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Abstract—This study aims to model the effect of local
climate on energy generation in power plants in the United
States. It considers climate change as well as the ever-growing
electricity demand, contributing to greenhouse gas emissions.
We propose an integration of Al-based and domain-specific
paradiims via a hf/ rid approach of convolutional neural
networks (CNN) & long short-term memory (LSTM) coupled
with environmental models. Erstwhile studies focus mainly on
specific energy sources, e.g. solar/wind power. There is a need
for more comprehensive examination, e.g. temperature effects
across various energy generation types at the macro level of
states and micro level of power plants. This forms the major
focus and novelty of our study. Fathoming the factors driving
temperature-energy correlations, and assessing power plant
vulnerability to changing climate patterns, are%)oth essential
to promote energy infrastructure resilience and sustainability.
Our study offers novel insights into the complex interplay of
temperature, energy generation, sustainability and related
aspects to enable enhanced macro & micro level decision-
making in energy sector. It therefore makes contributions to
smart environment goals for smart cities and a smart planet.

Keywords— CNN, Climate Studies, Electricity, Energy, LSTM,
Predictive Modeling, Smart Environment, Smart Cities

I.  INTRODUCTION

Energy consumption is a major driver of economic growth
& environmental impact. Studying patterns in energy usage
holds tremendous importance for addressing challenges in
sustainable energy management. Al can play a role here.
Background: Global energy use is affected by climatic
factors, e.g. temperature, socio-economic variables such as
population demographics etc. Adequate climate-energy
analysis is crucial in effectively planning the distribution
and hence optimizing energy usage [1]. Due to climate
change and drastic fluctuations in global temperature, there
is more demand for electricity. As energy usage increases,
greenhouse gas (GHG) emissions rise substantially. In the
US, the electric power sector contributes to 31% of carbon
dioxide (CO>) emissions [2]. Global energy demands are
rising, along with related emissions, and are expected to
rise further due to greater urbanization, unless proactive
measures are taken soon [3]. Climatic factors, particularly
temperature, have much impact on energy demand-supply
[4]. Energy use is closely tied to the weather, where energy
consumption rises with a peak in increase/decrease of
temperature. Changes in energy demand will inevitably
affect GHG emissions, but overall effects depend on energy
sources for electricity/heating, including alternative ones.
Motivation: Most power companies lack consideration
of climate impacts in development strategies today, which
can lead to overestimation of capacity for future demands,
causing electricity shortage [5]. As much as the energy
sector contributes towards climate change, it is impacted by
the effects of climate change. Generation of electricity can
be affected, e.g. climate change can cause droughts. It can
affect hydroelectricity depending on streamflow, impact
thermal power plants requiring cooling water to generate
electricity at full capacity [6, 7]. Climate change can
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severely compromise resilience and reliability of current
energy systems. Yet, analyzing comprehensive effects of
temperature and climate change on electric power systems
is limited in most studies, e.g. [8-10], leaving many gaps
due to which authorities have very few options to assess the
infrastructure reliability (primarily relying on historical
climate conditions). Local weather conditions are vital in
influencing power generation [7]. Fathoming the macro and
micro dynamics of power generation and demand can thus
assist stakeholders (e.g. grid operators, policymakers) to
make macro & micro level decisions in the energy sector.
Problem Definition: Motivated by this background, our
work in this paper has the following main goals.
1. Investigate existing correlations between local plant
power generation, local temperature, and state-level power
demand, to analyze trends, and identify interdependencies.
2. Assist stakeholders to make better decisions to optimize
generation & distribution of energy resources, contributing
to the complex macro & micro dynamics of energy.
Approach & Contributions: Environmental modeling
entails mathematical or computational models to simulate
behavior and interactions of energy systems. These models
can capture complexities of energy generation, distribution
& consumption to fathom system behavior under different
scenarios. Machine learning methods, e.g. convolutional
neural networks (CNN), can play important roles here from
the Al perspective. Yet, Al-based modeling alone can often
face problems due to lack of adequate domain knowledge,
limited interpretability and other issues. In this work, an
amalgamation of Al-based and domain-specific paradigms
is proposed via a hybrid approach of CNN-LSTM modeling
integrated with environmental modeling for comprehensive
energy analysis at a macro & micro level. It entails various
factors encompassing power generation and temperature
measurements. Our major contributions are as follows.

e Comprehensive study of multiple energy sources
from environmental data repositories with a strong
emphasis on cl/imatic factors

e Use of macro & micro level dynamics, scalable
with modification to other research on applied Al

e Amalgamation of Al-based and domain-specific
modeling for climate-energy analysis

e Hybrid CNN & LSTM adaptation, leveraging their
best features for exemplification in further work

II. LITERATURE REVIEW

Traditional forecasting models often rely on time-series
analysis, and autoregressive integrated moving average
(ARIMA), mostly showing linear relationships. Machine
learning models are better for nonlinear relationships and
complex patterns. Studies show high accuracy of neural
networks to capture nonlinear dynamics of the system [9].



Monitoring energy use, e.g. load monitoring of appliances,
or buildings, can lead to reduced energy consumption [10].
Learning from various data sources including hydrological
ones, can help to enhance sustainability [11]. Lim et al. [12]
use a CNN-LSTM model for stable solar power generation
forecasting (CNN to categorize weather conditions, LSTM
to learn solar power generation patterns based on them).
Zhang et al. [13] deploy an ultra-short-term load forecast
model based on temperature factor weight and LSTM to
analyze power consumption and temperature by using a
feedback temperature factor weight. Their results helped to
reduce prediction error, to reduce operating costs.

In smart cities, where energy systems are interconnected
and complex, such models can help reduce GHG emissions
[14]. It is noted that 64% of the total emission from the
electric power sector in the US comes from residential
areas with over 100 million urban households, consuming
over 7,500 trillion BTU energy in 2020 alone (more than
half of the total energy consumed). However, the per capita
consumption rates of cities are the lowest per household
[2]. This offers the scope for being more efficient. Many
studies reveal that Al can mitigate energy consumption in
buildings by adaptive usage patterns, and more automation
in devices & systems. Machine learning methods can
predict cost savings for consumers while reducing carbon
footprint of buildings. As real-time data is used in smart
cities, CNN-LSTM models can help optimize energy use,
reduce peak loads, and enhance system efficiency [14].

Although numerous studies have explored relationships
between temperature and energy generation, there are many
research gaps. Most studies focus on temperature impacts
over energy generation from specific sources, e.g. solar /
wind power [12]. There are gaps on comprehensive effects
of temperature on various types of energy generation as a
whole. Moreover, while the influence of temperature on
energy generation has been acknowledged, there is a need
for investigation into the underlying factors that drive this
relationship, and how it can affect the supply chain of
energy. These and other aspects motivate further research.
Our work in this paper can offer valuable insights into the
interplay of temperature, energy generation, sustainability,
and related aspects via Al-based modeling merged with
environmental modeling, at a macro & micro level.

III. PROPOSED METHODOLOGY: HYBRID CNN-LSTM

We propose a method for climate-energy analysis via an
amalgamation of environmental and Al-based paradigms.
This entails environmental modeling coupled with CNN
(convolutional neural networks) & LSTM (long short-term
memory) thus constituting a hybrid CNN-LSTM model. It
is described in the next subsections.

A. Environmental Modeling and Data Harvesting

Datasets on temperature and energy generation in local
power plants in the 48 states of the continental United
States (excluding Hawaii and Alaska) are harvested in this
work. Historical weather data entails local temperature
averages, from models in NOAA (National Oceanic and
Atmospheric Administration) NCEI (National Center for
Environmental Information). The models leverage domain
knowledge in environmental science and management.
Data on the aforementioned sources is harvested from local
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climate stations. This helps to collate useful information on
monthly and daily temperature averages, longitude, and
latitude. Likewise, energy generation datasets are harvested
from multiple energy sources of different models in the
U.S. EIA (Energy Information Administration) as follows.
1. Inventory of Operable Generators [EIA-860M]

2. Monthly Generation by Plant [EIA-923]

3. Monthly Electric Power Industry Report [EIA-861M]

4. Electric Power Operations (Daily and Hourly): Daily
Demand by Subregion [EIA-930]

These datasets model information on the type of fuel,
energy statistics, location of the powerplant (longitude,
latitude, state), consumers, price, revenue etc. The data is
collated for January 2018 to December 2022.The dataset
with combined energy generation data has 200,526 rows of
data and the temperature dataset has 169,932 rows. Table I
and Fig. 1 provide relevant snapshots of the data.

TABLE I. DATA HARVESTED BY ENVIRONMENTAL MODELING

Net Fuel Total Temperature
Attr. | Generation | Consumption | Consumption O

(MWh) (BTUs) BTUS) | rean| Min. | Max.

mean | 83,728.4 774,151.40 | 832,123.60 |10.6]16.4| 4.7
std 232,162.7 |2,269,354.00 | 2,279,946.00 | 9.9 | 10.6 | 9.6
min -20,897.0 1.00 1.00 -21.8]1-16.4-28.9
med 4,621.5 43,643.00 55,599.50 |[10.6] 16.7 | 4.4
max | 2,987,699.0 [31,197,000.00(31,197,000.00 | 37.4 | 45.8 | 31.8

MNet Generation Distribution by Location Temperature Distribution by Location
3 -;5." !

5 T a—
Longitude Langiuce

Fig. 1 Map of the US with distribution of average monthly net energy
generation (Left), Distribution of average monthly temperatures (Right)

The environmentally modeled data is pre-processed using
machine learning methods. This is to ensure that the data is
consistent, accurate, and suitable for analysis by the CNN-
LSTM model. In the powerplant dataset obtained by the
concerned environmental models, the pre-processing steps
are as follows: (1) remove missing values; (2) drop rows
with numerical cells equal to zero; (3) exclude rows where
the fuel type is not "ALL"; (4) sort data by datetime; (5)
select relevant attributes (timestamp, latitude, longitude,
generation, total-consumption-btu, consumption-for-eg-
btu); (6) drop rows located outside the US48 range. In the
temperature dataset, the following pre-processing steps are
executed: (1) remove missing values; (2) sort data based on
datetime; (3) select relevant attributes (timestamp, latitude,
longitude, max, min, mean temperature); (4) drop rows that
fall outside the US48 range. Thereafter, the environmental
datasets are merged by longitude, latitude. In the process of
merging datasets, our algorithm begins by looping through
the energy records in chronological order. The temperature
data is utilized to construct a search tree, which is rebuilt
whenever a change in period data is detected. This ensures
that the search trees only contain records for a specific
timestamp (YYYY-MM). Each energy record is compared
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against temperature records stored in the search tree. The
best match(es) can be determined using Euclidean distance,
incorporating latitude, longitude. Here “i’’ depicts number
of temperature readings around the powerplant to create the
average temperature (7) for a given plant. The number of
readings can be initialized using domain knowledge, and
further refined in our approach (as revealed in experimental
results). For more than one match (77> 1), temperatures are
combined to calculate an average temperature, each value
being weighted based on its respective distance from the
plant using a linear weighting approach. This is guided by
domain knowledge in environmental science. Additionally,
the timestamp feature is split into year and month, and the
distances of temperatures for a given plant are combined to
calculate an average distance. As a next step, statistical
analysis with z-score normalization occurs. The average
distance is used to establish a lower & upper fence, and any
outliers beyond these fences are eliminated. Following the
outlier detection and removal, the data is thus normalized.
Numerical attributes are normalized by a MinMaxScaler,
and categorical attributes using a OneHotEncoder.

B. Al-Based Modeling with CNN-LSTM
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Fig. 2 CNN-LSTM Proposed Framework

In the Al-based modeling, the proposed method is a hybrid
CNN-LSTM model. This is harnessed for modeling the
effect of local temperature averages on energy generation
in local power plants in the U.S. Fig. 2 illustrates the
structure of the proposed hybrid CNN-LSTM model in our
work. This model combines the strengths of both CNN and
LSTM to capture spatial and temporal correlations within
the environmental datasets as follows. The CNN model has
three CNN layers and a max-pooling layer. After the first
convolutional layer analyzes the data, it shows the
discovered feature map. Thereafter, the second later repeats
this process, and finally the third later amplifies the
features. The max-pooling layer simplifies the feature maps
by retaining the highest signals, preserving one-quarter of
the original values and reduces the complexity of feature
maps by retaining the highest signals. The flattened feature
maps are then transformed into a long vector, and the repeat
vector layer connects the input and output sequences by
repeating the internal representation each step again. The
extended short-term memory decoder has three LSTM
layers to generate values for each forecasted interval. Time-
distributed layers are employed before the final output layer
to explain each step. The dense layer uses learned weights
to make complex decisions based on the extracted features,
ultimately producing the output. Dropout is a regularization
technique that prevents overfitting by randomly dropping

out layer outputs during training. This improves robustness
of the model and reduces reliance on specific neurons.

Algorithm 1: Hybrid CNN-LSTM Modeling

1. Input: Data A // Environmentally modeled climate-energy data
2.Curate A with domain knowledge
i Merge A by latitude, longitude as (y, 6)
ii. Normalize {Ax} by Min-Max Scaling // Numeric data
iil. Modify{Ac} by One-Hot encoding // Categorical data
iv. Return derived data as A (X, Y) attribute-values
. Remodel Xspapr [0] to Xsuape [1], Reshape Y as 1 lists, 1 value each
. Create model p with inputs:
i Convolutional Layers in CNN: CL =3
ii. MaxPool Layers: ML = 1, Flatten Layers: FL =1
iii. LSTM Layers: LL = 3 (tanh activation)
iv. Dense Layer: DE = 1 (128 neurons), Dropout Layer: DO = 1
V. Output Layer: OL = 1
Set Filters y = 64, Kernel-size k = 3, Activation a = ReLU
Set LSTM_units: v =50
Set Dropout_rate: & = 1%, Learning_rate: A =0.1%
Compile p with:
i Root Mean Squared Error RMSE, Adam optimizer AO
. Set early callback value = ¢, patience p = 5, restore-best-wgt ® = True
10. Initiate step decay function c:
i. 6 =0.001
ii. 6=0.9 * 6" [FLOOR (1 +1)] // t: number of epochs
11. If plateau with factor ® = 0.5, p = 1, then reduce A
12. Fit p with A (Xrraiv, YrraN)
i. Batch-size = B, Epochs =t
ii. Validation-data = A (Xvar, Yvar)
iii. Set & with reduced A
13. Evaluate p on remaining A(Xresr, Yrest)
14. Output: Return output Q via OL  // Learned hypothesis on model

Bw

XN

e

Algorithm 1 presents the pseudocode to demonstrate the
hybrid CNN-LSTM model adapted for our climate-energy
analysis. Combining convolutional and LSTM layers has
the effect of diversification. This creates a dynamic setup
to predict energy generation encompassing environmental
modeling features. It aims to merge the best of both worlds.

C. Model Training and Evaluation

The CNN-LSTM model executes on curated environmental
data to conduct energy analysis. Python’s Scikit Learn is
used for programming in the overall implementation. The
model is then subjected to evaluation. For this purpose, the
data is split into training, validation, and test sets of varying
sizes. The training set is used to train the model, validation
set for tuning hyperparameters & model selection, and test
set for evaluating final performance of the trained model on
unseen data. Performance is evaluated by measuring error,
which is calculated as validation loss here. Validation loss
can indicate how well our CNN-LSTM model predicts net
energy generation. In this paper, the following metrics are
used: Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE). Table II shows
validation loss (val_loss) of the model with 7i. The model
is optimized for 77 = I; the temperature reading closest to
a given power plant calculated using Euclidean distance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this study, the optimization of the model is aimed at
considering different average temperature ranges, depicted
by Ti. Fig. 3 synopsizes our experimental results. Table 11
displays validation loss for different temperature readings.
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Validation Loss of the Model for Aggregate Temperatures

Mean Absolute Error

005 |

T=1 Ti=3 Ti=§ Ti=7 Ti=0 Ti=H T=13 Ti=156 Ti=17 Ti=18 Ti=21

Fig 3. Mean Absolute Error (MAE) of the model for different aggregate
temperatures (Ti, where ‘i’ is number of temperature readings on the

powerplant to create the average temperature (T) for a given plant.

TABLE II. VALIDATION LOSS WITH TEMPERATURE MEASUREMENTS

Ti MAE MSE RMSE
Ti=1 0.0631 0.0259 0.1392
Ti=3 0.0616 0.0243 0.1297
Ti=5 0.0538 0.0228 0.1279
Ti=7 0.0533 0.0222 0.1282
Ti=9 0.0519 0.0221 0.1272

TTi=11 0.0529 0.0293 0.1315

"Ti- 13 0.0522 0.0224 0.1279
Ti=15 0.0536 0.0248 0.1284

"Ti=17 0.0554 0.0261 0.1373

"Ti- 19 0.0622 0.0258 0.1389

"Ti-21 0.0927 0.0346 0.1423

It is observed that as the value of 77 increases (indicating
a larger average temperature range around the power plant),
an improvement in the model’s performance is noticed (as
per the loss metric). It can be initially recommended that
the model becomes more proficient in predicting energy
generation patterns by considering a broader range of
temperature data along with the constant factors of time and
fuel consumption. However, as 7i is further increased and
reaches around 7i=15, a deterioration is observed in the
performance of the model. It shows that the model gets
overly generalized. Consequently, an increase in loss is
observed, indicating a decline in predictive capability of the
model. In the experiments shown here, 7i=9 and 7i=13
exhibit better performance across all evaluation metrics
compared to 7i=11. While this is a correlation and not
essentially a causality, it indicates that these specific ranges
can improve predictive accuracy, giving closer alignment
with actual energy generation patterns. More inferences can
be drawn via domain knowledge (listed in Conclusions).
The CNN-LSTM model reaffirms that temperature has a
dual impact on energy-related processes. It is noticed that
on a micro level (power plant), temperature affects the
efficiency of converting fuel into energy; whereas on a
macro level (state-wide), temperature influences energy
demand directly. In our experiments 77 = 9, yields the best
results in capturing micro-to-macro relationships, as the
MAE, MSE and RMSE are comparably the lowest (0.0519,
0.0221, and 0.1272 respectively) indicating this to be a near
optimal number. A possible explanation from a domain-
specific angle is that 7i=9 and 7i=13 depict the average
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temperature ranges on the most notable variations in
temperature relevant to energy generation. They can map
to temperature thresholds / conditions having a more direct
impact on the efficiency and performance of power plants.
Indirect effects can be due to electricity demand affected
by temperature. Additionally, 7i=9 and 7i=13 can be
temperature variations more representative of certain
geographical locations or climate conditions where power
plants are situated. Different regions often tend to exhibit
temperature patterns and sensitivities to energy generation.
Hence, by considering average temperature ranges aligning
closely with local climate characteristics, the model can
better capture nuanced relationships between temperature
and energy generation. It shows the importance of micro &
macro scaled research for more comprehensive analysis of
relationships in energy management. It helps in improving
energy efficiency and heads towards optimization.

V. IMPACT ON SMART CITIES

The findings of this study have implications for smart cities
and sustainability. Integrating real-time temperature data
into smart city infrastructure allows dynamic adjustments
in energy production and distribution, while maximizing
resource utilization. For instance, Fig. 4 offers a visual
depiction of prediction results for energy consumption
using our hybrid modeling approach. It is seen that as 7i
increases, the graph forms a narrower bell curve, implying
greater stability or predictability in energy generation in
response to temperature variations. It can be advantageous
to stakeholders for planning and optimizing power plant
operations. Moreover, accurate depiction of temperatures
around each power plant tends to increase the precision of
subsequent analyses. Here, left-most clusters (blue) show
colder climatic conditions whereas right-most clusters (red)
show warmer ones. It reveals that power generation is
maximized when average monthly temperature around a
power plant falls between -10°C, 10 °C. A general upward
trend from -25°C to -5°C can be associated with increase in
consumer-demand for electricity in colder temperatures;
the downward trend from 10°C to 20°C can be associated
with the lower capacity of power lines at high temperatures.
Such inferences from our hybrid CNN-LSTM modeling for
energy analysis can help in smart city planning and smart
grid development. For example, it is evident that prediction
results for energy consumption are better for 7i=5 than for
Ti=1, and further better for 7i=13, but almost similar for
Ti=13 and Ti=21. Hence, it could be more optimal to select
Ti=13 for smart grid layouts in smart cities.

Our work in this paper can be orthogonal to other studies
[14 — 17]. On a related note, regions with more alternative
fuel vehicles (AFVs) are associated with regions having
better air quality [18]. Hence, thriving on the concept of
smart grids [17], those grids that help to optimize the
charging and discharging of electric vehicles based on
temperature conditions, can be suitably designed via results
of studies such as ours. This is in order to improve energy
efficiency and reduce carbon footprint in transportation.

Likewise, adapting more sustainable Al with machine
learning techniques to create strategies for electric vehicle
ride-sharing can result in fuel-saving, and decarbonization
analogous to other work [19]. Incorporating renewable
energy and advanced energy management through more



evidence-based decision-making by Al models & domain-
specific paradigms, can help integrated energy systems to
mitigate air pollution in smart cities. Our work in this paper
can make modest contributions to such initiatives.

Net Generation vs. Average Temperature (Ti = 1) Net Generation vs. Average Temperature (Ti = 5)
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Fig 4. Prediction results for Net Energy Generation (MWh) for various
Ti values where “'i” is the number of temperature readings surrounding
the power plant to create the average temperature (T) for a given plant.
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VI. CONCLUSIONS AND FUTURE WORK

Our research emphasizes amalgamating Al-based models
with domain-specific models for analysis. It is exemplified
with climate-energy analysis via hybrid CNN-LSTM and
environmental modeling. Our key findings are as follows.
1.Power generation is maximized when average monthly
temperature surrounding a power plant is -10 °C to 10 °C.
2. Upward trend from -25°C to -5°C is associated with an
increase in consumer demand for electricity or associated
with climates in areas where people choose to live.
3. Downward trend from 10°C to 20°C is associated with
the lower capacity of power lines at high temperatures.
4. At the micro level there is a strong correlation between
the power each plant generates and temperature around it.
5. Correlations at the micro level are more complex than
the macro level because of added layer of variables.
Stakeholders can make better decisions based on such
findings to mitigate energy waste & CO; emissions. Smart
city planners can use the discovered knowledge for energy
conservation, load balancing, and smart grid layouts. While
we map macro / micro levels as state / power plant, other
studies can use different mappings for macro & micro
scales, with lessons learned from our study for more well-
grounded decision-making. To the best of our knowledge
our study in this paper is among the first on comprehensive
climate-energy analysis using multiple sources at macro &
micro levels via integrating Al-based and domain-specific
methods by hybrid CNN-LSTM & environmental models.
Future work can entail comparing seasonal differences,
identifying gaps in demand and supply of power during
various seasons, correlating states with residential sector /
commercial sector, and analyzing demand of electricity by
industry and geography. Questions can be raised as follows.
1. Does energy source of the power affect CO, emissions?
2. How does it correlate with socio-economic conditions?

233

This can blend machine learning and predictive models into
smart city infrastructure for proactive energy management
and good demand-response mechanisms. Our study thus
paves the way for more innovative solutions towards a
smart environment in smart cities and hence a smart planet.
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