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Abstract—This study aims to model the effect of local 
climate on energy generation in power plants in the United 
States. It considers climate change as well as the ever-growing 
electricity demand, contributing to greenhouse gas emissions. 
We propose an integration of AI-based and domain-specific 
paradigms via a hybrid approach of convolutional neural 
networks (CNN) & long short-term memory (LSTM) coupled 
with environmental models. Erstwhile studies focus mainly on 
specific energy sources, e.g. solar/wind power. There is a need 
for more comprehensive examination, e.g. temperature effects 
across various energy generation types at the macro level of 
states and micro level of power plants. This forms the major 
focus and novelty of our study. Fathoming the factors driving 
temperature-energy correlations, and assessing power plant 
vulnerability to changing climate patterns, are both essential 
to promote energy infrastructure resilience and sustainability. 
Our study offers novel insights into the complex interplay of 
temperature, energy generation, sustainability and related 
aspects to enable enhanced macro & micro level decision-
making in energy sector. It therefore makes contributions to 
smart environment goals for smart cities and a smart planet. 

Keywords— CNN, Climate Studies, Electricity, Energy, LSTM, 
Predictive Modeling, Smart Environment, Smart Cities  

I. INTRODUCTION

Energy consumption is a major driver of economic growth 

& environmental impact. Studying patterns in energy usage 
holds tremendous importance for addressing challenges in 
sustainable energy management. AI can play a role here.  
    Background: Global energy use is affected by climatic
factors, e.g. temperature, socio-economic variables such as 
population demographics etc. Adequate climate-energy 
analysis is crucial in effectively planning the distribution 
and hence optimizing energy usage [1]. Due to climate 
change and drastic fluctuations in global temperature, there 
is more demand for electricity. As energy usage increases, 
greenhouse gas (GHG) emissions rise substantially. In the 
US, the electric power sector contributes to 31% of carbon 
dioxide (CO2) emissions [2]. Global energy demands are 
rising, along with related emissions, and are expected to 
rise further due to greater urbanization, unless proactive 
measures are taken soon [3]. Climatic factors, particularly 
temperature, have much impact on energy demand-supply 
[4]. Energy use is closely tied to the weather, where energy 
consumption rises with a peak in increase/decrease of 
temperature. Changes in energy demand will inevitably 
affect GHG emissions, but overall effects depend on energy 
sources for electricity/heating, including alternative ones.  

Motivation: Most power companies lack consideration
of climate impacts in development strategies today, which 
can lead to overestimation of capacity for future demands, 
causing electricity shortage [5]. As much as the energy 
sector contributes towards climate change, it is impacted by 
the effects of climate change. Generation of electricity can 
be affected, e.g. climate change can cause droughts. It can 
affect hydroelectricity depending on streamflow, impact 
thermal power plants requiring cooling water to generate 
electricity at full capacity [6, 7]. Climate change can 

severely compromise resilience and reliability of current 
energy systems. Yet, analyzing comprehensive effects of 
temperature and climate change on electric power systems 
is limited in most studies, e.g. [8-10], leaving many gaps 
due to which authorities have very few options to assess the 
infrastructure reliability (primarily relying on historical 
climate conditions). Local weather conditions are vital in 
influencing power generation [7]. Fathoming the macro and 
micro dynamics of power generation and demand can thus 
assist stakeholders (e.g. grid operators, policymakers) to 
make macro & micro level decisions in the energy sector. 

Problem Definition: Motivated by this background, our
work in this paper has the following main goals.  
1. Investigate existing correlations between local plant
power generation, local temperature, and state-level power
demand, to analyze trends, and identify interdependencies.
2. Assist stakeholders to make better decisions to optimize
generation & distribution of energy resources, contributing
to the complex macro & micro dynamics of energy.

Approach & Contributions: Environmental modeling
entails mathematical or computational models to simulate 
behavior and interactions of energy systems. These models 
can capture complexities of energy generation, distribution 
& consumption to fathom system behavior under different 
scenarios. Machine learning methods, e.g. convolutional 
neural networks (CNN), can play important roles here from 
the AI perspective. Yet, AI-based modeling alone can often 
face problems due to lack of adequate domain knowledge, 
limited interpretability and other issues. In this work, an 
amalgamation of AI-based and domain-specific paradigms 
is proposed via a hybrid approach of CNN-LSTM modeling 
integrated with environmental modeling for comprehensive 
energy analysis at a macro & micro level. It entails various
factors encompassing power generation and temperature 
measurements. Our major contributions are as follows.   

� Comprehensive study of multiple energy sources
from environmental data repositories with a strong 
emphasis on climatic factors

� Use of macro & micro level dynamics, scalable
with modification to other research on applied AI

� Amalgamation of AI-based and domain-specific
modeling for climate-energy analysis

� Hybrid CNN & LSTM adaptation, leveraging their
best features for exemplification in further work

II. LITERATURE REVIEW

    Traditional forecasting models often rely on time-series 
analysis, and autoregressive integrated moving average 
(ARIMA), mostly showing linear relationships. Machine 
learning models are better for nonlinear relationships and 
complex patterns. Studies show high accuracy of neural 
networks to capture nonlinear dynamics of the system [9]. 
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Monitoring energy use, e.g. load monitoring of appliances, 
or buildings, can lead to reduced energy consumption [10]. 
Learning from various data sources including hydrological 
ones, can help to enhance sustainability [11]. Lim et al. [12] 
use a CNN-LSTM model for stable solar power generation 
forecasting (CNN to categorize weather conditions, LSTM 
to learn solar power generation patterns based on them). 
Zhang et al. [13] deploy an ultra-short-term load forecast 
model based on temperature factor weight and LSTM to 
analyze power consumption and temperature by using a 
feedback temperature factor weight. Their results helped to 
reduce prediction error, to reduce operating costs.  
     In smart cities, where energy systems are interconnected 
and complex, such models can help reduce GHG emissions 
[14]. It is noted that 64% of the total emission from the 
electric power sector in the US comes from residential 
areas with over 100 million urban households, consuming 
over 7,500 trillion BTU energy in 2020 alone (more than 
half of the total energy consumed). However, the per capita 
consumption rates of cities are the lowest per household 
[2]. This offers the scope for being more efficient. Many 
studies reveal that AI can mitigate energy consumption in 
buildings by adaptive usage patterns, and more automation 
in devices & systems. Machine learning methods can 
predict cost savings for consumers while reducing carbon 
footprint of buildings. As real-time data is used in smart 
cities, CNN-LSTM models can help optimize energy use, 
reduce peak loads, and enhance system efficiency [14].  
    Although numerous studies have explored relationships 
between temperature and energy generation, there are many 
research gaps. Most studies focus on temperature impacts 
over energy generation from specific sources, e.g. solar / 
wind power [12]. There are gaps on comprehensive effects 
of temperature on various types of energy generation as a 
whole. Moreover, while the influence of temperature on 
energy generation has been acknowledged, there is a need 
for investigation into the underlying factors that drive this 
relationship, and how it can affect the supply chain of 
energy. These and other aspects motivate further research. 
Our work in this paper can offer valuable insights into the 
interplay of temperature, energy generation, sustainability, 
and related aspects via AI-based modeling merged with 
environmental modeling, at a macro & micro level.  

III. PROPOSED METHODOLOGY: HYBRID CNN-LSTM 

We propose a method for climate-energy analysis via an 
amalgamation of environmental and AI-based paradigms. 
This entails environmental modeling coupled with CNN 

(convolutional neural networks) & LSTM (long short-term 

memory) thus constituting a hybrid CNN-LSTM model. It 
is described in the next subsections.  

A.  Environmental Modeling and Data Harvesting 
Datasets on temperature and energy generation in local 
power plants in the 48 states of the continental United 
States (excluding Hawaii and Alaska) are harvested in this 
work. Historical weather data entails local temperature 
averages, from models in NOAA (National Oceanic and 
Atmospheric Administration) NCEI (National Center for 
Environmental Information). The models leverage domain 
knowledge in environmental science and management. 
Data on the aforementioned sources is harvested from local 

climate stations. This helps to collate useful information on 
monthly and daily temperature averages, longitude, and 
latitude. Likewise, energy generation datasets are harvested 
from multiple energy sources of different models in the 
U.S. EIA (Energy Information Administration) as follows. 
1. Inventory of Operable Generators [EIA-860M] 
2. Monthly Generation by Plant [EIA-923] 
3. Monthly Electric Power Industry Report [EIA-861M] 
4. Electric Power Operations (Daily and Hourly): Daily 
Demand by Subregion [EIA-930] 

These datasets model information on the type of fuel, 
energy statistics, location of the powerplant (longitude, 
latitude, state), consumers, price, revenue etc. The data is 
collated for January 2018 to December 2022.The dataset 
with combined energy generation data has 200,526 rows of 
data and the temperature dataset has 169,932 rows. Table I 
and Fig. 1 provide relevant snapshots of the data.   

TABLE I. DATA HARVESTED BY ENVIRONMENTAL MODELING 

Attr. 
Net 

Generation 
(MWh) 

Fuel 
Consumption 

(BTUs) 

Total 
Consumption 

(BTUs) 

Temperature 
(°C) 

Mean Min. Max. 

mean 83,728.4 774,151.40 832,123.60 10.6 16.4 4.7 

std 232,162.7 2,269,354.00 2,279,946.00 9.9 10.6 9.6 

min -20,897.0 1.00 1.00 -21.8 -16.4 -28.9 

med 4,621.5 43,643.00 55,599.50 10.6 16.7 4.4 

max 2,987,699.0 31,197,000.00 31,197,000.00 37.4 45.8 31.8 

  

  

Fig. 1 Map of the US with distribution of average monthly net energy 
generation (Left), Distribution of average monthly temperatures (Right) 

The environmentally modeled data is pre-processed using 
machine learning methods. This is to ensure that the data is 
consistent, accurate, and suitable for analysis by the CNN-
LSTM model. In the powerplant dataset obtained by the 
concerned environmental models, the pre-processing steps 
are as follows: (1) remove missing values; (2) drop rows 
with numerical cells equal to zero; (3) exclude rows where 
the fuel type is not "ALL"; (4) sort data by datetime; (5) 
select relevant attributes (timestamp, latitude, longitude, 
generation, total-consumption-btu, consumption-for-eg-
btu); (6) drop rows located outside the US48 range. In the 
temperature dataset, the following pre-processing steps are 
executed: (1) remove missing values; (2) sort data based on 
datetime; (3) select relevant attributes (timestamp, latitude, 
longitude, max, min, mean temperature); (4) drop rows that 
fall outside the US48 range. Thereafter, the environmental 
datasets are merged by longitude, latitude. In the process of 
merging datasets, our algorithm begins by looping through 
the energy records in chronological order. The temperature 
data is utilized to construct a search tree, which is rebuilt 
whenever a change in period data is detected. This ensures 
that the search trees only contain records for a specific 
timestamp (YYYY-MM). Each energy record is compared 
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against temperature records stored in the search tree. The 
best match(es) can be determined using Euclidean distance, 
incorporating latitude, longitude. Here ‘'i’’ depicts number 
of temperature readings around the powerplant to create the 
average temperature (T) for a given plant. The number of 
readings can be initialized using domain knowledge, and 
further refined in our approach (as revealed in experimental 
results). For more than one match (Ti>1), temperatures are 
combined to calculate an average temperature, each value 
being weighted based on its respective distance from the 
plant using a linear weighting approach. This is guided by 
domain knowledge in environmental science. Additionally, 
the timestamp feature is split into year and month, and the 
distances of temperatures for a given plant are combined to 
calculate an average distance. As a next step, statistical 
analysis with z-score normalization occurs. The average 
distance is used to establish a lower & upper fence, and any 
outliers beyond these fences are eliminated. Following the 
outlier detection and removal, the data is thus normalized. 
Numerical attributes are normalized by a MinMaxScaler, 
and categorical attributes using a OneHotEncoder. 

 

B. AI-Based Modeling with CNN-LSTM 

 
Fig. 2 CNN-LSTM Proposed Framework 

In the AI-based modeling, the proposed method is a hybrid 
CNN-LSTM model. This is harnessed for modeling the 
effect of local temperature averages on energy generation 
in local power plants in the U.S. Fig. 2 illustrates the 
structure of the proposed hybrid CNN-LSTM model in our 
work.  This model combines the strengths of both CNN and 
LSTM to capture spatial and temporal correlations within 
the environmental datasets as follows. The CNN model has 
three CNN layers and a max-pooling layer. After the first 
convolutional layer analyzes the data, it shows the 
discovered feature map. Thereafter, the second later repeats 
this process, and finally the third later amplifies the 
features. The max-pooling layer simplifies the feature maps 
by retaining the highest signals, preserving one-quarter of 
the original values and reduces the complexity of feature 
maps by retaining the highest signals. The flattened feature 
maps are then transformed into a long vector, and the repeat 
vector layer connects the input and output sequences by 
repeating the internal representation each step again. The 
extended short-term memory decoder has three LSTM 
layers to generate values for each forecasted interval. Time-
distributed layers are employed before the final output layer 
to explain each step. The dense layer uses learned weights 
to make complex decisions based on the extracted features, 
ultimately producing the output. Dropout is a regularization 
technique that prevents overfitting by randomly dropping 

out layer outputs during training. This improves robustness 
of the model and reduces reliance on specific neurons.  

 

Algorithm 1:  Hybrid CNN-LSTM Modeling 
1. Input: Data Δ   // Environmentally modeled climate-energy data  
2.Curate Δ with domain knowledge  

i. Merge Δ by latitude, longitude as (ψ, θ) 
ii. Normalize {ΔN} by Min-Max Scaling // Numeric data 

iii. Modify{ΔC} by One-Hot encoding   // Categorical data  
iv. Return derived data as Δ (X, Y) attribute-values 

3. Remodel XSHAPE [0] to XSHAPE [1], Reshape Y as η lists, 1 value each 
4. Create model μ with inputs: 

i. Convolutional Layers in CNN: CL = 3 
ii. MaxPool Layers: ML = 1, Flatten Layers: FL =1 

iii. LSTM Layers: LL = 3 (tanh activation) 
iv. Dense Layer: DE = 1 (128 neurons), Dropout Layer: DO = 1 
v. Output Layer: OL = 1 

5. Set Filters γ = 64, Kernel-size κ = 3, Activation α = ReLU  
6. Set LSTM_units: υ = 50 
7. Set Dropout_rate: δ = 1%, Learning_rate: λ = 0.1%  
8. Compile μ with: 

i. Root Mean Squared Error RMSE, Adam optimizer AO  
9. Set early callback value = ε, patience ρ = 5, restore-best-wgt ω = True 
10. Initiate step decay function σ: 

i. σ = 0.001 
ii. σ = 0.9 * σ ^ [FLOOR (1 + τ)]         // τ: number of epochs 

11. If plateau with factor Φ = 0.5, ρ = 1, then reduce λ  
12. Fit μ with Δ (XTRAIN, YTRAIN) 

i. Batch-size = β, Epochs = τ 
ii. Validation-data = Δ (XVAL, YVAL) 

iii. Set ε with reduced λ 
13. Evaluate μ on remaining Δ(XTEST, YTEST) 
14. Output: Return output Ω via OL    // Learned hypothesis on model      
 

 

Algorithm 1 presents the pseudocode to demonstrate the 
hybrid CNN-LSTM model adapted for our climate-energy 
analysis. Combining convolutional and LSTM layers has 
the effect of diversification. This creates a dynamic setup 
to predict energy generation encompassing environmental 
modeling features. It aims to merge the best of both worlds.  
 
C. Model Training and Evaluation 

The CNN-LSTM model executes on curated environmental 
data to conduct energy analysis. Python’s Scikit Learn is 
used for programming in the overall implementation. The 
model is then subjected to evaluation. For this purpose, the 
data is split into training, validation, and test sets of varying 
sizes. The training set is used to train the model, validation 
set for tuning hyperparameters & model selection, and test 
set for evaluating final performance of the trained model on 
unseen data. Performance is evaluated by measuring error, 
which is calculated as validation loss here. Validation loss 
can indicate how well our CNN-LSTM model predicts net 
energy generation. In this paper, the following metrics are 
used: Mean Absolute Error (MAE), Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE). Table II shows 
validation loss (val_loss) of the model with Ti. The model 
is optimized for Ti = 1; the temperature reading closest to 
a given power plant calculated using Euclidean distance.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, the optimization of the model is aimed at 
considering different average temperature ranges, depicted 
by Ti. Fig. 3 synopsizes our experimental results. Table II 
displays validation loss for different temperature readings.  
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Fig 3. Mean Absolute Error (MAE) of the model for different aggregate 
temperatures (Ti, where ‘'i’ is number of temperature readings on the 
powerplant to create the average temperature (T) for a given plant. 
 

TABLE II. VALIDATION LOSS WITH TEMPERATURE MEASUREMENTS 

Ti MAE MSE RMSE 
Ti = 1 0.0631 0.0259 0.1392 

Ti = 3 0.0616 0.0243 0.1297 

Ti = 5 0.0538 0.0228 0.1279 

Ti = 7 0.0533 0.0222 0.1282 

Ti = 9 0.0519 0.0221 0.1272 

Ti = 11 0.0529 0.0293 0.1315 

Ti = 13 0.0522 0.0224 0.1279 

Ti = 15 0.0536 0.0248 0.1284 

Ti = 17 0.0554 0.0261 0.1373 

Ti = 19 0.0622 0.0258 0.1389 

Ti = 21 0.0927 0.0346 0.1423 
 

    It is observed that as the value of Ti increases (indicating 
a larger average temperature range around the power plant), 
an improvement in the model’s performance is noticed (as 
per the loss metric). It can be initially recommended that 
the model becomes more proficient in predicting energy 
generation patterns by considering a broader range of 
temperature data along with the constant factors of time and 
fuel consumption. However, as Ti is further increased and 
reaches around Ti=15, a deterioration is observed in the 
performance of the model. It shows that the model gets 
overly generalized. Consequently, an increase in loss is 
observed, indicating a decline in predictive capability of the 
model. In the experiments shown here, Ti=9 and Ti=13 
exhibit better performance across all evaluation metrics 
compared to Ti=11. While this is a correlation and not 
essentially a causality, it indicates that these specific ranges 
can improve predictive accuracy, giving closer alignment 
with actual energy generation patterns. More inferences can 
be drawn via domain knowledge (listed in Conclusions).  
The CNN-LSTM model reaffirms that temperature has a 
dual impact on energy-related processes. It is noticed that 
on a micro level (power plant), temperature affects the 
efficiency of converting fuel into energy; whereas on a 
macro level (state-wide), temperature influences energy 
demand directly. In our experiments Ti = 9, yields the best 
results in capturing micro-to-macro relationships, as the 
MAE, MSE and RMSE are comparably the lowest (0.0519, 
0.0221, and 0.1272 respectively) indicating this to be a near 
optimal number. A possible explanation from a domain-
specific angle is that Ti=9 and Ti=13 depict the average 

temperature ranges on the most notable variations in 
temperature relevant to energy generation. They can map 
to temperature thresholds / conditions having a more direct 
impact on the efficiency and performance of power plants. 
Indirect effects can be due to electricity demand affected 
by temperature. Additionally, Ti=9 and Ti=13 can be 
temperature variations more representative of certain 
geographical locations or climate conditions where power 
plants are situated. Different regions often tend to exhibit 
temperature patterns and sensitivities to energy generation. 
Hence, by considering average temperature ranges aligning 
closely with local climate characteristics, the model can 
better capture nuanced relationships between temperature 
and energy generation. It shows the importance of micro & 
macro scaled research for more comprehensive analysis of 
relationships in energy management. It helps in improving 
energy efficiency and heads towards optimization. 

V. IMPACT ON SMART CITIES 

The findings of this study have implications for smart cities 
and sustainability. Integrating real-time temperature data 
into smart city infrastructure allows dynamic adjustments 
in energy production and distribution, while maximizing 
resource utilization. For instance, Fig. 4 offers a visual 
depiction of prediction results for energy consumption 
using our hybrid modeling approach. It is seen that as Ti 
increases, the graph forms a narrower bell curve, implying 
greater stability or predictability in energy generation in 
response to temperature variations. It can be advantageous 
to stakeholders for planning and optimizing power plant 
operations. Moreover, accurate depiction of temperatures 
around each power plant tends to increase the precision of 
subsequent analyses. Here, left-most clusters (blue) show 
colder climatic conditions whereas right-most clusters (red) 
show warmer ones. It reveals that power generation is 
maximized when average monthly temperature around a 
power plant falls between -10°C, 10 °C. A general upward 
trend from -25°C to -5°C can be associated with increase in 
consumer-demand for electricity in colder temperatures; 
the downward trend from 10°C to 20°C can be associated 
with the lower capacity of power lines at high temperatures. 
Such inferences from our hybrid CNN-LSTM modeling for 
energy analysis can help in smart city planning and smart 
grid development. For example, it is evident that prediction 
results for energy consumption are better for Ti=5 than for 
Ti=1, and further better for Ti=13, but almost similar for 
Ti=13 and Ti=21. Hence, it could be more optimal to select 
Ti=13 for smart grid layouts in smart cities.  
     Our work in this paper can be orthogonal to other studies 
[14 – 17]. On a related note, regions with more alternative 
fuel vehicles (AFVs) are associated with regions having 
better air quality [18]. Hence, thriving on the concept of 
smart grids [17], those grids that help to optimize the 
charging and discharging of electric vehicles based on 
temperature conditions, can be suitably designed via results 
of studies such as ours. This is in order to improve energy 
efficiency and reduce carbon footprint in transportation. 
    Likewise, adapting more sustainable AI with machine 
learning techniques to create strategies for electric vehicle 
ride-sharing can result in fuel-saving, and decarbonization 
analogous to other work [19]. Incorporating renewable 
energy and advanced energy management through more 
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evidence-based decision-making by AI models & domain-
specific paradigms, can help integrated energy systems to 
mitigate air pollution in smart cities. Our work in this paper 
can make modest contributions to such initiatives.   
 

 

 
Fig 4. Prediction results for Net Energy Generation (MWh) for various 
Ti values where ‘'i’ is the number of temperature readings surrounding 
the power plant to create the average temperature (T) for a given plant. 

VI. CONCLUSIONS AND FUTURE WORK 

Our research emphasizes amalgamating AI-based models 
with domain-specific models for analysis. It is exemplified 
with climate-energy analysis via hybrid CNN-LSTM and 
environmental modeling.  Our key findings are as follows.  
1.Power generation is maximized when average monthly 
temperature surrounding a power plant is -10 °C to 10 °C. 
2. Upward trend from -25°C to -5°C is associated with an 
increase in consumer demand for electricity or associated 
with climates in areas where people choose to live. 
3. Downward trend from 10°C to 20°C is associated with 
the lower capacity of power lines at high temperatures. 
4. At the micro level there is a strong correlation between 
the power each plant generates and temperature around it. 
5. Correlations at the micro level are more complex than 
the macro level because of added layer of variables. 
    Stakeholders can make better decisions based on such 
findings to mitigate energy waste & CO2 emissions. Smart 
city planners can use the discovered knowledge for energy 
conservation, load balancing, and smart grid layouts. While 
we map macro / micro levels as state / power plant, other 
studies can use different mappings for macro & micro 
scales, with lessons learned from our study for more well-
grounded decision-making. To the best of our knowledge 
our study in this paper is among the first on comprehensive 
climate-energy analysis using multiple sources at macro & 
micro levels via integrating AI-based and domain-specific 
methods by hybrid CNN-LSTM & environmental models. 
     Future work can entail comparing seasonal differences, 
identifying gaps in demand and supply of power during 
various seasons, correlating states with residential sector / 
commercial sector, and analyzing demand of electricity by 
industry and geography. Questions can be raised as follows.  
1. Does energy source of the power affect CO2 emissions?  
2. How does it correlate with socio-economic conditions? 

This can blend machine learning and predictive models into 
smart city infrastructure for proactive energy management 
and good demand-response mechanisms. Our study thus 
paves the way for more innovative solutions towards a 
smart environment in smart cities and hence a smart planet.   
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