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Abstract—This study extends the exploration of ontology 
enrichment by evaluating the performance of various open-
sourced Large Language Models (LLMs) on the task of 
predicting hierarchical relationships (IS-A) in medical 
ontologies including SNOMED CT Clinical Finding and 
Procedure hierarchies and the human Disease Ontology. With 
the previous finetuned BERT models for hierarchical 
relationship prediction as the baseline, we assessed eight open-
source generative LLMs for the same task. We observed only 
three models, without finetuning, demonstrated comparable or 
superior performance compared to the baseline BERT-based 
models. The best performance model OpenChat achieved a 
macro average F1 score of 0.96 (0.95) on SNOMED CT Clinical 
Finding (Procedure) hierarchy, an increase over 7% from the 
baseline 0.89 (0.85). On human Disease Ontology, OpenChat 
excels with an F1 score of 0.91, outperforming the second-best 
performance model Vicuna (0.84). Notably, some LLMs prove 
unsuitable for hierarchical relationship prediction tasks or 
appliable for concept placement of medical ontologies. We also 
explored various prompt templates and ensemble techniques to 
uncover potential confounding factors in applying LLMs for IS-
A relation predictions for medical ontologies. 

Keywords—Hieratical Relation Prediction, Large Language 
Models, Medical Ontology, Prompts Design, SNOMED CT 

I. Introduction 

Biomedical ontologies provided structured and formal 

representation of biomedical concepts and their 

interrelationships. The hierarchical relationship, also known 

as the “IS-A” relationship, is a fundamental concept within 

ontologies. It indicates that one concept is a subtype or 

subclass of another. In the context of biomedical ontologies, 

the IS-A relationship is crucial for organizing and structuring 

biomedical knowledge hierarchically. For example, the IS-A 

relationship would indicate that “Type 2 Diabetes” is a kind 

of or subclass of “Diabetes.” As biomedical knowledge is 

constantly growing, the process of enriching medical 

ontologies with newly defined concepts, poses a multifaceted 

challenge in biomedical informatics. This process, 

specifically the placement of new concepts, demands more 

attention to hierarchical relationships. The intricate task of 

accurately placing new concepts within the existing ontology 

hierarchy is equivalent to determining if there should exist IS-

A relationships between two concepts. Traditional 

approaches, often reliant on classifiers such as Snorocket [1] 

and HermiT [2], encounter limitations in handling the 

complexity and dynamic nature of evolving ontologies. The 

conventional reliance on classifiers, while providing a 

structured approach, falls short in cases where relationships 

are underspecified, or the ontology lacks the necessary 

granularity [3-5]. For example, SNOMED CT [6], as a widely 

used clinical terminology that is constantly updated with 

primitive concepts and underspecified relationships. The need 

for more efficient and accurate methodologies becomes 

evident, especially considering the time-consuming and error-

prone nature of manually placing concepts.  

A few studies have leveraged machine learning 

techniques for validate or identify missing IS-A relationships 

in SNOMED CT. Sun et al. investigated using deep learning 

models to aid in automatically validating IS-A relations 

suggested by nonlattice-based auditing approaches in 

SNOMED CT [7]. We also leveraged deep learning models, 

including Convolutional Neural Network [8] and BERT [9] to 

place new concepts in the SNOMED CT hierarchy using the 

new concepts’ names. More recently, Hao et al. explored a 

logical definition-based approach to facilitate suggestion of 

new concepts for SNOMED CT [10].  

Recently, Large Language Models (LLMs) have 

emerged as powerful tools in natural language processing and 
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knowledge representation. Their ability to capture complex 

semantical patterns and relationships in data makes them 

promising candidates for addressing the challenges inherent 

in ontology curation. Pre-trained language models, such as 

BERT [11] or ELMo [12], are built using deep learning 

techniques, specifically a type of neural network architecture 

called transformer networks. These models were also applied 

in ontology curation to assist concept placement. In our 

previous work [13], we leveraged BERT to train a model to 

predict the IS-A relations between concepts in SNOMED CT, 

utilizing the next sentence prediction property of BERT. 

As the field of NLP continues to evolve, LLMs represent 

a cornerstone in the pursuit of achieving human-level 

language understanding and generation. Generative LLMs 

have gained significant attention for their impressive 

language understanding and generation capabilities, 

influencing from natural language processing and content 

generation to customer support and education. LLMs are a 

type of artificial intelligence (AI) model designed to 

understand and generate human-like text.  Generative LLMs 

such as Llama2 [14], Vicuna [15], Mistral [16], OpenChat 

[17], offer the potential to automate and enhance the process 

of predicting hierarchical relationships within ontologies. 

In this study, we focus on evaluating the applicability of 

various LLMs to the task of predicting hierarchical 

relationships within the SNOMED CT. Recognizing the 

drawbacks of existing methods, we propose a comprehensive 

evaluation of LLMs’ performance, including those without 

fine-tuning, challenging the conventional belief that extensive 

training is essential. Furthermore, we extended our 

investigation to Disease Ontology [18], expanding the scope 

of applicability and the versatility of LLMs in diverse medical 

ontology domains. To systematically assess and compare the 

performance of LLMs, we experiment with four different 

prompt templates and two kinds of ensemble techniques. This 

exploration aims to uncover potential confounding factors and 

optimize the utilization of LLMs for the critical task of 

predicting IS-A relationships. Through this research, we 

contribute valuable insights into the advantages and 

challenges of incorporating LLMs in ontology enrichment 

and concept placement in medical informatics. 

II. Background 

A.  Medical & Clinical Ontology 

1) SNOMED CT. SNOMED CT (Systematized 

Nomenclature of Medicine Clinical Terms) is a 

comprehensive and globally recognized clinical terminology, 

with standardized medical concepts of clinical information. 

SNOMED CT facilitates interoperability in healthcare data 

exchange and supports precise and standardized 

communication among healthcare professionals [19]. Its 

hierarchical structure organizes clinical terms into a network 

of relationships, allowing for nuanced representation of 

medical knowledge. This standardized terminology forms the 

backbone of various health information systems and 

significantly contributes to improving the quality and 

efficiency of healthcare delivery. Its rich network of IS-A 

hierarchical relationships not only organizes clinical terms but 

also provides a nuanced portrayal of the hierarchical 

connections between concepts. SNOMED CT contains more 

than 357,000 health care concepts with unique meanings and 

formal logic-based definitions organized into hierarchies, of 

which the largest two hierarchies are Clinical Findings and 

Procedure. 

2) Disease Ontology. Disease Ontology serves as a 

valuable resource in organizing and classifying information 

related to human diseases [18]. It provides a structured 

framework for representing disease entities and their 

interconnections. By capturing the relationships between 

diseases and linking them to relevant biomedical knowledge, 

Disease Ontology contributes to a better understanding of the 

complex landscape of human health and diseases. The IS-A 

hierarchy in Disease Ontology serves as a structured 

framework that enhances our comprehension of the 

hierarchical connections between different disease entities. Its 

utility extends to diverse applications, including biomedical 

research, clinical decision support, and the integration of 

disease information in bioinformatics workflows.  

B. Large Language Models (LLMs) 
In recent years, the field of natural language processing 

(NLP) has witnessed a paradigm shift propelled by the advent 

of Large Language Models (LLMs) [20, 21]. These models, 

characterized by their vast scale and immense number of 

parameters, have demonstrated unprecedented capabilities in 

summarizing and generating human-like text. The 

significance of LLMs lies in their ability to learn intricate 

patterns and representations from massive datasets through 

unsupervised pre-training. During this pre-training phase, 

these models acquire a deep knowledge of the complexities of 

language, capturing syntactic, semantic, and contextual 

nuances. Transfer learning is a key principle underpinning the 

success of LLMs. By initially training on diverse and 

unlabeled text corpora, these models gain a generalized 

knowledge of language that can be leveraged for downstream 

tasks, such as text completion, sentiment analysis, question 

answering, language translation, and more. The transferability 

of knowledge acquired during pre-training contributes to the 

efficiency and effectiveness of LLMs in real-world 

applications. In this work, we experimented with eight open 

sourced LLM models: 

1) Llama2-7b & Llama2-13b. Llama 2 is an open-source 

language model from Meta AI that outperforms other open-

source language models on many benchmarks, including 

reasoning, coding, proficiency, and knowledge tests [14]. 

Llama2-7b and -13b are 7-billion and 13-billion parameter 

models fine-tuned for chat completions. 

2) WizardLM-13B V1.2. WizardLM [22] is trained from 

Llama2-13b and it is designed to follow complex instructions 

and generate coherent and fluent text in response to various 

inputs. It is fine-tuned on AI-evolved instructions using the 
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Evol+ approach. The model is pre-trained on a large corpus 

of text data and fine-tuned on the Llama2 dataset to generate 

high-quality responses to complex instructions. 

3) Vicuna-13b-v1.5. Vicuna-13B [15] is an open-source 

conversational model trained using the LLaMa-13B model. 

It is fine-tuned with user-shared conversations gathered from 

SharedGPT. Preliminary evaluations indicate that Vicuna-

13B achieves a quality exceeding 90% of ChatGPT and 

Google Bard. It has outperformed other models such as 

LLaMa and Alpaca in over 90% of instances. 

4) Xwin-LM-13B-V0.2. Xwin-LM [23], built-upon on the 

Llama2 base models, employed open-source alignment 

technologies including supervised fine-tuning (SFT), reward 

models (RM), reject sampling, reinforcement learning from 

human feedback (RLHF), for training large language models. 

It achieved good performance on the AlpacaEval benchmark. 

5) OpenChat_3.5. OpenChat [17] is an open-source 

language model with mixed-quality data, consisting of a 

small amount of expert data mixed with a large proportion of 

sub-optimal data, without any preference labels. It employed 

the C(conditioned)-RLFT, which regards different data 

sources as coarse-grained reward labels and learned a class-

conditioned policy to leverage complementary data quality 

information. The OpenChat-13b model fine-tuned with C-

RLFT achieves the highest average performance among all 

13b open-source language models on three standard 

benchmarks. The code, data, and models are publicly 

available at https://github.com/imoneoi/openchat.  

6) Mistra-7B-Instruct-v0.1. Mistral [16] model leveraged 

grouped-query attention (GQA) for faster inference, coupled 

with sliding window attention (SWA) to effectively handle 

sequences of arbitrary length with a reduced inference cost. 

The Mistral 7B outperforms the Llama2-13B model across 

all evaluated benchmarks, and Llama-34B in reasoning, 

mathematics, and code generation. The Mistral-7B-Instruct is 

a fine-tuned model to follow instructions that surpasses the 

Llama2-13B-Chat model both on human and automated 

benchmarks. 

7) Zephyr-7b-beta. Zephyr [24] is a series of language 

models that are trained to act as helpful assistants. Zephyr-

7B-β is the second model in the series and is a fine-tuned 

version of Mistral-7B-v0.1 that was trained on a mix of 

publicly available, synthetic datasets using Direct Preference 

Optimization (DPO). 

III. Method 

The process of this project is depicted in Fig. 1, 

comprising three pivotal sections: Concept Pair Extraction, 

Prompt Generation, and LLM Prediction. In the Concept Pair 

Extraction phase, we extracted IS-A connected concept pairs 

as positives and from SNOMED CT's Clinical Finding and 

Procedure hierarchies and Disease Ontology. The same 

number of concept pairs that are not connected by IS-A 

relation (denoted as unrelated concept pair) were randomly 

generated as negatives. Subsequently, in the Prompt 

Generation section, we introduced a component-based 

template design, leveraging strategically positioned 

placeholders for concepts, context prompt (task emphasis) 

and few-shots prompt (examples). These placeholders 

allowed for the generation of specific prompts tailored to 

individual positive and negative concept pairs. The templates, 

ranging from a simple baseline to nuanced ontology hierarchy 

considerations, provided a diverse set of stimuli for LLMs. 

Finally, in the LLM Prediction phase, eight prominent models 

were systematically fed with the generated prompts, 

evaluating their correctness in predicting IS-A relations. The 

prediction results were compared with true labels for each 

concept pair to compute precision, recall and F1, as the 

metrics to evaluate models’ performance.  

 

Fig. 1.  Experiment Workflow 

A. Dataset Selection and Preparation 

The choice of an appropriate dataset is paramount in 

evaluating the performance of Large Language Models 

(LLMs) in predicting IS-A relationships within medical 

ontologies. We used the same test dataset used in [13], which 

were new concepts added to the Clinical Finding hierarchy 

and Procedure hierarchy in the SNOMED CT 2018 release. 

For the Clinical Finding hierarchy, a total of 8,574 concept 

pairs were used for evaluation, which contained 4,287 IS-A 
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connected concept pairs as positives and 4,287 unrelated 

concept pairs as negatives. Similarly, the Procedure hierarchy, 

comprising 3,908 pairs, was crafted with an equal distribution 

of 1,954 positives and 1,954 negatives. The evaluation also 

includes Disease Ontology, which includes 1500 concept 

pairs of positives and 1500 negatives. This meticulous 

curation ensured that our experimental setup represented a 

diverse and comprehensive spectrum of IS-A relationships 

within medical ontologies. 

TABLE I. INPUT PROMPT TEMPLATE 

Input Prompt with Component Placeholders 
“Please act as an ontologist who can assist with ontology 
design and knowledge representation for medical/clinical 
domains. 
The task is that given two concepts, ["Concept_1"] and 
["Concept_2"], determine if Concept_1 should be 
considered a subconcept or subclass of Concept_2.  
{Context Prompt} 
If yes, then respond with "YES". Otherwise, respond with 
"NO". 
Note that your answer must start with a YES or NO answer, 
then provide reasoning or justifications for your response 
in less than five sentences, taking into account any relevant 
domain knowledge, ontological principles, and 
relationships observed between the concepts. 
Here are some examples:  
{Few_shots_text} 
Here is your question:  
With ["{concept1}"] as Concept_1 and ["{concept2}"] as 
Concept_2, determine if Concept_1 should be considered 
a subconcept or subclass of Concept_2. 
Your answer:” 

B. Input Prompt Design 

The input prompt to LLMs consists of four sub-prompts 

(shown in Table 1): 1) System-level prompt; 2) Context 
prompt; 3) Few-shots prompt; and 4) Question prompt with 

hint words “Your answer” to indicate the starting point for 

LLMs’ generation.  

1) System-level prompt describes the role of a model 

(“act as an ontologist”), and the high-level description of the 

task (“determine if Concept_1 should be considered a sub- 
concept or subclass of Concept_2”).  

2) Context prompt is varied with 4 different template 

versions (Table II) with different considerations: version 1 

template is plain with no context information; version 2 

template focuses on Domain-specificity about the two 

concepts; version 3 template highlighted the Inheritance of 

attributes between two concepts of a pair; version 4 template 

emphasizes taxonomic hierarchical connection between two 

concepts.  Other details of context prompt design are 

elaborated in section C. Context Prompt Template Design. 

3) Few-shots prompt was used to provide examples for 

LLMs to learn from. We tested three types of configurations 

including zero-shot, one-shot and five-shots. Details of few-

shot examples were elaborated in section E. Zero-shot Vs. 
Multi-shots. 

4) Question prompt specifies the task for LLMs and 

embedded concept placeholders, denoted as {concept1} and 

{concept2}. These placeholders were strategically positioned 

to be replaced with specific concepts from the positive and 

negative pairs. For instance, in a positive concept pair (Deep 
partial thickness burn of perineum, Dermatosis of perineum), 

the placeholders would be substituted with the actual concepts, 

creating a specific prompt for the LLMs: 

“With [“Deep partial thickness burn of perineum”] as 

Concept_1 and ["Dermatosis of perineum"] as Concept_2, 

determine if Concept_1 should be considered a sub-concept 

or subclass of Concept_2.” 

C. Context Prompt Template Design 

The essence of our method lies in the careful design of 

context prompt templates to encapsulate the complexity of IS-

A relationships. Four templates with different semantic 

priority were crafted to probe different perspectives in 

ontology curation. The first template, conceived as a simple 

and abstract baseline, aimed to establish a foundational 

understanding. Subsequent templates delved into nuanced 

dimensions, namely “Domain-specificity,” “Inheritance of 

attributes,” and “Taxonomic hierarchy.” These templates 

were not merely linguistic constructs; rather they were 

carefully engineered to capture the intricacies of hierarchical 

relationships, fostering a rich and dynamic interaction with 

the LLMs under scrutiny. 

TABLE II. FOUR TEMPLATES OF THE CONTEXT PROMPTS  

No. Context Prompt Templates 

T1 
Semantic: Simple 

Prompt: N/A 

T2 

Semantic: Domain-specificity 

Prompt: "To make this determination, please 

define the two concepts and analyze the context 

and domain relevance of the concepts: Is 

Concept_1 a narrower or more specific concept 

within the domain of Concept_2?" 

T3 

Semantic: Inheritance of attributes 

Prompt: "To make this determination, please 

define the two concepts and assess whether 

Concept 1 naturally inherits or extends the 
attributes and properties of Concept 2." 

T4 

Semantic: Taxonomic hierarchy 

Prompt: "To make this determination, please 

define the two concepts and examine the overall 

structure and organization of the ontology. Does 

the inclusion of Concept_1 as a child concept of 

Concept_2 align with the existing hierarchy?" 

The “Domain-specificity” template sought to investigate 

the impact of contextual specificity in eliciting accurate 

predictions, while the “Inheritance of attributes” template 

aimed to capture the inheritance patterns that define IS-A 
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relationships within medical ontologies. The “Taxonomic 

hierarchy” template, on the other hand, probed the 

hierarchical structure of the ontologies, challenging the 

models to discern and comprehend the taxonomy underlying 

IS-A relationships. Each template was meticulously designed 

to serve as a lens, allowing us to discern the models' 

proficiency in understanding and navigating different 

dimensions of hierarchical relationships in medical ontologies. 

D. Model Selection and Experimentation 

Eight prominent LLMs were selected for 

experimentation, each chosen for its unique architecture and 

capabilities. The lineup included Llama2-7b, Llama2-13b, 

Vicuna-13b-v1.5, WizardLM-13B-V1.2, Xwin-LM-13B-

V0.2, OpenChat_3.5, Zephyr-7b-beta, and Mistral-7B-

Instruct-v0.1. This diverse set of models brought forth a rich 

array of linguistic and semantic processing capabilities, 

making our investigation robust and comprehensive. 

In our experimental setup, each model was meticulously 

fed with the four distinct templates, each embedded with 

positive and negative concept pairs. This approach allowed us 

to systematically evaluate how different LLMs responded to 

variations in prompt structure and content. The templates 

served as dynamic stimuli, challenging the models to interpret 

and predict IS-A relationships across different linguistic and 

semantic contexts. 

E. Zero-shot Vs. Multi-shots 

To explore the adaptability of the LLMs to situations 

with minimal training examples, we introduced zero-shot and 

few-shot scenarios. In the zero-shot scenario, models were 

presented with IS-A relationships without any prior training 

on those specific instances. In the few-shot scenarios (1 

example and 5 examples), the models were exposed to a 

selected number of human-reviewed IS-A relationships, 

simulating scenarios where only a handful of examples were 

available. A total of 15 human-reviewed IS-A connected 

concept pairs (with 5 pairs each corresponding to T2, T3, T4 

in Context Prompt Templates) and 5 negative pairs. This setup 

allowed us to assess the generalization capabilities of the 

LLMs and their performance under varying degrees of 

training data availability. 

F. Two-Dimensional Majority Vote 

1) Template Layer. Recognizing the potential advantages 

of breaking down the task into subtasks, we introduced a 

Majority Vote Ensemble. This ensemble approach involved 

aggregating the models’ prediction results from templates T2, 

T3, and T4. The motivation behind this ensemble was to 

assess whether subtask breakdowns in the prompt variants 

contributed to improved accuracy in identifying correct 

answers. By comparing the ensemble results with those 

obtained using only template T1, we aimed to unravel the 

effectiveness of partitioning the task into subtasks and 

exploring the impact on predictive accuracy. 

2) Model Layer. After applying Majority Vote among 

templates T2, T3 and T4, we additionally used the majority 

vote method for the model level. Specifically, we identified 

the top-performing three models and produced majority vote 

results based on their respective template levels. 

Subsequently, we conducted a majority vote among these 

three selected models as Figure 2 demonstrates. 

 

Fig. 2.  Example of Two-Dimensional Majority Vote 

G. Evaluation Metrics 

Each model predicts a “YES” or “NO” label based on the 

input prompt for a given concept pair. This label is compared 

with the ground truth label for this concept pair. The true label 

for two concepts that are connected by IS-A relation (positive) 

is “YES.” The true label for two concepts that are unrelated 

(negative) is “No.” The model’s prediction is correct if its 

prediction is equal to the true label, otherwise the model is 

wrong. Precision, recall, and F1 score were chosen as the 

primary metrics to provide a nuanced and comprehensive 

assessment. Precision gauged the accuracy of positive 

predictions, recall measured the models' ability to capture all 

positive instances, and F1 (1), the harmonic means of 

precision and recall, provided a balanced evaluation 

considering both false positives and false negatives. The 

macro average F1 score (2) is computed to evaluate the 

performance of individual models. In this study, the macro 

average F1 score is the mean of F1 score of IS-A concept pairs 

(F1positive) and F1 score unrelated concept pairs (F1negative). 

 � ����

�  (2) 
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H. Experiment configuration 

For our experiments, we fixed the temperature which 

refers to the “softness” of the probability distribution at 0.1. 

Specifically, a higher temperature value will cause the higher 

randomness of the output, resulting in more “innovative” 

feedback. On the other hand, a lower temperature value, 

closer to 0 will make the output more deterministic, leading 

to responses that are more likely according to the model’s 

training [25]. The experiment was implemented using 

FastChat [26], and all LLMs were loaded from the 

HuggingFace [27] platform. Intel(R) Xeon(R) CPU E5-4627 

v4 with 40 cores processor, 4 NVIDIA A100 GPUs, and a 

memory size of 40G were used in this work. 

IV. Result 

We reported the model’s performance on testing datasets 

selected from the Clinical Finding hierarchy and the 

Procedure hierarchy of SNOMED CT, and the human 

Disease Ontology (DO), and their performance under 

different context prompt templates and few-shot training 

strategy settings. 

In Table III, we compared the baseline model BERT with 

eight models using context prompt template T2, as described 

in the Method section. Openchat-3.5 demonstrated optimal 

performance across all three datasets, with average macro F1 

scores consistently exceeding 0.90. The second-best 

performing model was Vicuna-13b-v1.5. While Zephyr-7b-

beta exhibited notable accuracy in the context of SNOMED 

CT’s two hierarchies, its performance was less favorable 

when applied to Disease Ontology. On average, OpenChat-

3.5, Vicuna-13b-v1.5 and Zephyr-7b-beta outperformed the 

baseline BERT model on the two SNOMED CT datasets. 

TABLE III. F1 SCORE (MACRO) OF MODELS’ PERFORMANCE ON 

CLINICAL FINDING (CF) HIERARCHY, PROCEDURE (PROC) 

HIERARCHY AND HUMAN DISEASE ONTOLOGY (DO) DATASET 

Model 
Dataset 

CF PROC DO 
OpenChat-3.5 0.96 0.95 0.91 

Vicuna-13b-v1.5 0.89 0.90 0.84 

BERT* 0.89 0.85 – 
Zephyr-7b-beta 0.88 0.92 0.64 

Llama-2-13b-chat 0.85 0.85 0.58 

Llama-2-7b-chat 0.33 0.33 0.33 

Mistral-7B-Instruct-v0.1 0.33 0.33 0.33 

WizardLM-13B-V1.2 0.33 0.33 0.33 

Xwin-LM-13B-V0.2 0.30 0.37 0.33 

* BERT model’s performance reported from [13].  

In Table IV, we showed the model performances under 

four different context prompt templates. Among the eight 

Large Language Models (LLMs), three models including 

Llama-2-7b-chat-hf, Mistral-7B-Instruct-v0.1, and 

WizardLM-13B-V1.2 were insensitivities to prompt 

variations, with no changes in F1 scores. Notably, for Xwin-

LM-13B-V0.2, the enriched context prompts T2, T3, and T3 

resulted in a decline in performance compared with T1. Using 

template T2, OpenChat-3.5 (0.96), Vicunna-13b-v1.5 (0.89), 

and Zephyr-7b-beta (0.88) achieved the top-3 F1 scores. 

Although prompt template T3 achieved optimal F1 score 

(0.89) for the Vicuna model, the improvement compared with 

T2 is trivial (0.01). T2 demonstrates a high potential as the 

most instructive prompt among 4 templates. 

TABLE IV. F1 SCORE (MACRO) OF EIGHT MODELS QUERIED BY 

FOUR DIFFERENT TEMPLATES ON CLINICAL FINDING DATASET 

Model 
Template 

T1 T2 T3 T4 
Llama-2-7b-chat 0.33 0.33 0.33 0.33 

Llama-2-13b-chat 0.47 0.85 0.67 0.69 

Mistral-7B-Instruct-v0.1 0.33 0.33 0.33 0.33 

OpenChat-3.5 0.93 0.96 0.94 0.96 
Vicuna-13b-v1.5 0.82 0.89 0.90 0.63 

WizardLM-13B-V1.2 0.33 0.33 0.33 0.33 

Xwin-LM-13B-V0.2 0.63 0.30 0.33 0.33 

Zephyr-7b-beta 0.39 0.88 0.64 0.38 

We also observed that a model’s performance varied with 

the few-shot strategies embedded in the input prompt. As 

illustrated in Table V, three models (Mistral-7B-Instruct-v0.1, 

WizardLM-13B-V1.2, Xwin-LM-13B-V0.2) exhibited 

significant improvements when trained with one-shot and 

five-shot strategies. It is interesting that these three models 

did not perform well with the original settings and were 

insensitive to the context prompt templates; but were able to 

“learn” from the training shots (examples) to achieve better 

performance. In contrast, models such as OpenChat, Vicuna, 

Zephyr, and Llama-2-13b performed well without training 

shots, but their performance degraded with additional training 

shots. 

TABLE V. F1 SCORES (MACRO) OF EIGHT MODELS WITH THREE 

DIFFERENT SHOTS CONFIGURATIONS (DATASET: CF; TEMPLATE: T2) 

Model 
Shots 

0-shot 1-shot 5-shot 
Llama-2-7b-chat 0.33 0.19↓ 0.34↑ 

Llama-2-13b-chat 0.85 0.53↓ 0.22↓ 

Mistral-7B-Instruct-v0.1 0.33 0.65↑ 0.67↑ 

OpenChat-3.5 0.96 0.93↓ 0.91↓ 

Vicuna-13b-v1.5 0.89 0.68↓ 0.89 

WizardLM-13B-V1.2 0.33 0.71↑ 0.83↑ 

Xwin-LM-13B-V0.2 0.30 0.59↑ 0.73↑ 

Zephyr-7b-beta 0.88 0.84↓ 0.81↓ 

In addition, we implemented a two-dimensional majority 

vote as a way of enhancing performance. The outcomes of the 
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template-level majority vote with the average of the F1 scores 

for zero-shot, one-shot, and five-shot configurations are 

presented in Table VI. Notably, 7 out of the 8 models 

demonstrated improved performance with the majority vote 

strategy. The combination of training shots with the template-

level majority vote strategy proved effective in elevating the 

accuracy of the model’s predictions. 

TABLE VI. F1 SCORE (MACRO) OF ZERO-, ONE-, AND FIVE-SHOTS 

WITH TEMPLATE T1 AND MAJORITY VOTE OF T2, T3 AND T4 

Model T1 
Majority Vote 

(T2, T3, T4) 
Llama-2-7b-chat-hf 0.27 0.41 

Llama-2-13b-chat-hf 0.42 0.65 

Mistral-7B-Instruct-v0.1 0.53 0.54 

OpenChat-3.5 0.92 0.94 
Vicuna-13b-v1.5 0.82 0.82 

WizardLM-13B-V1.2 0.51 0.60 

Xwin-LM-13B-V0.2 0.43 0.54 

Zephyr-7b-beta 0.68 0.77 

We also experimented with the majority vote at the 

model level. The performance comparison between individual 

model and the ensemble of the three models is shown in 

Figure 3. It is evident that OpenChat outperformed the 

majority votes of three models (OpenChat, Vicuna and 

Zephyr) across all three datasets. In other words, the 

combination of multiple models’ predictions did not lead to 

more correct results. Therefore, employing a majority vote 

across multiple models is not an effective strategy for 

improving prediction accuracy. 

 

Fig. 3.  Macro F1 Score of Three different Shot Scenarios with 2-

dimentional majority votes (Blue, Orange and Green bars are the 

template level majority vote results of 3 best performed model: 

OpenChat, Vicuna and Zephyr, Red bar is the result produced by the 

Model-level Majority Vote of these 3 models) 

Table VII presents several examples of prediction by 

OpenChat with context prompt template T2 and zero-shot 

strategy. It demonstrates accurate predictions of the IS-A 

relation between concepts “Sequela of non-traumatic 
intracranial subarachnoid hemorrhage” and “Dysphagia due 
to and following non-traumatic subarachnoid hemorrhage”. 

The explanation of this prediction is precise and logical as 

follows “[Dysphagia due to and following non-traumatic 
subarachnoid hemorrhage] is a specific [Sequela of a non-
traumatic intracranial subarachnoid hemorrhage], which 
falls under the broader category of sequelae of disorders 
classified by disorder-system. The relationship between the 
two concepts is that Concept_1 is a specific instance of 
Concept_2.” For the true negative example (non-IS-A 

concept pair), OpenChat provided the correct and informative 

response: “[Ecthyma caused by staphylococcus aureus] is a 
bacterial skin infection, while [Dementia] is a neurological 
disorder affecting cognitive function. They belong to different 
medical domains and are not related in a subconcept/subclass 
relationship.” 

TABLE VII. PREDICTION EXAMPLES BY OPENCHAT WITH 

TEMPLATE T2 (DATASET: CF AND PROC) 

Metrics Concept 1 Concept 2 

TP 

Sequela of non-

traumatic intracranial 

subarachnoid 

hemorrhage 

Dysphagia due to and 

following non-traumatic 

subarachnoid hemorrhage 

TN Dementia 
Ecthyma caused by 

staphylococcus aureus 

FP* Cerebral ischemia 

Lacunar ataxic 

hemiparesis of right 

nondominant side 

FN* 
Urge incontinence due 

to prolapse of female 

genital organ 

Mixed incontinence due 

to prolapse of female 

genital organ 
*FP: Concept 2 is not subclass of Concept 1, but falsely predicted they have 

IS-A relation; FN: Concept 2 is actual the subclass of Concept 1, but falsely 

predicted they don’t have IS-A relation. 

For false predictions, while the outcome may not align 

with expectations, the accompanying explanations remain 

acceptable to some degree. For example, the false positive 

case “Cerebral ischemia” and “Lacunar ataxic hemiparesis of 
right nondominant side” are not related as “IS-A”, but 

OpenChat considered the second one is the sub-concept of 

first one with reasons: “[Lacunar ataxic hemiparesis of the 
right nondominant side] is a specific type of brain damage 
caused by ischemia, which is a lack of blood supply to the 
brain. Therefore, Concept_1 can be considered a subconcept 
or subclass of Concept_2.” For the false negative example, 

OpenChat predicted that “Urge incontinence due to prolapse 
of female genital organ” is not the subconcept of “Mixed 
incontinence due to prolapse of female genital organ” 

because “[Mixed incontinence due to prolapse of female 
genital organ] is a type of incontinence that involves both 
stress and urge incontinence, while [Urge incontinence due 
to prolapse of female genital organ] is a specific type of 
incontinence that is characterized by a sudden, strong urge to 

254

Authorized licensed use limited to: Montclair State University. Downloaded on February 07,2025 at 14:56:10 UTC from IEEE Xplore.  Restrictions apply. 



 

urinate. These are two distinct types of incontinence, and one 
is not a subtype of the other.” Although the explanation 

asserted that they are not IS-A related which they are in 

SNOMED CT, OpenChat accurately described the meaning 

of these two concepts, and the incorrect prediction may stem 

from the absent information that “Mixed incontinence” is 

modeled as a subtype of “Urge incontinence” for this specific 

scenario in SNOMED CT.  

V. Discussion 

Our comprehensive exploration into the application of 

Large Language Models (LLMs) in predicting IS-A 

relationships within medical ontologies, specifically the 

Disease Ontology (DO), Clinical Finding and Procedure 

hierarchies of SNOMED CT, has unearthed valuable insights 

into the capabilities and potential applications of these 

advanced language models. 

The findings reveal a nuanced interplay between LLMs 

and the complex semantic relationships inherent in medical 

ontologies. Across the diverse set of prompts and models 

employed in our study, certain LLMs, including OpenChat, 

Vicuna, and Zephyr, demonstrated remarkable performance 

even without the need for finetuning. This challenges 

traditional approaches and opens avenues for leveraging pre-

trained models in ontology enrichment tasks. 

Prompt template variations played a pivotal role in 

influencing the models’ predictive accuracy. The introduction 

of concept placeholders provided a dynamic and specific 

prompt for each instance, contributing to the granularity of 

predictions. Our ensemble approach, incorporating subtask 

breakdowns, showcased promising potential in enhancing 

predictive accuracy, and underscoring the significance of task 

decomposition in certain scenarios. 

The success of LLMs in predicting IS-A relationships 

within medical ontologies holds promising implications for 

healthcare informatics. These models could assist ontology 

curation and periodic updates by automating the placement of 

concepts, reducing the manual effort required by curators. 

The ability to generalize to zero-shot and few-shot scenarios 

opens avenues for rapid integration of new concepts into 

ontologies with minimal training data.  

Furthermore, the findings pave the way for improved 

clinical decision support systems. The accurate prediction of 

hierarchical relationships enables more precise and context-

aware clinical information retrieval. This can enhance the 

quality and efficiency of healthcare delivery, supporting 

clinicians in decision-making processes. 

Limitations: The application of Large Language Models 

(LLMs) in predicting IS-A relationships within medical 

ontologies encounters multifaceted challenges. One 

prominent limitation lies in the semantic ambiguity present in 

concept naming rather than general English context. For 

instance, when introducing a new concept like "Red Spotted 

Fever," the term's multiple interpretations, ranging from a 

specific clinical finding to a broader disease category, can 

confound LLMs, potentially leading to misplacement within 

the ontology hierarchy [4]. Another significant challenge 

arises from contextual sensitivity and specificity. Prompt 

templates designed to explore relationships might struggle in 

contexts where nuanced clinical distinctions are crucial. For 

example, differentiating between “Chronic Pain” and “Acute 

Pain” demands both linguistic comprehension and clinical 

understanding, posing challenges for LLMs to capture these 

nuances accurately. Moreover, LLMs exhibit limitations in 

their understanding of clinical intricacies, such as the 

handling of rare or novel concepts.  LLMs may lack sufficient 

context for accurate predictions. The introduction of highly 

specialized medical conditions, absent in the training data, 

underscores the limitations in adapting to emerging medical 

concepts. These limitations collectively emphasize the need 

for ongoing refinement and careful consideration when 

employing LLMs in the intricate domain of medical ontology 

curation. 

Future Work: Future research should explore methods 

to incorporate biomedical ontologies and domain-specific 

datasets during pre-training or fine-tuning to enhance the 

LLMs’ understanding of medical concepts and relationships. 

Experiment of training top performed models with large 

training datasets, may prone the efficiency of the suggested 

pretraining. We plan to use the “IS-A” related concepts pairs 

in this study as the training dataset to finetune to the top three 

performance models for improving their prediction accuracy. 

Additionally, we plan to assess the performance of various 

proprietary LLMs, such as OpenAI's ChatGPT-4 and 

Anthropic's Claude on this task and compare it with other 

open-source generative LLMs. We will also explore dynamic 

prompt generation strategies that adapt to the evolving nature 

of medical ontologies. This involves creating prompt 

templates that dynamically adjust based on the specific 

domains of concepts and semantic relationships that need to 

be curated in the ontologies, providing LLMs with a more 

adaptive and context-aware task description. Future work 

could also delve into interdisciplinary collaborations 

involving computer scientists, healthcare professionals, and 

ontology experts. This collaborative approach could facilitate 

the development of hybrid systems that combine the strengths 

of LLMs with the nuanced expertise of domain specialists, 

addressing the challenges posed by the intricate nature of 

medical ontologies. 

VI. Conclusion 

We presented a rigorous investigation into the 

application of Large Language Models (LLMs) in predicting 

IS-A relationships within medical ontologies. The strategic 

exploration of diverse prompt templates with concept 

placeholders, model variations, few-shots examples, and 

model ensembles has provided valuable insights into the 

potential applications of LLMs in ontology curation. Our 

findings revealed the potential of LLMs, particularly 

OpenChat, Vicuna, and Zephyr, in predicting hierarchical 

relationships without finetuning. We found that strategic use 

of the prompts to LLMs allowed for dynamic and specific 
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prompts tailored to each concept pair, contributing to the 

accuracy and granularity of IS-A relationship predictions. 
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