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Abstract—Early detection of tuberculosis (TB) remains a
critical challenge. This research presents a novel approach
leveraging audio information from cough recordings for pre-
dicting TB. We move beyond traditional image-based methods
(such as sputum smear microscopy and chest X-rays) and
explore the feasibility of leveraging cough recordings for dif-
ferentiating TB cases. Two main audio processing techniques,
i.e. Mel-Spectrograms and Mel-Frequency Cepstral Coefficients
(MFCCs), are utilized to feature encoding audio recording
into deep learning models for TB classification. Our proposed
methods leverage a large challenge dataset encompassing clin-
ical data from over 1,105 participants and over 502,252 cough
recordings. Notably, a simple 1D convolutional neural network
(CNN) trained on MFCC features achieves an accuracy of
91%, exceeding the World Health Organization’s (WHO)
requirements for TB screening tests. Our findings highlight
the potential of MFCC features and 1D CNNs for accurate TB
detection using cough sounds data. This approach aligns with
the Occam’s Razor principle, favoring simpler models (such
as 1D CNNs) when both achieve good results. This research
opens the door to further study in diverse populations and
translation to accessible TB screening solutions, especially in
resource-limited settings where only cough recording can be
collected, highlighting its real-world impact.

Index Terms—AI in health, audiovisual data, CNN models,
holistic methods, Mel-Spectrogram, MFCC, sustainable AI, TB

I. INTRODUCTION

Tuberculosis (TB), an infectious disease caused by bacte-
ria, primarily targets the lungs. It spreads invisibly through
the air when infected individuals cough, sneeze, or even
spit. Shockingly, TB ranks as the second leading infectious
killer globally, surpassing HIV and AIDS, with an estimated
10.6 million falling ill in 2022 alone. This devastation
transcends borders, impacting men, women, and children
of all ages across the world. While this disease remains a
significant public health threat, there’s a beacon of hope: TB
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Fig. 1: Individuals with Tuberculosis (TB) Record Coughs
Using Mobile Microphones.

is both curable and preventable. However, the fight is far
from over. Tragically, 1.3 million lives were lost to TB in
2022. To effectively combat this disease, experts estimate an
annual investment of US$13 billion is needed, encompassing
prevention, diagnosis, treatment, and care initiatives [1],
[2]. Early detection is crucial for curbing transmission and
improving patient outcomes, but traditional methods like
sputum tests often face limitations in sensitivity, speed, and
infrastructure requirements [3], [4]. These limitations result
in a significant number of undiagnosed cases, hindering
effective control efforts [5]. However, current research is
limited by small and specific populations, hindering the
applicability of Al tools. We need broader, more diverse
studies to develop accurate Al algorithms that can dis-
tinguish TB coughs from non-TB coughs across different
demographics. This will unlock the true potential of Al for
tackling TB [6], [7]. The fight against tuberculosis (TB)
gets a major boost with the CODA TB DREAM Challenge.
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This innovative initiative tackles TB diagnosis by harnessing
the power of Al and cough analysis. People from seven
countries with a persistent cough for two weeks are enrolled.
They use a special app (Hyfe Research App) to record
their coughs, as shown in Fig 1, and undergo thorough
TB evaluations, including lab tests, doctor checkups, and
background details [8]. This rich data is then released to
the public. Al experts worldwide are challenged to develop
algorithms that analyze cough sounds and other information
to predict TB. This global collaboration has the potential
to revolutionize TB detection, leading to faster diagnosis
and better patient outcomes. We’re delving into the massive
CODA TB dataset [8] — over 700,000 coughs from 1,100
participants to analyze cough sounds and see if they hold
clues for detecting TB. First, we meticulously organize the
data — both medical details and cough recordings. This
careful preparation ensures reliable analysis. Interestingly,
we’ve already identified differences in reported symptoms
between people with and without TB. For example, weight
loss, fever, night sweats, and coughing up blood were more
prevalent in the TB group. This suggests that combining
cough sounds with these symptoms could lead to even more
accurate TB detection.

This research delves further into the potential of advanced
machine learning and deep learning algorithms for cough
sound analysis. We explore two feature extraction techniques
(Mel-Spectrograms and MFCCs) to extract meaningful fea-
tures from cough recordings. These features are utilized to
develop robust models capable of accurately differentiating
between TB and non-TB cases. We compare the performance
of 4 deep learning models (1D CNN, 2D CNN, VGG16, and
ResNet50) to identify the most effective approach for TB
classification. Furthermore, we utilize explainable models
to elucidate factors driving TB prediction and enhance the
interpretability of our findings, hence fostering trust and
transparency in the diagnostic process.

II. RELATED WORK

The TB disease remains a global health concern, with
millions of cases reported annually. The paper [9] explores
the potential of cough analysis using machine learning and
deep learning algorithms for automated TB detection. Chest
X-ray Imaging: Traditionally, chest X-ray imaging has been
the mainstay for TB diagnosis. However, this approach has
limitations. Interpreting X-rays requires trained radiologists,
and subtle abnormalities can be missed [10], [11]. Further-
more, X-ray imaging exposes patients to ionizing radiation,
raising safety concerns, especially for repeated testing. Re-
cent research has explored alternative approaches for TB
detection that address the limitations of X-ray imaging. One
promising avenue is cough analysis, which offers several
advantages. Firstly, it is non-invasive. Cough analysis avoids
radiation exposure. Secondly, it offers remote monitoring,
Cough recordings can be collected remotely, facilitating
telemedicine applications. Thirdly, it is low-cost. Recording
and analyzing cough sounds requires minimal equipment
compared to X-ray imaging.

Machine learning and deep learning algorithms have
demonstrated promising results in cough analysis for various
respiratory diseases, including pneumonia and asthma [12],
[13]. These algorithms can automatically extract features
from cough recordings that are potentially indicative of
specific diseases [14], [15], [16]. Several studies have inves-
tigated the application of machine learning and deep learning
for TB detection using cough analysis [17]. Tsai et al. (2018)
employed Mel-frequency Cepstral coefficients (MFCCs) fea-
tures extracted from cough recordings and achieved an
accuracy of 82.2% using a Support Vector Machine (SVM)
classifier for TB detection [18]. Cho et al. (2017) utilized
convolutional neural networks (CNNs) trained on Mel-
Spectrogram representations of cough sounds and reported
an accuracy of 87.1% for TB classification [19]. Iwendi et
al. (2020) compared various machine learning algorithms,
including Random Forests and K-Nearest Neighbors, using
MEFCC features and achieved an accuracy of 86.3% for TB
detection [20], [21]. These studies demonstrate the potential
of machine learning and deep learning for automated TB
detection using cough analysis. However, there still lacks
a comprehensive comparison of deep learning models with
various input encoding techniques for improvement in TB
detection accuracy and generalizability across diverse popu-
lations and cough characteristics.

Our Contribution: This paper builds upon existing re-
search by exploring two feature extraction techniques (Mel-
Spectrograms and MFCCs) and comparing the performance
of four deep learning models (1D CNN, 2D CNN, VGG16,
and ResNet50) for TB classification using cough recordings.
We emphasize the importance of validation and generaliz-
ability by testing the models on external datasets. Addition-
ally, we explore the use of explainable models to understand
the factors influencing TB prediction and enhance the inter-
pretability of our findings.

III. DATA DESCRIPTION AND PREPROCESSING

The CODA TB dataset was collected from health centers
across seven continents spanning the globe (India, Philip-
pines, South Africa, Uganda, Vietnam, Tanzania, Madagas-
car). This international effort recruited participants over 18
years old seeking help at outpatient clinics for a persistent
cough lasting at least 2 weeks — a hallmark symptom of
TB. Table I provides a statistical overview of a dataset,
likely related to cough recordings used for Tuberculosis
(TB) detection. The table summarizes the data for two
groups: people with TB (TB+), and those witout (TB-).
The CODA TB dataset also incorporates comprehensive

Features TB+ |TB- Total
Participants 297 808 1105
Total coughs 443707 |280987 |724694
Avg. no. of coughs / participant |~1494 [~348  |~655

TABLE I: Statistical Overview of CODATB Dataset

clinical data including TB test results, demographics (age,
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gender, ethnicity), medical history (smoking status, HIV
status, prior TB experience), and reported symptoms (cough
duration, fever, night sweats) (Table II). This rich tapestry

Participants Demographics|TB Negative |TB Positive
Age in Years

Mean+SD 42.06 +15.28 [37.55 +14.85
Range 18-85 18-83

Sex

Male 393(49%) 195(49%)
Female 415(51%) 202(51%)
Anthropometrics

Height (CM) 160.994+8.79 [163.80 +8.49
Weight (KG) 59.84+14.41 |51.8449.24
Heart Rate 82.94+14.27 [94.95+19.61
Temperature © 36.64+0.46 36.96+0.66
Prior Illness

Prior TB Exposure 151(19%) 48(16%)
P-TB Diagnosis 136(17%) 44(15%)
EP-TB Diagnosis 13(2%) 4(1%)
Presenting Symptoms

Weight Loss 397(49%) 228(77%)
Fever 298(37%) 199(67%)
Night Sweats 295(37%) 189(62%)
Hemoptysis 84(10%) 64(22%)
Cough Duration / Day (SD)

Reported at presentation  |44.73+56.74 [53.29449.51
Cough Audio(n)

Solicited Cough 6,842 2,930
Longitudinal Cough 274,145 440,777

TABLE II: Demographic Features in Cough+metadata Ex-
periment

of clinical data facilitates the exploration of the intricate
relationship between TB presentation, disease severity, and
potential cough variations. [22], [1] Furthermore, the pos-
sibility of uncovering novel biomarkers for TB diagnosis
through combined data analysis highlights the potential of
this dataset. However, this treasure trove isn’t without its
challenges. Missing data points, inconsistencies in reporting,
and variations in diagnostic protocols across different health-
care settings are potential roadblocks. To ensure the quality
and reliability of our results, we’ll meticulously clean and
standardize this data, ensuring it’s fit for robust analysis.
Balancing Cough Counts: Addressing Participant Imbal-
ance While class imbalance favoring TB+ cases exists within
the dataset, a more critical challenge lies in the uneven dis-
tribution of cough recordings across participants. Some indi-
viduals, regardless of TB status, cough a surprising number
of times (e.g., 71,000 recordings). This skews the training
process, as machine learning models prioritize frequently
observed patterns [23], [24]. To address this, we focused on
the imbalance in recordings per participant, not the overall
class imbalance. This approach balances the dataset for
training while preserving valuable participant information
[25]. Participants with excessively high recording counts
were excluded, limiting the maximum number of recordings

per participant to 990. To ensure minimal presence in the
training data, at least 990 randomly selected recordings were
included from each participant. This approach effectively
mitigates bias while retaining valuable individual data. We
strategically avoid excluding participants, especially crucial
for the underrepresented TB+ class. By setting a minimum
threshold of 990 recordings per participant, we achieve a
balanced dataset suitable for machine-learning algorithms
shown in Table III. Preserving Participant Insights: While

Features TB+ |TB- Total
Participants 297 808 1105
Total coughs 221265 (280987 |502252
Avg. no. of coughs / participant |~745 |~348  [~455

TABLE III: Data distribution after removing outliers

outliers were removed, participants were retained for two
key reasons: Individual Variations: Cough patterns vary
between individuals. Retaining recordings ensures the model
is exposed to these variations, potentially aiding in capturing
subtle cough characteristics relevant to TB classification.
Participant-Level Context: The number of recordings itself
might hold information. For example, a participant with
significantly more recordings could indicate a more severe
cough condition. Retaining some recordings allows the
model to potentially learn from this context. This approach
balances the dataset for training while preserving valuable
information related to individual participants and potential
cough-related insights.

IV. METHODS

To unlock the hidden secrets within cough record-
ings, we delve into two feature engineering approaches:
Mel-Spectrograms and Mel-Frequency Cepstral Coefficients
(MFCCs) shown in Fig 2. These techniques transform the
raw audio data into visual representations that highlight the
cough’s frequency content and characteristics.

Mel-Spectrogram: The first approach utilizes Mel-
Spectrograms, a visual representation of the cough sound’s
frequency content over time. We explore various deep learn-
ing models, including 1D and 2D CNNs, VGGI16, and
ResNet50, to analyze these Spectrograms. These models ex-
cel at identifying patterns within images, making them well-
suited for extracting informative features from the visual
cough representations. This is formalized in Algorithm 1.

MFCC: The second approach leverages MFCCs, which
capture the spectral envelope of the cough sound. MFCCs
are a well-established technique in audio analysis [26], [27],
and we will adapt various deep learning models, particularly
1D and 2D CNNs, to exploit these features. These CNNs
excel at processing sequential data like MFCCs, allowing
them to learn informative patterns from the cough’s spectral
characteristics. The pseudocode for this is in Algorithm 2.

Both approaches rely on a crucial step called “feature en-
gineering.” This involves transforming the raw audio signal
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Fig. 2: Framework for Automated Tuberculosis Detection
via Cough Analysis
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Algorithm 1: Computing Mel-Spectrogram

Data: Audio signal z, Number of Mel filters M,
Window size W, Hop length H, Sampling
rate F
Result: Mel-Spectrogram M S
1: Load audio signal x from the dataset
2: Apply pre-emphasis to the audio signal (optional):
yln] = 2[n] — - 2[n —1]
3: Divide the pre-emphasized signal into frames of
window size W and hop length

4: for each frame do
5: Apply a window function (e.g., Hann) to the

frame: windowed_frame = window - frame
end

6: Compute the Mel-Spectrogram using
librosa.feature.melSpectrogram:
M S = librosa.feature.melSpectrogram(y =
Fs,n_mels = M, window =
window, hop_length = H)

7: Return the Mel-Spectrogram M S

T, sr =

into a format suitable for analysis by deep learning models.
We achieve this by extracting Low-Level Descriptors (LLDs)
from each audio frame and then applying statistical opera-
tions to condense these features into a more manageable
format [28]. This condensed representation allows the deep
learning models to focus on the most informative aspects of
the cough sound. To ensure the generalizability and robust-

Category TB+ IB-
Train (75%) 165948 210740
Validation (5%) 11063 14049
Test (20%) 44254 56198
Total 221265 280987

TABLE IV: Data Splitting (unit: number of recordings)

ness of our findings, we meticulously split the preprocessed

Algorithm 2: Computing MFCCs
Data: Audio signal z, Pre-emphasis coefficient «,
Number of Mel filters M, Desired number of
MFCC coefficients N
Result: MFCC features M FCC
1: Load audio signal x from the dataset
2: Apply pre-emphasis to the audio signal:
yln] = aln] — - afn — 1]
3: Divide the pre-emphasized signal into frames of
length L with hop length H

4: for each frame do
5:  Compute the magnitude spectrum using

Fourier Transform: X [k] = FFT(y[n])

6:  Create Mel filter banks using
librosa.filters.mel (refer to librosa
documentation for arguments)

7:  Apply Mel filters to the magnitude
spectrum:

Mel_filtered_spectrum = Mel_filters- X[k]

8:  Compute MFCC features using
librosa.feature.mfcc:

MFCC_coef fs = librosa.feature.mfcc(y =
Mel_filtered_spectrum)

9:  Keep the first N coefficients of

MFCC _coef fs as MFCC features

end
10: Store the MFCC features M F'CC for further
analysis or classification

dataset into training (75%), validation (5%), and testing
(20%) sets. Critically, we maintain class balance within
each set, ensuring the model is trained on a representative
distribution of TB+ and TB- cough recordings shown in
Table IV.

A. Optimizing Feature Representation: Mel-Spectrogram
Conversion Approach

We leverage image classification techniques to differ-
entiate TB from non-TB coughs. However, feeding raw
audio signals directly into the model can be computa-
tionally expensive. To address this, we employ a fea-
ture extraction approach that converts cough recordings
into Mel-Spectrograms represented as NumPy arrays. Mel-
Spectrograms offer a visually informative representation of
the frequency content over time within a cough recording.
These “cough fingerprints” are particularly useful for image
classification tasks [29]. By utilizing the Librosa library,
we efficiently convert audio signals into Mel-Spectrogram
arrays. Librosa achieves this by dividing the audio into the
frequency domain and applying Mel filters to capture the
cough’s energy distribution across different frequency bands.

Benefits of NumPy Arrays: Feeding these Mel-
Spectrograms as NumPy arrays into the deep learning model
offers several advantages: Reduced Computational Cost:
NumPy arrays are optimized for numerical computations,
leading to faster model training compared to raw audio
data. Efficient Memory Management: NumPy arrays
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Fig. 3: Proposed Method Approach 1: Comprehensive
Pipeline for TB Detection using Mel-Spectrogram conver-
sion.

provide efficient memory handling, which is crucial for
large datasets [30], [31]. To comprehensively evaluate
the effectiveness of Mel-Spectrogram features for TB vs.
non-TB classification (Approach 1), we investigate the
performance of various deep learning models. This section
delves into the architectures, training processes, and key
findings for each model.

Simple 1D CNN with Mel-Spectrograms: This model
serves as a baseline, employing a sequential architecture
with two hidden convolutional layers. It leverages ReLU
activation for efficient learning in hidden layers and Softmax
activation in the output layer for multi-class classification.
Max pooling facilitates downsampling after each convolu-
tional layer, reducing feature dimensionality. This model
achieves promising performance in differentiating TB and
non-TB coughs, as evidenced by precision and recall metrics.

Fully connected
layers

Convolutional Pooling
Iayer Iayer

I:>|‘:(>l %@ O O OOutput

Fig. 4: Simple 1D CNN with Mel-Spectrograms[32]
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Simple 2D CNN with Mel-Spectrograms: Building upon
the 1D CNN, we introduce a more complex 2D CNN
architecture with three hidden convolutional layers. This
model also utilizes ReLU activation in hidden layers, but
employs a Sigmoid activation function in the output layer,
optimized for binary classification tasks. Average pooling
is used for downsampling after each convolutional layer.
The training process exhibits a smooth convergence pattern,
with a significant initial drop in loss and a corresponding
increase in accuracy, reaching a stable state around the 20th
epoch. Early stopping is implemented to prevent overfitting,
ensuring the model generalizes well to unseen data. The
final model demonstrates strong performance as evaluated
by accuracy and Area Under the Curve (AUC) metrics.

Transfer Learning with VGG16: To harness the power
of pre-trained models, we leverage transfer learning with
VGG16, a deep convolutional neural network pre-trained on
the massive ImageNet dataset. VGG16 excels at extracting
informative features from images. In our approach, we freeze
the top layer of the pre-trained VGG16, preserving its

Input

Conv2D

145 400 13 output

Fully

Fig. 5: Simple 2D CNN with Mel-Spectrograms.[32], [33]

learned features. We then add a series of fully connected
dense layers on top of the pre-trained network. These new
layers are trained using our Mel-Spectrogram data to fine-
tune VGG16 for TB classification. This approach capitalizes
on VGG16’s feature extraction capabilities while adapting it
to the specific task of TB detection.

Fig. 6: VGG16 architecture with Mel-Spectrograms.[34], [4]

Transfer Learning with ResNet50: We further explore
transfer learning by utilizing ResNet50, a more complex pre-
trained convolutional neural network on ImageNet. Similar
to VGG16, features extracted from ResNet50 are passed
through a dense layer to generate the final TB classification
prediction. ResNet50’s architecture offers potentially richer
feature representations compared to VGG16, which could
lead to improved TB detection accuracy. We evaluate and
compare the performance of both VGG16 and ResNet50 for
TB classification using Mel-Spectrograms.

Fig. 7: Architecture of ResNet50 with Mel-

Spectrograms.[32], [4]

B. Optimizing Feature Representation: Mel-Frequency Cep-
stral Coefficients (MFCC) Extraction

As an alternative feature extraction approach (Approach
2), we investigate Mel-Frequency Cepstral Coefficients
(MFCCs). Unlike Mel-Spectrograms, MFCCs directly cap-
ture the perceptually relevant spectral shape of the audio
signal, focusing on frequencies crucial to human hearing.
This compressed representation offers two key advantages:
Reduced Computational Cost: Extracting MFCCs is com-
putationally less expensive compared to generating Mel-
Spectrograms, making it suitable for real-time or resource-
constrained environments. Compact Feature Representation:
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MEFCC:s offer a more concise feature set compared to Spec-
trograms, potentially leading to improved model training
efficiency.
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Fig. 8: Proposed Method Approach 2: Comprehensive
Pipeline for TB Detection using Mel-frequency Cepstral
coefficients (MFCCs).[26]

Simple 1D CNN with MFCC Features: This model em-
ploys a sequential architecture with two hidden convolutional
layers specifically designed to process 1D feature vectors
representing the MFCCs. Key components include: Sequen-
tial Architecture: Layers are stacked sequentially, with the
output of one layer feeding into the next. Output Layer:
The final dense layer with a Softmax activation function
is suitable for multi-class classification (TB vs. Non-TB).
Softmax outputs class probabilities, indicating the likelihood
of each class for a given cough sample. Downsampling:
Max pooling after each convolutional layer is a common
technique for reducing feature map dimensionality while
retaining important features.

Input signal

iD
Convolution

iD
Convolution

Output

Fig. 9: Simple 1D CNN with MFCC.[32]

2D CNN with MFCC Features: We further explored a 2D
CNN architecture with MFCC features. This model utilizes
Librosa to convert audio recordings into MFCCs, resulting
in a 3D tensor representation (time, frequency, coefficients).
Here’s a breakdown of the key components: Architecture:
Sequential 3D CNN with three hidden convolutional layers.
Hidden Layers: Similar to the 1D CNN, each hidden layer
utilizes the ReLU activation function. Output Layer: The
final dense layer employs the Sigmoid activation function,
suitable for binary classification (TB vs. Non-TB). Down-
sampling: Average pooling is used after each convolutional
layer for dimensionality reduction.

Enhancing Generalizability through Cross-Validation: To
ensure our models’ generalizability and avoid overfitting,
we employed k-fold cross-validation (k = 5 in this case).

Image 32x32 Max Max
Convo\utmn poal C{)nvﬂlutlnn pool

Flatten Fully
Connected

Softmax

Fig. 10: Simple 2D CNN with MFCC.[32]

The dataset was partitioned into k folds. In each fold,
the model was trained on k-1 folds and evaluated on the
remaining unseen validation fold using metrics like accuracy,
precision, recall, and F1-score. This training-evaluation cycle
was repeated for all k folds. The performance metrics from
each round were averaged to provide a more robust estimate
of model generalizability on unseen data.

V. RESULTS & DISCUSSION
A. Performance of Models

We first highlight the performance of models using Mel-
Spectrogram features. The following are the observations.
Simple 2D CNN with Mel-Spectrogram: This model ex-
hibited a bias towards the non-TB class, achieving higher
performance for non-TB classification but struggling with
TB positive identification. Simple 1D CNN with Mel-
Spectrogram: This model outperformed others using Mel-
Spectrograms, demonstrating balanced performance for both
TB and non-TB classes. This suggests that a simpler 1D
CNN architecture might be more suitable for learning
discriminative features from Mel-Spectrograms. Transfer
Learning with VGG16 & ResNet50 with Mel-Spectrogram:
While offering some improvement over the 2D CNN, these
models had limitations in capturing the subtle TB patterns
within Mel-Spectrograms. However, a comprehensive eval-
uation using precision, recall, and other relevant metrics
is needed for a complete assessment. Table V summarizes
the performance comparison [35] of various deep learning
models for TB classification using Mel-Spectrograms.

Precision | Recall F1 Score
(Non-TB) | (Non-TB) |(TB)

Precision | Recall

Model (TB) (TB) Accuracy |AUC

Simple 2D |0.58 +|(0.23 £|0.74 |0.93 +(033 1072 +|70% %
CNN 0.04 0.02 0.03 0.01 0.03 0.02 3%

Simple 071 +|062 £|0.85 +|0.89 /066 %081 +|~81% £
1DCNN |0.02 0.04 0.01 0.02 0.02 0.01 1%

VGG16
(Transfer |0.72 +|047 £|0.8 +(0.92 +|057 £|0.79 | ~78% =
Learning) |0.03 0.05 0.02 0.01 0.04 0.02 2%

ResNet50
(Transfer |0.6 +/055 +|0.82 £|0.85 +(058 £|0.76 +[~79% %
Learning) |0.01 0.05 0.02 0.03 0.01 0.01 1%

TABLE V: Performance Comparison of Deep Learning
Models for TB Classification (Mel-Spectrogram Approach)
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Further, we synopsize the performance of models using
features directly extracted from the audio signal: Simple 1D
CNN with MFCCs: This model achieved the best overall
performance, surpassing models utilizing Mel-Spectrograms.
This suggests that processing the raw audio signal and
directly learning features might be a more effective ap-
proach for TB classification in this dataset. Simple 2D
CNN with MFCCs: This model underperformed compared
to the 1D CNN, possibly due to the increased complexity
of the 2D representation not being optimal for directly
capturing relevant patterns from the audio signal. However,
a comprehensive evaluation using precision, recall, and other
relevant metrics is needed for a complete assessment. Table
VI summarizes the performance comparison [35] of various
deep learning models for TB classification using MFCCs.

Precision | Recall | F1 Score | Precision | Recall F1 Score

Model |(TB) (TB) |(TB) (Non-TB) | (Non-TB) | (Non-TB) | Accuracy | AUC
Simple
1D 0.8 +/0.84+|087 +)091 /095 +|093 +|081 £|~91%

CNN 0.02 0.03 |0.02 0.01 0.02 0.01 0.01 +0.5%

2D 066 £|05 (057 £[081 +£|089 £|085 £|077 £|-~82%
CNN 0.03 0.04 |0.03 0.02 0.03 0.02 0.02 +0.7%

TABLE VI: Performance Comparison of Deep Learning
Models for TB Classification (MFCC Approach)

B. Discussion

Key Observations and Alignment with Occam’s Razor: By
analyzing all models, we observed that a simple 1D CNN
designed for processing 1D features achieved the best results
for TB classification using both Mel-Spectrograms and raw
audio signals. This aligns with the Occam’s Razor principle,
favoring simpler models when they achieve comparable
or better performance. [36] Transfer learning approaches
might require further fine-tuning or utilizing pre-trained
models specifically designed for audio tasks to improve their
effectiveness in TB classification.

Our findings demonstrate the potential of deep learning
models trained on cough sound features to accurately clas-
sify TB cases. While this research demonstrates promise,
several open issues and opportunities for further studies
remain. Investigating the impact of longer cough recordings
on classification accuracy is crucial. External validation on
broader datasets encompassing diverse populations and TB
prevalence rates is essential for generalizability. Explainable
Al (XAI): Incorporating XAl techniques can enhance model
interpretability, potentially leading to the discovery of novel
audio biomarkers for TB detection. Exploring 1D audio-
specific architectures could potentially improve performance
and reduce complexity compared to complex models or
Mel-Spectrograms. Addressing challenges, e.g. background
noise, cough variations, and user-friendly recording devices
is necessary for clinical implementation.

By addressing these open issues and pursuing further
studies, we can refine the deep learning models for TB

classification using cough sounds. This holds the potential to
develop a robust, interpretable, and generalizable approach
for TB detection, ultimately contributing to improved pub-
lic health.[37], [38] Further research and development are
necessary to refine the models, optimize performance, and
ensure generalizability across diverse populations and cough
characteristics. However, this study presents a significant
step towards utilizing Al-powered cough analysis as a valu-
able tool in the fight against tuberculosis.

VI. CONCLUSIONS AND ROADMAP

We investigated the potential of deep learning-based
classification using cough sound analysis for Tuberculosis
(TB) detection. This study explored two feature extraction
approaches: Mel-Spectrograms and raw audio features. We
evaluated the effectiveness of four neural network architec-
tures for TB classification using these features.

Our findings reveal the potential of integrating audio data
(cough sounds) to improve TB detection accuracy. This
opens doors for exploring non-invasive and potentially cost-
effective screening tools. We demonstrated the effective-
ness of a simple 1D CNN model for TB classification
using raw audio features [39]. This finding suggests that
directly learning features from the raw audio signal might
be more efficient compared to complex architectures or
Mel-Spectrogram representations for this specific task. We
observed the limited benefits of utilizing transfer learning ap-
proaches with pre-trained models like VGG16 and ResNet50
for TB detection.

Future work should investigate the impact of longer
recordings and validate the model on diverse populations.
Additionally, XAI techniques and 1D audio architectures
could improve performance and interpretability. Addressing
challenges like noise and user-friendly recording is crucial
for clinical use. Future Directions: Analyze imbalanced
cough count data and explore incorporating clinical data for
a more comprehensive model. Include uncertainty quantifi-
cation to build trust in the model’s predictions for informed
clinical decisions. By addressing these future directions, we
can refine deep learning models for TB classification using
cough sounds. This holds promise for developing a robust,
interpretable, and generalizable approach to TB detection,
ultimately improving public health.
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