a function of the cost function and
 736 given dynamics^{25,26,27,28,29,30} using the Riccati equations. We use the optimal feedback policy to
 737 calculate the current optimal control signal. On each timestep, the optimal feedback controller

738 generates an optimal control signal (\mathbf{u}_k) that feeds into the dynamics (eq. 18) as

$$\mathbf{u}_k^* = -L_k(\mathbf{x}_k) \quad (25)$$

739 Each model simulation runs until the point mass enters one of the two targets (see Experi-
740 ment 2 Methods) or runs out of time (2400 ms). We simulated movements with a time step of
741 10 ms.

742 Decision-Making Model Fitting Procedure

743 In total we fit and tested ten models (five decision-making models x two types of evidence).
744 We used the same fitting procedure for each model. Model fitting was performed using the
745 powell algorithm in the Minimize function from the Scipy Python library. We fit each experiment
746 separately. For each experiment, we only fit the model to the behaviour during the bias token
747 patterns.

748 For each model, we simulated 500 trials for each bias token pattern. We then calculated
749 the mean decision time and selection rate for each bias token pattern. The loss function was
750 defined using the decision time and selection rate. For the decision time, we calculated the
751 difference between model mean decision times and data mean decision times, then normalized
752 by 2400 ms. We then took the absolute value of this normalized error. For the selection rate, we
753 calculated the difference between model mean selection rate and data mean selection rate, then
754 normalized by 100%. We then took the absolute value of this normalized error. To calculate
755 the final loss, we summed across token patterns (Y) for both decision times (DT) and selection
756 rates (SR). When fitting Experiment 3, we also considered the average difference of decision
757 times between the slow and fast rate token patterns.

$$Loss = \sum_{i=1}^Y \left| \frac{DT_i^{model} - DT_i^{Data}}{2400} \right| + \left| \frac{SR_i^{model} - SR_i^{Data}}{100} \right| \quad (26)$$

758 For the fitting procedure we first began with a warm-start procedure.^{67,71} First, we fit the
759 model 1,000 times using random initial parameter guesses. From these fits we then selected the

760 model parameters that resulted in the lowest loss. The lowest loss parameters were then used
761 as an initial guess for a bootstrapping procedure (10,000 iterations) to find the 95% confidence
762 interval of each parameter given the data. In each bootstrap iteration, we resampled with
763 replacement the decision time and selection rate from the data. The mean decision times and
764 selection rates of the resampled data were then used to determine model loss for each bootstrap.

765 Movement Model Fitting Procedure

766 For the movement model, we fit the terminal state costs parameters (Q_n), running state cost pa-
767 rameters (Q), running energetic costs (R), and steepness parameter (λ) of the logistic function.
768 We fit Experiment 2 and 3 simultaneously.

769 We first simulated decision variables using the Trueblood Model with novel evidence. We
770 used the median model parameters from the bootstrapping procedure for each experiment.
771 Model fitting was performed using the Powell algorithm in the Minimize function from the Scipy
772 Python library. We simulated 500 trials for each bias token pattern. We calculated the mean
773 trajectory for each token pattern from the simulated trials. The loss function was defined as the
774 squared error between the group mean trajectory and the simulated mean trajectory. We used
775 the model parameters that resulted in the lowest loss.

776 Haith and Wong

777 To simulate the Wong and Haith (2017) study, we used our decision-making and movement
778 model.³ We selected parameters that qualitatively resulted in proportions of intermediate move-
779 ments and trajectories that matched the experimental behaviour. Importantly, we defined the
780 urgency parameter (k ; see eq. 6) as a function of the current task condition (eq. 23). As sug-
781 gested in Carland 2019, we used an urgency signal (k) that was a function of reward, energetic
782 cost, and time.³¹

$$k = \frac{(m_r * \text{reward}) - (m_c * \text{relative cost})}{m_T * \text{time}} \quad (27)$$

$$\text{relative cost} = \frac{c}{c \sin(\frac{\theta}{2}) + c \cos(\frac{\theta}{2})} \quad (28)$$

783 where m_r is the weighting on reward (8), reward was the value of success (1), m_c was the
784 weighting of a direct reach relative to a intermediate reach (6), m_T is the weighting on relative
785 time (0.002), and time is the time participants had to reach a target. Here we considered the
786 relative energetic costs of reaching a shorter distance directly from the start position to a target
787 (e.g., the hypotenuse of a right angle triangle), compared to travelling an overall further distance
788 by first reaching between the targets (e.g., adjacent side of a triangle) and then to one of the
789 targets (e.g., along the adjacent and then opposite side of a triangle). Specifically, we calculated
790 the ratio between the hypotenuse ($c = 20$) and the distance of travelling along the adjacent
791 and opposite sides of the corresponding right triangle, given the angular distance of the targets
792 about the start position (θ : 15, 30, 45, 60). Similarly, as a proxy for time, we approximated the
793 time participants had to reach a target (slow: 1000ms, fast: 500ms) given the experimentally
794 imposed slow and fast hand movement criteria.

795 Goal Averaged Single Flexible Plan versus Averaged Parallel 796 Motor Plans

797 Here we define the discrete state dynamics (eq. 29) and the cost function (eq. 30) as the same
798 as above in the modelling methods.

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \boldsymbol{\xi}_k \quad (29)$$

$$J = \mathbf{x}_N^T \mathbf{Q}_N \mathbf{x}_N + \sum_{k=0}^{N-1} (\mathbf{u}_k^T \mathbf{R} \mathbf{u}_k + \mathbf{x}_k^T \mathbf{Q} \mathbf{x}_k) \quad (30)$$

799 We solve for the optimal feedback control policy (\mathbf{L}_k) using the riccati equation. The
800 optimal control signal (\mathbf{u}_k^*) is defined as

$$\mathbf{u}_k^* = -\mathbf{L}_k \mathbf{x}_k \quad (31)$$

801 where \mathbf{x}_k is the current state. Given the assumptions of our cost function in eq. 19-21, we can
802 consider the optimal feedback control signal as equal to

$$\mathbf{u}_k^* = -\mathbf{L}_k (\mathbf{x}_k - \mathbf{x}_{Goal}) \quad (32)$$

803 To match our experimental design, we consider the goal to be a weighted average of the
804 two potential targets given the current decision variable (see eq. 15, 16). We rewrite eq. 32 as

$$\mathbf{u}_k^* = -\mathbf{L}_k (\mathbf{x}_k - (\alpha_L \mathbf{x}_{LeftGoal} + \alpha_R \mathbf{x}_{RightGoal})) \quad (33)$$

805 This can be thought as a single flexible control policy to a goal averaged target.

806 The weighting terms are calculated from a logistic function (eq. 14) with bounds 0 and 1,
807 and thus $\alpha_L + \alpha_R = 1$. We can then expand eq. 33 as

$$\mathbf{u}_k^* = -\mathbf{L}_k ((\alpha_L + \alpha_R) \mathbf{x}_k - (\alpha_L \mathbf{x}_{LeftGoal} + \alpha_R \mathbf{x}_{RightGoal})) \quad (34)$$

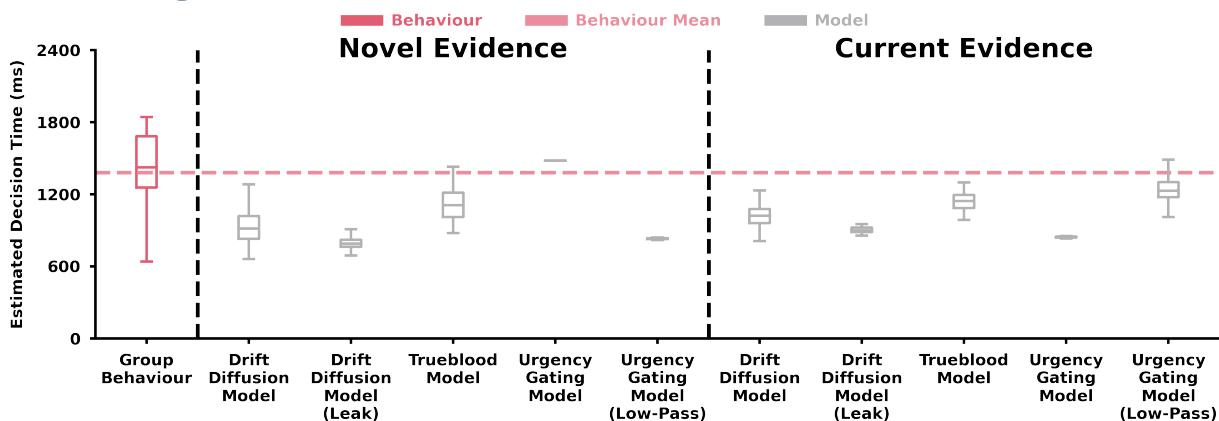
808 We further rearrange eq 34 as

$$\mathbf{u}_k^* = -\mathbf{L}_k(\alpha_L(\mathbf{x}_k - \mathbf{x}_{LeftGoal}) + \alpha_R(\mathbf{x}_k - \mathbf{x}_{RightGoal})) \quad (35)$$

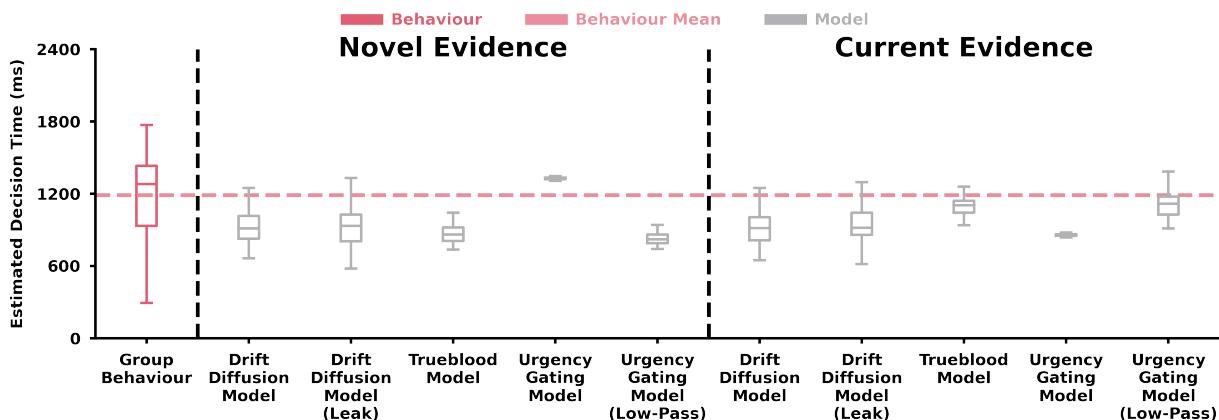
$$\mathbf{u}_k^* = -\alpha_L \mathbf{L}_k(\mathbf{x}_k - \mathbf{x}_{LeftGoal}) + -\alpha_R \mathbf{L}_k(\mathbf{x}_k - \mathbf{x}_{RightGoal}) \quad (36)$$

809 It can now be seen that \mathbf{u}_k^* is the weighted sum of two optimal feedback control policies
810 for each potential goal. In other words, this can be considered as the average of parallel flexible
811 control policies. It is important to note that this holds given the assumption that the dynamics
812 and costs are the same between the possible targets. Given the assumptions above, parallel
813 averaged flexible control policies and a single flexible control policy to an averaged goal are not
814 dissociable.

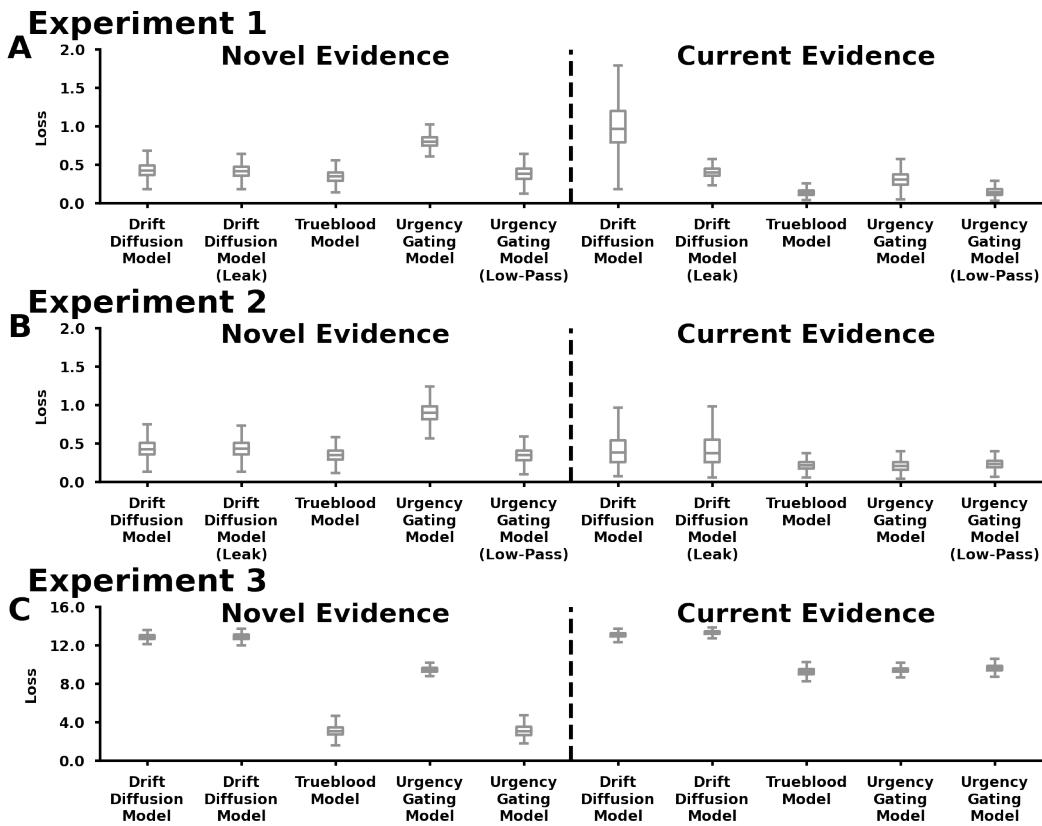
815 Modelling Outcomes



816 **Figure SE1: Experiment 1 Best-Fit Parameter Model Simulation. Experiment 2** Estimated Decision
817 Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision
818 times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for
819 bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour.
820 Box and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory
821 evidence or current sensory evidence.



822 **Figure SE2: Experiment 2 Best-Fit Parameter Model Simulation. Experiment 2** Estimated Decision
823 Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision
824 times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for
825 bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour.
826 Box and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory
827 evidence or current sensory evidence.



828 **Figure SE3: Model Loss.** Bootstrapped loss values (y-axis) across decision making models (x-axis) in **A**)
829 **Experiment 1**, **B**) **Experiment 2**, and **C**) **Experiment 3**. Inset labels represent models simulated with novel
830 sensory evidence or current sensory evidence.

	Sensory Evidence	Parameters		
Drift Diffusion Model	Novel	Gain		Noise (σ)
		2.91 [2.82, 3.11]		2.28 [1.47, 4.95]
Drift Diffusion Model With Leak	Novel	Gain	Leak	Noise (σ)
		4.08 [4.01, 4.16]	1.58 [1.48, 1.72]	0.76 [0.31, 1.97]
Trueblood Model	Novel	Urgency	Leak	Noise (σ)
		1.79 [1.34, 2.53]	0.08 [0.00, 0.35]	4.83 [3.04, 6.29]
Urgency-Gating Model	Novel	Urgency		Noise (σ)
		0.01 [0.01, 0.01]		8.51 [3.44, 15.56]
Urgency-Gating Model with Low-Pass Filter	Novel	Urgency	Tau	Noise (σ)
		17.61 [17.04, 17.84]	4.24 [4.17, 4.35]	0.42 [0.12, 1.70]
Drift Diffusion Model	Current	Gain		Noise (σ)
		6.19 [5.56, 6.58]		2.24 [0.23, 4.10]
Drift Diffusion Model With Leak	Current	Gain	Leak	Noise (σ)
		16.76 [15.96, 17.72]	4.56 [4.37, 4.89]	0.94 [0.81, 1.14]
Trueblood Model	Current	Urgency	Leak	Noise (σ)
		16.10 [14.33, 18.33]	9.82 [8.82, 11.75]	2.60 [2.46, 2.89]
Urgency-Gating Model	Current	Urgency		Noise (σ)
		2.50 [2.20, 2.58]		0.06 [0.06, 0.08]
Urgency-Gating Model with Low-Pass Filter	Current	Urgency	Tau	Noise (σ)
		1.42 [1.26, 1.72]	0.12 [0.11, 0.14]	3.69 [3.41, 4.05]

831 **Table SE1: Experiment 1: Model Parameters.**

	Sensory Evidence	Parameters		
Drift Diffusion Model	Novel	Gain		Noise (σ)
		2.83 [2.67, 3.22]		5.93 [2.32, 7.78]
Drift Diffusion Model With Leak	Novel	Gain	Leak	Noise (σ)
		3.13 [2.94, 3.60]	0.46 [0.12, 1.12]	5.44 [2.43, 7.19]
Trueblood Model	Novel	Urgency	Leak	Noise (σ)
		2.64 [2.11, 3.13]	0.14 [0.01, 0.46]	3.49 [1.60, 5.13]
Urgency-Gating Model	Novel	Urgency		Noise (σ)
		0.01 [0.01, 0.01]		10.19 [5.01, 16.79]
Urgency-Gating Model with Low-Pass Filter	Novel	Urgency	Tau	Noise (σ)
		22.45 [19.58, 25.09]	5.65 [5.21, 6.45]	2.75 [0.63, 4.53]
Drift Diffusion Model	Current	Gain		Noise (σ)
		5.01 [4.70, 5.86]		5.07 [3.66, 5.76]
Drift Diffusion Model With Leak	Current	Gain	Leak	Noise (σ)
		5.75 [5.38, 6.87]	0.60 [0.33, 1.58]	4.89 [3.85, 5.53]
Trueblood Model	Current	Urgency	Leak	Noise (σ)
		13.14 [11.24, 15.78]	9.35 [7.32, 11.88]	3.92 [3.46, 4.63]
Urgency-Gating Model	Current	Urgency		Noise (σ)
		1.98 [1.88, 2.06]		0.11 [0.11, 0.11]
Urgency-Gating Model with Low-Pass Filter	Current	Urgency	Tau	Noise (σ)
		9.56 [7.17, 13.64]	2.16 [1.81, 2.67]	6.39 [4.98, 7.97]

832 **Table SE2: Experiment 2: Model Parameters.**

		Sensory Evidence	Parameters (median [95% CI])	
Drift Diffusion Model	Novel	Gain		Noise (σ)
		19.47 [15.38, 25.15]		2.74 [1.70, 5.09]
Drift Diffusion Model With Leak	Novel	Gain	Leak	Noise (σ)
		19.21 [15.25, 24.48]	5.83 [1.16, 11.98]	3.62 [2.40, 6.01]
Trueblood Model	Novel	Urgency	Leak	Noise (σ)
		2.80 [2.24, 3.09]	0.92 [0.70, 1.16]	2.63 [2.21, 3.52]
Urgency-Gating Model	Novel	Urgency		Noise (σ)
		0.01 [0.00, 0.01]		5.22 [0.82, 12.71]
Urgency-Gating Model with Low-Pass Filter	Novel	Urgency	Tau	Noise (σ)
		4.94 [4.21, 5.68]	1.39 [1.13, 1.74]	2.94 [2.13, 4.28]
Drift Diffusion Model	Current	Gain		Noise (σ)
		2.18 [1.59, 4.05]		21.35 [16.49, 26.45]
Drift Diffusion Model With Leak	Current	Gain	Leak	Noise (σ)
		15.28 [13.83, 17.66]	186.87 [181.14, 194.57]	13.24 [11.32, 15.62]
Trueblood Model	Current	Urgency	Leak	Noise (σ)
		2.15 [1.57, 3.03]	12.97 [8.78, 21.28]	20.73 [16.17, 25.44]
Urgency-Gating Model	Current	Urgency		Noise (σ)
		0.92 [0.80, 1.00]		0.23 [0.20, 0.28]
Urgency-Gating Model with Low-Pass Filter	Current	Urgency	Tau	Noise (σ)
		0.15 [0.11, 0.20]	0.01 [0.01, 0.03]	11.54 [8.03, 15.80]

833 **Table SE3: Experiment 3: Model Parameters.**

Name	Value
Q_1	3.08e-05
Q_2	3.32e-01
Q_3	7.40e-05
Q_4	1.62
Q_5	8.57e-03
Q_6	8.76e-03
Q_7	5.55e+02
Q_8	1.48e+03
Q_9	4.09
Q_{10}	1.56e+02
Q_{11}	1.47e+02
Q_{12}	3.21e+01
R	1.87e-07
λ	2.58

834 **Table SE4: Movement Model Model Parameters.**