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ABSTRACT1

From navigating a crowded hallway to skiing down a treacherous hill, humans are constantly2

making decisions while moving. Insightful past work has provided a glimpse of decision delib-3

eration at the moment of movement onset. Yet it is unknown whether ongoing deliberation4

can be expressed during movement, following movement onset and prior to any decision. Here5

we tested the idea that an ongoing deliberation continually influences motor processes—prior6

to a decision—directing online movements. Over three experiments, we manipulated evidence7

to influence deliberation during movement. The deliberation process was manipulated by hav-8

ing participants observe evidence in the form of tokens that moved into a left or right target.9

Supporting our hypothesis we found that lateral hand movements reflected deliberation, prior to10

a decision. We also found that a deliberation urgency signal, which more heavily weighs later11

evidence, was fundamental to predicting decisions and explains past movement behaviour in a12

new light. Our paradigm promotes the expression of ongoing deliberation through movement,13

providing a powerful new window into understanding the interplay between decision and action.14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608669doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Movements Reflect Deliberation

INTRODUCTION15

When presented with the option of a sweet candy or chocolate, our hand may move back and16

forth over the two tempting options before we finally make a decision. In this example our17

online hand movement seems to provide a readout of our ongoing deliberation before a decision.18

Over the past two decades both behavioural1,2,3,4 and neural5,6 findings support the idea that19

deliberation and motor planning are intertwined. Yet it has not been shown that the ongoing20

deliberation—prior to a decision—is expressed throughout online movement execution.21

Past work has helped to illuminate the interplay between motor planning and decision-22

making. During the go-before-you-know paradigm, participants are required to initiate a reaching23

movement towards multiple potentially correct targets7,8,1,2,3,4 At movement onset, participants24

launched their reaches between or directly at the potentially correct targets. These initial move-25

ments reflect priors of the deliberation process, such as representations of the probability of each26

potential target and movement speed constraints, known during motor planning before move-27

ment onset. The correct target is then indicated during the reach via an abrupt and discrete28

change of evidence (e.g. target colour, phonological input, etc.), where participants would of-29

ten immediately select and rapidly redirect their movement towards one of the targets. In a30

different paradigm, humans have similarly been shown to make a "change-of-mind" by rapidly31

redirecting their movement towards one target9 following an initial reach to the other target.32

These rapid movement redirections were based on evidence provided prior to reaching, demon-33

strate delayed processing times, and have been interpreted to reflect a second decision. Rapid34

movement redirections would reflect a final decision, but would obscure a short deliberation and35

its potential influence on movement. These studies have collectively provided important insights36

into how priors of deliberation influence motor planning and the timing of midreach decisions,37

but have not shown that a continuous and ongoing deliberation process directly influences the38

online movement.39

Perceptual decision-making studies manipulate uncertain and continuous evidence, such as40

the movement of dots10,11,12,13 or tokens.14,15,16 towards or into potential targets over time, to41
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Movements Reflect Deliberation

influence a more prolonged deliberation and subsequent decision. A plethora of work suggests42

that during deliberation, humans and animals accumulate (integrate) evidence over time to make43

a decision.17,18,19,20,11,21,22 Another competing theory is that an urgency signal increasing over44

time is multiplied by evidence to cause a decision.14,15,16,22,23 A feature of perceptual decision-45

making tasks is that there is no movement during the deliberation period, a decision is made,46

and subsequently there is a movement to indicate choice. Thus, even though there is a prolonged47

deliberation, it does not have the opportunity to be expressed with movement.48

Previous studies have collectively provided important insights, but not on how a continuous49

and ongoing deliberation process directly influences online movement. The goal of this work was50

to elucidate whether the deliberation process influences online movements, prior to a decision. To51

investigate we developed a novel paradigm that allows an expression of the ongoing deliberation52

via movement, prior to a decision. Across three experiments, we permitted movement while53

concurrently providing uncertain and continuous evidence in the form of 15 tokens that jumped54

into a left or right target.14 In Experiment 1 we provided participants evidence during posture55

to test whether the ongoing deliberation can elicit movement onset and subsequently influence56

online movements, prior to a decision. In Experiment 2 we provided participants evidence after57

movement onset, when the motor system was already actively engaged, to determine whether58

the ongoing deliberation can influence the online movements prior to a decision. In Experiment59

3, we replicated the results from Experiment 2 while additionally testing the role of urgency60

on deliberation. For all experiments we predicted that lateral hand movements would reflect61

the deliberation process, following movement onset and prior to a decision. Collectively our62

findings show that the ongoing deliberation, which includes urgency, directly influences online63

movements.64

RESULTS65

Experimental Design66

In Experiment 1 (n = 17), Experiment 2 (n = 17), and Experiment 3 (n = 17), partic-67

ipants made reaching movements while deliberating between two potential targets. For each68
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experiment, there were 15 tokens that moved laterally into either a left or right target (Fig.69

1). Tokens moved in 160 ms intervals. Each trial was 2400 ms. Participants were instructed to70

select the target that would finish with the most tokens. They had to make their decision prior71

to the final token movement. Participants indicated their decision by simultaneously pressing72

a hand trigger in their non-dominant hand and moving their cursor into their selected target.73

The hand trigger was crucial in dissociating movements caused by deliberation or a decision.74

The tokens disappeared once participants pressed the hand trigger to prevent the participants75

from changing their decision with later evidence. Critically, participants were free to move their76

hand laterally during each trial, allowing us to measure whether deliberation—prior to a final77

decision—influenced movement.78

The goal of Experiment 1 was to determine if ongoing deliberation can elicit and sub-79

sequently influence movements, prior to a final decision, when evidence was initiated during80

posture. The targets were placed on the right and left side of the start position (Fig. 1A).81

The trial began after participants held their hand within a 2 cm wide start position for 40082

ms. Participants experienced 216 randomly interleaved trials consisting of pseudo-random token83

patterns and bias token patterns (See Methods, Supplementary A). The bias token patterns84

allowed us to probe how controlled patterns of evidence influenced deliberation and consequently85

movement. During the bias token patterns the first three tokens moved individually into the left86

or right target (i.e., left bias or right bias), the next three tokens moved individually into the87

opposite target, and the remaining tokens moved with an 80% probability into the left or right88

target (i.e., left target or right target; Fig. 2A-D).89

The goal of Experiment 2 was to determine if ongoing deliberation was reflected in90

movements, prior to a final decision, after movement onset when the motor system was already91

actively engaged. In this experiment, the targets were placed forward and either side relative92

to the start position (Fig. 1B). To actively engage the motor system, the trial began when93

participants moved forward out of the start position. Similar to others,3,4 participants were94

instructed to not stop moving forward after leaving the start position. Experiment 2 used the95
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Movements Reflect Deliberation

Figure. 1: Experimental Design. A,B) Participants grasped a robotic manipulandum (Kinarm) using their
dominant hand and a hand trigger in their non-dominant hand. A semi-silvered mirror projected images from an
LCD screen above. A cursor (white circle) represented their hand position. A) In Experiment 1, participants
began with the cursor within a start position (small black circle) between two targets (large black circles) that
were 20 cm to the left and right of the start position. After 400ms in the start position, the trial would begin
and fifteen tokens would appear (yellow circles) between the two targets. The tokens moved individually into
the left or right target over time. Participants were instructed to select the target which would finish with the
most tokens as soon as they were confident. They indicated their decision by simultaneously pressing the hand
trigger in their non-dominant hand and moving the cursor into the corresponding target. B) In Experiments 2
and Experiment 3, the targets were placed 30 cm forward of the start position as well as 20 cm to the left and
right. Tokens began moving once participants left the start position. Participants were also instructed not to
stop or move backwards. C) An example of the participant display while the tokens moved into the left or right
target over time (y-axis). D) Net token movement (left target - right target tokens, y-axis) over time (x-axis) of
an example token pattern. The dark grey box in (C) and the dark grey vertical line (D) correspond to the same
time point.

same token patterns as Experiment 1.96

The goal of Experiment 3 was to replicate the results found in Experiment 2 while97

also elucidating the roles of evidence accumulation or urgency on deliberation and consequent98

movement. Experiment 3 was the same as Experiment 2, except we used different bias token99

patterns. In Experiment 3, participants experienced 336 randomly interleaved trials consisting100

of pseudorandom token patterns, slow rate bias token patterns and fast rate bias token patterns.101
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Movements Reflect Deliberation

Figure. 2: Bias Token Patterns. A-L) Net Token Movement (left target - right target tokens, y-axis) over
time (x-axis) for sample bias token patterns. A-D) Bias token patterns in Experiment 1 and Experiment 2.
A-D) Bias token patterns: the first three tokens moved individually into the left or right ”bias” target, the next
three tokens moved individually into the opposite target, and then the remaining tokens moved with an 80%
probability into the left or right target. E-L) Rate bias token patterns in Experiment 3. E-H) Slow rate bias
token patterns: the first four tokens moved individually into the left or right ”bias” target, the next four tokens
moved individually into the opposite target, and then the remaining tokens moved with an 80% probability into
the left or right target. I-L) For the fast rate bias token patterns: the first four tokens moved together into
the left or right ”bias” target at 160 ms after the beginning of the trial. No other tokens moved until 800 ms
after the beginning of the trial. The slow rate and fast bias token patterns were identical past 800 ms after the
beginning of the trial. For each experiment, the bias token patterns were interleaved with psuedorandom token
patterns.

In the slow rate bias token patterns, the first four tokens moved individually into the left or right102

bias target, the next four tokens moved individually into the opposite target and the remaining103

tokens moved with an 80% probability into the left or right target (Fig 2E-H). The fast rate104

bias token patterns were identical to the slow rate bias token pattern except the first 4 tokens105

moved at once into the corresponding bias target (Fig. 2I-K). Critically, the slow rate and106

fast rate token patterns lead to unique decision times depending on how humans accumulate107

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608669doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Movements Reflect Deliberation

evidence and or rely on urgency during deliberation.108

Individual Movement Behaviour109

We were primarily interested in the lateral hand position at the estimated decision time. Lateral110

hand position at estimated decision time provided a measure of the influence of ongoing delib-111

eration on the movement. In other words, the lateral hand position at estimated decision time112

precludes movement that is a result of a final decision and subsequent action. Estimated decision113

time was calculated by subtracting a neural plus mechanical delay from the trigger time on each114

trial (see Methods;Fig. 3A,B). We examined lateral hand position at estimated decision time115

to compare between conditions (Fig. 3C).116

Figure. 3: Analysis Description. A) Hand path for a single example trial in Experiment 2. Solid circles
represent the hand position when the participant pressed the hand trigger (trigger time). Empty circle represents
the hand position at estimated decision time. Estimated decision time was calculated by subtracting a neural
and mechanical delay from the trigger time on a trial-by-trial basis. Neural + mechanical delay was estimated
for each participant using a reaction time task (see Supplementary A). B) Lateral hand movement (y-axis)
over time (x-axis). Solid grey line represents when the hand trigger was pressed. Dashed grey lane represents
estimated decision time. C) Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision time.
The lateral hand position at the estimated decision time allows us to look at the influence of deliberation on
movement, prior to a final decision.

Figure 4 presents results by representative individuals in each experiment. In Experiment117

1, this participant did not initiate lateral movements prior to their estimated decision time (Fig118

4A-D). In Experiment 2, the participant displayed lateral movements aligned with token bias119

direction prior to the estimated decision time (Fig. 4E-H), which reflects movement that120

occurred before their final decision. Moreover, their lateral hand position aligned with the token121

bias direction (Fig. 4H). In Experiment 3, the representative participant displayed lateral122

movements that aligned with the direction of the bias in both slow rate bias (Fig. 4I-L) and123

6
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Movements Reflect Deliberation

Figure. 4: Individual Movement Behaviour. A-H) Individual participant movement behaviour for left bias,
right target (light blue) and right bias, right target (light orange) token patterns in Experiment 1 (A-D) and
Experiment 2 (E-H). I-P) Individual participant movement behaviour in Experiment 3 for I-L) slow rate, left
bias, right target (light blue) and slow rate, right bias, right target (light orange) token patterns. M-P) Fast
rate, left bias, right target (light purple) and fast rate, right bias, right target (light red) token patterns. Solid
circles represent hand position at trigger time. Empty circles represent hand position at estimated decision time.
A,E,I,M) Individual participant reaching trajectories. B,F,J,N) Individual participant lateral hand positions
(y-axis) over time (x-axis). C,G,K,O) Individual participant lateral hand positions (y-axis) over time (x-axis)
time aligned to estimated decision time. Vertical grey dashed line at 0 ms represents estimated decision time.
D,H,L,P) Individual participant lateral hand positions at estimated decision time (y-axis) between bias token
patterns (x-axis). In Experiment 1, this participant did not display differences in lateral hand position at
estimated decision time between conditions. Participants in Experiment 2 and Experiment 3 show differences
in lateral hand positions at estimated decision time between left and right bias conditions.
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fast rate bias (Fig. 4M-P) token patterns. That is, the displayed participants in Experiments124

2 and 3 moved with the evidence prior to a final decision, suggesting that their movements were125

influenced by the ongoing deliberation.126

Group Movement Behaviour127

Figure 5 displays the average group movement behaviour for the three experiments. We pre-128

dicted that the lateral hand movements would be influenced by the ongoing deliberation, prior129

to a decision. For example, a participant that is considering the left target will move towards130

the left target, prior to their final decision. We show the average lateral hand trajectories over131

time for Experiment 1, 2, and 3 (Fig. 5A,D,G,J). However, it is important to examine lateral132

hand positions at the estimated time (Fig. 5B,E,H,K), which reflects movement caused by133

deliberation prior to a final decision.134

Hand movements are influenced by deliberation when the motor system is actively135

engaged.136

In Experiment 1, lateral hand position at the estimated decision time was not impacted by137

the token patterns (Fig. 5B). We did not find a significant main effect of bias [F(1,16) =138

3.681, p = 0.073], main effect of target [F(1,16) =1.016, p = 0.328], or an interaction between139

bias and target [F(1,16) = 0.067, p = 0.799] on lateral hand position at estimated decision140

time (Fig. 5C). The results in Experiment 1 do not support the idea that the deliberation141

process continuously interacts with the motor control processes to influence online movements,142

specifically when evidence is initially presented while in posture. In Experiment 2, we examined143

the influence of ongoing deliberation on the motor control system when the motor system was144

actively engaged. Here participants displayed lateral hand positions at estimated decision time145

that was aligned with the direction of the token bias (Fig. 5E). Specifically, we found a significant146

main effect of bias [F(1,16) = 11.533 p = 0.004] on lateral hand position at estimated decision147

time. We did not find an interaction between bias and target [F(1,16) = 0.300, p = 0.591] nor a148

main effect of target [F(1,16) = 0.255, p = 0.620]. When collapsing across target, as expected149

we found significantly different lateral hand positions at estimated decision time between left150
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Figure. 5: Group Movement Behaviour. A-F) Average participant movement behaviour for bias token
patterns in Experiment 1 (A-C) and Experiment 2 (D-F). G-L) Average participant movement behaviour
in Experiment 3 for G-I) slow rate bias token patterns and J-L) fast rate bias token patterns. Solid lines
represent group mean trajectories for each condition. Shaded regions represent ± 1 standard error. A,D,G,J)
Average participant lateral hand positions (y-axis) over time (x-axis). B,E,H,K) Average participant lateral
hand positions (y-ax is) over time (x-axis) time aligned to estimated decision time. Vertical grey dashed line
at 0 ms represents estimated decision time. C,F,I,L) Average participant lateral hand positions at estimated
decision time (y-axis) across bias token patterns (x-axis). In Experiment 1, there were no significant differences
in lateral hand positions at estimated decision time between bias token patterns. Participants in Experiment 2
and Experiment 3 were significantly more towards the left target in left bias token patterns compared to right
bias token patterns at the estimated decision time (p<0.001 for all comparisons). Taken together, these results
suggest that lateral hand movements reflect the ongoing deliberation during movement prior to a decision.

9
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bias and right bias token patterns (Fig. 5F; p < 0.001, θ̂ = 82.35). Moveover, our findings151

and interpretation were consistent when we very conservatively looked further back in time (See152

Supplementary B), along with pseudorandom token patterns (e.g., 20%, 35%, 50%, 75%, and153

80% left target probability; see Supplementary C). The findings in Experiment 2 support154

the hypothesis that the ongoing deliberation process influences online movements, prior to a155

decision, when the motor system is actively engaged.156

In Experiment 3 we replicated the movement behaviour findings of Experiment 2. We157

analyzed lateral hand position at estimated decision times separately for slow rate and fast rate158

token patterns, since they had different decision times (see Group Decision-Making Behaviour159

below). For the slow rate token patterns we found a significant main effect of bias [F(1,16) =160

14.663, p = 0.001] on lateral hand position at estimated decision time, but no main effect of161

target [F(1,16) = 0.0875, p = 0.771] or bias and target interaction [F(1,16) = 0.040, p = 0.844].162

For the fast rate token patterns we found a significant main effect of bias [F(1,16) = 9.114, p163

= 0.008] and a significant main effect of target [F(1,16) = 4.834, p = 0.043] on lateral hand164

position at estimated decision time, and not a bias and target interaction [F(1,16) = 1.297,165

p = 0.272]. We found significantly different lateral hand position at estimated decision time166

between left bias and right bias conditions for both slow rate bias token patterns (p < 0.001, θ̂167

= 79.41, Fig. 5I) and the fast rate bias token patterns (p < 0.001, θ̂ = 82.35, Fig. 5L). Again,168

differences in lateral hand position support the hypothesis that ongoing deliberation influences169

movement, prior to a decision, when the motor system is actively engaged.170

Taken together, our results from Experiments 1, 2, and 3 support the idea that the171

ongoing deliberation process influences hand movement—prior to a decision—when the motor172

system is actively engaged but not during posture.173

Group Decision-Making Behaviour174

Humans relied less on early evidence when making decisions.175

We were also interested in the processes that underscore the deliberation. Figure 6 shows the176

estimated decision times for each bias token pattern and experiment. In Experiment 1, we177

10
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found a significant main effect of bias [F(1,16) = 7.222, p = 0.016] on estimated decision time,178

but there were no significant differences in followup mean comparisons (p = 0.053, θ̂ = 61.76,179

Fig. 6A). We did not find a significant main effect of target [F(1,16) = 0.606, p = 0.447]180

or an interaction between bias and target [F(1,16) = 0.930, p = 0.349] on estimated decision181

time. In Experiment 2, we did not find a significant main effect of bias [F(1,16) =0.989,182

p = 0.335], significant main effect of target [F(1,16) < 0.001, p = 0.993], or an interaction183

between bias and target [F(1,16) = 0.154, p = 0.700] on estimated decision time (Fig. 6B).184

Interestingly, participants made faster decisions during Experiment 2 compared to Experiment185

1 (p < 0.003,186

hatθ = 67.76). One possibility for our result is that decisions are made faster when the motor187

system is actively engaged, supporting bidirectional interactions between decision and motor188

processes. In Experiment 3, we found a significant main effect of rate [F(1,16) = 27.18, p <189

0.01] on estimated decision time (Fig. 6C). Counterintuitively, we found that participants made190

earlier decisions in slow rate compared to fast rate token patterns (p < 0.001, θ̂ = 89.71, Fig.191

6C,7A). We did not find main effects of target [F(1,16) = 0.689, p = 0.419], main effect of192

bias [F(1,16) = 0.588, p = 0.454], nor any significant interactions (p > 0.105). The selection193

rates for each token pattern are shown in Supplementary D.194

Above we did not find a significant bias and target interaction on estimated decision time.195

This pattern is consistent with past work by Cisek (2009) that proposed that urgency is involved196

with deliberation. As a reminder, urgency represents less reliance on early evidence compared197

to later evidence when making a decision. Interestingly and counterintuitively, we found that198

participants made earlier decisions with a slow rate token pattern compared to the fast rate199

token pattern. This finding strongly align with the idea that decision making processes more200

heavily value information that is presented later in time (i.e., second, third and fourth tokens in201

the slow rate token pattern) compared to the same information presented earlier in time (i.e.,202

second, third and fourth tokens presented earlier in time during the fast rate token pattern).203

However, as shown below in Decision-making models, the presence of both urgency and204
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Movements Reflect Deliberation

Figure. 6: Group Decision Time Behaviour. Estimated decision time (ms; y-axis) in A) Experiment 1, B)
Experiment 2, and C) Experiment 3 across bias token patterns (x-axis). Open grey circles and connected grey
lines represent individual participants. Closed coloured circles (and error bars) represent mean (and standard
error of the mean) for each token pattern. Estimated decision time did not change between bias token patterns
in A) Experiment 1 (p > 0.05) and B) Experiment 2 (p > 0.05). C) Participants had earlier estimated
decision times in Experiment 3 for slow rate token patterns (blue and orange colours) compared to fast rate
token patterns (purple and red colours; p < 0.001), suggesting a greater temporal weighing of later evidence in
the decision-making process.

evidence integration best explain the reported estimated decision times.205

Computational Modelling206

Our central focus was to investigate the interaction between the decision-making and motor207

control processes. To this end, we used a computational framework that combines a decision-208

making model and an optimal feedback control model.209
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Decision-making models210

Before combining decision and motor models, we first sought to determine the decision-making211

model that would best explain estimated decision times and selection rate proportions. Evidence212

was based on the current correct probability for a target given the number of tokens within the213

left, right and center locations (eq. 1, see Methods). We tested five decision-making models214

(drift-diffusion model, drift diffusion model with leak, Trueblood (2021), urgency-gating model,215

urgency-gating model with a low-pass filter that used either novel evidence (eq. 3) or current216

evidence (eq. 2) to make a decision; see Supplementary E)14,24 Here we focus on Experiment217

3 (Fig. 7) since there was a significantly earlier estimated decision time in the slow rate token218

patterns compared to the fast rate token patterns (see Supplementary E for Experiment 1219

and 2 results).220

We found the Trueblood model with novel evidence and the urgency-gating model with221

a low-pass filter with novel evidence were the only two models which could capture the earlier222

decision times in the slow rate token patterns relative to the slow rate patterns (Fig. 7A). The223

other best-fit models found decision times that were similar between the two different sets of224

rate token patterns.225

To give insight into the mechanisms of the models, we show representative model behaviour226

in Figure 7C-D. In Fig. 7B, we show examples of fast rate right bias left target and slow rate227

right bias left target token patterns. These two token patterns were similar except for the different228

rates of token movement for the initial bias. For both the Trueblood model with novel evidence229

(Fig. 7C) and the urgency-gating model with a low-pass filter on novel evidence (Fig. 7D), we230

see similar decision variable trends. Both the Trueblood model and the urgency-gating model231

with a low-pass filter utilize urgency and integrate evidence leading to similar behaviour. For232

the fast rate token pattern there is some initial integration of evidence, either through evidence233

accumulation or the low-pass filter. However, urgency is low early when the first four tokens234

move, so that the decision variable does not immediately cross the decision threshold. Conversely235

for the slow rate token pattern, each individual token movement leads to some integration of236
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Figure. 7: Best-Fit Decision-Making Model Simulations. A) Experiment 3 estimated decision time (y-
axis) for group behaviour (pink) and Decision-Making Models (grey; x-axis). Group participant estimated decision
times are shown for slow rate token patterns (light pink) and fast rate token patterns (dark pink). Best-fit model
simulations of decision times are shown for slow rate token patterns (light grey) and fast rate token patterns
(dark grey). Box and whisker plots show 25%, 50% and 75% quartiles. Decision-making models simulated
decisions using novel sensory evidence or current sensory evidence. As described above in Figure 6, participants
made earlier decisions with slow rate token patterns compared to fast rate token patterns. Only the Trueblood
model using novel sensory evidence and the urgency-gating model with a low-pass filter on novel sensory evidence
were able to capture the behavioural difference in decision time between slow rate token patterns and fast rate
token patterns. The Trueblood model and urgency-gating model with a low-pass filter both contain a temporally
increasing (urgency) component and an integration of evidence. B) Net Token Movement (y-axis) over time
(x-axis) for Slow Rate, Right Bias, Right Target (Dark Orange) and Fast Rate, Right Bias, Right Target (Dark
Red) token patterns. C-D) Example simulations of decision-making models showing decision variables (y-axis)
over time (x-axis). Each trace represents a single decision-making trial for either slow rate, right bias, right
target (dark orange) and fast rate, right bias, right target (dark red) token patterns. The dashed grey lines
represent decision thresholds for a left target decision or right target decision. C) Trueblood model using novel
evidence. D) Urgency-gating model with a low-pass filter using novel evidence. Our model results suggest
that the deliberation process likely includes an urgency signal, or temporal scaling, component as well as the
integration of novel evidence.
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evidence. Crucially, individual token movements later in time are more heavily weighted by237

urgency, which compounded over time leads to an earlier corsssing of the decision variable over238

the decision threshold. Note for the drift diffusion models, the best solution to capture the239

trend was achieved by having high noise parameters since they would be unable to produce the240

observed faster decision time with the slow rate token pattern. We chose to use the Trueblood241

model as an input into the decision-making and movement model, described directly below,242

because it explicitly defines both urgency and evidence accumulation.243

Figure. 8: Best-Fit Movement Model Simulations. We fit a decision and movement model across the
movement trajectories in biased token patterns in Experiment 2 and Experiment 3. The models utilized a
weighted average of the targets to control the feedback responses. For each trial and time step, the weighting
for each target was calculated from a decision variable generated by the Trueblood model using novel sensory
information. A-C) Model Individual Behaviour. D-F) Model Group Behaviour Lateral Hand Position (y-axis)
over time (x-axis). G-I) Experimental Group Behaviour Lateral Hand Position (y-axis) over time (x-axis; repeated
from Figure 4). The model was able to capture the trends found in the experimental group behaviour. This
model supports the idea that online movements reflect the ongoing deliberation process.
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Decision-Making and Movement Model244

We found that ongoing deliberation influenced online movement. To capture this movement245

behaviour, we developed an optimal feedback control model25,26,27,28,29,30 that used the evolving246

decision variable to influence the ongoing movements. The decision variable was simulated using247

the Trueblood model with novel evidence. In short, an optimal feedback controller directed248

the hand towards an evolving and weighted averaged target that was a function of deliberation249

(see Supplementary E for further details). This model is able to capture individual movement250

behaviour (Fig. 8A-C) and group movement behaviour (compare Fig. 8D-F to Fig. 8G-I).251

Replicating previous work with the movement model.252

Using our decision-making and movement model, we were also able to replicate the results from253

a go-before-you-know task by Wong and Haith (2017).3 The researchers defined reaches that254

were not directly at one of the two targets as intermediate movements. They found that slow255

reaching movements resulted in more intermediate movements compared to fast reaches (Fig.256

9). The authors interpreted these findings to indicate a single flexible plan that maximized task257

performance, since an averaging of static motor plans would always launch as an intermediate258

movement regardless of movement speed.1259

We replicated their findings (Fig. 9C,D) by using an urgency signal that was inversely260

proportional to allowable reach time, as well as proportional to the distance between the targets261

since this would be more energetically costly (eq. 27).31 In particular when comparing slow and262

fast movement speeds, our decision-making and movement model suggests that the proportion263

of intermediate movements arises due to the urgency to make a decision. For example, urgency264

is higher in the fast movement condition since there is less time to reach the target. As a con-265

sequence during these fast movements, a target is more quickly selected even without evidence,266

since the deliberation noise is multiplied by a high urgency signal and crosses a decision threshold267

(i.e., guessing). Conversely in the slow movement condition, the lower urgency does not push268

the noise over a decision threshold and the participant can wait for evidence of the correct target.269

Collectively our empirical and computational results suggest that deliberation, which in-270
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Figure. 9: Replicating Previous Work. A,B) Behavioural data from Wong and Haith (2017; reprinted with
permission) showing that required movement speed and target separation affect the proportion of intermediate
movements. A) Individual single trajectories for dual-target and single target reaches with different target
separation angles. Red and blue represent movements in the slow and fast conditions respectively. B) Group
proportion of intermediate movements (y-axis) between target separation angles (x-axis). In C,D), our model
predicts that differences in urgency between conditions can lead to differences in the proportion of intermediate
movements. Here, we modulated urgency as a function of the relative cost of an intermediate movement and
the time to get to the target. C) Model single trajectories for dual-target and single target reaches with different
target separation angles. Red and blue represent movements in the slow and fast conditions respectively. D)
Model Average proportion of intermediate movements (y-axis) between target separation angles (x-axis). Our
model was able to replicate the influence of required movement and target separation angle on the proportion of
intermediate movements by manipulating the urgency in the deliberation process.

volves urgency, directly influences online movements.271

DISCUSSION272

We show that ongoing deliberation is reflected in movements—prior to a decision—when the273

motor system is actively engaged. We also find that urgency was necessary to explain decision274

times in the third experiment, as well as predicting movement behaviour in the literature. Col-275

lectively, our work supports the idea that decision-making processes continuously interact with276

motor processes, such that deliberation is expressed via movement.277

In Experiment 2 and Experiment 3, we were able to elucidate the influence of the ongo-278

ing deliberation of uncertain and continuous evidence on movements. Prior literature has utilized279

a "go-before-you-know" paradigm where participants were presented multiple potential targets280
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and initiated their movements without complete knowledge of the correct target.7,1,32,33,2,3,4 In281

these studies, the correct target was indicated partway through the reach via a sudden and dis-282

crete change of evidence (e.g. target colour or location, phonological input, etc.) that resulted283

in participants making rapid movement redirections. These rapid movement redirections reflect284

a rapid decision in response to a sudden and discrete change of evidence. Similar rapid move-285

ment redirections have been seen following uncertain and continuous evidence (i.e., random dot286

motion task) that is presented prior to movement initiation.9,34,35 In a small subset of trials,287

participants displayed "changes of mind" where they rapidly redirected towards the other target.288

It has been suggested that these changes of mind reflect a second decision based on delayed289

sensory information. Due to the sudden decisions and rapid movement redirections in the above290

works, it would be difficult to dissociate whether movement was caused either from deliberation291

or acting solely on a second decision.292

There has also been increased interest in mid-reach decisions, such as when using the293

target-split paradigm by Kurtzer and colleagues (2020).36 In this task, participants would move294

their hand to one target and this would occasionally change to two target options during the295

movements. Participants showed a preference toward the options nearest the original target.296

Others have shown that mid-reach decisions are sensitive to other factors such as relative target297

frequency,37 reward magnitude,38 and biomechanics.39,40,41 In these mid-reach decision tasks,298

participants indicate their choice with a rapid movement redirection. Again however, it would299

be difficult to dissociate whether movement was caused either from deliberation or the final300

decision.301

Unlike the above works and others,42,43 a key aspect of our design was using the hand302

trigger to estimate the decision time, allowing us to separate whether movement was caused303

either from deliberation or action selection following a final decision. Future work could adapt304

this paradigm during reaching or gait to study the influence of reward, energetics, and other305

factors that may impact decision-making to gain an understanding of the ongoing deliberation306

via movement.307
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In Experiment 1 we found that the ongoing deliberation did not induce movements prior308

to a decision, at least to a significant level, when initially in posture. Conversely, in both309

Experiment 2 and Experiment 3 we found that when the motor system was already actively310

engaged that there was an expression of the deliberation process via movement. Being able311

to express deliberation in movement but not in posture aligns with previous results showing312

differential configuration and engagement of motor circuits for movement and posture.44,45,46
313

One possibility is the decision processes have a larger influence on movement circuits than314

postural circuits. While our paradigm allows for a continuous expression of deliberation during315

movement execution, past work has shown that it is possible to elicit an instantaneous expression316

of deliberation from a postural state. Selen and colleagues were able to gain a momentary317

expression of deliberation at the moment of movement onset.47,34 Specifically, they perturbed318

the upper limb while in posture and measured the resulting long-latency stretch reflex. They319

found that the long-latency stretch reflex reflected deliberation at the time of perturbation while320

in posture. Although we did not find that evidence was enough to elicit movement initiation from321

a postural state, we did find that deliberation can be continually expressed during movement.322

In this work, we have primarily investigated the influence of deliberation on movement.323

We also found that participants made faster decisions when already moving in Experiment324

2 compared to when in posture for Experiment 1. This finding may reflect ‘embodied de-325

cisions, where the current and future states of the motor system can influence decision mak-326

ing.48,49,50,51,52,39,53,54,55,56,41 Korbisch and colleagues (2022) had participants select between short327

or long walking durations or shallow and steep walking inclines.54 When participants looked at328

depictions of the various options, the researchers found higher saccade vigor (i.e., velocity) to-329

wards the depictions associated with less effort. These results suggest that potential energy330

costs are embodied and can be reflected during deliberation with eye movement. In their study,331

evidence of potential effortful options was discrete and did not change during the course of the332

eye movement. Here saccade vigor provides a glimpse of deliberation reflecting past evidence ac-333

quired from previous eye movements. Building on this work, we show the online movement itself334
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is influenced by an ongoing deliberation. It would be interesting for future work to manipulate335

both potential energetic costs over time and evidence during movement to further understand336

embodied decisions.337

In this study, we were interested in the influence of deliberation on movement. In Exper-338

iment 1 and Experiment 2 we found no difference in decision times between the bias token339

patterns, which replicates previous findings and is consistent with the urgency-gating hypoth-340

esis..14 For Experiment 3, we used slow rate and fast rate token patterns to manipulate the341

rate of evidence and further understand deliberation. The standard evidence accumulation (with342

or without leak) and pure urgency-gating model (without a low pass filter) would predict that343

the fast rate token patterns would respectively cause earlier or similar decision times compared344

to the slow rate token patterns. Counterintuitively, we found that the slow rate token patterns345

made faster decisions compared to the faster rate token patterns. We were able to capture faster346

decisions with the slow rate token patterns with both the Trueblood model and urgency-gating347

model with a low-pass filter. Both these models are similar mathematically and have terms that348

relate to urgency and an integration of evidence. Conceptually, the Trueblood model integrates349

to accumulate evidence towards a decision, whereas the integration from the low-pass filter of350

the urgency-gating model is intended to reflect an estimate of evidence from sensory processes.351

Neural activity during perceptual decision-making in monkeys has been attributed to either ev-352

idence accumulation towards a decision.17,11,21 or the scaling of low-pass filtered estimate of353

evidence with an urgency signal that arises from the basal ganglia.14,16 An important future354

direction, such as through neural recordings in animals, is to determine where and why there is355

an integration of evidence. Irrespective of evidence integration, urgency was needed to predict356

decision times and replicate reaching trajectories from past work.3357

Here developed a movement model that reflected deliberation, by combining the Trueblood358

decision-making model and optimal feedback control. This differs from past work that has359

used dynamic programming,57 bayesian methods,58 only optimal feedback control,49 and relative360

desirability of multiple options.59 While these other modelling approaches have been insightful361
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and motivated the current work, they do not have a deliberation process that includes urgency.362

Urgency was a critical component to capture decision making time and reaching movements363

from past literature. However, it would be possible to include an urgency term in these previous364

modelling approaches. A limitation of our model as currently formulated is that it only allows for365

the deliberation process to influence the movement. That is, it does not allow the motor states to366

directly influence the deliberation process. This model design reflects our experiments where we367

manipulate the deliberation process to test its influence on movement. However, several of the368

aforementioned models would be able to capture some of the bidirectional relationships between369

cognitive and motor processes during embodied decisions reported in the literature.48,51,53,52,54,41
370

Moving forward, it will be important to have a computational model of embodied decisions that371

captures several important features of both motor behaviour (e.g., bell shaped velocity profiles,372

vigor) and decision-making behaviour (e.g., skewed reaction time, speed accuracy tradeoff, Hicks373

law, urgency).374

Overall, we have shown that the motor system is influenced by the deliberation of multiple375

targets. Prior literature has examined how the decision-making and motor systems interpret and376

act on multiple potential options.4,3,60,6 In the go-before-you-know task, intermediate movements377

between two targets have been suggested to be an outcome of parallel averaged motor plans1,2,59
378

or a single flexible motor plan that optimizes task performance.3,61,4 Wong and Haith (2017)379

interpreted more intermediate movements with slow hand speeds compared to fast hand speeds380

to reflect a single flexible motor plan.3 Here we provide an alternative perspective by considering381

urgency. When one also considers urgency, it is possible to explain different proportions of382

intermediate movements between slow or fast hand speeds with either a single flexible motor383

plan or parallel averaged motor plans.384

It is important to consider that a single flexible motor plan or parallel averaged motor plans385

are a combination of two factors: i) single versus parallel average, and ii) static versus flexible.386

Obviously a single static motor plan is not a viable option to handle multiple potential goals.387

Alhussein and colleagues (2021) rule out a parallel average of static motor plans, since their388

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2024. ; https://doi.org/10.1101/2024.08.19.608669doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.19.608669
http://creativecommons.org/licenses/by-nc-nd/4.0/


Movements Reflect Deliberation

prediction was based on the initial reach angle to each target.4 Yet their finding does not rule389

out the possibility of a parallel average of flexible motor plans, where each motor plan (more390

specifically, control policy) could contain a safety margin. As shown above, we were able to391

replicate the results of Wong and Haith (2017) by considering urgency.3 It is mathematically392

equivalent to have a single flexible motor plan that reflects a weighted average of two targets393

based on evidence, compared to flexible parallel plans (control policies) that are weighted based394

on evidence (see Supplementary E). It is not clear how to behaviourally dissociate between a395

single flexible motor plan or parallel average of flexible motor plans through movement execution.396

There has been conflicting neural support with regards to parallel motor plans or a single flexible397

motor plan.5,6 It would be useful for future work involving neural recordings to determine where,398

when, and how multiple target representations and deliberation processes finally converge to399

produce a single executed movement.400

Humans often must make decisions while moving. We found that deliberation was reflected401

in ongoing movements—prior to a decision—when the motor system was actively engaged.402

We found that an urgency signal, which more heavily weighted evidence later in time, was403

fundamental to predicting decision times and explaining previous reaching behaviour. Our results404

support the hypothesis that the decision-making process influences movements prior to a decision.405

Understanding the integration of decision and motor processes may allow us to better understand406

neurological disorders where cognitive and motor processes and deficits may be entangled.407

METHODS408

Participants409

In total we collected 51 participants across three experiments. 17 individuals (24.8 ± 2.37410

years old) participated in Experiment 1, 17 individuals (21.4 ± 1.76 years old) participated411

in Experiment 2, and 17 individuals (23.2 ± 2.93 years old) participated in Experiment412

3. Participants reported they were free of musculoskeletal or neuromuscular disorders. All413

participants provided informed consent to participate in the experiment and the procedures were414
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approved by the University of Delaware’s institutional review board. Participants were provided415

$10 USD compensation.416

Apparatus417

For all three experiments, participants grasped the handle of a robotic manipulandum with418

their dominant hand (Fig. 1A; KINARM, BKIN Technologies, Kingston, ON, Canada) to419

perform reaching movements in the horizontal plane. Participants held a hand trigger in their420

nondominant hand. A semi-silvered mirror projected images (start position, left and right targets,421

tokens) from an LCD screen onto the horizontal plane of motion. To assess muscle activity,422

we recorded electromyography (EMG) signals with bipolar surface electrodes (single differential423

electrode, Trigno system, Delsys, Natick, MA) from the flexor policis brevis of the nondominant424

hand. To obtain an estimated decision time, a voltage signal indicated when the thumb pushed425

the hand trigger. Kinematic, EMG, and hand trigger data were recorded at 1,000 Hz and stored426

offline for data analysis.427

Protocol428

General Task Protocol429

For each trial, participants were visually presented with a white start position (2 cm diameter)430

and two targets (5 cm diameter). The left and right targets were respectively 20 cm to the left431

and right of the start position (Fig. 1A). A yellow cursor (1 cm diameter) provided real-time432

feedback of their hand position. The participants were instructed to move their cursor into the433

start position. After holding the cursor with the start position for 400 ms, participants heard a434

beeping sound and 15 yellow tokens appeared between the left and right targets. At trial onset435

(0 ms), the tokens jumped from the center into the left target or right target in 160 ms time436

intervals14 (Fig. 1C). Participants had to make their decision prior to 2400 ms, corresponding to437

the final token moving into one of the targets. Once they felt confident which target would end438

up with the most tokens, they were instructed to simultaneously i) press a trigger with their non-439

dominant hand and ii) move towards and hit the selected target. As soon as participants pressed440

the hand trigger, the remaining token movements were not visible to the participant to prevent441
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them from changing their decision with later evidence. If participants selected the correct target,442

they would hear a pleasant ding and their selected target would turn blue. If participants selected443

the incorrect target, they would hear an unpleasant buzzer and their selected target would turn444

red. When participants did not press the hand trigger and/or enter a target within 2400 ms of445

the beginning of the trial, both targets would turn red. Further, unknown to participants, that446

the trial would be repeated later on during the experiment.447

Experiment 1 Task Protocol448

The goal of Experiment 1 was to determine if ongoing deliberation can elicit and subsequently449

influence movements, prior to a final decision, when evidence was initiated during posture. The450

targets were directly to the left and right of the start position (Fig. 1A). The participant waited451

in the start position for 400 ms. After this wait period, trial onset (0 ms) was indicated with a452

beep. The tokens moved into the left or right target one at a time in 160 ms intervals. In total,453

participants experienced 216 trials in the main experiment. We used bias, pseudorandom, late,454

and null token patterns (Fig. SA1).455

We were primarily interested in the bias token patterns, since we tightly controlled the456

token movement and consequently the experienced uncertain and continuous evidence. During457

the bias token patterns the first three tokens moved individually into the left or right target (i.e.,458

left bias or right bias), the next three tokens moved individually into the opposite target, and459

the remaining tokens moved with an 80% probability into the left or right target (i.e., left target460

or right target; Fig. 2A-D). These bias token patterns, we had each of the four combinations461

of left bias or right bias and left target or right target. Each bias token pattern was presented462

12 times, which resulted in 48 bias token patterns.463

We also had psuedorandom token patterns where each token had the same probability464

of going to the left target. We had 20%, 35%, 50%, 65% or 80% probability psuedorandom465

token patterns. Each psuedorandom token pattern was presented 12 times except for the 50%466

condition which was presented 24 times, which resulted in 72 psuedorandom token patterns.467

Additionally, we had null token patterns (24 trials), late token patterns (48 trials), and late468
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null token patterns (24 trials). Similar to the ambiguous token patterns used by Cisek (2009),469

the null bias token patterns had a net token movement that was close to zero throughout the470

beginning portion of a trial.14
471

Experiment 2 Task Protocol472

The goal of Experiment 2 was to determine if ongoing deliberation was reflected in movements,473

prior to a final decision, after movement onset when the motor system was already actively474

engaged. Tokens were initiated when the participant left the when evidence was initiated by475

movement. In Experiment 2, the targets were 30 cm forward and 20 cm to the left and right476

of the start position. The participant waited in the start position for 400 ms, after which they477

heard a beep. The beep indicated the participant may leave the start position. Trial onset (0478

ms) occurred once the participant left the start position. Experiment 2 used the same token479

patterns as Experiment 1.480

Experiment 3 Task Protocol481

The goal of Experiment 3 was to replicate the results found in Experiment 2, while also eluci-482

dating the roles of evidence accumulation or urgency on deliberation and consequent movement.483

The experimental setup was the same as Experiment 2, except for the specific token patterns484

(Fig. SA 2). Participants experienced 336 total trials. Trials included slow rate bias (Fig. 2485

E-F), fast rate bias (Fig. 2I-L), pseudorandom, late, and null token patterns.486

In this experiment, we were primarily interested in the slow rate and fast rate bias token487

patterns because we tightly controlled their movement and the experienced uncertain and contin-488

uous evidence. Further, the slow rate and fast rate token patterns lead to unique decision times489

depending on how humans accumulate evidence and / or rely on urgency during deliberation.490

During the slow rate bias token patterns, the first four tokens moved individually into the left491

or right target (i.e., left bias or right bias), the next four tokens moved individually into the492

opposite target and the remaining tokens moved with an 80% probability into the left or right493

target (i.e., left target or right target; Fig. 2E-F). In the fast rate bias token patterns the first494

four tokens moved at the same time into the left or right target (i.e., left bias or right bias), the495
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next four tokens moved individually into the opposite target and the remaining tokens moved496

with an 80% probability into the left or right target (i.e., left target or right target; Fig. 2I-L).497

For these bias token patterns, we had each of the eight combinations of fast rate or slow rate,498

left bias or right bias, and left target or right target. Each bias token pattern was presented 12499

times, which resulted in 96 bias token patterns.500

The pseudorandom token patterns were the same as Experiment 1 and 2 (Fig. SA501

2I-M). Similar to Experiment 1 and 2, we also had late and null token patterns.502

Reaction Time Task.503

Prior to any of the experiments described above, participants performed a reaction time task504

to determine the sensory and motor delays involved in making and indicating a decision (Fig.505

SA 3A). In the reaction time task, the targets were in the same location as the corresponding506

main experiment (as described in Experiment Task Protocols above). The reaction time task507

used the same trial onset as the corresponding experiment. At trial onset (0 ms), all 15 tokens508

jumped into either the left or right target (Fig. SA 3B,C). Participants were instructed to509

select the target that all of the tokens jumped into as fast as they could (Fig. SA 3D). Again,510

participants indicated their decision by pressing the hand trigger and moving the cursor into511

their selected target (Fig. SA 3E,F). Participants performed at minimum 20 familiarization512

trials in the reaction time paradigm to become accustomed to the experimental setup. After the513

familiarization trials, participants performed 24 reaction time trials. There were 12 left reaction514

time trials and 12 right reaction time trials that were presented in a randomly interleaved order.515

Data Analysis516

Estimated Decision Time517

Trigger time was determined when the voltage of the hand trigger crossed 3 volts for each518

trial. We found an estimated decision time on each trial to determine when decisions were519

made independent of reaching movements. We estimated a Neural + Mechanical Delay for each520

participant using their reaction time trials. For each muscle per trial, we subtracted the global521

mean muscle activity across all the reaction time trials. Flexor policis brevis muscle activity was522
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full wave rectified and then dual-pass, sixth order, lowpass (20 Hz), Butterworth filtered. We523

determined EMG onset time with a dual-threshold method given a critical amplitude threshold524

and a 10 ms temporal threshold.62 We defined a critical amplitude threshold of mean + three525

standard deviations of the flexor policis brevis muscle activity in the 400 ms before the trial526

onset across all trials. EMG onset time was determined when the EMG activity rose and stayed527

above the critical amplitude threshold for 10 ms. The onset time was calculated using the dual-528

threshold method and verified by human inspection per reaction time trial (Fig. SA 4A,B).529

We found the average difference between Trigger Time and EMG onset time for the reaction530

time trials per subject (Fig. SA 4C). The Neural + Mechanical delay for each participant531

was defined as the average difference between Trigger Time and EMG onset time plus a nerve532

propagation delay of 20 ms.63 We calculated the estimated decision time on each trial during533

the main experiments as the trigger time minus the neural + mechanical delay (Fig. SA 4D).534

Movement Analysis535

Hand position data were digitally dual-pass, second order, lowpass (20 Hz cutoff), Butterworth536

filtered. Our primary focus was to determine whether the deliberation process influences move-537

ments, prior to a final decision. We were interested in the movement prior to the influence of538

the final decision and subsequent actions. To this end, we looked at the lateral hand position at539

estimated decision time (Fig. 2).540

Statistical Analysis541

All statistical tests were performed in Python 3.8.5. We used repeated measures analysis of542

variance (rmANOVA) as the omnibus tests for each dependent variable. We were primarily543

interested in estimated decision time, lateral hand position at estimated decision time, and544

selection rate metrics for the bias token patterns. In Experiment 1 and Experiment 2, we545

used a 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision time, lateral546

hand position at estimated decision time, and selection rate. In Experiment 3, we used a 2547

(Rate: Fast or Slow) x 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision548

time and selection rate. For lateral hand position at estimated decision time we performed549
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separate 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVAs for fast bias patterns550

and slow bias patterns. Here we used separate rmANOVAs, since we found significantly different551

decision times between slow rate and fast rate bias token patterns. For Experiments 1, 2, and552

3, we were also interested in the pseudorandom token patterns and used a 1-way rmANOVA553

(Probability of Left Target: 20%, 35%, 50%, 65%, and 80%) for estimated decision time, lateral554

hand position at estimated decision time, and selection rate. For all experiments, we performed555

nonparametric bootstrap hypothesis testing for mean comparisons (n = 1,000,000).64,65,66,67,68
556

Holm-Bonferroni corrections were used to control for Type 1 error. We computed Common557

Language Effect Size (θ̂) for all mean comparisons.69,68 Statistical significance was set to p <558

0.05.559
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Supplementary A
Methods560

Token Patterns561

562

Figure SA1: Experiment 1 and 2 Token Patterns. Net Token Movement (y-axis; left target - right target)563

over time (x-axis). Inset text for each token pattern shows the number of occurrences and percentage out of all564

trials.565
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Figure SA2: Experiment 3 Token Patterns. Net Token Movement (y-axis; left target - right target) over566

time (x-axis). Inset text for each token pattern shows the number of occurrences and percentage out of all trials.567
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Reaction Time Task568

569

570

Figure SA3: Reaction Time Design. In the reaction time trials, we wanted to measure how quickly partic-571

ipants could respond to goal-related stimulus. The participant initiated the reaction time trial by leaving the572

start position. As soon as participants left the start position, all the tokens jumped into one of the two targets.573

Participants were instructed to select the target which all of the tokens moved into as fast as they could. The574

participants indicated their by pressing the hand trigger in their non-dominant hand and moving into the corre-575

sponding target. A) The reaction time task setup was identical to the experimental conditions for Experiment576

2 and Experiment 3. B) An example of the participant display while the tokens moved into the left or right577

target over time. C) Net Token Movement (left tokens minus right tokens, y-axis) over time (x-axis) of an578

example token pattern. D) Individual reaction time trial reaching trajectory. Solid black circle represents the579

hand position at the trigger time. E) Hand trigger voltage (y-axis) over time (x-axis) for the trial shown in (D).580

The trigger time was the defined as the first time point the hand trigger voltage crossed a 3V threshold. F)581

Lateral hand position (y-axis) over time (x-axis) for the trial shown in (D). The vertical grey line in (E) and (F)582

indicates the measured trigger time.583
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Estimated Decision Time584

585

586

Figure SA4: Neural and Mechanical delay calculation for example participant. A) Example single587

reaction time trial behaviour. Flexor policis brevis activity (left y-axis; light grey) and hand trigger voltage (right588

y-axis; dark grey) over time (x-axis). Vertical solid grey line represents EMG onset time. Vertical dashed grey589

line represents trigger time. B) Single participant trigger time (y-axis) vs EMG onset time (x-axis) for all reaction590

time trials. C) Histogram of difference between trigger time and EMG onset time (x-axis) for example participant591

reaction time trials. Vertical dashed pink line represents average difference between trigger time and EMG onset592

time. Average difference between trigger time and EMG onset time is used to calculate estimated decision time593

for each trial in experimental conditions. D) Lateral hand position (y-axis) over time (x-axis) for example reaction594

time trial. We define the neural + mechanical delay as the sum of average difference between trigger time and595

EMG onset time and an estimated 20ms neural propogation delay from the M1 brain region to the flexor policis596

brevis. From the trigger time on a single trial, we subtract the neural + and mechanical delay to calculate the597

estimated decision time. The estimated decision time allows us to look at the influence of ongoing deliberation598

prior to final decision-related movements.599
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Supplementary B600

Conservative Estimate601

602

603

Figure SB1: Conservative Time Estimate Prior to a Decision Example. A) Example single trial trajectory604

for a reaction time task. B) Histogram of trigger time for reaction time trials for a single participant. Vertical605

lines represent mean reaction time and mean + 2 standard deviations of reaction time. The mean + 2 standard606

deviations of reaction time are used to conservatively estimate a time point prior to any decision related behaviour.607

C) Lateral hand position (y-axis) over time (x-axis) for example reaction time trial. 0 ms is when participants left608

the start position in the reaction time trial. Vertical solid grey line represents the trigger time. Vertical dashed609

grey line represents the conservative time estimate prior to a decision. The short black line at 0 ms represents610

the beginning of the reaction time trial. We subtract the mean + 2 standard deviations of reaction time from611

the trigger time to conservatively estimate a time point prior to any final decision-related behaviour. In this trial,612

our conservative estimate is prior to the beginning of the reaction time trial.613
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Lateral Hand Position Prior to Decision614

615

616

Figure SB2: Group Movement Behaviour relative to Conservative Time Estimate Prior to a Decision.617

The figure is similar to Figure 5 but for movement behaviour at the conservative time estimate prior to a decision.618

The results for the conservative time estimate prior to a decision are consistent with the results found using the619

estimated decision time (Figure 5).620
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Supplementary C621

Group Behaviour - Psuedorandom Token Patterns622

Group Movement Behaviour623

624

Figure SC2: Group Movement Behaviour for Pseudorandom Token Patterns. A,D,G) Lateral hand625

position (y-axis) over time (x-axis) for pseudorandom token patterns in A) Experiment 1, D) Experiment 2,626

and G) Experiment 3. B,E,H) Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision627

time for pseudorandom token patterns in B) Experiment 1, E) Experiment 2, and H) Experiment 3. C,F,I)628

Lateral hand position (y-axis) at estimated decision time across pseudorandom token patterns (x-axis) in C)629

Experiment 1, F) Experiment 2, and I) Experiment 3. Inset text shows the f-statistic for a main effect of the630

pseudorandom token pattern from an rmANOVA. These results are consistent with the findings shown in Figure631

4. Again we see an influence of the token patterns on the movement prior to a decision in Experiment 2 and632

Experiment 3 but not Experiment 1.633
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Decision Time634

635

636

Figure SC1: Group Estimated Decision Time Behaviour for Pseudorandom Token Patterns. Estimated637

decision time (y-axis) across pseudorandom token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and638

C) Experiment 3. Inset text shows significant effects from an rmANOVA.639
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Group Selection Rate Behaviour640

641

642

Figure SC3: Group Selection Rate Behaviour for Pseudorandom Token Patterns. Proportion of Left643

Selections (y-axis) across pseudorandom token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and644

C) Experiment 3. Inset text shows significant effects from an rmANOVA.645
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Supplementary D646

Selection Rate Behaviour647

Bias Pattern Selection Rates648

649

650

Figure SD1: Selection Rates for Bias Token Patterns. Proportion of left target selection trials (y-axis)651

across bias token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and C) Experiment 3. Inset text652

shows significant effects from ANOVA analysis.653
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Bias Pattern Selection Rate Over Time654

655

656

Figure SD2: Selection Rate Distributions for Rate Bias Token Patterns in Experiment 3. A-D) Net657

token movement (left target - right target; y-axis) over time (x-axis). Each plot shows the slow rate and fast rate658

token patterns for the same bias and final target. E-H) Histogram of group behaviour estimated decision time659

(x-axis) for left and right decisions. I-L) Trueblood (2001) model with novel evidence using best-fit parameters.660

Histogram of model predicted estimated decision time (x-axis) for left and right decisions. Histogram colors are661

representative of the token patterns in the plot directly above. Positive and negative histograms represent left662

decisions and right decisions respectively.663
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Supplementary E664

Modelling Methods665

Decision-Making and Movement Model666

Here we compared five types of decision-making models which predicted target selections and667

decision times given sensory information or evidence for a given target. We also compared two668

types of evidence, current or novel, as input into the decision-making models.669

Evidence670

As inputs to the decision-making models, we used novel evidence or current evidence. Evidence671

is based on the correct probability (p(L|NL, NC , NR)) for the left target672

p(L|NL, NR, NC) =
NC !

2NC

min(NC ,7−NR)∑
k=0

1

k!(NC − k)!
(1)

given the number of tokens in the left target (NL), number of tokens between the targets (NR),673

and the number of tokens in the right target (NR; Equation 1), and ! represents a factorial.14
674

Current evidence (Ecurr(t)) is defined as the correct probability at the current time with added675

sensory noise676

Ecurr(t) = p(t) +N(t)− .5 (2)

where t is time, N(t) is sensory noise modelled with a gaussian that has a zero mean and a677

standard deviation (σev). Novel evidence (Enovel(t)) is defined as the rate of change (d/dt) of678

the correct probability with added sensory noise (Equation 3).679

Enovel(t) =
dp(t)

dt
+N(t) (3)

Decision Making Models680

In our decision making models, we simulate a decision variable that interprets the evidence used681

to make a decision. We define a decision as the time when the decision variable crosses a682
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threshold of +1.0 for a left target decision or -1.0 for a right target decision.683

Drift-diffusion model.17,18 The rate of change of the decision variable (DV) is equal to a gain684

(g) multiplied by the evidence.685

dDV

dt
= gE(t) (4)

Drift diffusion model with leak19,20,14 The rate of change of the decision variable is similar to686

equation 4, but with a leak (L) term that represents forgetting.687

dDV

dt
= gE(t)− LDV (t) (5)

Trueblood model (2021).24 The rate of change of the decision variable is a function of urgency688

(k) and leak (L; eq. 6). It can be seen that the urgency term k is scaled by time (t) to influence689

the weightings of incoming evidence (second term on right side of the equation) and previously690

accumulated evidence (first term on right side of the equation).691

dDV

dt
=

(
k

1 + kt
− L

)
DV (t) + E(t)(1 + kt) (6)

Urgency-gating model.14 The decision variable is equal to the evidence scaled by a temporally692

increasing urgency signal (U(t)); eq. 7). The urgency signal is a scalar (g) multiplied by the693

current time (eq. 8).694

DV (t) = U(t)E(t) (7)

U(t) = gt (8)

Urgency-gating model with a low-pass filter.14,15 The decision variable is equal to an estimate of695

the evidence (Eest) scaled by a temporally increasing urgency signal (U(t); eq. 9). The estimate696

of evidence is a low-pass filtered version of the incoming evidence (eq.10). The urgency signal697
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is a scalar (g) multiplied by the current time (eq. 11).698

DV (t) = U(t) ∗ Eest(t) (9)

τ
dEest

dt
= −Eest(t) + E(t) (10)

U(t) = gt (11)

We simulated each trial until either the decision variable crossed a decision threshold or699

the trial deadline (2400 ms). Evidence was input into the decision making models with a 200ms700

delay. We used a time step of 1 ms for all decision-making simulations.701

Movement Model702

Here we use a linear quadratic gaussian optimal feedback controller,25,26,27,28,29,30 which used703

the decision variable from the Trueblood model to weight potential goals. The dynamics of the704

hand are705

mp̈(t) = −Gṗ(t) + F (T ) (12)

τ Ḟ (t) = u(t)− F (t) (13)

where m is mass (1 kg), p(t) is the position of the hand, and G is the viscous constant706

(0.1Nṡm−2). u(t) is a control signal (e.g., muscle activity). F(t) represents internal forces707

(e.g., muscle force) that move the hand. τ is a low-pass filter time constant (40 ms) that708

approximates the rate of internal forces given some control signal.70,28 Single and double dots709

refer to single and double differentiation.710

We transformed the decision variable into a weighting (α, (eq. 12)) for each option using711

a logistic function712
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αL =
1

1 + e−λDV (t)

αR =
1

1 + eλDV (t)

(14)

where λ is the steepness parameter and t is the current time step.713

We also define the location of the reaching target as (pG) where alpha is the weighting for714

each target from eq. 12. px,L and py,L correspond to the forward and lateral position of the left715

target. px,R and py,R correspond to the forward and lateral position of the right target.716

px,GOAL = αLpx,L + αRpx,R (15)

py,GOAL = αLpy,L + αRpy,R (16)

We combine the states into a state vector (x) in eq. 17.717

xT = [px py ṗx ṗy Fx Fy px,GOAL py,GOAL] (17)

The dynamics of the system is then discretized with added state noise in eq. 18. The718

covariance matrix of the state noise is a matrix with [0,0,0,0,1e-3,1e-3] on the diagonals and719

zeros elsewhere.720

xk+1 = Axk +Buk + ξk (18)

We define a standard quadratic cost function with a (QN) terminal cost, running state721

cost (Q), and control costs (R). Note that Q was constant for all time steps. N is the total722

number of time steps in the trial (240).723

J = xT
NQNxN +

N−1∑
k=0

(uT
kRuk + xkQxk) (19)

We define Q and QN such that724
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xT
kQxk = Q1(px,k−px,GOAL,k)

2 +Q2(py,k − py,GOAL,k)
2

+Q3( ˙px,k)
2 +Q4( ˙py,k)

2 +Q5(Fx,k)
2 +Q6(Fy,k)

2

(20)

xT
NQNxN = Q7(px,N−px,GOAL,N )

2 +Q8(py,N − py,GOAL,N )
2

+Q9( ˙px,N)
2 +Q10( ˙py,N)

2 +Q11(Fx,N)
2 +Q12(Fy,N)

2

(21)

The sensory feedback signal (x) is equal to the current state with added sensory noise (η;725

eq. 20).726

yk = xk + ηk (22)

The covariance matrix for the sensory noise is a matrix with [1e-3,1e-3,1e-3,1e-3,1e-3,1e-3]727

on the diagonals and zeros elsewhere.728

We used a Kalman filter (K) to estimate the current state (eq. 23).27,28 We used the729

standard calculation of the Kalman filter.25,26,27,28,29,30 Note we did not consider signal dependent730

noise, which would not have a large influence on our results given the very large target sizes.731

Here, x̂P
k+1 is the prior belief of the next state, based on x̂k and the control signal uk. The732

state estimate (x̂k+1) is dependent on the prior x̂P
k+1, the kalman filter (K), and the sensory733

feedback (yk+1).734

x̂P
k = Ax̂k +Buk (23)

x̂k+1 = x̂P
k +Kk+1(yk+1 − x̂P

k ) (24)

We solved for an optimal feedback policy (L) as a function of the cost function and735

given dynamics25,26,27,28,29,30 using the Ricatti equations. We use the optimal feedback policy to736

calculate the current optimal control signal. On each timestep, the optimal feedback controller737
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generates an optimal control signal (uk) that feeds into the dynamics (eq. 18) as738

u∗
k = −Lk(xk) (25)

Each model simulation runs until the point mass enters one of the two targets (see Exper-739

iment 2 Methods) or runs out of time (2400 ms). We simulated movements with a time step of740

10 ms.741

Decision-Making Model Fitting Procedure742

In total we fit and tested ten models (five decision-making models x two types of evidence).743

We used the same fitting procedure for each model. Model fitting was performed using the744

powell algorithm in the Minimize function from the Scipy Python library. We fit each experiment745

separately. For each experiment, we only fit the model to the behaviour during the bias token746

patterns.747

For each model, we simulated 500 trials for each bias token pattern. We then calculated748

the mean decision time and selection rate for each bias token pattern. The loss function was749

defined using the decision time and selection rate. For the decision time, we calculated the750

difference between model mean decision times and data mean decision times, then normalized751

by 2400 ms. We then the absolute value of this normalized error. For the selection rate, we752

calculated the difference between model mean selection rate and data mean selection rate, then753

normalized by 100%. We then took the absolute value of this normalized error. To calculate754

the final loss, we summed across token patterns (Y) for both decision times (DT) and selection755

rates (SR). When fitting Experiment 3, we also considered the average difference of decision756

times between the slow and fast rate token patterns.757

Loss =
Y∑
i=1

∣∣∣∣DTmodel
i −DTData

i

2400

∣∣∣∣+ ∣∣∣∣SRmodel
i − SRData

i

100

∣∣∣∣ (26)

For the fitting procedure we first began with a warm-start procedure.67,71 First, we fit the758

model 1,000 times using random initial parameter guesses. From these fits we then selected the759
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model parameters that resulted in the lowest loss. The lowest loss parameters were then used760

as an initial guess for a bootstrapping procedure (10,000 iterations) to find the 95% confidence761

interval of each parameter given the data. In each bootstrap iteration, we resampled with762

replacement the decision time and selection rate from the data. The mean decision times and763

selection rates of the resampled data were then used to determine model loss for each bootstrap.764

Movement Model Fitting Procedure765

For the movement model, we fit the terminal state costs parameters (Qn), running state cost pa-766

rameters (Q), running energetic costs (R), and steepness parameter (λ) of the logistic function.767

We fit Experiment 2 and 3 simultaneously.768

We first simulated decision variables using the Trueblood Model with novel evidence. We769

used the median model parameters from the boot-strapping procedure for each experiment.770

Model fitting was performed using the powell algorithm in the Minimize function from the Scipy771

Python library. We simulated 500 trials for each bias token pattern. We calculated the mean772

trajectory for each token pattern from the simulated trials. The loss function was defined as the773

squared error between the group mean trajectory and the simulated mean trajectory. We used774

the model parameters that resulted in the lowest loss.775

Haith and Wong776

To simulate the Wong and Haith (2017) study, we used our decision-making and movement777

model.3 We selected parameters that qualitatively resulted in proportions of intermediate move-778

ments and trajectories that matched the experimental behaviour. Importantly, we defined the779

urgency parameter (k; see eq. 6) as a function of the current task condition (eq. 23). As sug-780

gested in Carland 2019, we used an urgency signal (k) that was a function of reward, energetic781

cost, and time.31
782

k =
(mr ∗ reward)− (mc ∗ relative cost)

mT ∗ time
(27)
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relative cost =
c

c sin( θ
2
) + c cos( θ

2
)

(28)

where mr is the weighting on reward (8), reward was the value of success (1), mc was the783

weighting of a direct reach relative to a intermediate reach (6), mT is the weighting on relative784

time (0.002), and time is the time participants had to reach a target. Here we considered the785

relative energetic costs of reaching a shorter distance directly from the start position to a target786

(e.g., the hypotenuse of a right angle triangle), compared to travelling an overall further distance787

by first reaching between the targets (e.g., adjacent side of a triangle) and then to one of the788

targets (e.g., along the adjacent and then opposite side of a triangle). Specifically, we calculated789

the ratio between the hypotenuse (c = 20) and the distance of travelling along the adjacent790

and opposite sides of the corresponding right triangle, given the angular distance of the targets791

about the start position (θ: 15, 30, 45, 60). Similarly, as a proxy for time, we approximated the792

time participants had to reach a target (slow: 1000ms, fast: 500ms) given the experimentally793

imposed slow and fast hand movement criteria.794
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Goal Averaged Single Flexible Plan versus Averaged Parallel795

Motor Plans796

Here we define the discrete state dynamics (eq. 29) and the cost function (eq. 30) as the same797

as above in the modelling methods.798

xk+1 = Axk +Buk + ξk (29)

J = xT
NQNxN +

N−1∑
k=0

(ukRuT
k + xkQxk) (30)

We solve for the optimal feedback control policy (Lk) using the riccati equation. The799

optimal control signal (u∗
k) is defined as800

u∗
k = −Lkxk (31)

where xk is the current state. Given the assumptions of our cost function in eq. 19-21, we can801

consider the optimal feedback control signal as equal to802

u∗
k = −Lk(xk − xGoal) (32)

To match our experimental design, we consider the goal to be a weighted average of the803

two potential targets given the current decision variable (see eq. 15, 16). We rewrite eq. 32 as804

u∗
k = −Lk(xk − (αLxLeftGoal + αRxLeftGoal)) (33)

This can be thought as a single flexible control policy to a goal averaged target.805

The weighting terms are calculated from a logistic function (eq. 14) with bounds 0 and 1,806

and thus αL + αR = 1. We can then expand eq. 33 as807

u∗
k = −Lk((αL + αR)xk − (αLxLeftGoal + αRxRightGoal)) (34)
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We further rearrange eq 34 as808

u∗
k = −Lk(αL(xk − xLeftGoal) + αR(xk − xRightGoal)) (35)

u∗
k = −αLLk(xk − xLeftGoal) +−αRLk(xk − xRightGoal) (36)

It can now be seen that u∗
k is the weighted sum of two optimal feedback control policies809

for each potential goal. In other words, this can be considered as the average of parallel flexible810

control policies. It is important to note that this holds given the assumption that the dynamics811

and costs are the same between the possible targets. Given the assumptions above, parallel812

averaged flexible control policies and a single flexible control policy to an averaged goal are not813

dissociable.814
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Modelling Outcomes815

Figure SE1: Experiment 1 Best-Fit Parameter Model Simulation. Experiment 2 Estimated Decision816

Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision817

times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for818

bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour. Box819

and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory820

evidence or current sensory evidence.821

Figure SE2: Experiment 2 Best-Fit Parameter Model Simulation. Experiment 2 Estimated Decision822

Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision823

times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for824

bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour. Box825

and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory826

evidence or current sensory evidence.827
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Figure SE3: Model Loss. Bootstrapped loss values (y-axis) across decision making models (x-axis) in A)828

Experiment 1, B) Experiment 2, and C) Experiment 3. Inset labels represent models simulated with novel829

sensory evidence or current sensory evidence.830
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Sensory
Evidence Parameters

Drift Diffusion
Model Novel Gain Noise (σ)

2.91 [2.82, 3.11] 2.28 [1.47, 4.95]
Drift Diffusion
Model With Leak Novel Gain Leak Noise (σ)

4.08 [4.01, 4.16] 1.58 [1.48, 1.72] 0.76 [0.31, 1.97]
Trueblood
Model Novel Urgency Leak Noise (σ)

1.79 [1.34, 2.53] 0.08 [0.00, 0.35] 4.83 [3.04, 6.29]
Urgency-Gating
Model Novel Urgency Noise (σ)

0.01 [0.01, 0.01] 8.51 [3.44, 15.56]
Urgency-Gating Model
with Low-Pass Filter Novel Urgency Tau Noise (σ)

17.61 [17.04, 17.84] 4.24 [4.17, 4.35] 0.42 [0.12, 1.70]
Drift Diffusion
Model Current Gain Noise (σ)

6.19 [5.56, 6.58] 2.24 [0.23, 4.10]
Drift Diffusion
Model With Leak Current Gain Leak Noise (σ)

16.76 [15.96, 17.72] 4.56 [4.37, 4.89] 0.94 [0.81, 1.14]
Trueblood
Model Current Urgency Leak Noise (σ)

16.10 [14.33, 18.33] 9.82 [8.82, 11.75] 2.60 [2.46, 2.89]
Urgency-Gating
Model Current Urgency Noise (σ)

2.50 [2.20, 2.58] 0.06 [0.06, 0.08]
Urgency-Gating Model
with Low-Pass Filter Current Urgency Tau Noise (σ)

1.42 [1.26, 1.72] 0.12 [0.11, 0.14] 3.69 [3.41, 4.05]

Table SE1: Experiment 1: Model Parameters.831

Sensory
Evidence Parameters

Drift Diffusion
Model Novel Gain Noise (σ)

2.83 [2.67, 3.22] 5.93 [2.32, 7.78]
Drift Diffusion
Model With Leak Novel Gain Leak Noise (σ)

3.13 [2.94, 3.60] 0.46 [0.12, 1.12] 5.44 [2.43, 7.19]
Trueblood
Model Novel Urgency Leak Noise (σ)

2.64 [2.11, 3.13] 0.14 [0.01, 0.46] 3.49 [1.60, 5.13]
Urgency-Gating
Model Novel Urgency Noise (σ)

0.01 [0.01, 0.01] 10.19 [5.01, 16.79]
Urgency-Gating Model
with Low-Pass Filter Novel Urgency Tau Noise (σ)

22.45 [19.58, 25.09] 5.65 [5.21, 6.45] 2.75 [0.63, 4.53]
Drift Diffusion
Model Current Gain Noise (σ)

5.01 [4.70, 5.86] 5.07 [3.66, 5.76]
Drift Diffusion
Model With Leak Current Gain Leak Noise (σ)

5.75 [5.38, 6.87] 0.60 [0.33, 1.58] 4.89 [3.85, 5.53]
Trueblood
Model Current Urgency Leak Noise (σ)

13.14 [11.24, 15.78] 9.35 [7.32, 11.88] 3.92 [3.46, 4.63]
Urgency-Gating
Model Current Urgency Noise (σ)

1.98 [1.88, 2.06] 0.11 [0.11, 0.11]
Urgency-Gating Model
with Low-Pass Filter Current Urgency Tau Noise (σ)

9.56 [7.17, 13.64] 2.16 [1.81, 2.67] 6.39 [4.98, 7.97]

Table SE2: Experiment 2: Model Parameters.832
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Sensory
Evidence Parameters (median [95% CI])

Drift Diffusion
Model Novel Gain Noise (σ)

19.47 [15.38, 25.15] 2.74 [1.70, 5.09]
Drift Diffusion
Model With Leak Novel Gain Leak Noise (σ)

19.21 [15.25, 24.48] 5.83 [1.16, 11.98] 3.62 [2.40, 6.01]
Trueblood
Model Novel Urgency Leak Noise (σ)

2.80 [2.24, 3.09] 0.92 [0.70, 1.16] 2.63 [2.21, 3.52]
Urgency-Gating
Model Novel Urgency Noise (σ)

0.01 [0.00, 0.01] 5.22 [0.82, 12.71]
Urgency-Gating Model
with Low-Pass Filter Novel Urgency Tau Noise (σ)

4.94 [4.21, 5.68] 1.39 [1.13, 1.74] 2.94 [2.13, 4.28]
Drift Diffusion
Model Current Gain Noise (σ)

2.18 [1.59, 4.05] 21.35 [16.49, 26.45]
Drift Diffusion
Model With Leak Current Gain Leak Noise (σ)

15.28 [13.83, 17.66] 186.87 [181.14, 194.57] 13.24 [11.32, 15.62]
Trueblood
Model Current Urgency Leak Noise (σ)

2.15 [1.57, 3.03] 12.97 [8.78, 21.28] 20.73 [16.17, 25.44]
Urgency-Gating
Model Current Urgency Noise (σ)

0.92 [0.80, 1.00] 0.23 [0.20, 0.28]
Urgency-Gating Model
with Low-Pass Filter Current Urgency Tau Noise (σ)

0.15 [0.11, 0.20] 0.01 [0.01, 0.03] 11.54 [8.03, 15.80]

Table SE3: Experiment 3: Model Parameters.833

Name Value
Q1 3.08e-05
Q2 3.32e-01
Q3 7.40e-05
Q4 1.62
Q5 8.57e-03
Q6 8.76e-03
Q7 5.55e+02
Q8 1.48e+03
Q9 4.09
Q10 1.56e+02
Q11 1.47e+02
Q12 3.21e+01
R 1.87e-07
λ 2.58

Table SE4: Movement Model Model Parameters.834
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