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Abstract—This study extends the exploration of ontology
enrichment by evaluating the performance of various open-
sourced Large Language Models (LLMs) on the task of
predicting hierarchical relationships (IS-A) in medical
ontologies including SNOMED CT Clinical Finding and
Procedure hierarchies and the human Disease Ontology. With
the previous finetuned BERT models for hierarchical
relationship prediction as the baseline, we assessed eight open-
source generative LLMs for the same task. We observed only
three models, without finetuning, demonstrated comparable or
superior performance compared to the baseline BERT-based
models. The best performance model OpenChat achieved a
macro average F1 score of 0.96 (0.95) on SNOMED CT Clinical
Finding (Procedure) hierarchy, an increase over 7% from the
baseline 0.89 (0.85). On human Disease Ontology, OpenChat
excels with an F1 score of 0.91, outperforming the second-best
performance model Vicuna (0.84). Notably, some LLMs prove
unsuitable for hierarchical relationship prediction tasks or
appliable for concept placement of medical ontologies. We also
explored various prompt templates and ensemble techniques to
uncover potential confounding factors in applying LLMs for IS-
A relation predictions for medical ontologies.

Keywords—Hieratical Relation Prediction, Large Language
Models, Medical Ontology, Prompts Design, SNOMED CT

1. Introduction

Biomedical ontologies provided structured and formal
representation  of  biomedical concepts and  their
interrelationships. The hierarchical relationship, also known
as the “IS-A” relationship, is a fundamental concept within
ontologies. It indicates that one concept is a subtype or
subclass of another. In the context of biomedical ontologies,
the IS-A relationship is crucial for organizing and structuring
biomedical knowledge hierarchically. For example, the IS-A
relationship would indicate that “Type 2 Diabetes” is a kind
of or subclass of “Diabetes.” As biomedical knowledge is
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constantly growing, the process of enriching medical
ontologies with newly defined concepts, poses a multifaceted
challenge in biomedical informatics. This process,
specifically the placement of new concepts, demands more
attention to hierarchical relationships. The intricate task of
accurately placing new concepts within the existing ontology
hierarchy is equivalent to determining if there should exist IS-
A relationships between two concepts. Traditional
approaches, often reliant on classifiers such as Snorocket [1]
and HermiT [2], encounter limitations in handling the
complexity and dynamic nature of evolving ontologies. The
conventional reliance on classifiers, while providing a
structured approach, falls short in cases where relationships
are underspecified, or the ontology lacks the necessary
granularity [3-5]. For example, SNOMED CT [6], as a widely
used clinical terminology that is constantly updated with
primitive concepts and underspecified relationships. The need
for more efficient and accurate methodologies becomes
evident, especially considering the time-consuming and error-
prone nature of manually placing concepts.

A few studies have leveraged machine learning
techniques for validate or identify missing IS-A relationships
in SNOMED CT. Sun et al. investigated using deep learning
models to aid in automatically validating IS-A relations
suggested by nonlattice-based auditing approaches in
SNOMED CT [7]. We also leveraged deep learning models,
including Convolutional Neural Network [8] and BERT [9] to
place new concepts in the SNOMED CT hierarchy using the
new concepts’ names. More recently, Hao et al. explored a
logical definition-based approach to facilitate suggestion of
new concepts for SNOMED CT [10].

Recently, Large Language Models (LLMs) have
emerged as powerful tools in natural language processing and
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knowledge representation. Their ability to capture complex
semantical patterns and relationships in data makes them
promising candidates for addressing the challenges inherent
in ontology curation. Pre-trained language models, such as
BERT [11] or ELMo [12], are built using deep learning
techniques, specifically a type of neural network architecture
called transformer networks. These models were also applied
in ontology curation to assist concept placement. In our
previous work [13], we leveraged BERT to train a model to
predict the IS-A relations between concepts in SNOMED CT,
utilizing the next sentence prediction property of BERT.

As the field of NLP continues to evolve, LLMs represent
a cornerstone in the pursuit of achieving human-level
language understanding and generation. Generative LLMs
have gained significant attention for their impressive
language understanding and generation capabilities,
influencing from natural language processing and content
generation to customer support and education. LLMs are a
type of artificial intelligence (AI) model designed to
understand and generate human-like text. Generative LLMs
such as Llama2 [14], Vicuna [15], Mistral [16], OpenChat
[17], offer the potential to automate and enhance the process
of predicting hierarchical relationships within ontologies.

In this study, we focus on evaluating the applicability of
various LLMs to the task of predicting hierarchical
relationships within the SNOMED CT. Recognizing the
drawbacks of existing methods, we propose a comprehensive
evaluation of LLMs’ performance, including those without
fine-tuning, challenging the conventional belief that extensive
training is essential. Furthermore, we extended our
investigation to Disease Ontology [18], expanding the scope
of applicability and the versatility of LLMs in diverse medical
ontology domains. To systematically assess and compare the
performance of LLMs, we experiment with four different
prompt templates and two kinds of ensemble techniques. This
exploration aims to uncover potential confounding factors and
optimize the utilization of LLMs for the critical task of
predicting IS-A relationships. Through this research, we
contribute valuable insights into the advantages and
challenges of incorporating LLMs in ontology enrichment
and concept placement in medical informatics.

II. Background
A.  Medical & Clinical Ontology
1) SNOMED CT. SNOMED CT (Systematized
Nomenclature of Medicine Clinical Terms) 1is a

comprehensive and globally recognized clinical terminology,
with standardized medical concepts of clinical information.
SNOMED CT facilitates interoperability in healthcare data
exchange and supports precise and standardized
communication among healthcare professionals [19]. Its
hierarchical structure organizes clinical terms into a network
of relationships, allowing for nuanced representation of
medical knowledge. This standardized terminology forms the
backbone of various health information systems and
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significantly contributes to improving the quality and
efficiency of healthcare delivery. Its rich network of IS-A
hierarchical relationships not only organizes clinical terms but
also provides a nuanced portrayal of the hierarchical
connections between concepts. SNOMED CT contains more
than 357,000 health care concepts with unique meanings and
formal logic-based definitions organized into hierarchies, of
which the largest two hierarchies are Clinical Findings and
Procedure.

2) Disease Ontology. Disease Ontology serves as a
valuable resource in organizing and classifying information
related to human diseases [18]. It provides a structured
framework for representing disease entities and their
interconnections. By capturing the relationships between
diseases and linking them to relevant biomedical knowledge,
Disease Ontology contributes to a better understanding of the
complex landscape of human health and diseases. The IS-A
hierarchy in Disease Ontology serves as a structured
framework that enhances our comprehension of the
hierarchical connections between different disease entities. Its
utility extends to diverse applications, including biomedical
research, clinical decision support, and the integration of
disease information in bioinformatics workflows.

B. Large Language Models (LLMs)

In recent years, the field of natural language processing
(NLP) has witnessed a paradigm shift propelled by the advent
of Large Language Models (LLMs) [20, 21]. These models,
characterized by their vast scale and immense number of
parameters, have demonstrated unprecedented capabilities in
summarizing and generating human-like text. The
significance of LLMs lies in their ability to learn intricate
patterns and representations from massive datasets through
unsupervised pre-training. During this pre-training phase,
these models acquire a deep knowledge of the complexities of
language, capturing syntactic, semantic, and contextual
nuances. Transfer learning is a key principle underpinning the
success of LLMs. By initially training on diverse and
unlabeled text corpora, these models gain a generalized
knowledge of language that can be leveraged for downstream
tasks, such as text completion, sentiment analysis, question
answering, language translation, and more. The transferability
of knowledge acquired during pre-training contributes to the
efficiency and effectiveness of LLMs in real-world
applications. In this work, we experimented with eight open

sourced LLM models:

1) Llama2-7b & Llama2-13b. Llama 2 is an open-source
language model from Meta Al that outperforms other open-
source language models on many benchmarks, including
reasoning, coding, proficiency, and knowledge tests [14].
Llama2-7b and -13b are 7-billion and 13-billion parameter
models fine-tuned for chat completions.

2) WizardLM-13B V1.2. WizardLM [22] is trained from
Llama2-13b and it is designed to follow complex instructions
and generate coherent and fluent text in response to various
inputs. It is fine-tuned on Al-evolved instructions using the
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Evol+ approach. The model is pre-trained on a large corpus
of text data and fine-tuned on the Llama?2 dataset to generate
high-quality responses to complex instructions.

3) Vicuna-13b-v1.5. Vicuna-13B [15] is an open-source
conversational model trained using the LLaMa-13B model.
It is fine-tuned with user-shared conversations gathered from
SharedGPT. Preliminary evaluations indicate that Vicuna-
13B achieves a quality exceeding 90% of ChatGPT and
Google Bard. It has outperformed other models such as
LLaMa and Alpaca in over 90% of instances.

4) Xwin-LM-13B-V0.2. Xwin-LM [23], built-upon on the
Llama2 base models, employed open-source alignment
technologies including supervised fine-tuning (SFT), reward
models (RM), reject sampling, reinforcement learning from
human feedback (RLHF), for training large language models.
It achieved good performance on the AlpacaEval benchmark.

5) OpenChat_3.5. OpenChat [17] is an open-source
language model with mixed-quality data, consisting of a
small amount of expert data mixed with a large proportion of
sub-optimal data, without any preference labels. It employed
the C(conditioned)-RLFT, which regards different data
sources as coarse-grained reward labels and learned a class-
conditioned policy to leverage complementary data quality
information. The OpenChat-13b model fine-tuned with C-
RLFT achieves the highest average performance among all
13b open-source language models on three standard
benchmarks. The code, data, and models are publicly
available at https://github.com/imoneoi/openchat.

6) Mistra-7B-Instruct-v0.1. Mistral [16] model leveraged
grouped-query attention (GQA) for faster inference, coupled
with sliding window attention (SWA) to effectively handle
sequences of arbitrary length with a reduced inference cost.
The Mistral 7B outperforms the Llama2-13B model across
all evaluated benchmarks, and Llama-34B in reasoning,
mathematics, and code generation. The Mistral-7B-Instruct is
a fine-tuned model to follow instructions that surpasses the
Llama2-13B-Chat model both on human and automated
benchmarks.

7) Zephyr-7b-beta. Zephyr [24] is a series of language
models that are trained to act as helpful assistants. Zephyr-
7B-B is the second model in the series and is a fine-tuned
version of Mistral-7B-v0.1 that was trained on a mix of
publicly available, synthetic datasets using Direct Preference
Optimization (DPO).

II1. Method

The process of this project is depicted in Fig. 1,
comprising three pivotal sections: Concept Pair Extraction,
Prompt Generation, and LLM Prediction. In the Concept Pair
Extraction phase, we extracted IS-A connected concept pairs
as positives and from SNOMED CT's Clinical Finding and
Procedure hierarchies and Disease Ontology. The same
number of concept pairs that are not connected by IS-A
relation (denoted as unrelated concept pair) were randomly
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generated as negatives. Subsequently, in the Prompt
Generation section, we introduced a component-based
template design, leveraging strategically positioned
placeholders for concepts, context prompt (task emphasis)
and few-shots prompt (examples). These placeholders
allowed for the generation of specific prompts tailored to
individual positive and negative concept pairs. The templates,
ranging from a simple baseline to nuanced ontology hierarchy
considerations, provided a diverse set of stimuli for LLMs.
Finally, in the LLM Prediction phase, eight prominent models
were systematically fed with the generated prompts,
evaluating their correctness in predicting IS-A relations. The
prediction results were compared with true labels for each
concept pair to compute precision, recall and F1, as the
metrics to evaluate models’ performance.

SNOMED CT (2018 Jan)
@ Clinical Finding
# Procedure

Disease Ontology
(2023 release)

vy

Positive (1S-A connected)
or Negative {non-IS-A connected) concept pairs
(concept, concept2)

l

» System level prompt: Please act as an ontologist .,
« {Context prompt}
o [Few-shots prompt}
« Question: ({concept?) and {concept2), classify if concept! should be considered a
subconcept or subclass of concepl2)
® Your answer:

OCcmcept pair extraction

Context prompt generator

Context template v1 || Context template v2 |  Conlext lemplate v3 | Context template v4

® None # Domain-specificity | = e Inheritance of » Taxonomic
attributes hierarchy
Human
reviewed Few-shots prompt generator
concept pairs ® Zero-shot tshol * 5-shot
Complete Input Prompt
l e Prompt generation

WizardLM- || Zephyr- || Vieuna- || Xwin-
138 7B-Beta || 138-v1.5 || LM-138

Llama 2- || Llama 2- || Openchat ||, ,.
[ 7b J[ 13b J{ 15 ][Mlslla\-TB

;
(rrcon ][ et ]

Fi ]

0 LLM classification

Fig. 1. Experiment Workflow

A. Dataset Selection and Preparation

The choice of an appropriate dataset is paramount in
evaluating the performance of Large Language Models
(LLMs) in predicting IS-A relationships within medical
ontologies. We used the same test dataset used in [13], which
were new concepts added to the Clinical Finding hierarchy
and Procedure hierarchy in the SNOMED CT 2018 release.
For the Clinical Finding hierarchy, a total of 8,574 concept
pairs were used for evaluation, which contained 4,287 IS-A
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connected concept pairs as positives and 4,287 unrelated
concept pairs as negatives. Similarly, the Procedure hierarchy,
comprising 3,908 pairs, was crafted with an equal distribution
of 1,954 positives and 1,954 negatives. The evaluation also
includes Disease Ontology, which includes 1500 concept
pairs of positives and 1500 negatives. This meticulous
curation ensured that our experimental setup represented a
diverse and comprehensive spectrum of IS-A relationships
within medical ontologies.

TABLE I. INPUT PROMPT TEMPLATE

Input Prompt with Component Placeholders
“Please act as an ontologist who can assist with ontology
design and knowledge representation for medical/clinical
domains.

The task is that given two concepts, ["Concept 1"] and
["Concept 2"], determine if Concept 1 should be
considered a subconcept or subclass of Concept 2.
{Context Prompt}

If yes, then respond with "YES". Otherwise, respond with
"NO".

Note that your answer must start with a YES or NO answer,
then provide reasoning or justifications for your response
in less than five sentences, taking into account any relevant
domain  knowledge,  ontological  principles,  and
relationships observed between the concepts.

Here are some examples:

{Few_shots_text}

Here is your question:

With ["{conceptl}"] as Concept 1 and ["{concept2}"] as
Concept 2, determine if Concept_1 should be considered
a subconcept or subclass of Concept 2.

Your answer:”

B.  Input Prompt Design

The input prompt to LLMs consists of four sub-prompts
(shown in Table 1): 1) System-level prompt; 2) Context
prompt; 3) Few-shots prompt; and 4) Question prompt with
hint words “Your answer” to indicate the starting point for
LLMs’ generation.

1) System-level prompt describes the role of a model
(“act as an ontologist”), and the high-level description of the
task (“determine if Concept 1 should be considered a sub-
concept or subclass of Concept 2”).

2) Context prompt is varied with 4 different template
versions (Table II) with different considerations: version 1
template is plain with no context information; version 2
template focuses on Domain-specificity about the two
concepts; version 3 template highlighted the Inheritance of
attributes between two concepts of a pair; version 4 template
emphasizes taxonomic hierarchical connection between two
concepts.  Other details of context prompt design are
elaborated in section C. Context Prompt Template Design.

3) Few-shots prompt was used to provide examples for
LLMs to learn from. We tested three types of configurations
including zero-shot, one-shot and five-shots. Details of few-
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shot examples were elaborated in section E. Zero-shot Vs.
Multi-shots.

4) Question prompt specifies the task for LLMs and
embedded concept placeholders, denoted as {conceptl} and
{concept2}. These placeholders were strategically positioned
to be replaced with specific concepts from the positive and
negative pairs. For instance, in a positive concept pair (Deep
partial thickness burn of perineum, Dermatosis of perineum),
the placeholders would be substituted with the actual concepts,
creating a specific prompt for the LLMs:

“With [“Deep partial thickness burn of perineum”] as
Concept 1 and ["Dermatosis of perineum"] as Concept 2,
determine if Concept 1 should be considered a sub-concept
or subclass of Concept 2.”

C. Context Prompt Template Design

The essence of our method lies in the careful design of
context prompt templates to encapsulate the complexity of IS-
A relationships. Four templates with different semantic
priority were crafted to probe different perspectives in
ontology curation. The first template, conceived as a simple
and abstract baseline, aimed to establish a foundational
understanding. Subsequent templates delved into nuanced
dimensions, namely “Domain-specificity,” “Inheritance of
attributes,” and “Taxonomic hierarchy.” These templates
were not merely linguistic constructs; rather they were
carefully engineered to capture the intricacies of hierarchical
relationships, fostering a rich and dynamic interaction with
the LLMs under scrutiny.

TABLE II. FOUR TEMPLATES OF THE CONTEXT PROMPTS

No. Context Prompt Templates

Semantic: Simple
Prompt: N/A

Semantic: Domain-specificity

T1

Prompt: "To make this determination, please
define the two concepts and analyze the context
and domain relevance of the concepts: Is
Concept 1 a narrower or more specific concept
within the domain of Concept 27"

Semantic: Inheritance of attributes

T2

Prompt: "To make this determination, please
define the two concepts and assess whether
Concept 1 naturally inherits or extends the
attributes and properties of Concept 2."
Semantic: Taxonomic hierarchy

T3

Prompt: "To make this determination, please
define the two concepts and examine the overall
structure and organization of the ontology. Does
the inclusion of Concept 1 as a child concept of
Concept 2 align with the existing hierarchy?"

T4

The “Domain-specificity” template sought to investigate
the impact of contextual specificity in eliciting accurate
predictions, while the “Inheritance of attributes” template
aimed to capture the inheritance patterns that define IS-A
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relationships within medical ontologies. The “Taxonomic
hierarchy” template, on the other hand, probed the
hierarchical structure of the ontologies, challenging the
models to discern and comprehend the taxonomy underlying
IS-A relationships. Each template was meticulously designed
to serve as a lens, allowing us to discern the models'
proficiency in understanding and navigating different

dimensions of hierarchical relationships in medical ontologies.

D. Model Selection and Experimentation

Eight prominent LLMs were selected for
experimentation, each chosen for its unique architecture and
capabilities. The lineup included Llama2-7b, Llama2-13b,
Vicuna-13b-v1.5, WizardLM-13B-V1.2, Xwin-LM-13B-
V0.2, OpenChat 3.5, Zephyr-7b-beta, and Mistral-7B-
Instruct-v0.1. This diverse set of models brought forth a rich
array of linguistic and semantic processing capabilities,
making our investigation robust and comprehensive.

In our experimental setup, each model was meticulously
fed with the four distinct templates, each embedded with
positive and negative concept pairs. This approach allowed us
to systematically evaluate how different LLMs responded to
variations in prompt structure and content. The templates
served as dynamic stimuli, challenging the models to interpret
and predict IS-A relationships across different linguistic and
semantic contexts.

E.  Zero-shot Vs. Multi-shots

To explore the adaptability of the LLMs to situations
with minimal training examples, we introduced zero-shot and
few-shot scenarios. In the zero-shot scenario, models were
presented with IS-A relationships without any prior training
on those specific instances. In the few-shot scenarios (1
example and 5 examples), the models were exposed to a
selected number of human-reviewed IS-A relationships,
simulating scenarios where only a handful of examples were
available. A total of 15 human-reviewed IS-A connected
concept pairs (with 5 pairs each corresponding to T2, T3, T4
in Context Prompt Templates) and 5 negative pairs. This setup
allowed us to assess the generalization capabilities of the
LLMs and their performance under varying degrees of
training data availability.

F.  Two-Dimensional Majority Vote

1) Template Layer. Recognizing the potential advantages
of breaking down the task into subtasks, we introduced a
Majority Vote Ensemble. This ensemble approach involved
aggregating the models’ prediction results from templates T2,
T3, and T4. The motivation behind this ensemble was to
assess whether subtask breakdowns in the prompt variants
contributed to improved accuracy in identifying correct
answers. By comparing the ensemble results with those
obtained using only template T1, we aimed to unravel the
effectiveness of partitioning the task into subtasks and
exploring the impact on predictive accuracy.
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2) Model Layer. After applying Majority Vote among
templates T2, T3 and T4, we additionally used the majority
vote method for the model level. Specifically, we identified
the top-performing three models and produced majority vote
results based on their respective template levels.
Subsequently, we conducted a majority vote among these
three selected models as Figure 2 demonstrates.

‘Template Level Majority Vote 1

Template 1
| —
Template 2
A, J

Template 3

| —

Model Level Majority Vote

Fig. 2. Example of Two-Dimensional Majority Vote

G. Evaluation Metrics

Each model predicts a “YES” or “NO” label based on the
input prompt for a given concept pair. This label is compared
with the ground truth label for this concept pair. The true label
for two concepts that are connected by IS-A relation (positive)
is “YES.” The true label for two concepts that are unrelated
(negative) is “No.” The model’s prediction is correct if its
prediction is equal to the true label, otherwise the model is
wrong. Precision, recall, and F1 score were chosen as the
primary metrics to provide a nuanced and comprehensive
assessment. Precision gauged the accuracy of positive
predictions, recall measured the models' ability to capture all
positive instances, and F1 (1), the harmonic means of
precision and recall, provided a balanced evaluation
considering both false positives and false negatives. The
macro average F1 score (2) is computed to evaluate the
performance of individual models. In this study, the macro
average F1 score is the mean of F1 score of IS-A concept pairs
(Flposiive) and F1 score unrelated concept pairs (F1negative)-

Fl1=2 x Precision x Recall (1)

Precision + Recall

Macro AUg Fl= Flpositive XFlnagative
2

@
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H. Experiment configuration

For our experiments, we fixed the temperature which
refers to the “softness” of the probability distribution at 0.1.
Specifically, a higher temperature value will cause the higher
randomness of the output, resulting in more “innovative”
feedback. On the other hand, a lower temperature value,
closer to 0 will make the output more deterministic, leading
to responses that are more likely according to the model’s
training [25]. The experiment was implemented using
FastChat [26], and all LLMs were loaded from the
HuggingFace [27] platform. Intel(R) Xeon(R) CPU E5-4627
v4 with 40 cores processor, 4 NVIDIA A100 GPUs, and a
memory size of 40G were used in this work.

1V. Result

We reported the model’s performance on testing datasets
selected from the Clinical Finding hierarchy and the
Procedure hierarchy of SNOMED CT, and the human
Disease Ontology (DO), and their performance under
different context prompt templates and few-shot training
strategy settings.

In Table III, we compared the baseline model BERT with
eight models using context prompt template T2, as described
in the Method section. Openchat-3.5 demonstrated optimal
performance across all three datasets, with average macro F1
scores consistently exceeding 0.90. The second-best
performing model was Vicuna-13b-v1.5. While Zephyr-7b-
beta exhibited notable accuracy in the context of SNOMED
CT’s two hierarchies, its performance was less favorable
when applied to Disease Ontology. On average, OpenChat-
3.5, Vicuna-13b-v1.5 and Zephyr-7b-beta outperformed the
baseline BERT model on the two SNOMED CT datasets.

TABLE III. F1 SCORE (MACRO) OF MODELS’ PERFORMANCE ON
CLINICAL FINDING (CF) HIERARCHY, PROCEDURE (PROC)
HIERARCHY AND HUMAN DISEASE ONTOLOGY (DO) DATASET

Dataset
Model

CF PROC Do
OpenChat-3.5 0.96 0.95 0.91
Vicuna-13b-v1.5 0.89 0.90 0.84
BERT* 0.89 0.85 -
Zephyr-Tb-beta 0.88 0.92 0.64
Llama-2-13b-chat 0.85 0.85 0.58
Llama-2-7b-chat 0.33 0.33 0.33
Mistral-7B-Instruct-v0.1 0.33 0.33 0.33
WizardLM-13B-V1.2 0.33 0.33 0.33
Xwin-LM-13B-V0.2 0.30 0.37 0.33

* BERT model’s performance reported from [13].

In Table IV, we showed the model performances under
four different context prompt templates. Among the eight
Large Language Models (LLMs), three models including
Llama-2-7b-chat-hf] Mistral-7B-Instruct-v0.1, and
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WizardLM-13B-V1.2 were insensitivities to prompt
variations, with no changes in F1 scores. Notably, for Xwin-
LM-13B-V0.2, the enriched context prompts T2, T3, and T3
resulted in a decline in performance compared with T1. Using
template T2, OpenChat-3.5 (0.96), Vicunna-13b-v1.5 (0.89),
and Zephyr-7b-beta (0.88) achieved the top-3 FI scores.
Although prompt template T3 achieved optimal F1 score
(0.89) for the Vicuna model, the improvement compared with
T2 is trivial (0.01). T2 demonstrates a high potential as the
most instructive prompt among 4 templates.

TABLE IV. F1 SCORE (MACRO) OF EIGHT MODELS QUERIED BY
FOUR DIFFERENT TEMPLATES ON CLINICAL FINDING DATASET

Template
Model

T1 T2 13 T4
Llama-2-7b-chat 0.33 0.33 0.33 0.33
Llama-2-13b-chat 0.47 0.85 0.67 0.69
Mistral-7B-Instruct-v0.1 0.33 0.33 0.33 0.33
OpenChat-3.5 0.93 0.96 0.94 0.96
Vicuna-13b-v1.5 0.82 0.89 0.90 0.63
WizardLM-13B-V1.2 0.33 0.33 0.33 0.33
Xwin-LM-13B-V0.2 0.63 0.30 0.33 0.33
Zephyr-Tb-beta 0.39 0.88 0.64 0.38

We also observed that a model’s performance varied with
the few-shot strategies embedded in the input prompt. As
illustrated in Table V, three models (Mistral-7B-Instruct-v0.1,
WizardLM-13B-V1.2, Xwin-LM-13B-V0.2)  exhibited
significant improvements when trained with one-shot and
five-shot strategies. It is interesting that these three models
did not perform well with the original settings and were
insensitive to the context prompt templates; but were able to
“learn” from the training shots (examples) to achieve better
performance. In contrast, models such as OpenChat, Vicuna,
Zephyr, and Llama-2-13b performed well without training
shots, but their performance degraded with additional training
shots.

TABLE V. F1 SCORES (MACRO) OF EIGHT MODELS WITH THREE
DIFFERENT SHOTS CONFIGURATIONS (DATASET: CF; TEMPLATE: T2)

Shots
Model

0-shot 1-shot 5-shot
Llama-2-7b-chat 0.33 0.19] 0.341
Llama-2-13b-chat 0.85 0.53] 0.22]
Mistral-7B-Instruct-v0.1 0.33 0.651 0.6771
OpenChat-3.5 0.96 0.93] 091}
Vicuna-13b-v1.5 0.89 0.68] 0.89
WizardLM-13B-V1.2 0.33 0.711 0.8371
Xwin-LM-13B-V0.2 0.30 0.591 0.731
Zephyr-Tb-beta 0.88 0.84) 0.81]

In addition, we implemented a two-dimensional majority
vote as a way of enhancing performance. The outcomes of the
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template-level majority vote with the average of the F1 scores
for zero-shot, one-shot, and five-shot configurations are
presented in Table VI. Notably, 7 out of the 8 models
demonstrated improved performance with the majority vote
strategy. The combination of training shots with the template-
level majority vote strategy proved effective in elevating the
accuracy of the model’s predictions.

TABLE VI. F1 SCORE (MACRO) OF ZERO-, ONE-, AND FIVE-SHOTS
WITH TEMPLATE T1 AND MAJORITY VOTE OF T2, T3 AND T4

v e
Llama-2-7b-chat-hf 0.27 0.41
Llama-2-13b-chat-hf 0.42 0.65
Mistral-7B-Instruct-v0.1 0.53 0.54
OpenChat-3.5 0.92 0.94
Vicuna-13b-v1.5 0.82 0.82
WizardLM-13B-V1.2 0.51 0.60
Xwin-LM-13B-V0.2 0.43 0.54
Zephyr-7b-beta 0.68 0.77

We also experimented with the majority vote at the
model level. The performance comparison between individual
model and the ensemble of the three models is shown in
Figure 3. It is evident that OpenChat outperformed the
majority votes of three models (OpenChat, Vicuna and
Zephyr) across all three datasets. In other words, the
combination of multiple models’ predictions did not lead to
more correct results. Therefore, employing a majority vote
across multiple models is not an effective strategy for
improving prediction accuracy.

1.0

0.95 0.95

e e e
s C3 ]

#
[¥]

F1 score (macro) of 2-Dimensional Majority Vote

CF

PROC Do

Models

EE OpenChat-3.5 # Vicuna-13b-vl,5 BN Zephyr-7b-beta =W 0+V+2Z

Fig. 3. Macro F1 Score of Three different Shot Scenarios with 2-
dimentional majority votes (Blue, Orange and Green bars are the
template level majority vote results of 3 best performed model:
OpenChat, Vicuna and Zephyr, Red bar is the result produced by the
Model-level Majority Vote of these 3 models)
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Table VII presents several examples of prediction by
OpenChat with context prompt template T2 and zero-shot
strategy. It demonstrates accurate predictions of the IS-A
relation between concepts “Sequela of non-traumatic
intracranial subarachnoid hemorrhage” and “Dysphagia due
to and following non-traumatic subarachnoid hemorrhage”.
The explanation of this prediction is precise and logical as
follows “/Dysphagia due to and following non-traumatic
subarachnoid hemorrhage] is a specific [Sequela of a non-
traumatic intracranial subarachnoid hemorrhage], which
falls under the broader category of sequelae of disorders
classified by disorder-system. The relationship between the
two concepts is that Concept 1 is a specific instance of
Concept 2.” For the true negative example (non-IS-A
concept pair), OpenChat provided the correct and informative
response: “/Ecthyma caused by staphylococcus aureus] is a
bacterial skin infection, while [Dementia] is a neurological
disorder affecting cognitive function. They belong to different
medical domains and are not related in a subconcept/subclass
relationship.”

TABLE VII. PREDICTION EXAMPLES BY OPENCHAT WITH
TEMPLATE T2 (DATASET: CF AND PROC)

Metrics Concept 1 Concept 2
Sequela of non- Dysphagia due to and
traumatic intracranial . .
TP . following non-traumatic
subarachnoid .
subarachnoid hemorrhage
hemorrhage
TN Dementia Ecthyma caused by
staphylococcus aureus
Lacunar ataxic
FP* Cerebral ischemia hemiparesis of right
nondominant side
Urge incontinence due Mixed incontinence due
FN* to prolapse of female to prolapse of female
genital organ genital organ

“FP: Concept 2 is not subclass of Concept 1, but falsely predicted they have
IS-A relation; FN: Concept 2 is actual the subclass of Concept 1, but falsely
predicted they don’t have IS-A relation.

For false predictions, while the outcome may not align
with expectations, the accompanying explanations remain
acceptable to some degree. For example, the false positive
case “Cerebral ischemia” and “Lacunar ataxic hemiparesis of
right nondominant side” are not related as “IS-A”, but
OpenChat considered the second one is the sub-concept of
first one with reasons: “/Lacunar ataxic hemiparesis of the
right nondominant side] is a specific type of brain damage
caused by ischemia, which is a lack of blood supply to the
brain. Therefore, Concept 1 can be considered a subconcept
or subclass of Concept 2. For the false negative example,
OpenChat predicted that “Urge incontinence due to prolapse
of female genital organ” is not the subconcept of “Mixed
incontinence due to prolapse of female genital organ”
because “/Mixed incontinence due to prolapse of female
genital organ] is a type of incontinence that involves both
stress and urge incontinence, while [Urge incontinence due
to prolapse of female genital organ] is a specific type of
incontinence that is characterized by a sudden, strong urge to
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urinate. These are two distinct types of incontinence, and one
is not a subtype of the other.” Although the explanation
asserted that they are not IS-A related which they are in
SNOMED CT, OpenChat accurately described the meaning
of these two concepts, and the incorrect prediction may stem
from the absent information that “Mixed incontinence” is
modeled as a subtype of “Urge incontinence” for this specific
scenario in SNOMED CT.

V. Discussion

Our comprehensive exploration into the application of
Large Language Models (LLMs) in predicting IS-A
relationships within medical ontologies, specifically the
Disease Ontology (DO), Clinical Finding and Procedure
hierarchies of SNOMED CT, has unearthed valuable insights
into the capabilities and potential applications of these
advanced language models.

The findings reveal a nuanced interplay between LLMs
and the complex semantic relationships inherent in medical
ontologies. Across the diverse set of prompts and models
employed in our study, certain LLMs, including OpenChat,
Vicuna, and Zephyr, demonstrated remarkable performance
even without the need for finetuning. This challenges
traditional approaches and opens avenues for leveraging pre-
trained models in ontology enrichment tasks.

Prompt template variations played a pivotal role in
influencing the models’ predictive accuracy. The introduction
of concept placeholders provided a dynamic and specific
prompt for each instance, contributing to the granularity of
predictions. Our ensemble approach, incorporating subtask
breakdowns, showcased promising potential in enhancing
predictive accuracy, and underscoring the significance of task
decomposition in certain scenarios.

The success of LLMs in predicting IS-A relationships
within medical ontologies holds promising implications for
healthcare informatics. These models could assist ontology
curation and periodic updates by automating the placement of
concepts, reducing the manual effort required by curators.
The ability to generalize to zero-shot and few-shot scenarios
opens avenues for rapid integration of new concepts into
ontologies with minimal training data.

Furthermore, the findings pave the way for improved
clinical decision support systems. The accurate prediction of
hierarchical relationships enables more precise and context-
aware clinical information retrieval. This can enhance the
quality and efficiency of healthcare delivery, supporting
clinicians in decision-making processes.

Limitations: The application of Large Language Models
(LLMs) in predicting IS-A relationships within medical
ontologies encounters multifaceted challenges. One
prominent limitation lies in the semantic ambiguity present in
concept naming rather than general English context. For
instance, when introducing a new concept like "Red Spotted
Fever," the term's multiple interpretations, ranging from a
specific clinical finding to a broader disease category, can
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confound LLMs, potentially leading to misplacement within
the ontology hierarchy [4]. Another significant challenge
arises from contextual sensitivity and specificity. Prompt
templates designed to explore relationships might struggle in
contexts where nuanced clinical distinctions are crucial. For
example, differentiating between “Chronic Pain” and “Acute
Pain” demands both linguistic comprehension and clinical
understanding, posing challenges for LLMs to capture these
nuances accurately. Moreover, LLMs exhibit limitations in
their understanding of clinical intricacies, such as the
handling of rare or novel concepts. LLMs may lack sufficient
context for accurate predictions. The introduction of highly
specialized medical conditions, absent in the training data,
underscores the limitations in adapting to emerging medical
concepts. These limitations collectively emphasize the need
for ongoing refinement and careful consideration when
employing LLMs in the intricate domain of medical ontology
curation.

Future Work: Future research should explore methods
to incorporate biomedical ontologies and domain-specific
datasets during pre-training or fine-tuning to enhance the
LLMs’ understanding of medical concepts and relationships.
Experiment of training top performed models with large
training datasets, may prone the efficiency of the suggested
pretraining. We plan to use the “IS-A” related concepts pairs
in this study as the training dataset to finetune to the top three
performance models for improving their prediction accuracy.
Additionally, we plan to assess the performance of various
proprietary LLMs, such as OpenAl's ChatGPT-4 and
Anthropic's Claude on this task and compare it with other
open-source generative LLMs. We will also explore dynamic
prompt generation strategies that adapt to the evolving nature
of medical ontologies. This involves creating prompt
templates that dynamically adjust based on the specific
domains of concepts and semantic relationships that need to
be curated in the ontologies, providing LLMs with a more
adaptive and context-aware task description. Future work
could also delve into interdisciplinary collaborations
involving computer scientists, healthcare professionals, and
ontology experts. This collaborative approach could facilitate
the development of hybrid systems that combine the strengths
of LLMs with the nuanced expertise of domain specialists,
addressing the challenges posed by the intricate nature of
medical ontologies.

VI Conclusion

We presented a rigorous investigation into the
application of Large Language Models (LLMs) in predicting
IS-A relationships within medical ontologies. The strategic
exploration of diverse prompt templates with concept
placeholders, model variations, few-shots examples, and
model ensembles has provided valuable insights into the
potential applications of LLMs in ontology curation. Our
findings revealed the potential of LLMs, particularly
OpenChat, Vicuna, and Zephyr, in predicting hierarchical
relationships without finetuning. We found that strategic use
of the prompts to LLMs allowed for dynamic and specific
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prompts tailored to each concept pair, contributing to the
accuracy and granularity of IS-A relationship predictions.
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