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Supervised deep-learning models have enabled super-
resolution imaging in several microscopic imaging modal-
ities, increasing the spatial lateral bandwidth of the original
input images beyond the diffraction limit. Despite their suc-
cess, their practical application poses several challenges in
terms of the amount of training data and its quality, requir-
ing the experimental acquisition of large, paired databases to
generate an accurate generalized model whose performance
remains invariant to unseen data. Cycle-consistent gener-
ative adversarial networks (cycleGANs) are unsupervised
models for image-to-image translation tasks that are trained
on unpaired datasets. This paper introduces a cycleGAN
framework specifically designed to increase the lateral reso-
lution limit in confocal microscopy by training a cycleGAN
model using low- and high-resolution unpaired confocal
images of human glioblastoma cells. Training and testing
performances of the cycleGAN model have been assessed
by measuring specific metrics such as background standard
deviation, peak-to-noise ratio, and a customized frequency
content measure. Qur cycleGAN model has been evaluated
in terms of image fidelity and resolution improvement using
a paired dataset, showing superior performance than other
reported methods. This work highlights the efficacy and
promise of cycleGAN models in tackling super-resolution
microscopic imaging without paired training, paving the
path for turning home-built low-resolution microscopic sys-
tems into low-cost super-resolution instruments by means of
unsupervised deep learning. © 2024 Optica Publishing Group.
All rights, including for text and data mining (TDM), Atrtificial Intelli-
gence (Al) training, and similar technologies, are reserved.
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Deep learning in super-resolution imaging has emerged as a
groundbreaking approach over the last decade, leveraging neu-
ral networks to enhance image resolution beyond the limits of
traditional imaging processing methods using a single image
[1]. Deep-learning models can reconstruct high-resolution (HR)
images from low-resolution (LR) inputs with remarkable fidelity
using sophisticated algorithms and vast amounts of training
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data. By harnessing the power of convolutional neural net-
works (CNNs) and generative adversarial networks (GAN),
researchers have achieved unprecedented levels of detail and
clarity in images, opening new possibilities for analysis, diagno-
sis, and visualization in various fields such as satellite imagery,
photography, and medical and microscopy imaging [2,3]. In
particular, deep learning in microscopy has enabled super-
resolution imaging by overcoming the diffraction limit and
reconstructing super-resolved images (i.e., images whose spatial
cutoff frequency is higher than the one limited by the diffrac-
tion limit of the conventional microscope) in which we can
resolve biological structures at the nanoscale level with improved
signal-to-noise ratio [4].

Among the different deep-learning models, supervised and
unsupervised training are the two fundamental approaches.
Supervised models are those which are trained on a labeled
dataset. In other words, each input data is paired with a cor-
responding target output data. Therefore, the model learns to
map inputs to outputs by minimizing the discrepancy between
its predictions and the true outputs during the training, being
able to generalize the learned mapping and make accurate
predictions on unseen data. Supervised models have been
reported to transform low-resolution (LR) to super-resolved (SR)
images in several imaging modalities, including bright-field
microscopy [3], widefield fluorescence microscopy [5], con-
focal microscopy [5-7], light-sheet microscopy [8], structured
illumination microscopy [9], stochastic optical reconstruction
microscopy [10], and Photoactivated Localization Microscopy
[11].

Despite the prominent successes of supervised deep-learning
models, their training and testing can pose several challenges.
The amount of training data and its quality are two potential
aspects affecting the model’s performance. Whereas poor-
quality training images affect the performance of the network
inference, insufficient training data can easily lead to overfit-
ting, providing a faulty model to generalize unseen data [12-14].
Acquiring accurate and high-quality paired ground-truth images
for training can be labor-intensive, requiring an adequate imag-
ing protocol to record experimental imaging from different
imaging modalities or under different conditions. Because the


https://orcid.org/0000-0002-1007-5028
https://orcid.org/0000-0003-0448-376X
https://doi.org/10.1364/OL.537713
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.537713&amp;domain=pdf&amp;date_stamp=2024-10-03

5776 Vol. 49, No. 20/ 15 October 2024 / Optics Letters

experimental acquisition of large, paired databases is difficult,
data augmentation techniques and transfer learning are com-
monly employed to expand the training dataset. However, data
augmentation should be performed cautiously, ensuring that the
augmented data adds new information to the training dataset
without changing any information associated with the sam-
ple’s biomolecular information. In summary, the performance of
supervised deep-learning models requires a large-paired dataset
of high-quality LR and SR images, ensuring models general-
ize well to unseen data. The challenge of recording large-paired
datasets can be overcome by unsupervised models trained on
an unpaired dataset, where the LR and HR images depict dif-
ferent fields of view or samples. In 2017, Zhu et al. introduced
the Cycle-Consistent Generative Adversarial Network (cycle-
GAN) for image-to-image translation tasks without requiring a
paired dataset [15]. The cycleGAN model learns to translate
between two domains without requiring direct correspondences
between the images in each domain (i.e., circumventing the
need for meticulously paired training data) by preserving the
sample’s structures during the translation process, broaden-
ing its applicability to microscopy. As an example, in 2022,
Park et al. developed an optimal transport-driven cycleGAN
(OT-cycleGAN) to improve the axial resolution in 3D imag-
ing, providing isotropic volumetric confocal and light-sheet
microscopy from anisotropic 3D volumes [16]. Although that
work improves the axial resolution of both imaging modalities,
the lateral resolution improvement was marginal. In this work,
we have designed a cycleGAN trained to perform SR confocal
microscopy from unpaired LR-recorded confocal images.

The proposed cycleGAN model combines the VGG19 model
with custom discriminator and generator architectures to cre-
ate a robust image-to-image translation system. The VGG19
model, loaded without the top layers and frozen as a fixed fea-
ture extractor, helps ensure high-level feature similarity through
perceptual loss by focusing on the feature maps produced by
the convolutional layers. These feature maps capture essential
perceptual characteristics of the input images, ensuring that the
generated HR images retain important structural and content
details. The discriminator involves a conventional patchGAN
with convolutional layers, LeakyReLU activation, and instance
normalization. The generator transforms low-resolution (LR)
images into super-resolution (HR) images using convolutional
layers for downsampling, residual blocks for content preserva-
tion, and transposed convolutions for upsampling, incorporating
instance normalization and ReLU activations. The compos-
ite model integrates the generator, discriminator, and VGG19,
training the generator using adversarial, perceptual, and cycle
consistency losses to produce realistic images with high-level
feature similarity. More details on the implemented cycleGAN
model are found in Section 1 of Supplement 1.

The cycleGAN model is trained, validated, and tested using
images of U-373MG human glioblastoma cells. Section 2 of
Supplement 1 describes the sample protocol used in this case.
The experimental confocal fluorescent images were acquired
using the Nikon Ti-E confocal microscope at the University of
Memphis Integrated Microscopy Center. Twenty-one fields of
view of the sample were recorded with a dry 10x/0.3 NA and
an oil-immersion 60x/1.4 NA microscope objective lenses to
build the unpaired LR and HR datasets. A detailed description
of the dataset is provided in Section 3 of Supplement 1. The final
dataset contains 1345 LR images and 1345 HR images in each
channel (i.e., vimentin-stain and actin-stain images), thereby a
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total of 5380 (=4 x 1345) images were used to train and validate
the model. Both datasets were split by the conventional 80/20
ratio to create the unpaired training and validation datasets.

Due to the unpaired data learning approach in cycleGANS,
the performance of the training procedure was quantified using
two metrics based solely on the characteristics of each image:
the background standard deviation (BGSTD) and a spatial cutoff
frequency (CUF) metric. The BGSTD represents the amount of
noise present in an image, and it is measured by the standard
deviation of the background intensity. The background region in
an image can be segmented from the cellular content by thresh-
olding the image using Otsu’s method. In fact, the background
region is the remaining portion of the image after thresholding.
The BGSTD value is the standard deviation of this background
region. This metric has been chosen to assess if the model intro-
duces additional noise. The CUF metric quantifies the compact
support of the image spectrum, providing a measure of the spa-
tial cutoff frequency in the images. Figure S1 in Section 4 of
Supplement 1 shows the spectrum of a pair of LR/HR images and
the corresponding CUF metric measurement with a smaller CUF
value for LR images. The cutoff frequency marks the circular
boundary of the compact support circular region. The com-
pact support consists of the subset of spatial frequencies that
carry non-zero frequency components of the image. The CUF
is defined as the spatial frequency (in pixels) that encloses 95%
of the total energy of the image. The CUF value is normalized
by the image dimensions. Plots of the BGSTD and CUF met-
rics for both training and validation datasets (Fig. S2 in Section
5 of Supplement 1) demonstrate the robustness of the imple-
mented training model. Although the model has been trained up
to 100 epochs, both metrics converge after epoch 40 for both the
training and validation datasets. The CUF and BGSTD metrics
converge at 0.22 and 0.13 a.u., respectively.

Although the BGSTD and the CUF metrics quantify the evo-
lution of the training procedure, they do not objectively measure
the accurate conversion from the LR to the HR domains. We
have measured three additional metrics for a small, paired test-
ing dataset of 68 images. This paired dataset was compiled by
imaging the same two cells for both microscope objective lenses
(i.e., LR and HR configuration). We followed the same experi-
mental protocol as the one used for the unpaired dataset. After
appropriately scaling the LR images, a FoV matching algorithm
was implemented using image registration to geometrically align
the LR image with the HR image using OpenCYV built-in func-
tions [17]. The three additional metrics computed for this paired
dataset are: (1) the Mean Square Error (MSE), (2) the Peak
Signal-to-Noise Ratio (PSNR), and (3) the Structural Similarity
Index Metric (SSIM). The trained model converges (see Fig. S3
in Supplement 1) after epoch 20 in terms of these three metrics,
achieving a low MSE value (~107*), high PSNR value (~25 dB),
and a high SSIM value (~0.7 a.u.) on average for images in the
paired dataset.

Figure 1 illustrates the performance of the trained cycleGAN
model’s LR-HR generator on the paired LR/HR dataset. We
have reported the SSIM and CUF values in Fig. 1. To quanti-
tatively assess the model’s effectiveness, we have included the
estimated finals obtained using conventional imaging process-
ing methods and reported deep-learning models. Specifically,
we have applied the super-resolution convolutional neural
network (SRCNN) [18], regular bicubic interpolation, Neigh-
bor Embedding with Locally Linear Embedding (NE + LLE)
[19], Anchored Neighborhood Regression (ANR) [20], Image
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Fig. 1. Comparison of the cycleGAN model (cyGAN) versus
other reported super-resolution methods using a paired testing
image.

Super-Resolution Via Sparse Representation (ISR-SR) [21], and
Scale-Up using sparse representations (SU-SR) [22]. Addition-
ally, we have implemented two common cGAN models reported
in the literature. Both cGAN models have the same generator
and discriminator sub-models as our cycleGAN model. The first
¢GAN model (cGAN1) was trained on a simulation dataset. The
simulated LR and HR confocal images were created by con-
volving experimental confocal images from the Kinome Atlas
in the Cell Imaging Library with two Point Spread Functions
corresponding to the two experimental conditions. Because
experimental confocal images are affected by Poisson noise, the
simulated LR and HR images were degraded using a Poisson-
distributed noise, setting the SNR to 45 dB. The paired dataset in
the second trained cGAN (cGAN2) model consisted of experi-
mental HR images and their corresponding degraded LR images
as Ref. [6] describes. In summary, the degradation model to
generate the LR dataset firstly applies a Gaussian blur with a
standard deviation value of 1 pixel. Then, we reduced the reso-
Iution by downsampling the degraded HR images by a factor of 2.
Finally, the down-sampled images are then up-sampled back to
their original dimensions. Whereas supervised methods should
outperform unsupervised ones, the performance of both cGAN
models is poorer than the proposed cycleGAN model because
they were trained with cells of a totally different structure. The
results (i.e., predicted image and CUF and SSIM values) in Fig. 1
demonstrate the superior performance of the proposed model.
Whereas the CUF metric reflects changes in spatial frequency
spectra, its value may not perfectly align with a subjective visual
assessment of the resolution improvement. In fact, the CUF met-
ric is highly sensitive to noise, leading to higher CUF values for
the cGAN1 model since it produces noisier images.

Figure 2 illustrates an example where the performance of
cycleGAN model is poorer (SSIM value =0.53) compared to
Fig. 1, showing significant discrepancies between the ground-
truth image and the model’s prediction. Although the attained
SSIM value for the proposed cycleGAN model is not ideal,
it is still superior to the performance of the other methods as
Table 1 reports. This non-ideal result may be related to the
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Fig. 2. Example where the cycleGAN model performs poorly.

Table 1. Quantitative Evaluation of the Models’ Perfor-
mance for the FoV Shown in Fig. 2

SSIM (a.u.) CUF (a.u.)
LR 0.48 0.16
HR 1.00 0.21
cyGAN 0.53 0.19
ISR-SR 0.49 0.16
NE + LLE 0.49 0.16
SU-SR 0.49 0.16
Bicubic 0.48 0.16
ANR 0.47 0.16
cGANI1 0.45 0.20
cGAN2 0.40 0.17
SRCNN 0.14 0.15

presence of blur in the input LR image due to the reduced optical
sectioning capability of the LR objective lens compared to the
one provided by the HR objective lens. Nonetheless, as Fig. 2
shows, the proposed cycleGAN model performs better when it
is trained with the two-channel vimentin-stain and actin-stain
dataset (green/red cyGAN in the figure) than the one trained
exclusively on the vimentin-stain dataset (red cyGAN in the
figure).

To fully assess the performance of the proposed cycleGAN
model compared to all reported methods, we have performed
a statistical analysis on the SSIM and the CUF values for 12
paired HR/LR images, which were randomly selected from the
paired testing dataset. The results are presented in Table 2. The
HR results, being the ground truth data, serve as the benchmark.
Again, our results show that the proposed cyGAN model sig-
nificantly outperforms the other methods, achieving an SSIM
maximum value of 0.96, an SSIM mean value of 0.73, and a
CUF mean value of 0.208. The lowest-performing method in
terms of SSIM mean value is the SRCNN, with a value of 0.17.
The CUF metric shows a similar trend, with the cyGAN model
achieving the highest CUF mean value of 0.208, followed closely
by the cGAN2 model at 0.196, while the other methods, such as
NE + LLE and ANR, show significantly lower performance with
average CUF values of 0.157 and 0.160, respectively. This table
highlights the superiority of the cyGAN model in both SSIM
and CU metrics, indicating its effectiveness in predicting high
spatial frequencies and generating super-resolved images from
LR images.

Finally, we predicted the SR image from a full-FoV LR acqui-
sition for both the red and green channels in Fig. 3. The green
and red channels were independently input into the network,
generating independent outputs which are later combined. In
this validation example, the model enhances the CUF, increas-
ing from 0.16 to 0.21a.u. in the red channel and from 0.15
to 0.20a.u. in the green channel. Additionally, the BGSTD
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Table 2. Comparative Analysis of the Proposed Cycle-
GAN Model and Other Reported Methods for 12 Random
Images of the Paired Testing Dataset

SSIM (a.u.) CUF (a.u.)
Mean STD Max Min Mean STD Max Min
LR 0.50 0.16 0.77 0.26 0.170 0.010 0.179 0.154
HR 1.0 0.0 1.0 1.0 0.220 0.008 0.222 0.142

cyGAN 0.73 0.19 096 0.39 0.208 0.006 0.221 0.152
cGAN1 0.56 0.12 0.75 035 0.196 0.002 0.198 0.193
cGAN2 0.53 0.15 0.74 0.23 0.162 0.007 0.170 0.149
ANR 051 0.16 0.77 0.26 0.160 0.005 0.165 0.150
Bicubic 0.51 0.16 0.77 0.26 0.157 0.008 0.166 0.141
ISR-SR 0.51 0.16 0.77 0.26 0.157 0.008 0.166 0.141
NE+LLE 0.51 0.16 0.77 0.26 0.157 0.008 0.166 0.141
SU-SR 0.51 0.16 0.77 0.26 0.157 0.008 0.166 0.141
SRCNN 0.17 0.09 035 0.07 0.155 0.005 0.162 0.147

LR Image HR cycleGAN Image

Fig. 3. Evaluation of the cycleGAN model on an unpaired LR
image, demonstrating enhanced visualization of sample details.

decreased, from 0.19 to 0.14 a.u. in the green channel and from
0.19 to 0.13 a.u. in the red channel. The zoom-in regions in
Fig. 3 confirm the HR image shows improvements in the indi-
vidual visualization of invadopodias, which are structures that
cancer cells use to invade tissues. Whereas all invadopodias
seem to be colocalized in the LR image, showing an orange-
greenish appearance, we can only identify particular structures
that are colocalized between both channels. The proposed model
also provides an improvement in the colocalization of the stress
fibers shown in the yellow inset, differentiating between actin
and vimentin cytoskeletal systems. These results validate our
model’s capability to effectively transform LR confocal acquisi-
tions, enhancing spatial frequency content, reducing background
noise, and providing improved visualization of the imaged
sample’s details.

In summary, this study evaluates the performance of an unsu-
pervised cycleGAN model to generate super-resolved confocal
images from LR images, overcoming the experimental challenge
of acquiring a paired dataset by using an unpaired dataset. The
proposed cycleGAN model has effectively learned to translate
between low- and high-resolution images without the need for
precise spatially matched pairs. The performance of the cycle-
GAN model is consistently superior to the results from reported
processing and deep-learning imaging methods. The proposed
cycleGAN model is well poised to overcome current instrumen-
tation limitations by improving the resolution capability of our
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laboratory devices using advanced deep-learning methods. For
example, after training the cycleGAN model with more general-
ized data and applying transfer learning approaches, LR confocal
images from a laboratory-built optical imaging system can be
computationally upgraded to HR commercial confocal micro-
scopes by means of unsupervised deep learning without any
funding investment. Future work should explore optimizing the
cycleGAN model for a wider range of imaging conditions, incor-
porating additional types of noise and artifacts, and extending
the learning-based model to other imaging modalities, including
cross-modality imaging.
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