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. ABSTRACT

> From navigating a crowded hallway to skiing down a treacherous hill, humans are constantly
s making decisions while moving. Insightful past work has provided a glimpse of decision delib-
4+ eration at the moment of movement onset. Yet it is unknown whether ongoing deliberation
5 can be expressed during movement, following movement onset and prior to any decision. Here
s we tested the idea that an ongoing deliberation continually influences motor processes—prior
7 to a decision—directing online movements. Over three experiments, we manipulated evidence
s to influence deliberation during movement. The deliberation process was manipulated by hav-
o ing participants observe evidence in the form of tokens that moved into a left or right target.
10 Supporting our hypothesis we found that lateral hand movements reflected deliberation, prior to
1 a decision. We also found that a deliberation urgency signal, which more heavily weighs later
12 evidence, was fundamental to predicting decisions and explains past movement behaviour in a
13 new light. Our paradigm promotes the expression of ongoing deliberation through movement,

1 providing a powerful new window into understanding the interplay between decision and action.
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= INTRODUCTION

16 When presented with the option of a sweet candy or chocolate, our hand may move back and
17 forth over the two tempting options before we finally make a decision. In this example our
18 online hand movement seems to provide a readout of our ongoing deliberation before a decision.
v Over the past two decades both behavioural®?3* and neural®® findings support the idea that
20 deliberation and motor planning are intertwined. Yet it has not been shown that the ongoing
a1 deliberation—prior to a decision—is expressed throughout online movement execution.

2 Past work has helped to illuminate the interplay between motor planning and decision-
23 making. During the go-before-you-know paradigm, participants are required to initiate a reaching

781234 At movement onset, participants

22 movement towards multiple potentially correct targets
s launched their reaches between or directly at the potentially correct targets. These initial move-
2 ments reflect priors of the deliberation process, such as representations of the probability of each
27 potential target and movement speed constraints, known during motor planning before move-
s ment onset. The correct target is then indicated during the reach via an abrupt and discrete
20 change of evidence (e.g. target colour, phonological input, etc.), where participants would of-
5 ten immediately select and rapidly redirect their movement towards one of the targets. In a
a1 different paradigm, humans have similarly been shown to make a "change-of-mind" by rapidly
» redirecting their movement towards one target® following an initial reach to the other target.
;3 These rapid movement redirections were based on evidence provided prior to reaching, demon-
s strate delayed processing times, and have been interpreted to reflect a second decision. Rapid
55 movement redirections would reflect a final decision, but would obscure a short deliberation and
3 its potential influence on movement. These studies have collectively provided important insights
37 into how priors of deliberation influence motor planning and the timing of midreach decisions,
;s but have not shown that a continuous and ongoing deliberation process directly influences the
30 online movement.

40 Perceptual decision-making studies manipulate uncertain and continuous evidence, such as

10,11,12,13

a the movement of dots or tokens.!*151® towards or into potential targets over time, to
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22 influence a more prolonged deliberation and subsequent decision. A plethora of work suggests
3 that during deliberation, humans and animals accumulate (integrate) evidence over time to make
u  a decision. 171819.20.11.21.22 Apother competing theory is that an urgency signal increasing over
s time is multiplied by evidence to cause a decision.!#1%16:2223 A feature of perceptual decision-
s making tasks is that there is no movement during the deliberation period, a decision is made,
a7 and subsequently there is a movement to indicate choice. Thus, even though there is a prolonged
s deliberation, it does not have the opportunity to be expressed with movement.

49 Previous studies have collectively provided important insights, but not on how a continuous
so and ongoing deliberation process directly influences online movement. The goal of this work was
51 to elucidate whether the deliberation process influences online movements, prior to a decision. To
s2 investigate we developed a novel paradigm that allows an expression of the ongoing deliberation
53 via movement, prior to a decision. Across three experiments, we permitted movement while
s« concurrently providing uncertain and continuous evidence in the form of 15 tokens that jumped
s into a left or right target.’* In Experiment 1 we provided participants evidence during posture
ss to test whether the ongoing deliberation can elicit movement onset and subsequently influence
sz online movements, prior to a decision. In Experiment 2 we provided participants evidence after
ss movement onset, when the motor system was already actively engaged, to determine whether
so the ongoing deliberation can influence the online movements prior to a decision. In Experiment
o 3, we replicated the results from Experiment 2 while additionally testing the role of urgency
&1 on deliberation. For all experiments we predicted that lateral hand movements would reflect
&2 the deliberation process, following movement onset and prior to a decision. Collectively our
s findings show that the ongoing deliberation, which includes urgency, directly influences online

64 Movements.

-« RESULTS

«« Experimental Design
o In Experiment 1 (n = 17), Experiment 2 (n = 17), and Experiment 3 (n = 17), partic-

¢ ipants made reaching movements while deliberating between two potential targets. For each
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0 experiment, there were 15 tokens that moved laterally into either a left or right target (Fig.
w0 1). Tokens moved in 160 ms intervals. Each trial was 2400 ms. Participants were instructed to
7 select the target that would finish with the most tokens. They had to make their decision prior
72 to the final token movement. Participants indicated their decision by simultaneously pressing
73 a hand trigger in their non-dominant hand and moving their cursor into their selected target.
72 The hand trigger was crucial in dissociating movements caused by deliberation or a decision.
75 The tokens disappeared once participants pressed the hand trigger to prevent the participants
7 from changing their decision with later evidence. Critically, participants were free to move their
77 hand laterally during each trial, allowing us to measure whether deliberation—prior to a final
7 decision—influenced movement.

70 The goal of Experiment 1 was to determine if ongoing deliberation can elicit and sub-
so sequently influence movements, prior to a final decision, when evidence was initiated during
s posture. The targets were placed on the right and left side of the start position (Fig. 1A).
&2 The trial began after participants held their hand within a 2 cm wide start position for 400
ss ms. Participants experienced 216 randomly interleaved trials consisting of pseudo-random token
s+ patterns and bias token patterns (See Methods, Supplementary A). The bias token patterns
ss allowed us to probe how controlled patterns of evidence influenced deliberation and consequently
ss movement. During the bias token patterns the first three tokens moved individually into the left
&7 or right target (i.e., left bias or right bias), the next three tokens moved individually into the
s opposite target, and the remaining tokens moved with an 80% probability into the left or right
s target (i.e., left target or right target; Fig. 2A-D).

% The goal of Experiment 2 was to determine if ongoing deliberation was reflected in
o1 movements, prior to a final decision, after movement onset when the motor system was already
o actively engaged. In this experiment, the targets were placed forward and either side relative
3 to the start position (Fig. 1B). To actively engage the motor system, the trial began when
o participants moved forward out of the start position. Similar to others,3* participants were

s instructed to not stop moving forward after leaving the start position. Experiment 2 used the
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Figure. 1: Experimental Design. A,B) Participants grasped a robotic manipulandum (Kinarm) using their
dominant hand and a hand trigger in their non-dominant hand. A semi-silvered mirror projected images from an
LCD screen above. A cursor (white circle) represented their hand position. A) In Experiment 1, participants
began with the cursor within a start position (small black circle) between two targets (large black circles) that
were 20 cm to the left and right of the start position. After 400ms in the start position, the trial would begin
and fifteen tokens would appear (yellow circles) between the two targets. The tokens moved individually into
the left or right target over time. Participants were instructed to select the target which would finish with the
most tokens as soon as they were confident. They indicated their decision by simultaneously pressing the hand
trigger in their non-dominant hand and moving the cursor into the corresponding target. B) In Experiments 2
and Experiment 3, the targets were placed 30 cm forward of the start position as well as 20 cm to the left and
right. Tokens began moving once participants left the start position. Participants were also instructed not to
stop or move backwards. C) An example of the participant display while the tokens moved into the left or right
target over time (y-axis). D) Net token movement (left target - right target tokens, y-axis) over time (x-axis) of
an example token pattern. The dark grey box in (C) and the dark grey vertical line (D) correspond to the same
time point.

(-]

s Ssame token patterns as Experiment 1.

o7 The goal of Experiment 3 was to replicate the results found in Experiment 2 while
e also elucidating the roles of evidence accumulation or urgency on deliberation and consequent
oo movement. Experiment 3 was the same as Experiment 2, except we used different bias token
w0 patterns. In Experiment 3, participants experienced 336 randomly interleaved trials consisting

w1 of pseudorandom token patterns, slow rate bias token patterns and fast rate bias token patterns.
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Figure. 2: Bias Token Patterns. A-L) Net Token Movement (left target - right target tokens, y-axis) over
time (x-axis) for sample bias token patterns. A-D) Bias token patterns in Experiment 1 and Experiment 2.
A-D) Bias token patterns: the first three tokens moved individually into the left or right "bias" target, the next
three tokens moved individually into the opposite target, and then the remaining tokens moved with an 80%
probability into the left or right target. E-L) Rate bias token patterns in Experiment 3. E-H) Slow rate bias
token patterns: the first four tokens moved individually into the left or right "bias” target, the next four tokens
moved individually into the opposite target, and then the remaining tokens moved with an 80% probability into
the left or right target. I-L) For the fast rate bias token patterns: the first four tokens moved together into
the left or right "bias” target at 160 ms after the beginning of the trial. No other tokens moved until 800 ms
after the beginning of the trial. The slow rate and fast bias token patterns were identical past 800 ms after the
beginning of the trial. For each experiment, the bias token patterns were interleaved with psuedorandom token
patterns.

In the slow rate bias token patterns, the first four tokens moved individually into the left or right
bias target, the next four tokens moved individually into the opposite target and the remaining
tokens moved with an 80% probability into the left or right target (Fig 2E-H). The fast rate
bias token patterns were identical to the slow rate bias token pattern except the first 4 tokens

moved at once into the corresponding bias target (Fig. 2I-K). Critically, the slow rate and

fast rate token patterns lead to unique decision times depending on how humans accumulate
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s evidence and or rely on urgency during deliberation.

0o Individual Movement Behaviour

1o We were primarily interested in the lateral hand position at the estimated decision time. Lateral
m hand position at estimated decision time provided a measure of the influence of ongoing delib-
12 eration on the movement. In other words, the lateral hand position at estimated decision time
us  precludes movement that is a result of a final decision and subsequent action. Estimated decision
s time was calculated by subtracting a neural plus mechanical delay from the trigger time on each
s trial (see Methods;Fig. 3A,B). We examined lateral hand position at estimated decision time

s to compare between conditions (Fig. 3C).
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Figure. 3: Analysis Description. A) Hand path for a single example trial in Experiment 2. Solid circles
represent the hand position when the participant pressed the hand trigger (trigger time). Empty circle represents
the hand position at estimated decision time. Estimated decision time was calculated by subtracting a neural
and mechanical delay from the trigger time on a trial-by-trial basis. Neural + mechanical delay was estimated
for each participant using a reaction time task (see Supplementary A). B) Lateral hand movement (y-axis)
over time (x-axis). Solid grey line represents when the hand trigger was pressed. Dashed grey lane represents
estimated decision time. C) Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision time.
The lateral hand position at the estimated decision time allows us to look at the influence of deliberation on
movement, prior to a final decision.

17 Figure 4 presents results by representative individuals in each experiment. In Experiment
us 1, this participant did not initiate lateral movements prior to their estimated decision time (Fig
1o 4A-D). In Experiment 2, the participant displayed lateral movements aligned with token bias
120 direction prior to the estimated decision time (Fig. 4E-H), which reflects movement that
121 occurred before their final decision. Moreover, their lateral hand position aligned with the token
122 bias direction (Fig. 4H). In Experiment 3, the representative participant displayed lateral

123 movements that aligned with the direction of the bias in both slow rate bias (Fig. 4I-L) and

6
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INDIVIDUAL MOVEMENT BEHAVIOUR
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Figure. 4: Individual Movement Behaviour. A-H) Individual participant movement behaviour for left bias,
right target (light blue) and right bias, right target (light orange) token patterns in Experiment 1 (A-D) and
Experiment 2 (E-H). I-P) Individual participant movement behaviour in Experiment 3 for I-L) slow rate, left
bias, right target (light blue) and slow rate, right bias, right target (light orange) token patterns. M-P) Fast
rate, left bias, right target (light purple) and fast rate, right bias, right target (light red) token patterns. Solid
circles represent hand position at trigger time. Empty circles represent hand position at estimated decision time.
A,E,I,M) Individual participant reaching trajectories. B,F,J,N) Individual participant lateral hand positions
(y-axis) over time (x-axis). C,G,K,0) Individual participant lateral hand positions (y-axis) over time (x-axis)
time aligned to estimated decision time. Vertical grey dashed line at 0 ms represents estimated decision time.
D,H,L,P) Individual participant lateral hand positions at estimated decision time (y-axis) between bias token
patterns (x-axis). In Experiment 1, this participant did not display differences in lateral hand position at
estimated decision time between conditions. Participants in Experiment 2 and Experiment 3 show differences
in lateral hand positions at estimated decision time between left and right bias conditions.
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12 fast rate bias (Fig. 4M-P) token patterns. That is, the displayed participants in Experiments
125 2 and 3 moved with the evidence prior to a final decision, suggesting that their movements were

126 influenced by the ongoing deliberation.

1z Group Movement Behaviour

s Figure 5 displays the average group movement behaviour for the three experiments. We pre-
120 dicted that the lateral hand movements would be influenced by the ongoing deliberation, prior
1o to a decision. For example, a participant that is considering the left target will move towards
11 the left target, prior to their final decision. We show the average lateral hand trajectories over
132 time for Experiment 1, 2, and 3 (Fig. 5A,D,G,J). However, it is important to examine lateral
133 hand positions at the estimated time (Fig. 5B,E,H,K), which reflects movement caused by
134 deliberation prior to a final decision.

s Hand movements are influenced by deliberation when the motor system is actively
s engaged.

17 In Experiment 1, lateral hand position at the estimated decision time was not impacted by
138 the token patterns (Fig. 5B). We did not find a significant main effect of bias [F(1,16) =
139 3.681, p = 0.073], main effect of target [F(1,16) =1.016, p = 0.328], or an interaction between
1o bias and target [F(1,16) = 0.067, p = 0.799] on lateral hand position at estimated decision
11 time (Fig. 5C). The results in Experiment 1 do not support the idea that the deliberation
142 process continuously interacts with the motor control processes to influence online movements,
13 specifically when evidence is initially presented while in posture. In Experiment 2, we examined
s the influence of ongoing deliberation on the motor control system when the motor system was
s actively engaged. Here participants displayed lateral hand positions at estimated decision time
16 that was aligned with the direction of the token bias (Fig. 5E). Specifically, we found a significant
17 main effect of bias [F(1,16) = 11.533 p = 0.004] on lateral hand position at estimated decision
s time. We did not find an interaction between bias and target [F(1,16) = 0.300, p = 0.591] nor a
e main effect of target [F(1,16) = 0.255, p = 0.620]. When collapsing across target, as expected

5o we found significantly different lateral hand positions at estimated decision time between left
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Experiment 1 Group Movement Behaviour
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Figure. 5: Group Movement Behaviour. A-F) Average participant movement behaviour for bias token
patterns in Experiment 1 (A-C) and Experiment 2 (D-F). G-L) Average participant movement behaviour
in Experiment 3 for G-l) slow rate bias token patterns and J-L) fast rate bias token patterns. Solid lines
represent group mean trajectories for each condition. Shaded regions represent + 1 standard error. A,D,G,J)
Average participant lateral hand positions (y-axis) over time (x-axis). B,E,H,K) Average participant lateral
hand positions (y-ax is) over time (x-axis) time aligned to estimated decision time. Vertical grey dashed line
at 0 ms represents estimated decision time. C,F,l,L) Average participant lateral hand positions at estimated
decision time (y-axis) across bias token patterns (x-axis). In Experiment 1, there were no significant differences
in lateral hand positions at estimated decision time between bias token patterns. Participants in Experiment 2
and Experiment 3 were significantly more towards the left target in left bias token patterns compared to right
bias token patterns at the estimated decision time (p<0.001 for all comparisons). Taken together, these results
suggest that lateral hand movements reflect the ongoing deliberation during movement prior to a decision.
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151 bias and right bias token patterns (Fig. 5F; p < 0.001, 6 = 82.35). Moveover, our findings
152 and interpretation were consistent when we very conservatively looked further back in time (See
153 Supplementary B), along with pseudorandom token patterns (e.g., 20%, 35%, 50%, 75%, and
15 80% left target probability; see Supplementary C). The findings in Experiment 2 support
155 the hypothesis that the ongoing deliberation process influences online movements, prior to a
156 decision, when the motor system is actively engaged.

157 In Experiment 3 we replicated the movement behaviour findings of Experiment 2. We
153 analyzed lateral hand position at estimated decision times separately for slow rate and fast rate
150 token patterns, since they had different decision times (see Group Decision-Making Behaviour
10 below). For the slow rate token patterns we found a significant main effect of bias [F(1,16) =
161 14.663, p = 0.001] on lateral hand position at estimated decision time, but no main effect of
162 target [F(1,16) = 0.0875, p = 0.771] or bias and target interaction [F(1,16) = 0.040, p = 0.844].
163 For the fast rate token patterns we found a significant main effect of bias [F(1,16) = 9.114, p
16« = 0.008] and a significant main effect of target [F(1,16) = 4.834, p = 0.043] on lateral hand
165 position at estimated decision time, and not a bias and target interaction [F(1,16) = 1.297,
66 p = 0.272]. We found significantly different lateral hand position at estimated decision time
167 between left bias and right bias conditions for both slow rate bias token patterns (p < 0.001, 6
16s = 79.41, Fig. 5I) and the fast rate bias token patterns (p < 0.001, 0 = 82.35, Fig. 5L). Again,
160 differences in lateral hand position support the hypothesis that ongoing deliberation influences
o movement, prior to a decision, when the motor system is actively engaged.

171 Taken together, our results from Experiments 1, 2, and 3 support the idea that the
12 ongoing deliberation process influences hand movement—prior to a decision—when the motor

173 system is actively engaged but not during posture.

. Group Decision-Making Behaviour

s Humans relied less on early evidence when making decisions.
e We were also interested in the processes that underscore the deliberation. Figure 6 shows the

17 estimated decision times for each bias token pattern and experiment. In Experiment 1, we

10
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s found a significant main effect of bias [F(1,16) = 7.222, p = 0.016] on estimated decision time,
170 but there were no significant differences in followup mean comparisons (p = 0.053, 6 = 61.76,
s Fig. 6A). We did not find a significant main effect of target [F(1,16) = 0.606, p = 0.447]
181 Or an interaction between bias and target [F(1,16) = 0.930, p = 0.349] on estimated decision
152 time. In Experiment 2, we did not find a significant main effect of bias [F(1,16) =0.989,
13 p = 0.335], significant main effect of target [F(1,16) < 0.001, p = 0.993], or an interaction
15 between bias and target [F(1,16) = 0.154, p = 0.700] on estimated decision time (Fig. 6B).
185 Interestingly, participants made faster decisions during Experiment 2 compared to Experiment
s 1 (p < 0.003,

157 hatd = 67.76). One possibility for our result is that decisions are made faster when the motor
188 System is actively engaged, supporting bidirectional interactions between decision and motor
10 processes. In Experiment 3, we found a significant main effect of rate [F(1,16) = 27.18, p <
1w 0.01] on estimated decision time (Fig. 6C). Counterintuitively, we found that participants made
1 earlier decisions in slow rate compared to fast rate token patterns (p < 0.001, 6 = 89.71, Fig.
12 6C,7A). We did not find main effects of target [F(1,16) = 0.689, p = 0.419], main effect of
103 bias [F(1,16) = 0.588, p = 0.454], nor any significant interactions (p > 0.105). The selection
104 rates for each token pattern are shown in Supplementary D.

195 Above we did not find a significant bias and target interaction on estimated decision time.
s This pattern is consistent with past work by Cisek (2009) that proposed that urgency is involved
17 with deliberation. As a reminder, urgency represents less reliance on early evidence compared
108 to later evidence when making a decision. Interestingly and counterintuitively, we found that
109 participants made earlier decisions with a slow rate token pattern compared to the fast rate
20 token pattern. This finding strongly align with the idea that decision making processes more
20 heavily value information that is presented later in time (i.e., second, third and fourth tokens in
200 the slow rate token pattern) compared to the same information presented earlier in time (i.e.,
203 second, third and fourth tokens presented earlier in time during the fast rate token pattern).

20 However, as shown below in Decision-making models, the presence of both urgency and

11
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Figure. 6: Group Decision Time Behaviour. Estimated decision time (ms; y-axis) in A) Experiment 1, B)
Experiment 2, and C) Experiment 3 across bias token patterns (x-axis). Open grey circles and connected grey
lines represent individual participants. Closed coloured circles (and error bars) represent mean (and standard
error of the mean) for each token pattern. Estimated decision time did not change between bias token patterns
in A) Experiment 1 (p > 0.05) and B) Experiment 2 (p > 0.05). C) Participants had earlier estimated
decision times in Experiment 3 for slow rate token patterns (blue and orange colours) compared to fast rate

token patterns (purple and red colours; p < 0.001), suggesting a greater temporal weighing of later evidence in
the decision-making process.

evidence integration best explain the reported estimated decision times.

Computational Modelling
Our central focus was to investigate the interaction between the decision-making and motor

control processes. To this end, we used a computational framework that combines a decision-

making model and an optimal feedback control model.

12
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20 Decision-making models

o Before combining decision and motor models, we first sought to determine the decision-making
212 model that would best explain estimated decision times and selection rate proportions. Evidence
213 was based on the current correct probability for a target given the number of tokens within the
24 left, right and center locations (eq. 1, see Methods). We tested five decision-making models
25 (drift-diffusion model, drift diffusion model with leak, Trueblood (2021), urgency-gating model,
26 urgency-gating model with a low-pass filter that used either novel evidence (eq. 3) or current
27 evidence (eq. 2) to make a decision; see Supplementary E)'*2* Here we focus on Experiment
zs 3 (Fig. 7) since there was a significantly earlier estimated decision time in the slow rate token
210 patterns compared to the fast rate token patterns (see Supplementary E for Experiment 1
20 and 2 results).

21 We found the Trueblood model with novel evidence and the urgency-gating model with
22 a low-pass filter with novel evidence were the only two models which could capture the earlier
23 decision times in the slow rate token patterns relative to the slow rate patterns (Fig. 7A). The
24 other best-fit models found decision times that were similar between the two different sets of
25 rate token patterns.

226 To give insight into the mechanisms of the models, we show representative model behaviour
27 in Figure 7C-D. In Fig. 7B, we show examples of fast rate right bias left target and slow rate
28 right bias left target token patterns. These two token patterns were similar except for the different
29 rates of token movement for the initial bias. For both the Trueblood model with novel evidence
20 (Fig. 7C) and the urgency-gating model with a low-pass filter on novel evidence (Fig. 7D), we
231 see similar decision variable trends. Both the Trueblood model and the urgency-gating model
22 with a low-pass filter utilize urgency and integrate evidence leading to similar behaviour. For
233 the fast rate token pattern there is some initial integration of evidence, either through evidence
23 accumulation or the low-pass filter. However, urgency is low early when the first four tokens
235 move, so that the decision variable does not immediately cross the decision threshold. Conversely

236 for the slow rate token pattern, each individual token movement leads to some integration of

13
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Figure. 7: Best-Fit Decision-Making Model Simulations. A) Experiment 3 estimated decision time (y-
axis) for group behaviour (pink) and Decision-Making Models (grey; x-axis). Group participant estimated decision
times are shown for slow rate token patterns (light pink) and fast rate token patterns (dark pink). Best-fit model
simulations of decision times are shown for slow rate token patterns (light grey) and fast rate token patterns
(dark grey). Box and whisker plots show 25%, 50% and 75% quartiles. Decision-making models simulated
decisions using novel sensory evidence or current sensory evidence. As described above in Figure 6, participants
made earlier decisions with slow rate token patterns compared to fast rate token patterns. Only the Trueblood
model using novel sensory evidence and the urgency-gating model with a low-pass filter on novel sensory evidence
were able to capture the behavioural difference in decision time between slow rate token patterns and fast rate
token patterns. The Trueblood model and urgency-gating model with a low-pass filter both contain a temporally
increasing (urgency) component and an integration of evidence. B) Net Token Movement (y-axis) over time
(x-axis) for Slow Rate, Right Bias, Right Target (Dark Orange) and Fast Rate, Right Bias, Right Target (Dark
Red) token patterns. C-D) Example simulations of decision-making models showing decision variables (y-axis)
over time (x-axis). Each trace represents a single decision-making trial for either slow rate, right bias, right
target (dark orange) and fast rate, right bias, right target (dark red) token patterns. The dashed grey lines
represent decision thresholds for a left target decision or right target decision. C) Trueblood model using novel
evidence. D) Urgency-gating model with a low-pass filter using novel evidence. Our model results suggest
that the deliberation process likely includes an urgency signal, or temporal scaling, component as well as the
integration of novel evidence.
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237 evidence. Crucially, individual token movements later in time are more heavily weighted by
238 urgency, which compounded over time leads to an earlier corsssing of the decision variable over
230 the decision threshold. Note for the drift diffusion models, the best solution to capture the
20 trend was achieved by having high noise parameters since they would be unable to produce the
21 observed faster decision time with the slow rate token pattern. We chose to use the Trueblood
22 model as an input into the decision-making and movement model, described directly below,

23 because it explicitly defines both urgency and evidence accumulation.
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Figure. 8: Best-Fit Movement Model Simulations. We fit a decision and movement model across the
movement trajectories in biased token patterns in Experiment 2 and Experiment 3. The models utilized a
weighted average of the targets to control the feedback responses. For each trial and time step, the weighting
for each target was calculated from a decision variable generated by the Trueblood model using novel sensory
information. A-C) Model Individual Behaviour. D-F) Model Group Behaviour Lateral Hand Position (y-axis)
over time (x-axis). G-1) Experimental Group Behaviour Lateral Hand Position (y-axis) over time (x-axis; repeated
from Figure 4). The model was able to capture the trends found in the experimental group behaviour. This
model supports the idea that online movements reflect the ongoing deliberation process.
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2a  Decision-Making and Movement Model

25 We found that ongoing deliberation influenced online movement. To capture this movement
26 behaviour, we developed an optimal feedback control model?°20:27:28:29.30 that ysed the evolving
207 decision variable to influence the ongoing movements. The decision variable was simulated using
us the Trueblood model with novel evidence. In short, an optimal feedback controller directed
29 the hand towards an evolving and weighted averaged target that was a function of deliberation
20 (see Supplementary E for further details). This model is able to capture individual movement
251 behaviour (Fig. 8A-C) and group movement behaviour (compare Fig. 8D-F to Fig. 8G-I).
»2  Replicating previous work with the movement model.

23 Using our decision-making and movement model, we were also able to replicate the results from
x  a go-before-you-know task by Wong and Haith (2017).3 The researchers defined reaches that
5 were not directly at one of the two targets as intermediate movements. They found that slow
256 reaching movements resulted in more intermediate movements compared to fast reaches (Fig.
257 9). The authors interpreted these findings to indicate a single flexible plan that maximized task
s performance, since an averaging of static motor plans would always launch as an intermediate
250 movement regardless of movement speed.!

260 We replicated their findings (Fig. 9C,D) by using an urgency signal that was inversely
21 proportional to allowable reach time, as well as proportional to the distance between the targets
22 since this would be more energetically costly (eq. 27).3! In particular when comparing slow and
%3 fast movement speeds, our decision-making and movement model suggests that the proportion
sa  Of intermediate movements arises due to the urgency to make a decision. For example, urgency
s is higher in the fast movement condition since there is less time to reach the target. As a con-
26 sequence during these fast movements, a target is more quickly selected even without evidence,
27 since the deliberation noise is multiplied by a high urgency signal and crosses a decision threshold
s (i.e., guessing). Conversely in the slow movement condition, the lower urgency does not push
x0 the noise over a decision threshold and the participant can wait for evidence of the correct target.

270 Collectively our empirical and computational results suggest that deliberation, which in-
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Figure. 9: Replicating Previous Work. A,B) Behavioural data from Wong and Haith (2017; reprinted with
permission) showing that required movement speed and target separation affect the proportion of intermediate
movements. A) Individual single trajectories for dual-target and single target reaches with different target
separation angles. Red and blue represent movements in the slow and fast conditions respectively. B) Group
proportion of intermediate movements (y-axis) between target separation angles (x-axis). In C,D), our model
predicts that differences in urgency between conditions can lead to differences in the proportion of intermediate
movements. Here, we modulated urgency as a function of the relative cost of an intermediate movement and
the time to get to the target. C) Model single trajectories for dual-target and single target reaches with different
target separation angles. Red and blue represent movements in the slow and fast conditions respectively. D)
Model Average proportion of intermediate movements (y-axis) between target separation angles (x-axis). Our
model was able to replicate the influence of required movement and target separation angle on the proportion of
intermediate movements by manipulating the urgency in the deliberation process.

volves urgency, directly influences online movements.

DISCUSSION

We show that ongoing deliberation is reflected in movements—prior to a decision—when the
motor system is actively engaged. We also find that urgency was necessary to explain decision
times in the third experiment, as well as predicting movement behaviour in the literature. Col-
lectively, our work supports the idea that decision-making processes continuously interact with
motor processes, such that deliberation is expressed via movement.

In Experiment 2 and Experiment 3, we were able to elucidate the influence of the ongo-
ing deliberation of uncertain and continuous evidence on movements. Prior literature has utilized

a "go-before-you-know" paradigm where participants were presented multiple potential targets
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21 and initiated their movements without complete knowledge of the correct target.”1:3233234 |

22 these studies, the correct target was indicated partway through the reach via a sudden and dis-
23 crete change of evidence (e.g. target colour or location, phonological input, etc.) that resulted
284 in participants making rapid movement redirections. These rapid movement redirections reflect
2ss  a rapid decision in response to a sudden and discrete change of evidence. Similar rapid move-
25 ment redirections have been seen following uncertain and continuous evidence (i.e., random dot
7 motion task) that is presented prior to movement initiation.%3435 In a small subset of trials,
288 participants displayed "changes of mind" where they rapidly redirected towards the other target.
280 |t has been suggested that these changes of mind reflect a second decision based on delayed
200 sensory information. Due to the sudden decisions and rapid movement redirections in the above
201 works, it would be difficult to dissociate whether movement was caused either from deliberation
22 Or acting solely on a second decision.

203 There has also been increased interest in mid-reach decisions, such as when using the
20s  target-split paradigm by Kurtzer and colleagues (2020).3° In this task, participants would move
205 their hand to one target and this would occasionally change to two target options during the
26 movements. Participants showed a preference toward the options nearest the original target.
207 Others have shown that mid-reach decisions are sensitive to other factors such as relative target
28 frequency, reward magnitude,®® and biomechanics.3*#%4! |n these mid-reach decision tasks,
200 participants indicate their choice with a rapid movement redirection. Again however, it would
s0 be difficult to dissociate whether movement was caused either from deliberation or the final
;o1 decision.

300 Unlike the above works and others 4?43

a key aspect of our design was using the hand
303 trigger to estimate the decision time, allowing us to separate whether movement was caused
504 either from deliberation or action selection following a final decision. Future work could adapt
s this paradigm during reaching or gait to study the influence of reward, energetics, and other

306 factors that may impact decision-making to gain an understanding of the ongoing deliberation

07 Via movement.
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308 In Experiment 1 we found that the ongoing deliberation did not induce movements prior
30 to a decision, at least to a significant level, when initially in posture. Conversely, in both
s Experiment 2 and Experiment 3 we found that when the motor system was already actively
sn engaged that there was an expression of the deliberation process via movement. Being able
sz to express deliberation in movement but not in posture aligns with previous results showing
a3 differential configuration and engagement of motor circuits for movement and posture.44%:46
sie One possibility is the decision processes have a larger influence on movement circuits than
a5 postural circuits. While our paradigm allows for a continuous expression of deliberation during
316 movement execution, past work has shown that it is possible to elicit an instantaneous expression
a7 of deliberation from a postural state. Selen and colleagues were able to gain a momentary

t.47:3% Specifically, they perturbed

s1s expression of deliberation at the moment of movement onse
s19 the upper limb while in posture and measured the resulting long-latency stretch reflex. They
20 found that the long-latency stretch reflex reflected deliberation at the time of perturbation while
;21 in posture. Although we did not find that evidence was enough to elicit movement initiation from
322 a postural state, we did find that deliberation can be continually expressed during movement.

323 In this work, we have primarily investigated the influence of deliberation on movement.
22 We also found that participants made faster decisions when already moving in Experiment
2s 2 compared to when in posture for Experiment 1. This finding may reflect ‘embodied de-
326 cisions, where the current and future states of the motor system can influence decision mak-
»7 ing.48:49.50.51,52,39,53,54,55.56.41 K orhisch and colleagues (2022) had participants select between short
2s or long walking durations or shallow and steep walking inclines.>* When participants looked at
20 depictions of the various options, the researchers found higher saccade vigor (i.e., velocity) to-
;30 wards the depictions associated with less effort. These results suggest that potential energy
31 costs are embodied and can be reflected during deliberation with eye movement. In their study,
sz evidence of potential effortful options was discrete and did not change during the course of the

133 eye movement. Here saccade vigor provides a glimpse of deliberation reflecting past evidence ac-

s quired from previous eye movements. Building on this work, we show the online movement itself
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15 is influenced by an ongoing deliberation. It would be interesting for future work to manipulate
16 both potential energetic costs over time and evidence during movement to further understand
;37 embodied decisions.

338 In this study, we were interested in the influence of deliberation on movement. In Exper-
;30 iment 1 and Experiment 2 we found no difference in decision times between the bias token
s patterns, which replicates previous findings and is consistent with the urgency-gating hypoth-
a1 esis..'* For Experiment 3, we used slow rate and fast rate token patterns to manipulate the
s> rate of evidence and further understand deliberation. The standard evidence accumulation (with
13 or without leak) and pure urgency-gating model (without a low pass filter) would predict that
ss  the fast rate token patterns would respectively cause earlier or similar decision times compared
us  to the slow rate token patterns. Counterintuitively, we found that the slow rate token patterns
ss  made faster decisions compared to the faster rate token patterns. We were able to capture faster
a7 decisions with the slow rate token patterns with both the Trueblood model and urgency-gating
us  model with a low-pass filter. Both these models are similar mathematically and have terms that
a9 relate to urgency and an integration of evidence. Conceptually, the Trueblood model integrates
0 to accumulate evidence towards a decision, whereas the integration from the low-pass filter of
;51 the urgency-gating model is intended to reflect an estimate of evidence from sensory processes.
2 Neural activity during perceptual decision-making in monkeys has been attributed to either ev-

171121 or the scaling of low-pass filtered estimate of

53 idence accumulation towards a decision.
1 evidence with an urgency signal that arises from the basal ganglia.!*® An important future
35 direction, such as through neural recordings in animals, is to determine where and why there is
36 an integration of evidence. Irrespective of evidence integration, urgency was needed to predict
57 decision times and replicate reaching trajectories from past work.3

358 Here developed a movement model that reflected deliberation, by combining the Trueblood
0 decision-making model and optimal feedback control. This differs from past work that has

30 used dynamic programming,®” bayesian methods,%® only optimal feedback control,*® and relative

se1  desirability of multiple options.>® While these other modelling approaches have been insightful
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2 and motivated the current work, they do not have a deliberation process that includes urgency.
33 Urgency was a critical component to capture decision making time and reaching movements
sa  from past literature. However, it would be possible to include an urgency term in these previous
s modelling approaches. A limitation of our model as currently formulated is that it only allows for
6 the deliberation process to influence the movement. That is, it does not allow the motor states to
s7 directly influence the deliberation process. This model design reflects our experiments where we
e manipulate the deliberation process to test its influence on movement. However, several of the
30 aforementioned models would be able to capture some of the bidirectional relationships between
30 cognitive and motor processes during embodied decisions reported in the literature. 48:51:53:52,54.41
s Moving forward, it will be important to have a computational model of embodied decisions that
w2 captures several important features of both motor behaviour (e.g., bell shaped velocity profiles,
w3 vigor) and decision-making behaviour (e.g., skewed reaction time, speed accuracy tradeoff, Hicks
s law, urgency).

375 Overall, we have shown that the motor system is influenced by the deliberation of multiple
srs  targets. Prior literature has examined how the decision-making and motor systems interpret and
sz act on multiple potential options.#399¢ |n the go-before-you-know task, intermediate movements
s7s  between two targets have been suggested to be an outcome of parallel averaged motor plans!25°
s or a single flexible motor plan that optimizes task performance.®%* Wong and Haith (2017)
;0 interpreted more intermediate movements with slow hand speeds compared to fast hand speeds
1 to reflect a single flexible motor plan.3 Here we provide an alternative perspective by considering
;2 urgency. When one also considers urgency, it is possible to explain different proportions of
;3 intermediate movements between slow or fast hand speeds with either a single flexible motor
;s plan or parallel averaged motor plans.

385 It is important to consider that a single flexible motor plan or parallel averaged motor plans
3 are a combination of two factors: i) single versus parallel average, and ii) static versus flexible.

sz Obviously a single static motor plan is not a viable option to handle multiple potential goals.

s Alhussein and colleagues (2021) rule out a parallel average of static motor plans, since their
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0 prediction was based on the initial reach angle to each target.* Yet their finding does not rule
30 out the possibility of a parallel average of flexible motor plans, where each motor plan (more
;1 specifically, control policy) could contain a safety margin. As shown above, we were able to
. replicate the results of Wong and Haith (2017) by considering urgency.® It is mathematically
33 equivalent to have a single flexible motor plan that reflects a weighted average of two targets
;¢ based on evidence, compared to flexible parallel plans (control policies) that are weighted based
15 on evidence (see Supplementary E). It is not clear how to behaviourally dissociate between a
306 single flexible motor plan or parallel average of flexible motor plans through movement execution.
se7 | here has been conflicting neural support with regards to parallel motor plans or a single flexible
s motor plan.>® It would be useful for future work involving neural recordings to determine where,
30 when, and how multiple target representations and deliberation processes finally converge to
w0 produce a single executed movement.

401 Humans often must make decisions while moving. We found that deliberation was reflected
w2 in ongoing movements—prior to a decision—when the motor system was actively engaged.
w03 We found that an urgency signal, which more heavily weighted evidence later in time, was
s0s  fundamental to predicting decision times and explaining previous reaching behaviour. Our results
s support the hypothesis that the decision-making process influences movements prior to a decision.
w6 Understanding the integration of decision and motor processes may allow us to better understand

a7 neurological disorders where cognitive and motor processes and deficits may be entangled.

«» METHODS

« Participants

a0 In total we collected 51 participants across three experiments. 17 individuals (24.8 + 2.37
a1 years old) participated in Experiment 1, 17 individuals (21.4 + 1.76 years old) participated
a2 in Experiment 2, and 17 individuals (23.2 4+ 2.93 years old) participated in Experiment
a3 3. Participants reported they were free of musculoskeletal or neuromuscular disorders. All

a4 participants provided informed consent to participate in the experiment and the procedures were
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ss  approved by the University of Delaware’s institutional review board. Participants were provided

a6 $10 USD compensation.

a7 Apparatus

ss  For all three experiments, participants grasped the handle of a robotic manipulandum with
a0 their dominant hand (Fig. 1A; KINARM, BKIN Technologies, Kingston, ON, Canada) to
20 perform reaching movements in the horizontal plane. Participants held a hand trigger in their
a1 nondominant hand. A semi-silvered mirror projected images (start position, left and right targets,
2 tokens) from an LCD screen onto the horizontal plane of motion. To assess muscle activity,
23 we recorded electromyography (EMG) signals with bipolar surface electrodes (single differential
o electrode, Trigno system, Delsys, Natick, MA) from the flexor policis brevis of the nondominant
25 hand. To obtain an estimated decision time, a voltage signal indicated when the thumb pushed
26 the hand trigger. Kinematic, EMG, and hand trigger data were recorded at 1,000 Hz and stored

w27 Offline for data analysis.

»s Protocol

29 General Task Protocol

a0 For each trial, participants were visually presented with a white start position (2 cm diameter)
a1 and two targets (5 cm diameter). The left and right targets were respectively 20 cm to the left
a2 and right of the start position (Fig. 1A). A yellow cursor (1 cm diameter) provided real-time
i3 feedback of their hand position. The participants were instructed to move their cursor into the
s34 start position. After holding the cursor with the start position for 400 ms, participants heard a
135 beeping sound and 15 yellow tokens appeared between the left and right targets. At trial onset
s (0 ms), the tokens jumped from the center into the left target or right target in 160 ms time
a7 intervals’® (Fig. 1C). Participants had to make their decision prior to 2400 ms, corresponding to
138 the final token moving into one of the targets. Once they felt confident which target would end
20 up with the most tokens, they were instructed to simultaneously i) press a trigger with their non-
10 dominant hand and ii) move towards and hit the selected target. As soon as participants pressed

w1 the hand trigger, the remaining token movements were not visible to the participant to prevent
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w2 them from changing their decision with later evidence. If participants selected the correct target,
u3 they would hear a pleasant ding and their selected target would turn blue. If participants selected
was  the incorrect target, they would hear an unpleasant buzzer and their selected target would turn
a5 red. When participants did not press the hand trigger and/or enter a target within 2400 ms of
us the beginning of the trial, both targets would turn red. Further, unknown to participants, that
w7 the trial would be repeated later on during the experiment.

us Experiment 1 Task Protocol

mo  The goal of Experiment 1 was to determine if ongoing deliberation can elicit and subsequently
ss0 influence movements, prior to a final decision, when evidence was initiated during posture. The
i1 targets were directly to the left and right of the start position (Fig. 1A). The participant waited
42 in the start position for 400 ms. After this wait period, trial onset (0 ms) was indicated with a
ss3 beep. The tokens moved into the left or right target one at a time in 160 ms intervals. In total,
54 participants experienced 216 trials in the main experiment. We used bias, pseudorandom, late,
w55 and null token patterns (Fig. SA1).

456 We were primarily interested in the bias token patterns, since we tightly controlled the
ss7 token movement and consequently the experienced uncertain and continuous evidence. During
s the bias token patterns the first three tokens moved individually into the left or right target (i.e.,
w0 left bias or right bias), the next three tokens moved individually into the opposite target, and
w0 the remaining tokens moved with an 80% probability into the left or right target (i.e., left target
w1 or right target; Fig. 2A-D). These bias token patterns, we had each of the four combinations
w2 Of left bias or right bias and left target or right target. Each bias token pattern was presented
s3 12 times, which resulted in 48 bias token patterns.

464 We also had psuedorandom token patterns where each token had the same probability
w5 of going to the left target. We had 20%, 35%, 50%, 65% or 80% probability psuedorandom
w6 token patterns. Each psuedorandom token pattern was presented 12 times except for the 50%
w7 condition which was presented 24 times, which resulted in 72 psuedorandom token patterns.

ws Additionally, we had null token patterns (24 trials), late token patterns (48 trials), and late
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w0 null token patterns (24 trials). Similar to the ambiguous token patterns used by Cisek (2009),
a0 the null bias token patterns had a net token movement that was close to zero throughout the
w1 beginning portion of a trial.}*

>  Experiment 2 Task Protocol

a3 The goal of Experiment 2 was to determine if ongoing deliberation was reflected in movements,
s prior to a final decision, after movement onset when the motor system was already actively
a5 engaged. Tokens were initiated when the participant left the when evidence was initiated by
s movement. In Experiment 2, the targets were 30 cm forward and 20 cm to the left and right
a7 of the start position. The participant waited in the start position for 400 ms, after which they
w8 heard a beep. The beep indicated the participant may leave the start position. Trial onset (0
w9 ms) occurred once the participant left the start position. Experiment 2 used the same token
0 patterns as Experiment 1.

w1 Experiment 3 Task Protocol

2 The goal of Experiment 3 was to replicate the results found in Experiment 2, while also eluci-
.33 dating the roles of evidence accumulation or urgency on deliberation and consequent movement.
s The experimental setup was the same as Experiment 2, except for the specific token patterns
ws (Fig. SA 2). Participants experienced 336 total trials. Trials included slow rate bias (Fig. 2
w6 E-F), fast rate bias (Fig. 2I-L), pseudorandom, late, and null token patterns.

ag7 In this experiment, we were primarily interested in the slow rate and fast rate bias token
w3 patterns because we tightly controlled their movement and the experienced uncertain and contin-
w0 uous evidence. Further, the slow rate and fast rate token patterns lead to unique decision times
w0 depending on how humans accumulate evidence and / or rely on urgency during deliberation.
a1 During the slow rate bias token patterns, the first four tokens moved individually into the left
w2 or right target (i.e., left bias or right bias), the next four tokens moved individually into the
w3 opposite target and the remaining tokens moved with an 80% probability into the left or right
s target (i.e., left target or right target; Fig. 2E-F). In the fast rate bias token patterns the first

ws four tokens moved at the same time into the left or right target (i.e., left bias or right bias), the
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w6 next four tokens moved individually into the opposite target and the remaining tokens moved
v with an 80% probability into the left or right target (i.e., left target or right target; Fig. 2I-L).
ws For these bias token patterns, we had each of the eight combinations of fast rate or slow rate,
w00 left bias or right bias, and left target or right target. Each bias token pattern was presented 12
so0 times, which resulted in 96 bias token patterns.

501 The pseudorandom token patterns were the same as Experiment 1 and 2 (Fig. SA
o 21-M). Similar to Experiment 1 and 2, we also had late and null token patterns.

s0s Reaction Time Task.

sa  Prior to any of the experiments described above, participants performed a reaction time task
ss to determine the sensory and motor delays involved in making and indicating a decision (Fig.
s.s  SA 3A). In the reaction time task, the targets were in the same location as the corresponding
7 main experiment (as described in Experiment Task Protocols above). The reaction time task
sos used the same trial onset as the corresponding experiment. At trial onset (0 ms), all 15 tokens
so0 jumped into either the left or right target (Fig. SA 3B,C). Participants were instructed to
s.0 select the target that all of the tokens jumped into as fast as they could (Fig. SA 3D). Again,
s participants indicated their decision by pressing the hand trigger and moving the cursor into
si2 their selected target (Fig. SA 3E,F). Participants performed at minimum 20 familiarization
s13 trials in the reaction time paradigm to become accustomed to the experimental setup. After the
sia familiarization trials, participants performed 24 reaction time trials. There were 12 left reaction

s15 time trials and 12 right reaction time trials that were presented in a randomly interleaved order.

ss Data Analysis

si7  Estimated Decision Time

sis  [rigger time was determined when the voltage of the hand trigger crossed 3 volts for each
s trial. We found an estimated decision time on each trial to determine when decisions were
s20 made independent of reaching movements. We estimated a Neural + Mechanical Delay for each
s21 participant using their reaction time trials. For each muscle per trial, we subtracted the global

s> mean muscle activity across all the reaction time trials. Flexor policis brevis muscle activity was
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s full wave rectified and then dual-pass, sixth order, lowpass (20 Hz), Butterworth filtered. We
s« determined EMG onset time with a dual-threshold method given a critical amplitude threshold
s and a 10 ms temporal threshold.®> We defined a critical amplitude threshold of mean + three
s26 standard deviations of the flexor policis brevis muscle activity in the 400 ms before the trial
so7  onset across all trials. EMG onset time was determined when the EMG activity rose and stayed
s above the critical amplitude threshold for 10 ms. The onset time was calculated using the dual-
s20 threshold method and verified by human inspection per reaction time trial (Fig. SA 4A,B).
s30 We found the average difference between Trigger Time and EMG onset time for the reaction
s time trials per subject (Fig. SA 4C). The Neural + Mechanical delay for each participant
s was defined as the average difference between Trigger Time and EMG onset time plus a nerve
s propagation delay of 20 ms.®®> We calculated the estimated decision time on each trial during
s the main experiments as the trigger time minus the neural 4+ mechanical delay (Fig. SA 4D).
s Movement Analysis

s3 Hand position data were digitally dual-pass, second order, lowpass (20 Hz cutoff), Butterworth
s37 filtered. Our primary focus was to determine whether the deliberation process influences move-
s ments, prior to a final decision. We were interested in the movement prior to the influence of
s30 the final decision and subsequent actions. To this end, we looked at the lateral hand position at

s00 estimated decision time (Fig. 2).

s Statistical Analysis

se2  All statistical tests were performed in Python 3.8.5. We used repeated measures analysis of
s3 variance (rmANOVA) as the omnibus tests for each dependent variable. We were primarily
ssa  interested in estimated decision time, lateral hand position at estimated decision time, and
sss  Sselection rate metrics for the bias token patterns. In Experiment 1 and Experiment 2, we
s¢s used a 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision time, lateral
sev  hand position at estimated decision time, and selection rate. In Experiment 3, we used a 2
ses (Rate: Fast or Slow) x 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVA for decision

ss0 time and selection rate. For lateral hand position at estimated decision time we performed
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ss0 separate 2 (Bias: Left or Right) x 2 (Target: Left or Right) rmANOVAs for fast bias patterns
ss1 and slow bias patterns. Here we used separate rmANOVAs, since we found significantly different
ss2  decision times between slow rate and fast rate bias token patterns. For Experiments 1, 2, and
53 3, we were also interested in the pseudorandom token patterns and used a 1-way rmANOVA
s« (Probability of Left Target: 20%, 35%, 50%, 65%, and 80%) for estimated decision time, lateral
55 hand position at estimated decision time, and selection rate. For all experiments, we performed
sss nonparametric bootstrap hypothesis testing for mean comparisons (n = 1,000,000).64:65.66.67.68
ss7 Holm-Bonferroni corrections were used to control for Type 1 error. We computed Common

s Language Effect Size (0) for all mean comparisons.®%%8 Statistical significance was set to p <

550 0.05.
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571 Figure SA3: Reaction Time Design. In the reaction time trials, we wanted to measure how quickly partic-
572 ipants could respond to goal-related stimulus. The participant initiated the reaction time trial by leaving the
573 start position. As soon as participants left the start position, all the tokens jumped into one of the two targets.
s+ Participants were instructed to select the target which all of the tokens moved into as fast as they could. The
575 participants indicated their by pressing the hand trigger in their non-dominant hand and moving into the corre-
576 sponding target. A) The reaction time task setup was identical to the experimental conditions for Experiment
577 2 and Experiment 3. B) An example of the participant display while the tokens moved into the left or right
s target over time. C) Net Token Movement (left tokens minus right tokens, y-axis) over time (x-axis) of an
579 example token pattern. D) Individual reaction time trial reaching trajectory. Solid black circle represents the
ss0  hand position at the trigger time. E) Hand trigger voltage (y-axis) over time (x-axis) for the trial shown in (D).
581 The trigger time was the defined as the first time point the hand trigger voltage crossed a 3V threshold. F)
ss2  Lateral hand position (y-axis) over time (x-axis) for the trial shown in (D). The vertical grey line in (E) and (F)
583 indicates the measured trigger time.
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Figure SA4: Neural and Mechanical delay calculation for example participant.  A) Example single
reaction time trial behaviour. Flexor policis brevis activity (left y-axis; light grey) and hand trigger voltage (right
y-axis; dark grey) over time (x-axis). Vertical solid grey line represents EMG onset time. Vertical dashed grey
line represents trigger time. B) Single participant trigger time (y-axis) vs EMG onset time (x-axis) for all reaction
time trials. C) Histogram of difference between trigger time and EMG onset time (x-axis) for example participant
reaction time trials. Vertical dashed pink line represents average difference between trigger time and EMG onset
time. Average difference between trigger time and EMG onset time is used to calculate estimated decision time
for each trial in experimental conditions. D) Lateral hand position (y-axis) over time (x-axis) for example reaction
time trial. We define the neural + mechanical delay as the sum of average difference between trigger time and
EMG onset time and an estimated 20ms neural propogation delay from the M1 brain region to the flexor policis
brevis. From the trigger time on a single trial, we subtract the neural + and mechanical delay to calculate the
estimated decision time. The estimated decision time allows us to look at the influence of ongoing deliberation
prior to final decision-related movements.
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« Conservative Estimate
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604 Figure SB1: Conservative Time Estimate Prior to a Decision Example. A) Example single trial trajectory
605 for a reaction time task. B) Histogram of trigger time for reaction time trials for a single participant. Vertical
606 lines represent mean reaction time and mean + 2 standard deviations of reaction time. The mean + 2 standard
607 deviations of reaction time are used to conservatively estimate a time point prior to any decision related behaviour.
608 C) Lateral hand position (y-axis) over time (x-axis) for example reaction time trial. 0 ms is when participants left
600 the start position in the reaction time trial. Vertical solid grey line represents the trigger time. Vertical dashed
610 grey line represents the conservative time estimate prior to a decision. The short black line at 0 ms represents
611 the beginning of the reaction time trial. We subtract the mean + 2 standard deviations of reaction time from
612 the trigger time to conservatively estimate a time point prior to any final decision-related behaviour. In this trial,
613 our conservative estimate is prior to the beginning of the reaction time trial.
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617 Figure SB2: Group Movement Behaviour relative to Conservative Time Estimate Prior to a Decision.
618 I he figure is similar to Figure 5 but for movement behaviour at the conservative time estimate prior to a decision.
619 T he results for the conservative time estimate prior to a decision are consistent with the results found using the
620 estimated decision time (Figure 5).
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= Supplementary C
= Group Behaviour - Psuedorandom Token Patterns

= Group Movement Behaviour
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625 Figure SC2: Group Movement Behaviour for Pseudorandom Token Patterns. A,D,G) Lateral hand
626 position (y-axis) over time (x-axis) for pseudorandom token patterns in A) Experiment 1, D) Experiment 2,
627 and G) Experiment 3. B,E,H) Lateral hand position (y-axis) over time (x-axis) aligned to estimated decision
628 time for pseudorandom token patterns in B) Experiment 1, E) Experiment 2, and H) Experiment 3. C,F,l)
620 Lateral hand position (y-axis) at estimated decision time across pseudorandom token patterns (x-axis) in C)
630 Experiment 1, F) Experiment 2, and |) Experiment 3. Inset text shows the f-statistic for a main effect of the
631 pseudorandom token pattern from an rmANOVA. These results are consistent with the findings shown in Figure
632 4. Again we see an influence of the token patterns on the movement prior to a decision in Experiment 2 and
633 Experiment 3 but not Experiment 1.
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637 Figure SC1: Group Estimated Decision Time Behaviour for Pseudorandom Token Patterns. Estimated

638 decision time (y-axis) across pseudorandom token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and
630 C) Experiment 3. Inset text shows significant effects from an rmANOVA.
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« Group Selection Rate Behaviour
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643 Figure SC3: Group Selection Rate Behaviour for Pseudorandom Token Patterns. Proportion of Left
644 Selections (y-axis) across pseudorandom token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and
s4s C) Experiment 3. Inset text shows significant effects from an rmANOVA.
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« Bias Pattern Selection Rates
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651 Figure SD1: Selection Rates for Bias Token Patterns. Proportion of left target selection trials (y-axis)
652 across bias token patterns (x-axis) in A) Experiment 1, B) Experiment 2, and C) Experiment 3. Inset text
653 shows significant effects from ANOVA analysis.
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657 Figure SD2: Selection Rate Distributions for Rate Bias Token Patterns in Experiment 3. A-D) Net
658 token movement (left target - right target; y-axis) over time (x-axis). Each plot shows the slow rate and fast rate
50 token patterns for the same bias and final target. E-H) Histogram of group behaviour estimated decision time
660 (x-axis) for left and right decisions. I-L) Trueblood (2001) model with novel evidence using best-fit parameters.
661 Histogram of model predicted estimated decision time (x-axis) for left and right decisions. Histogram colors are
662 representative of the token patterns in the plot directly above. Positive and negative histograms represent left
663 decisions and right decisions respectively.
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« Supplementary E

« Modelling Methods

= Decision-Making and Movement Model

s7 Here we compared five types of decision-making models which predicted target selections and
s decision times given sensory information or evidence for a given target. We also compared two
o types of evidence, current or novel, as input into the decision-making models.

&0 Evidence

er1 As inputs to the decision-making models, we used novel evidence or current evidence. Evidence

62 is based on the correct probability (p(L| Ny, N¢, Ng)) for the left target

NC! min(N¢,7—NRg) 1 )
2N 2 k'(N¢ — k)! (1)

k=0

p(L|NL, Ng, N¢) =

673 given the number of tokens in the left target (/N1 ), number of tokens between the targets (/Vg),
e and the number of tokens in the right target (Ng; Equation 1), and ! represents a factorial.1*
s Current evidence (FE.(t)) is defined as the correct probability at the current time with added

676 SENSOry noise

Brure(t) = p(t) + N(t) — 5 2)

e7 where t is time, N(t) is sensory noise modelled with a gaussian that has a zero mean and a
e standard deviation (o.,). Novel evidence (E,oei(t)) is defined as the rate of change (d/dt) of
oo the correct probability with added sensory noise (Equation 3).

dp(t)

Enovel(t) = 7 + N<t) (3)

s Decision Making Models
1 In our decision making models, we simulate a decision variable that interprets the evidence used

62 to make a decision. We define a decision as the time when the decision variable crosses a
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es3 threshold of +1.0 for a left target decision or -1.0 for a right target decision.

e« Drift-diffusion model.1”*® The rate of change of the decision variable (DV) is equal to a gain

sss (g) multiplied by the evidence.

dDV

TR gE(t) (4)

ees  Drift diffusion model with leak!®2%* The rate of change of the decision variable is similar to

ss7 equation 4, but with a leak (L) term that represents forgetting.

O — g8~ LDV () @

e Trueblood model (2021).2* The rate of change of the decision variable is a function of urgency

s (k) and leak (L; eq. 6). It can be seen that the urgency term k is scaled by time (t) to influence
s the weightings of incoming evidence (second term on right side of the equation) and previously

s accumulated evidence (first term on right side of the equation).

% — (ﬁ - L) DV (t) + E(t)(1 + kt) (6)

|14

sz Urgency-gating model.*® The decision variable is equal to the evidence scaled by a temporally

e03 increasing urgency signal (U(t)); eq. 7). The urgency signal is a scalar (g) multiplied by the

soa current time (eq. 8).

DV(t) = U(t)E(t) (7)

U(t) = gt (8)

eos Urgency-gating model with a low-pass filter.1*1> The decision variable is equal to an estimate of

s9s the evidence (E.s) scaled by a temporally increasing urgency signal (U(t); eq. 9). The estimate

sor Of evidence is a low-pass filtered version of the incoming evidence (eq.10). The urgency signal
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s0s is a scalar (g) multiplied by the current time (eq. 11).

DV (t) = U(t) * Eeg(t) (9)
dE.,
L= —E..(t)+ E(t) (10)
dt
U(t) =gt (11)
699 We simulated each trial until either the decision variable crossed a decision threshold or

0 the trial deadline (2400 ms). Evidence was input into the decision making models with a 200ms
701 delay. We used a time step of 1 ms for all decision-making simulations.
w2 Movement Model

25,26,27,28,29,30 which used

703 Here we use a linear quadratic gaussian optimal feedback controller,
704 the decision variable from the Trueblood model to weight potential goals. The dynamics of the

705 hand are

mp(t) = =Gp(t) + F(T) (12)

TE(t) = u(t) — F(t) (13)

06 where m is mass (1 kg), p(t) is the position of the hand, and G is the viscous constant
o7 (0.1Nsm~2). u(t) is a control signal (e.g., muscle activity). F(t) represents internal forces
s (e.g., muscle force) that move the hand. 7 is a low-pass filter time constant (40 ms) that
00 approximates the rate of internal forces given some control signal.”®?® Single and double dots
70 refer to single and double differentiation.

7 We transformed the decision variable into a weighting («, (eq. 12)) for each option using

712 a logistic function

—
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1
ap =——————~
1+ e ADV(®)
14
e (14)
OR =T DV
713 where )\ is the steepness parameter and t is the current time step.
714 We also define the location of the reaching target as (pg) where alpha is the weighting for

7

iy

s each target from eq. 12. p, 1 and p, ;, correspond to the forward and lateral position of the left

76 target. p, r and p, p correspond to the forward and lateral position of the right target.

iy

Pz,GOAL = LDz, + ORPz,R (15)
Dy, GOAL = QLDy.L T QARPy R (16)
717 We combine the states into a state vector (x) in eq. 17.
XT = [px Dy pm py Fm Fy Px,GOAL py,GOAL] (17)
718 The dynamics of the system is then discretized with added state noise in eq. 18. The

70 covariance matrix of the state noise is a matrix with [0,0,0,0,1e-3,1e-3] on the diagonals and

-

20 zeros elsewhere.

Xk+1 = AXk + Bllk -+ €k (18)

721 We define a standard quadratic cost function with a (Qn) terminal cost, running state
722 cost (Q), and control costs (R). Note that Q was constant for all time steps. N is the total

723 number of time steps in the trial (240).

N-1
J = x3Qnxy + Y (uf Ruy + x.Qx) (19)

k=0

724 We define Q and Qn such that
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Xngk = Ql(px,kz_px,GOAL,k)Q + Q2(pyx — py,G’OAL,k)2

(20)
+ Q3(pak)’ + Qupy i)’ + Qs (Fror)® + Qs (Fy)”
XN QNXN = Q7(Pen—PrcoaLn)’ + Qs(pyN — PycoaLn)’ (21)
+ Qo(pin)® + Quo(pyn)? + Qui(Fan)? + Qua(Fyn)?
725 The sensory feedback signal (x) is equal to the current state with added sensory noise (7;
726 €(. 20)

Ye = Xg + 1, (22)

727 The covariance matrix for the sensory noise is a matrix with [le-3,1e-3,1e-3,1e-3,1e-3,1e-3]
728 on the diagonals and zeros elsewhere.

720 We used a Kalman filter (K) to estimate the current state (eq. 23).>"?® We used the

730 standard calculation of the Kalman filter.25:26:27:28.29.30 Note we did not consider signal dependent
731 noise, which would not have a large influence on our results given the very large target sizes.

732 Here, fcfH is the prior belief of the next state, based on X and the control signal u;. The
3 state estimate (Xj.1) is dependent on the prior X; ;, the kalman filter (K), and the sensory

7 feedback (ygi1)-

%P = Ax), + Bu, (23)
Xpr1 =X, + K (Ve — %) (24)
735 We solved for an optimal feedback policy (L) as a function of the cost function and

25,26,27,28,29,30

736 given dynamics using the Ricatti equations. We use the optimal feedback policy to

73 calculate the current optimal control signal. On each timestep, the optimal feedback controller

51


https://doi.org/10.1101/2024.08.19.608669
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.19.608669; this version posted August 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

733 generates an optimal control signal (uy) that feeds into the dynamics (eq. 18) as

u}; = —Lk(Xk) (25)

730 Each model simulation runs until the point mass enters one of the two targets (see Exper-
720 iment 2 Methods) or runs out of time (2400 ms). We simulated movements with a time step of
721 10 ms.

«  Decision-Making Model Fitting Procedure

743 In total we fit and tested ten models (five decision-making models x two types of evidence).
724 We used the same fitting procedure for each model. Model fitting was performed using the
75 powell algorithm in the Minimize function from the Scipy Python library. We fit each experiment
76 separately. For each experiment, we only fit the model to the behaviour during the bias token
a7 patterns.

748 For each model, we simulated 500 trials for each bias token pattern. We then calculated
729 the mean decision time and selection rate for each bias token pattern. The loss function was
70 defined using the decision time and selection rate. For the decision time, we calculated the
751 difference between model mean decision times and data mean decision times, then normalized
752 by 2400 ms. We then the absolute value of this normalized error. For the selection rate, we
73 calculated the difference between model mean selection rate and data mean selection rate, then
75« normalized by 100%. We then took the absolute value of this normalized error. To calculate
755 the final loss, we summed across token patterns (Y) for both decision times (DT) and selection
756 rates (SR). When fitting Experiment 3, we also considered the average difference of decision

77 times between the slow and fast rate token patterns.

Y
DTmodel o DTData SRmodel o SRData
Loss = Z : : ‘ : : (26)
2 2400 100
758 For the fitting procedure we first began with a warm-start procedure.®”" First, we fit the

750 model 1,000 times using random initial parameter guesses. From these fits we then selected the
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0 model parameters that resulted in the lowest loss. The lowest loss parameters were then used
761 as an initial guess for a bootstrapping procedure (10,000 iterations) to find the 95% confidence
72 interval of each parameter given the data. In each bootstrap iteration, we resampled with
763 replacement the decision time and selection rate from the data. The mean decision times and
74 Selection rates of the resampled data were then used to determine model loss for each bootstrap.
w Movement Model Fitting Procedure

766 For the movement model, we fit the terminal state costs parameters (Q,,), running state cost pa-
e rameters (Q), running energetic costs (R), and steepness parameter (\) of the logistic function.
s We fit Experiment 2 and 3 simultaneously.

769 We first simulated decision variables using the Trueblood Model with novel evidence. We
770 used the median model parameters from the boot-strapping procedure for each experiment.
7 Model fitting was performed using the powell algorithm in the Minimize function from the Scipy
722 Python library. We simulated 500 trials for each bias token pattern. We calculated the mean
73 trajectory for each token pattern from the simulated trials. The loss function was defined as the
722 squared error between the group mean trajectory and the simulated mean trajectory. We used
75 the model parameters that resulted in the lowest loss.

7 Haith and Wong

77 To simulate the Wong and Haith (2017) study, we used our decision-making and movement
72 model.3 We selected parameters that qualitatively resulted in proportions of intermediate move-
779 ments and trajectories that matched the experimental behaviour. Importantly, we defined the
70 urgency parameter (k; see eq. 6) as a function of the current task condition (eq. 23). As sug-
71 gested in Carland 2019, we used an urgency signal (k) that was a function of reward, energetic

7 cost, and time.3!

p— (m,. * reward) — (m, * relative cost)

27
my x time (27)
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c
relative cost = 28
¢ sin(4) + ¢ cos(%) (28)

where m,. is the weighting on reward (8), reward was the value of success (1), m. was the
weighting of a direct reach relative to a intermediate reach (6), mr is the weighting on relative
time (0.002), and time is the time participants had to reach a target. Here we considered the
relative energetic costs of reaching a shorter distance directly from the start position to a target
(e.g., the hypotenuse of a right angle triangle), compared to travelling an overall further distance
by first reaching between the targets (e.g., adjacent side of a triangle) and then to one of the
targets (e.g., along the adjacent and then opposite side of a triangle). Specifically, we calculated
the ratio between the hypotenuse (c = 20) and the distance of travelling along the adjacent
and opposite sides of the corresponding right triangle, given the angular distance of the targets
about the start position (6: 15, 30, 45, 60). Similarly, as a proxy for time, we approximated the
time participants had to reach a target (slow: 1000ms, fast: 500ms) given the experimentally

imposed slow and fast hand movement criteria.
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» Goal Averaged Single Flexible Plan versus Averaged Parallel
= Motor Plans
797 Here we define the discrete state dynamics (eq. 29) and the cost function (eq. 30) as the same

796 as above in the modelling methods.

Xk+1 — AXk + Buk -+ €k (29)
N-1
J =xyQuxy + ) (wRuy + x,Qxy) (30)
k=0
799 We solve for the optimal feedback control policy (L) using the riccati equation. The

soo optimal control signal (uj) is defined as

u,’; = —Lka (31)

sor  Where x;, is the current state. Given the assumptions of our cost function in eq. 19-21, we can

sz consider the optimal feedback control signal as equal to

uz = _Lk(xk’ - XGoal) (32)

803 To match our experimental design, we consider the goal to be a weighted average of the

s two potential targets given the current decision variable (see eq. 15, 16). We rewrite eq. 32 as

u;, = —Ly(xr — (LXLeftGoal + ARX LeftGoal)) (33)
805 This can be thought as a single flexible control policy to a goal averaged target.
806 The weighting terms are calculated from a logistic function (eq. 14) with bounds 0 and 1,

gor and thus ay + ag = 1. We can then expand eq. 33 as

u;, = —Ly((ar + ar)xi — (LXLeftGoal + CRXRightGoal)) (34)
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808 We further rearrange eq 34 as
u; = —Li(an (X — XrefiGoat) + @r(Xk — XRightGoal)) (35)
uz = _OCLLk(Xk - XLeftGoal) + —OéRLk(Xk - XRightGoal) (36)
809 It can now be seen that uj is the weighted sum of two optimal feedback control policies

s for each potential goal. In other words, this can be considered as the average of parallel flexible
s control policies. It is important to note that this holds given the assumption that the dynamics
g1z and costs are the same between the possible targets. Given the assumptions above, parallel
g1z averaged flexible control policies and a single flexible control policy to an averaged goal are not

s dissociable.
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«s Modelling Outcomes
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si6 Figure SE1: Experiment 1 Best-Fit Parameter Model Simulation. Experiment 2 Estimated Decision
s17  Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision
818 times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for
1o bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour. Box
820 and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory
821 evidence or current sensory evidence.
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s22 Figure SE2: Experiment 2 Best-Fit Parameter Model Simulation. Experiment 2 Estimated Decision
823 Time (y-axis) for Group Behaviour and Decision-Making Models (x-axis). Group participant estimated decision
824 times are shown for bias token patterns (dark pink). Best-fit model simulations of decision times are shown for
g25  bias token patterns (light grey). Dashed light pink line represents mean estimated decision time behaviour. Box
826 and whisker plots show 25%, 50% and 75% quartiles. Inset labels represent models simulated with novel sensory
827 evidence or current sensory evidence.
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228 Figure SE3: Model Loss. Bootstrapped loss values (y-axis) across decision making models (x-axis) in A)
820 Experiment 1, B) Experiment 2, and C) Experiment 3. Inset labels represent models simulated with novel
830 sensory evidence or current sensory evidence.
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Ei?jg;}ée Parameters
Drift Diffusion Novel Gain Noise (o)
Model 2.91 [2.82, 3.11] 2.28 [1.47, 4.95]
Drift Diffusion Novel Gain Leak Noise (o)
Model With Leak 4.08 [4.01, 4.16] 158 [1.48, 1.72] | 0.76 [0.31, 1.97]
Trueblood Novel Urgency Leak Noise (o)
Model 1.79 [1.34, 2.53] 0.08 [0.00, 0.35] | 4.83 [3.04, 6.29]
Urgency-Gating Novel Urgency Noise (o)
Model 0.01 [0.01, 0.01] 8.51 [3.44, 15.56]
Urgency-Gating Model Novel Urgency Tau Noise (o)
with Low-Pass Filter 17.61 [17.04, 17.84] | 4.24 [4.17, 4.35] | 0.42 [0.12, 1.70]
Drift Diffusion Current Gain Noise (o)
Model 6.19 [5.56, 6.59] 2.24 [0.23, 4.10]
Drift Diffusion Current Gain Leak Noise (o)
Model With Leak 16.76 [15.96, 17.72] | 4.56 [4.37, 4.89] | 0.94 [0.81, 1.14]
Trueblood Current Urgency Leak Noise (o)
Model 16.10 [14.33, 18.33] | 9.82 [8.82, 11.75] | 2.60 [2.46, 2.89]
Urgency-Gating Current Urgency Noise (o)
Model 2.50 [2.20, 2.59] 0.06 [0.06, 0.08]
Urgency-Gating Model Current Urgency Tau Noise (o)
with Low-Pass Filter 142 [1.26, 1.72] 0.12 [0.11, 0.14] | 3.60 [3.41, 4.05]

831 Table SE1: Experiment 1: Model Parameters.

Ei?j:;ie Parameters
Drift Diffusion Novel Gain Noise (o)
Model 2.83 [2.67, 3.22] 5.93[2.32, 7.78]
Drift Diffusion Novel Gain Leak Noise (o)
Model With Leak 3.13 [2.94, 3.60] 0.46 [0.12, 1.12] | 5.44 [2.43, 7.19]
Trueblood Novel Urgency Leak Noise (o)
Model 264 [2.11, 3.13] 0.14 [0.01, 0.46] | 3.49 [1.60, 5.13]
Urgency-Gating Novel Urgency Noise (o)
Model 0.01 [0.01, 0.01] 10.19 [5.01, 16.79]
Urgency-Gating Model Novel Urgency Tau Noise (o)
with Low-Pass Filter 22.45 [19.58, 25.00] | 5.65 [5.21, 6.45] | 2.75 [0.63, 4.53]
Drift Diffusion Current Gain Noise (o)
Model 5.01 [4.70, 5.80] 5.07 [3.66, 5.70]
Drift Diffusion Current Gain Leak Noise (o)
Model With Leak 5.75 [5.38, 6.87] 0.60 [0.33, 1.58] | 4.89 [3.85, 5.53]
Trueblood Current Urgency Leak Noise (o)
Model 13.14 [11.24, 15.78] | 9.35 [7.32, 11.88] | 3.92 [3.46, 4.63]
Urgency-Gating Urgency Noise (o
Model Current 1 58 [1.88, 2.06] 011 [0(.1)1, 0.11]
Urgency-Gating Model Current Urgency Tau Noise (o)
with Low-Pass Filter 9.56 [7.17, 13.64] 2.16 [1.81, 2.67] 6.39 [4.98, 7.97]

832 Table SE2: Experiment 2: Model Parameters.
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Sensor: .

Eviden}ée Parameters (median [95% CI])
Drift Diffusion Novel Gain Noise (o)
Model 10.47 [15.38, 25.15] 2.74 [1.70, 5.09]
Drift Diffusion Novel Gain Leak Noise (o)
Model With Leak 19.21 [15.25, 24.48] | 5.83 [1.16, 11.98] 3.62 [2.40, 6.01]
Trueblood Novel Urgency Leak Noise (o)
Model 2.80 [2.24, 3.00] 0.92 [0.70, 1.16] 2.63 [2.21, 3.57]
Urgency-Gating Novel Urgency Noise (o)
Model v 0.01 [0.00, 0.01] 522 [0.82, 12.71]
Urgency-Gating Model Novel Urgency Tau Noise (o)
with Low-Pass Filter 4.94 [4.21, 5.68] 1.39 [1.13, 1.74] 2.94 [2.13, 4.28]
Drift Diffusion Current Gain Noise (o)
Model 4 2.18 [1.50, 4.05] 21.35 [16.49, 26.45)
Drift Diffusion Current Gain Leak Noise (o)
Model With Leak 15.28 [13.83, 17.66] | 186.87 [181.14, 104.57] | 13.24 [11.32, 15.62]
Trueblood Current Urgency Leak Noise (o)
Model 4 2.15 [1.57, 3.03] 12.97 [8.78, 21.28] 20.73 [16.17, 25.44]
Urgency-Gating Current Urgency Noise (o)
Model 0.92 [0.80, 1.00] 0.23 [0.20, 0.29]
Urgency-Gating Model Current Urgency Tau Noise (o)
with Low-Pass Filter 0.15 [0.11, 0.20] 0.01 [0.01, 0.03] 11.54 [8.03, 15.80]

833 Table SE3: Experiment 3: Model Parameters.

Name | Value

Q1 3.08e-05
Q2 3.32e-01
Qg 7.40e-05
Q4 1.62

Qs 8.57e-03
Qs 8.76e-03

Q- 5.55e+02
Qs 1.48e+03
Qo 4.09

Q1o | 1.56e+02
Q1 1.47e+02
Q12 | 3.21e+01
R 1.87e-07
A 2.58

s34 Table SE4: Movement Model Model Parameters.
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