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Abstract— This work mines big data in Sentinel-1 satellite 

images to unveil geographical patterns in offshore wind energy. 

We leverage unsupervised machine learning to extract insights 

from a 44GB open access dataset for decision support in wind 

farm orientations to guide stakeholders. It has broader impacts 

of overcoming climate change by enhancing renewable energy. 

     Keywords— Climate Change, Clustering, Geospatial Big Data, 

Image Mining, Ocean Wind Field, Radar, Renewable Energy, 

Satellite Data, Unsupervised Learning, World Geodetic System 

I. INTRODUCTION

The earth system operates daily, monthly, and annually, with 
the sun as its main energy source. Interactions between solar 
radiation and the atmosphere drive weather patterns; uneven 
heating of Earth’s surface creates temperature and pressure 
variations among air masses, affecting coasts and motivating 
studies [1]. In offshore wind energy, identifying wind patterns 
along New Jersey to Massachusetts shorelines can help energy 
generation via optimal wind turbines localization and 
orientation. To the best of our knowledge, our study is unique 
in harvesting large datasets from satellite images and mining 
them to unveil wind patterns geographically for long-term 
decision support in offshore wind farm and energy estimation. 

II. METHODS AND MODELS

A. Remote Sensing

The Sentinel-1 mission comprises a constellation of two 
satellites, launched by ESA (European Space Agency). 
Sentinel-1A was launched on April 3rd, 2014, and Sentinel-
1B was launched on April 25th, 2016;  the latter ceased 
operations on August 23rd, 2022. Sentinel-1 is in a near-polar 
orbit with a 12 day repeat cycle. Both Sentinel-1A and 
Sentinel-1B share the same orbit plane with a 180° orbital 
phasing difference; with both satellites, the repeat cycle is 6 
days. This mission use Synthetic Aperture Radar (SAR) active 
sensors, emitting C-band pulses toward earth’s surface and 
capturing backscatters free from atmospheric interactions, 
despite time and weather conditions. With a high spatial 
resolution of 1km for the Sentinel-1 Ocean Wind Field (OWI) 
Level-2 product effectively monitors ocean surfaces and 
offshore wind assessment [2]. An example of a Sentinel-1 
Level-2 dataset appears in Fig 1.  

B. Data Harvesting

Sentinel-1 Level-2 products are open-access in ASF (Alaska 
Satellite Facility). The products include georeferenced data on 
wind speed and direction, based on the World Geodesic 
System 1984 (WGS84). We download 5,773 products from 
the start of the mission to September 2024, with each product 
containing over 20,000 data points. We harvest the data with 
PCA (Principal Components Analysis), synopsized in Fig. 2. 

C. Geospatial Data Transformation for 4D Analysis

The spatial-temporal-direction is a four-dimensional (4D) 
construct. The geographic velocity vector is split into a 
horizontal movement along the east axis and a vertical 
movement along the north axis, converting the radial direction 
of the wind into a Cartesian representation. Meanwhile, the 
WGS84 is projected as a Coordinate Reference System (CRS) 
using the Lambert Conformal Conic (LCC) projection. The 
southernmost (34.4566 °N) and northernmost (43.2517 °N) 
points define the minimum and maximum latitudes, 
respectively. The LCC projection preserves the angles and 
shapes, making it highly suitable for representing spatial 
relationships accurately. Hence, this feature extraction ensures 
compatibility with Euclidean distance metrics. 

D. Unsupervised Machine Learning

Unsupervised learning identifies similarities and differences 
by clustering unlabeled datasets [3]. Leveraging the k-means 
algorithm, which utilizes Euclidean distance to measure 
proximity between these 4D points, facilitates appropriate 
grouping. We employ the elbow method to determine the 
optimal number of clusters k. This technique evaluates the 
sum of squared distances (inertia) between points and their 
corresponding cluster centroids for varying values of k. As the 
value of k increases, the inertia decreases, indicating improved 
compactness within clusters. However, beyond a certain point, 
the rate of improvement diminishes, forming an "elbow" in the 
curve. For this dataset, the elbow occurs at k=5, suggesting 
that 5 clusters provide the best balance between minimizing 
inertia and avoiding overfitting. The clustering can be well-
visualized in Fig.5 with 5 colors corresponding to 5 clusters. 
This maps to the value of k=5 learned by the elbow method.  

Fig. 2. Harvesting Sentinel-1 data with PCA Fig. 1 Dataset example from Sentinel-1 Level-2 
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III. RELATED WORK

Remote sensing with reanalysis dataset from the European 
Centre for Medium-Range Weather Forecasts can enable wind 
speed and energy density estimations over the Mediterranean 
Sea [4]. The analysis presents Sentinel high-resolution spatial 
coverage and capability to monitor temporal wind variations 
crucial for energy forecasting. However, challenges for SAR 
data interpretation complexity, and integration of ground 
datasets underscore a need for interdisciplinary expertise. A 
study in Ireland [5] validates Sentinel-1 SAR Level-2 data to 
estimate surface wind speed and average wind power against 
in-situ data from weather buoys and coastal stations using 
1,544 match-up points from May 2017-2019. Despite a 
consistent underestimation of wind speeds by 0.4 m/s, satellite 
data has strong correlations with the in-situ measurements 
(R>0.92) and reliable average wind power estimations, with 
errors of ~10% for buoys and ~5% for coastal stations. 
Seasonal analysis highlights stronger winds in winter and 
autumn, aligning with North Atlantic cyclonic patterns, while 
the northwest coast exhibits the highest wind speeds. Yet, 
spatial analysis reveals biases influenced by proximity to 
coastlines, emphasizing a need for more careful interpretation. 
Sentinel-1 SAR data with machine learning offers offshore 
wind resource assessments at turbine hub heights, as shown in 
a study in Dutch coast [6]. Areas of 70 km2 use SAR data and 
Doppler wind LiDAR measurements for validation. Machine 
learning models correct SAR surface wind speeds, integrating 
geometrical parameters and metadata of the SAR sensor, and 
buoy data, achieving minor bias of 0.02 m/s. Corrected speeds 
are extrapolated to 200m hub heights using meteorological 
inputs from numerical weather models. High-resolution SAR 
wind power maps coastal wind gradients, surpassing a few 
models. It enhances site assessments and risk management by 
correcting SAR data and generating detailed wind fields. 
Some gaps in this study highlight the potential to address 
challenges in offshore wind resource mapping to support 
efficient farm development and sustainable energy planning. 
Research in the Norwegian Arctic [7] assesses Sentinel-1 
Level-2 Ocean Wind Field (OWI) products to study offshore 
wind conditions comparing with in-situ observations and 
reanalysis datasets (ERA5, NORA3, CARRA). Sentinel-1 
demonstrates strong correlations with these datasets, and the 
wind direction accuracy is consistent across datasets. The 
high-resolution dataset in Sentinel-1 of 1 km provides spatial 
advantage over reanalysis datasets (2.5-31 km) for localized 
assessments, though reanalysis offered broader temporal 
coverage. The findings support Sentinel-1’s integration into 
offshore wind energy strategies, especially enhancing wind 
resource evaluation in Arctic regions, and its unique 
characteristics in wind distribution modeling. It motivates 
more studies in the overall field, such as our work here.  

Our research in this paper is orthogonal to the literature. It 
supplements existing work [4-7] through its novelty and 
uniqueness in terms of mining complex satellite imagery with 
unsupervised learning, aiding long-term decision support in 
offshore wind farm and energy estimation. Moreover, since 
the learning is unsupervised in our work, it does not require 
pre-labeled training datasets along with predefined notions of 
correctness. In many domains, e.g. environmental computing, 
such huge training data with ground truth from experts can be 
hard to obtain. Hence, our study contributes much here. It 
thrives on work by our team [8-14] and others [15-16], mining 
complex big data with domain knowledge in environmental 
computing and other areas, to enhance decision support.  

IV. EXPERIMENTS AND RESULTS

Over 10 years, wind speed data has right-skewed distributions 
with mean=7.44m/s and median=6.86m/s, indicating that 
speeds above 20m/s are rare, and that the most frequent wind 
direction is southwest. Fig. 3 illustrates a few seasonal trends. 

Our analysis with k-means clustering reveals that 18.7% of 
wind speeds, categorized in cluster 0, have a northwest 
frequency with a mean speed of 10.90 m/s and a median of 
10.80 m/s along the Atlantic coasts from NJ to MA. 
Furthermore, cluster 0 peaks in winter and is at its lowest 
around the summer solstice (as seen in the blue area in Fig. 4). 
Furthermore, cluster 1 has the closest mean speed (7.78 m/s) 
to historical data and is the only cluster that does not contain 
data points near the shoreline. It is bounded by latitudes 
40.5°N to 35°N and longitudes 73.5°W to 64.5°W. This is 
well-illustrated in Fig. 5 here.  

Moreover, clusters 2 and 3 have lower mean wind speeds of 
5.79 m/s and 5.33 m/s, respectively, and together represent 
47% of the data. These clusters highlight a geographic 
division extending from (41°N, 73.5°W) to (39°N, 70.5°W) 
(see Fig. 6). Although clusters 1, 2, and 3 overlap between 
latitudes 39°N to 40°N and longitudes 72°W to 70.5°W, the 
area in cluster 1 shows higher frequencies during the summer 
season. All the clusters exhibit a frequent southwest wind 
direction, maintaining stable frequency throughout the years. 

When frequent wind directions occur in areas near the 
shoreline, the mean speed remains stable at 5.79 m/s, as shown 

Fig. 1. Wind rose and wind speed distribution 

Fig. 3. Illustration of seasonal trends discovered by k-means 

Fig. 5. Wind speed and direction in cluster 1. Left: Southwest direction 
seen as frequent. Right: Datapoints plotted geographically 

Fig. 4. Geographic distribuiton of cluster 2 and 3 
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in clusters 2 and 3. However, as the area extends further 
offshore, cluster 1 highlights regions with higher wind speeds, 
offering critical insights for offshore wind farm optimization 
and enhancing renewable energy projects. The main findings 
from this analysis reveal that wind speeds are stronger moving 
northwards and that such trends are more frequent during the 
winter months. Cluster 1, which represents 25.1% of the data, 
illustrates the potential for high ocean wind speeds towards 
the southwest and is the largest cluster identified.  

Likewise, such analysis can yield valuable insights to support 
decisions about wind farm orientations and other factors, by 
many of the concerned stakeholders. Energy estimation from 
the renewable sources is also facilitated. Such work can 
thereby have a long-term impact of combating climate change.  

V. CONCLUSIONS AND ROADMAP 

This work mines complex satellite images to draw inferences 
helpful in decision support for offshore wind energy. Vital 
initial findings are that wind has higher speeds going north and 
can be more frequent in winter (for the areas analyzed). Such 
inferences can aid wind farm planning by stakeholders. Key 
findings from this analysis reveal that wind speeds are 
stronger moving north and are more frequent during winter. 
Cluster 1, which represents 25.1% of the data, illustrates the 
potential for high ocean wind speeds towards the southwest 
and is the largest cluster identified. 

Enhancing the patterns unveiled by k-means to forecast and 
track wind speed and direction in real-time can potentially 
improve energy estimation. Accurate energy estimation is 
beneficial for offshore wind stakeholders, as it supports 
scheduling maintenance during low wind speeds for easier 
access, forecasting when populations reliant on this clean 
energy may need alternative sources, and identifying periods 
of surplus energy generation to store it for future use. 
Inferences such as these can guide decisions on wind farm 
orientations and distribution in offshore wind projects. Such 
decisions by stakeholders can have broader impacts in 
combating climate change through the development of more 
and better renewable energy projects. Future work will include 
reanalysis using in-situ data, leveraging machine learning to 
fill in a few gaps caused by the limitations of remote sensing 
technology. With these gaps addressed, forecasting machine 
learning models can further enhance energy estimation. 

Our study uniquely highlights the vital role of clustering for 
big data mining on complex satellite imagery. As more 
training data is available along with the notions of ground 
truth, supervised learning with classifiers might be explored 
in the future to predict best / average case performance for 
optimizing energy output.  

This work has broader impacts in the realm of climate change. 
It can guide the assessment and enhancement of solutions, 
thus helping much in the environmental computing area.  
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