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Abstract— This work mines big data in Sentinel-1 satellite
images to unveil geographical patterns in offshore wind energy.
We leverage unsupervised machine learning to extract insights
from a 44GB open access dataset for decision support in wind
farm orientations to guide stakeholders. It has broader impacts
of overcoming climate change by enhancing renewable energy.
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I. INTRODUCTION

The earth system operates daily, monthly, and annually, with
the sun as its main energy source. Interactions between solar
radiation and the atmosphere drive weather patterns; uneven
heating of Earth’s surface creates temperature and pressure
variations among air masses, affecting coasts and motivating
studies [1]. In offshore wind energy, identifying wind patterns
along New Jersey to Massachusetts shorelines can help energy
generation via optimal wind turbines localization and
orientation. To the best of our knowledge, our study is unique
in harvesting large datasets from satellite images and mining
them to unveil wind patterns geographically for long-term
decision support in offshore wind farm and energy estimation.

II. METHODS AND MODELS

A. Remote Sensing

The Sentinel-1 mission comprises a constellation of two
satellites, launched by ESA (European Space Agency).
Sentinel-1A was launched on April 3rd, 2014, and Sentinel-
1B was launched on April 25th, 2016; the latter ceased
operations on August 23rd, 2022. Sentinel-1 is in a near-polar
orbit with a 12 day repeat cycle. Both Sentinel-1A and
Sentinel-1B share the same orbit plane with a 180° orbital
phasing difference; with both satellites, the repeat cycle is 6
days. This mission use Synthetic Aperture Radar (SAR) active
sensors, emitting C-band pulses toward earth’s surface and
capturing backscatters free from atmospheric interactions,
despite time and weather conditions. With a high spatial
resolution of 1km for the Sentinel-1 Ocean Wind Field (OWI)
Level-2 product effectively monitors ocean surfaces and
offshore wind assessment [2]. An example of a Sentinel-1
Level-2 dataset appears in Fig 1.
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Fig. 1 Dataset example from Sentinel-1 Level-2

8778

979-8-3503-6248-0/24/$31.00 ©2024 IEEE

B. Data Harvesting

Sentinel-1 Level-2 products are open-access in ASF (Alaska
Satellite Facility). The products include georeferenced data on
wind speed and direction, based on the World Geodesic
System 1984 (WGS84). We download 5,773 products from
the start of the mission to September 2024, with each product
containing over 20,000 data points. We harvest the data with
PCA (Principal Components Analysis), synopsized in Fig. 2.

C. Geospatial Data Transformation for 4D Analysis

The spatial-temporal-direction is a four-dimensional (4D)
construct. The geographic velocity vector is split into a
horizontal movement along the east axis and a vertical
movement along the north axis, converting the radial direction
of the wind into a Cartesian representation. Meanwhile, the
WGS84 is projected as a Coordinate Reference System (CRS)
using the Lambert Conformal Conic (LCC) projection. The
southernmost (34.4566 °N) and northernmost (43.2517 °N)
points define the minimum and maximum latitudes,
respectively. The LCC projection preserves the angles and
shapes, making it highly suitable for representing spatial
relationships accurately. Hence, this feature extraction ensures
compatibility with Euclidean distance metrics.

D. Unsupervised Machine Learning

Unsupervised learning identifies similarities and differences
by clustering unlabeled datasets [3]. Leveraging the k-means
algorithm, which utilizes Euclidean distance to measure
proximity between these 4D points, facilitates appropriate
grouping. We employ the elbow method to determine the
optimal number of clusters k. This technique evaluates the
sum of squared distances (inertia) between points and their
corresponding cluster centroids for varying values of k. As the
value of k increases, the inertia decreases, indicating improved
compactness within clusters. However, beyond a certain point,
the rate of improvement diminishes, forming an "elbow" in the
curve. For this dataset, the elbow occurs at k=5, suggesting
that 5 clusters provide the best balance between minimizing
inertia and avoiding overfitting. The clustering can be well-
visualized in Fig.5 with 5 colors corresponding to 5 clusters.
This maps to the value of k=5 learned by the elbow method.
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Fig. 2. Harvesting Sentinel-1 data with PCA



III. RELATED WORK

Remote sensing with reanalysis dataset from the European
Centre for Medium-Range Weather Forecasts can enable wind
speed and energy density estimations over the Mediterranean
Sea [4]. The analysis presents Sentinel high-resolution spatial
coverage and capability to monitor temporal wind variations
crucial for energy forecasting. However, challenges for SAR
data interpretation complexity, and integration of ground
datasets underscore a need for interdisciplinary expertise. A
study in Ireland [5] validates Sentinel-1 SAR Level-2 data to
estimate surface wind speed and average wind power against
in-situ data from weather buoys and coastal stations using
1,544 match-up points from May 2017-2019. Despite a
consistent underestimation of wind speeds by 0.4 m/s, satellite
data has strong correlations with the in-situ measurements
(R>0.92) and reliable average wind power estimations, with
errors of ~10% for buoys and ~5% for coastal stations.
Seasonal analysis highlights stronger winds in winter and
autumn, aligning with North Atlantic cyclonic patterns, while
the northwest coast exhibits the highest wind speeds. Yet,
spatial analysis reveals biases influenced by proximity to
coastlines, emphasizing a need for more careful interpretation.
Sentinel-1 SAR data with machine learning offers offshore
wind resource assessments at turbine hub heights, as shown in
a study in Dutch coast [6]. Areas of 70 km? use SAR data and
Doppler wind LiDAR measurements for validation. Machine
learning models correct SAR surface wind speeds, integrating
geometrical parameters and metadata of the SAR sensor, and
buoy data, achieving minor bias of 0.02 m/s. Corrected speeds
are extrapolated to 200m hub heights using meteorological
inputs from numerical weather models. High-resolution SAR
wind power maps coastal wind gradients, surpassing a few
models. It enhances site assessments and risk management by
correcting SAR data and generating detailed wind fields.
Some gaps in this study highlight the potential to address
challenges in offshore wind resource mapping to support
efficient farm development and sustainable energy planning.
Research in the Norwegian Arctic [7] assesses Sentinel-1
Level-2 Ocean Wind Field (OWI) products to study offshore
wind conditions comparing with in-situ observations and
reanalysis datasets (ERAS5, NORA3, CARRA). Sentinel-1
demonstrates strong correlations with these datasets, and the
wind direction accuracy is consistent across datasets. The
high-resolution dataset in Sentinel-1 of 1 km provides spatial
advantage over reanalysis datasets (2.5-31 km) for localized
assessments, though reanalysis offered broader temporal
coverage. The findings support Sentinel-1’s integration into
offshore wind energy strategies, especially enhancing wind
resource evaluation in Arctic regions, and its unique
characteristics in wind distribution modeling. It motivates
more studies in the overall field, such as our work here.

Our research in this paper is orthogonal to the literature. It
supplements existing work [4-7] through its novelty and
uniqueness in terms of mining complex satellite imagery with
unsupervised learning, aiding long-term decision support in
offshore wind farm and energy estimation. Moreover, since
the learning is unsupervised in our work, it does not require
pre-labeled training datasets along with predefined notions of
correctness. In many domains, e.g. environmental computing,
such huge training data with ground truth from experts can be
hard to obtain. Hence, our study contributes much here. It
thrives on work by our team [8-14] and others [15-16], mining
complex big data with domain knowledge in environmental
computing and other areas, to enhance decision support.
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IV. EXPERIMENTS AND RESULTS

Over 10 years, wind speed data has right-skewed distributions
with mean=7.44m/s and median=6.86m/s, indicating that
speeds above 20m/s are rare, and that the most frequent wind
direction is southwest. Fig. 3 illustrates a few seasonal trends.
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Fig. 3. Illustration of seasonal trends discovered by k-means

Our analysis with k-means clustering reveals that 18.7% of
wind speeds, categorized in cluster 0, have a northwest
frequency with a mean speed of 10.90 m/s and a median of
10.80 m/s along the Atlantic coasts from NJ to MA.
Furthermore, cluster 0 peaks in winter and is at its lowest
around the summer solstice (as seen in the blue area in Fig. 4).
Furthermore, cluster 1 has the closest mean speed (7.78 m/s)
to historical data and is the only cluster that does not contain
data points near the shoreline. It is bounded by latitudes
40.5°N to 35°N and longitudes 73.5°W to 64.5°W. This is
well-illustrated in Fig. 5 here.

Moreover, clusters 2 and 3 have lower mean wind speeds of
5.79 m/s and 5.33 mV/s, respectively, and together represent
47% of the data. These clusters highlight a geographic
division extending from (41°N, 73.5°W) to (39°N, 70.5°W)
(see Fig. 6). Although clusters 1, 2, and 3 overlap between
latitudes 39°N to 40°N and longitudes 72°W to 70.5°W, the
area in cluster 1 shows higher frequencies during the summer
season. All the clusters exhibit a frequent southwest wind
direction, maintaining stable frequency throughout the years.

Wind Field Cluster 3

Fig. 4. Geographic distribuiton of cluster 2 and 3
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Fig. 5. Wind speed and direction in cluster 1. Left: Southwest direction
seen as frequent. Right: Datapoints plotted geographically

When frequent wind directions occur in areas near the
shoreline, the mean speed remains stable at 5.79 m/s, as shown



in clusters 2 and 3. However, as the area extends further
offshore, cluster 1 highlights regions with higher wind speeds,
offering critical insights for offshore wind farm optimization
and enhancing renewable energy projects. The main findings
from this analysis reveal that wind speeds are stronger moving
northwards and that such trends are more frequent during the
winter months. Cluster 1, which represents 25.1% of the data,
illustrates the potential for high ocean wind speeds towards
the southwest and is the largest cluster identified.

Likewise, such analysis can yield valuable insights to support
decisions about wind farm orientations and other factors, by
many of the concerned stakeholders. Energy estimation from
the renewable sources is also facilitated. Such work can
thereby have a long-term impact of combating climate change.

V. CONCLUSIONS AND ROADMAP

This work mines complex satellite images to draw inferences
helpful in decision support for offshore wind energy. Vital
initial findings are that wind has higher speeds going north and
can be more frequent in winter (for the areas analyzed). Such
inferences can aid wind farm planning by stakeholders. Key
findings from this analysis reveal that wind speeds are
stronger moving north and are more frequent during winter.
Cluster 1, which represents 25.1% of the data, illustrates the
potential for high ocean wind speeds towards the southwest
and is the largest cluster identified.

Enhancing the patterns unveiled by k-means to forecast and
track wind speed and direction in real-time can potentially
improve energy estimation. Accurate energy estimation is
beneficial for offshore wind stakeholders, as it supports
scheduling maintenance during low wind speeds for easier
access, forecasting when populations reliant on this clean
energy may need alternative sources, and identifying periods
of surplus energy generation to store it for future use.
Inferences such as these can guide decisions on wind farm
orientations and distribution in offshore wind projects. Such
decisions by stakeholders can have broader impacts in
combating climate change through the development of more
and better renewable energy projects. Future work will include
reanalysis using in-situ data, leveraging machine learning to
fill in a few gaps caused by the limitations of remote sensing
technology. With these gaps addressed, forecasting machine
learning models can further enhance energy estimation.

Our study uniquely highlights the vital role of clustering for
big data mining on complex satellite imagery. As more
training data is available along with the notions of ground
truth, supervised learning with classifiers might be explored
in the future to predict best / average case performance for
optimizing energy output.

This work has broader impacts in the realm of climate change.
It can guide the assessment and enhancement of solutions,
thus helping much in the environmental computing area.
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