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Abstract—This work leverages CODA TB, a groundbreaking
dataset for a novel comprehensive method of early TB detection
from medical big data. Departing from the erstwhile, we find
mere cough duration less effective in TB prediction. We discover
key demographic and clinical factors (e.g. heart rate, presenting
symptoms) to be crucial in distinguishing TB cases, motivating
comprehensive cough data analysis with enhanced screening.

Keywords: Audio-visual analysis, medical big data, TB detection

L INTRODUCTION

Tuberculosis (TB) poses a significant global health threat:
around 10-6 million people became ill with TB in 2021, and
around 1.5 million deaths occurred in 2020 [1]. Its impact
extends beyond health, affecting economic development and
disproportionately impacting vulnerable populations. Rise of
drug-resistant strains adds complexity, emphasizing urgent
need for TB eradication to save lives, reduce poverty, protect
the vulnerable, and prevent the spread of drug-resistant forms
[2]. A challenge in TB eradication is difficulty in identifying
cases (~40% TB-affected people undiagnosed or unreported
due to obstacles in accessing healthcare or a lack of testing /
treatment [3]). Addressing this challenge needs affordable,
non-invasive digital screening tools. Traditionally, cough has
been a marker for TB cases & treatment. Recent advances in
acoustic Al offer a scope to passively detect / monitor cough.
Prior studies are limited in sample size & settings, motivating
a need for more development of Al algorithms to accurately
distinguish tubercular from non-tubercular coughs.

The CODA TB DREAM Challenge [4] presents a notable
opportunity to advance cough-based TB diagnosis. It gathers
data from individuals across 7 countries presenting with new
or worsening cough for at least 2 weeks. Recorded coughs are
collected using the Hyfe Research App, and participants
undergo comprehensive TB evaluations. CODA TB releases
the data to the public, inviting Al experts to develop and test
algorithms predicting TB status from features extracted from
elicited coughs. In our research, we use a substantial dataset
to investigate the acoustic attributes of cough sounds for TB
prediction. Our journey commences with the essential data
operations, encompassing clinical & audio metadata loading,
providing a solid foundation for analysis. With much focus
on demographics and presenting symptoms, we uncover
noteworthy differences in TB+ & TB- subjects. Notably, we
observe variances in symptoms such as weight loss, fever,
night sweats & hemoptysis. Our study highlights a potential
utility of combining audio data & demographics for accurate
TB detection, promising major contributions to the field.

II. MEDICAL DATA AND EXPLORATORY ANALYSIS

The CODA TB data is from health centers across 7 countries:
India, Philippines, South Africa, Uganda, Vietnam, Tanzania,
Madagascar). Clinical investigation encompasses individuals
18 or older who seek assistance at outpatient health centers;
specifically, those with a new or worsening cough persisting
for at least 2 weeks. In this process, a survey is administered
during the 1% visit to obtain basic demographic & clinical data
from participants. Simultaneously, sputum samples are
collected for TB testing. As an integral aspect of the study
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protocol, participants are prompted to cough, and the ensuing
cough sounds are recorded. Cough sounds identified by the
Hyfe cough prediction algorithm are included for subsequent
analysis. It is crucial that the number of solicited coughs vary
for each participant based on how frequently they cough in
each 5-second recording interval. Additionally, the act of
producing a solicited cough can trigger more coughing,
giving data with a blend of solicited and spontaneous coughs.

TABLE L. STATISTICAL OVERVIEW OF CODATB Solicited DATASET

Features TB+ TB- Total
Participants 297 808 1105
Total coughs 2930 6842 9772
Avg. no. of coughs / participant 10.06 8.65 9.03
Min. no, of coughs / participant 3 3 -
Max. no of coughs / participant 50 37 -
Total duration of coughs (minutes) 24.41 57.01 81.43

Our analytical models encompassing visual analytics and
descriptive statistics include demographic variables, e.g. age
& sex, adhering to microbiological standards in TB detection.
See Table I for some statistics. It entails cough audio features
and clinical data. Further, Table II showcases a compilation
of demographic & clinical metadata employed as features in
a Cough+Metadata experiment, i.e. BMI: body mass index,
P-TB: (pulmonary TB), EP-TB: (extrapulmonary TB),
Solicited Coughs - recorded at clinic, Longitudinal Coughs -
subjects given phones to self-record coughs for 2 weeks.

I1I1. RESULTS AND BIOMEDICAL SIGNIFICANCE

We introduce a holistic methodology that encompasses a TB
detection pipeline. It involves: extraction of cough signals;
construction of a Mel spectrogram; implementation of sound
event detection; extraction of pertinent features; and finally,
assignment of cough classification. It is illustrated in Fig. 1.

Sound Event Feature Cough
Detection Extraction classification

Cough Signals Spectogram

Fig. 1. Proposed Method: Comprehensive Pipeline for TB Detection

Our initial analysis reveals significant insights as follows:
Comparable Demographics: TB and non-TB cough audio
can be recorded by generating Mel spectrograms in decibels
and displaying the associated raw audio signals (Fig. 2).
Distinctive Symptoms: Notably, key presenting symptoms
(weight loss, fever, night sweats, and hemoptysis) show
differences in cohorts, hence offering diagnostic potential.
Heart Rate Indicator (p < 0.05): TB-positive subjects display
higher heart rates, making it a biomarker for TB (See Fig 3).
Body Temperature: This remains similar across both groups.
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Subject-reported cough duration: This poses problems - high
standard deviation (p>0.05). infer that cough duration alone
may not be a reliable factor to detect TB. Our findings (e.g.

Fig. 3, 4) illuminate major traits of TB+ & TB- subjects.

TABLE 1. DEMOGRAPHIC FEATURES IN COUGH+METADATA EXPERIMENT

Participants Demographics TB Negative TB Positive
Age in Years
Mean®SD | 42.06 £15.28 | 37.55
+1485
Range | 18-85 18-83
Sex
Male | 393(49%) 195(49%)
Female | 415(51%) 202(51%)
Anthropometrics
Height (CM) | 160.9948.79 | 163.80
+8.49
Weight (KG) | 59.84+14.41 | 51.8449.24
BMI (KG/M?) | 23.1 19.3
Heart Rate | 829441427 | 94.95+19.61
Temperature © | 36.6440.46 36.9610.66
Prior Illness
Prior TB Exposure | 151(19%) 48(16%)
P-TB Diagnosis | 136(17%) 44(15%)
EP-TB Diagnosis | 13(2%) 4(1%)
Presenting Symptoms
Weight Loss | 397(49%) 228(77%)
Fever | 298(37%) 199(67%)
Night Sweats | 295(37%) 189(62%)
Hemoptysis | 84(10%) 64(22%)
Cough Duration / Day (SD)
Reported at presentation | 44.73+56.74 53.29+49.51
Cough Audio(n)
Solicited Cough | 6,842 2,930
Longitudinal Cough | 274,145 440,777
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Fig 2. Audio: Mel-Frequency Cepstral Coefficients; cough sounds (TB+/-)
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Fig 3. Box plots depicting correlations of clinical factors with TB status
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We display a 2x2 grid of subplots (e.g. Fig. 5) with Log-Mel
Spectrograms and Mel-Frequency Cepstral Coefficients
(MFCCs) for a TB patient versus healthy individual. These
visualizations help fathom the frequency content and acoustic
characteristics of cough sounds, aiding analysis of potential
differences. They also extract mean and standard deviation
features from TB+, TB- spectrograms. Conventional machine
learning models that necessitate vectorized inputs require a
series of statistical operations that we implement on Low-
Level Descriptors (LLD) to condense features derived from
all frames of the audio signal. This is described next.

Let m={x1I, x2, x3, - - -, xN } be a sample LLD of N values. Hence, we have:

1. Mean: measures average value of LLD
N
Yn=1  Xn
2. Standard Deviation: measures amount of variation or dispersion of LLD
= =2 G-
$= 3 &n=t Xp — X

3. Skewness: measures asymmetry of sample distribution of LLD & mean
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N
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These initial findings illuminate unique traits of TB+ and TB-
subjects. Hence, they offer valuable insights to enhance TB
diagnosis and advance biomedical research.

Log-Mel Spectrogram (T8 Patient)
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Fig 5. Log-Mel Spectrograms and MFCCs for TB+ and TB- cases

IV.

As per research in medical data analysis for TB diagnosis,
significant strides have been made via prior studies e.g. [1-5].
This is line with some of our own work on medical big data,
e.g. [6, 7] pertaining to Covid-19, and [8, 9] for other health
informatics areas. Some research using big data in TB studies
[10] explores audio analysis using Support Vector Machines
(SVM); while other work [11] aims to classify audio features
with clinical data. Such studies offer very good results, yet
they present a potential for further enhancement.

RELATED WORK

Thriving on many success stories, including some by our own
research groups, we propose a comprehensive method in this
paper identifying key demographic and clinical factors for
automation of early TB detection, thus challenging traditional
reliance on mere cough duration. Out initial work hereby
demonstrates much scope to enhance TB detection in medical
big data analytics on the whole. Addressing limitations and
pushing integration boundaries, our work takes a small step
towards a possible new direction in TB diagnostics. Beyond
numerical accuracy per se, it offers a holistic understanding,
thus contributing to more practical TB diagnostic methods.

V.

A pivotal revelation from our study is the inadequacy of
relying solely on subject-reported cough-duration as a major
determinant in TB detection, due to high standard deviation.
Our initial findings advocate for a more comprehensive
approach integrating clinical, demographic & audio data, thus
helping to offer more effective diagnosis. To advance these
insights, our roadmap entails the use of Convolutional Neural
Networks (CNN) or transformer-based models for deeper
analysis, as well as the utilization of explainable models, e.g.
decision trees, for better interpretability.

CONCLUSIONS AND ROADMAP

Moving forward, we aim to validate the findings on diverse
datasets for wider applicability & reliability. Future work in
this area can entail the development of remote TB screening
applications, leveraging insights gained form studies such as
ours in this paper. In earlier work, we have developed apps to
help in the broad realm of Covid-19 and related work, e.g.
[12, 13] and conducted research in scientific data analysis
with broader impacts on health and well-being, e.g. [14-17].
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Motivated by that, the step we take here aims to translate the
research into practical solutions for more accessible and
widespread TB screening, especially in regions with limited
healthcare infrastructure. Through such strategic initiatives,
the big data community can make contributions to the
evolution of TB diagnostics and global efforts in combating
TB via more comprehensive medical big data analysis.
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