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Abstract: One of the major drawbacks of confocal microscopy is its limited spatial resolution. This 
work assesses the performance of an unpaired learning-based model to provide confocal images 
with improved resolution. 

1. Introduction
Confocal Scanning Microscopes (CSMs) are widely used tools that provide valuable morphological and functional
information about cells and tissues. The hallmark of confocal microscopy over widefield microscopy is its ability to
produce optically sectioned multi-color images in which different organelles within the biological specimen are
stained using multiple dyes, enabling colocalization studies. Although the theoretical spatial resolution of a confocal
system can surpass the diffraction limit [1], the diffraction limit gives the minimum resolvable distance in confocal
images, restricting the applicability of confocal microscopy to nano-scale quantitative analysis. Despite the success of
super-resolution microscopic techniques in achieving impressive resolution power, their high price and reduced access
have hampered their applicability within the biological and biomedical community. Super-resolution confocal
microscopy has been demonstrated using computational approaches based on deconvolution algorithms and deep
learning models. Whereas the maximum improvement in the resolution capability was 1.52× using deconvolution [2],
deep learning (DL) frameworks have led to a resolution improvement of 1.3× using a U-Net model [3] and 2.64×
using a cross-modality training of a conditional generative adversarial network (cGAN) [4]. The latter cross-modality
framework converts confocal images to STED ones [4]. A limitation of these DL models is the creation of a paired
dataset, requiring paired images of the field of view for two different imaging conditions (native versus improved
resolution). Here, we explore an unpaired DL framework for resolution enhancement in confocal microscopy.

2. Unpaired DL framework

The experimental acquisition of a diverse 
confocal dataset with low-resolution (LR) and 
high-resolution (HR) image pairs with the 
same spatial orientation poses many 
challenges, including the search for the same 
cell among the hundreds on a microscope slide 
with two different microscope objective 
lenses. To circumvent this experimental 
challenge, we propose to train a cycleGAN 
model for lateral resolution enhancement in 
confocal microscopy. Figure 1 shows the 
architecture for the cycleGAN model, which 
trains two cGANs models with each other. In 
other words, the principle of the cycleGAN model is cycle consistency, enforcing that an image translated from domain 
A to B should be able to be accurately translated back from B to A domains [5]. In the proposed cycleGAN, the 
discriminator models (patchGANs) comprise several convolutional layers, each with 64, 128, 256, and 512 filters 
successively, utilizing a filter size of 4×4 and a stride of 2×2 for downsampling. Leaky ReLU activations with an 
alpha value of 0.2 follow each convolutional layer, and instance normalization is applied. The generator models 
(cGANs) comprise convolutional layers with 64, 128, 256, and 512 filters, where the first layer uses a filter size of 
7×7, and the subsequent layers utilize a filter size of 3×3. Additionally, each generator incorporates nine residual 
blocks, each with 512 filters. Convolutional transpose layers are employed for upsampling, with filter sizes of 3×3 
and strides of 2×2. A composite model coordinates the training process, with a learning rate of 0.0002 and a beta value 
of 0.5 for the Adam optimizer. The loss function of the composite model integrates one adversarial loss and three 

Fig. 1. Architecture of the cycleGAN framework.

DTh4H.5 Optica Imaging Congress (3D, AO, COSI, IS, pcAOP) © Optica 
Publishing Group 2024

adinapo
New Stamp



perceptual losses (Identity loss, Forward cycle consistency loss, and Backward cycle consistency loss), with a weight 
ratio of 1:5:5:5, thereby ensuring a balanced integration of their respective contributions during the training process. 

3. Results

An experimental confocal dataset was acquired using the Nikon Ti-E A1rSi confocal microscope at the University of 
Memphis Integrated Microscopy Center. The experimental biological samples U-373 MG human Glioblastoma cells 
stained by immunofluorescence for the cytoskeletal protein vimentin. We recorded 11 different fields of view of the 
sample with a 60×/1.4 NA microscope objective lens. Each field of view has 2048×2048 pixels2. The pixel and optical 
resolution were 0.10 and 0.23 m. The HR confocal image was generated by recording a 3D volume and 
computationally estimating the extended depth of field (EDF) image. We also recorded 22 LR images with a 10×/0.3 
NA microscope objective lens with a field of view of 512×512 pixels2. The HR pixel and optical resolution were 0.45 
and 1.03 m, respectively. To match pixel resolution between the LR and HR images, the LR images were scaled 
4.5×, generating LR images of 2304×2304 pixels2. The field of view was matched between the image sets by cropping 
areas of 512×512. Then, we performed dataset augmentation on the LR and HR image sets by randomly rotating our 
images by 0, 90, 180, and 270 degrees and flipping them vertically and horizontally. Finally, we have a dataset of 585 
LR and HR images, respectively. We used an 80-20 training/validation split. 

The trained model translating in creating HR images from LR ones is assessed using a paired dataset of 68 images. 
This paired dataset was compiled by acquiring images of the same two cells for both microscope objective lenses. The 
model was trained for 100 epochs. The Structural Similarity Index Measure (SSIM) was used to evaluate the 
performance of the trained generator model. Figure 2a shows the performance of the trained model using paired testing 
datasets. The predicted HR images for both fields of view are consistently closer to the ground-truth HR images, as 
the SSIM value increases from the input LR image to the predicted HR image. Although the predicted HR image for 
the first field of view has a relatively SSIM value (i.e., 0.63), certain cells’ structures, which are initially imperceptible 
in the LR image, become discernible akin to the ground-truth HR image. A similar pattern is observed in the second 
field of view. Increasing the resolution limit involves an increase in the cutoff spatial frequency. In other words, the 
size of the compact support in the images’ spectrum should be enlarged. For this reason, we proposed the cutoff (CU) 
metric that quantifies the bandwidth of the images’ spectrum. Images with a higher resolution power should yield a 
higher CU value. Figure 2a also reports the estimated CU values, demonstrating that the predicted HR images contain 
more high spatial frequencies. Finally, Fig. 2b shows the performance of the trained network using an unpaired testing 
dataset. Again, the spatial bandwidth in the predicted HR images has been increased (i.e., increase of the CU values), 
validating the capability of unpaired cycleGAN models to super-resolution confocal microscopy. 
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Fig. 2. Results of the trained network using paired testing dataset (a) and unpaired testing dataset (b) on U-373 MG cells 
staine.
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