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ABSTRACT  

Owing to its high resolution, sensitivity, imaged field of view, and frame rate acquisition, Digital Holographic Microscopy 
(DHM) stands out among the Quantitative phase imaging (QPI) techniques to reconstruct high-resolution phase images 
from micrometer-sized samples, providing information about the sample’s topography and refractive index. Despite the 
successful performance of DHM systems, their applicability to in-situ clinical research has been partially hampered by the 
need for a standard phase reconstruction algorithm that provides quantitative phase distributions without any phase 
distortion. This invited talk overviews the current advances in computational DHM reconstruction approaches from semi-
heuristic to learning-based approaches. 
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1. INTRODUCTION 
Quantitative phase imaging (QPI) techniques are a class of imaging methods used to measure the phase shift of light as it 
passes through or interacts with a sample[1]. These techniques provide quantitative information about the optical properties 
of the sample, such as refractive index variations and thickness, which are not readily accessible with conventional 
intensity-based imaging[2]. 
 
Among QPI techniques, Digital Holographic Microscopy (DHM) stands out for its high resolution, sensitivity, wide field 
of view, and fast acquisition rates [3,4]. Over the past decade, DHM has matured significantly, thanks to extensive research 
on its optical design, phase reconstruction algorithms, and diverse applications in life and materials sciences [5–7]. In 
general, DHM can be implemented in two types of configurations: In-line DHM and off-axis DHM. Off-axis DHM 
improves the reconstruction bandwidth of complex wavefronts by suppressing the object autocorrelation. It also offers 
improved capabilities in quantitative phase imaging, single-shot capability, and easy implementation in conventional 
white-light microscopes[8]. In contrast, in-line DHM provides fast 3D images with improved accuracy, reduced noise, and 
reduced computational complexity compared to direct methods and iterative methods[9]. 
 
Despite its success, DHM's widespread adoption in clinical research faces obstacles due to the absence of a standardized 
computational framework. This lack hinders the generation of distortion-free quantitative phase maps with minimal user 
input, crucial for real-time clinical applications [10,11]. To address this gap, our collaborative effort aims to enhance the 
computational framework of DHM technology. This paper presents a practical guide for implementing a computational 
DHM framework based on the optical setup of DHM systems, utilizing publicly available computational algorithms. Our 
objective is to simplify DHM usage, making it more accessible and user-friendly, thereby facilitating its integration into 
clinical research and practical applications. 
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Fig. 1. Scheme of a DHM system based on the optical interference between two coherent waves (i.e., the object and reference waves). 

2. DIGITAL HOLOGRAPHIC MICROSCOPY 
DHM systems (Fig. 1) are optical interferometers that generate two mutually coherent interfering wavefronts – the object 
and reference wavefronts[4]. The reference wavefront is uniform and planar, while the object wavefront encodes the 
complex amplitude distribution scattered by a microscopic sample. The object wavefront is then imaged through a native 
optical microscope positioned in one of the interferometer arms onto the output plane of the system, which is also the 
sensor plane of the digital camera. In general, the native optical microscope comprises an infinity-corrected microscopic 
objective (MO) lens and a converging tube lens (TL), which produce an in-focus image [uIP(x,y)] of the microscopic sample 
when the object is positioned at the working distance of the MO lens. 
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In Eq. (1), k = 2π/λ is the illumination wavenumber,  denotes the 2D convolution operator, M = - fTL / fMO is the lateral 
magnification of the microscopic imaging system, which depends on the ratio between the focal lengths of the MO and 
TL lenses, respectively. The in-focus complex amplitude distribution is the product of a quadratic phase term and the 2D 
convolution between a scaled replica of the complex object distribution [i.e., o(x,y)] and a scaled replica of the 2D Fourier 
transform of the pupil transmittance [i.e., P(u,v) = FT{p(x,y)}]. The pupil has been considered to be located at the back 
focal plane of the MO lens[12]. In Eq. (1), the radius of curvature of the quadratic phase term depends on the optical 
configuration of the microscopic imaging system[13]. In particular, its value is inversely proportional to the difference 
between the focal length of the TL lens (fTL) and the axial distance between the pupil and TL planes (d), 𝐶 =

𝑓𝑇𝐿
2

𝑓𝑇𝐿−𝑑
 . The 

maximum value of C (i.e., C = ) is found when the pupil is located at the front focal plane of the TL lens (i.e., d = fTL), 
assembling the imaging system in the telecentric regime[13]. Under the telecentric condition (i.e., d = fTL), the quadratic 
phase factor in Eq. (1) is optically removed.  

The sensor in a DHM system records the irradiance distribution of the coherent superposition between the object and 
reference wavefronts, commonly called digital hologram. Without loss of generality, the object wave can be considered as 
the out-of-focus complex wavefield produced by the microscope at a distance z from the image plane [13]. 
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For simplicity, we have neglected some constant factors in Eq. (2). Assuming that the complex amplitude distribution of 
the reference wave is a titled plane wavefront, 𝑟(𝑥, 𝑦) = √𝐼𝑅exp⁡[j𝑘(𝑠𝑖𝑛𝜃𝑥 ∙ 𝑥 + 𝑠𝑖𝑛𝜃𝑦 ∙ 𝑦)]  where IR is the irradiance of 
the reference wavefront, and θ=(θx,θy) is the vector representation of the titled reference angle to the optical axis, the 
irradiance distribution of the hologram, h(x,y;z) is  
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where |·|2 and * are the square module and complex conjugate operator, respectively. The irradiance distribution of the 
hologram is the sum of four terms: the object irradiance [i.e., |u|2], the reference irradiance[i.e., |r|2], the real image [i.e., u 
r*], and the virtual one [i.e., u*r].  

3. COMPUTATIONAL DHM FRAMEWORK 
Equation (3) shows that the object information o(x,y), encoded in u(x,y;z), is mixed with other three terms, requiring a 
computational algorithm to separate these three terms from the object information and reconstruct the complex in-focus 
amplitude distribution [Eq. (1)] with minimum distortions. The selection of the computational DHM algorithm depends 
on the system’s optical configuration. The user must know the following questions to select the algorithm: 1) does the 
system operate in an off-axis, slightly off-axis or in-line configuration?[10]; 2) does the system operate in a telecentric or 
non-telecentric regime?[11]; and 3) is the sensor placed at the image plane?[12]. Figure 2 shows a flowchart to select the 
computational algorithm based on the answers to these questions. We recognize that users of a DHM system may not know 
the answers to these questions, however any individual can answer these questions by analyzing and observing the Fourier 
Transform of the hologram distribution [Eq. (3)]. The 2D Fourier transform of the hologram, H(u,v;z) can be 
mathematically represented as  
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where (u,v) are the transverse spatial frequencies, and DC(u,v;z) = U2U* + R2R*. In Eq. (4), we have considered that 
the reference wavefront is a plane wavefront, which is a standard assumption in DHM setups. The capital letters refer to 
the 2D Fourier transform distributions to simplify our notation. Equation (4) shows that the hologram’s spectrum consists 
of three terms: DC, +1 [i.e., U(·)], and -1 [i.e., U*(·)] terms. Whereas the DC term is always placed at the center of the 
hologram spectrum, the center positions of the  terms vary depending on the interference angle θ=(θx,θy) between the 
object and reference waves. This means that the  terms may overlap with the DC term on the hologram’s spectrum if 
the interference angle between the two wavefronts is null or slightly small. In fact, the three terms in Eq. (4) entirely 
overlap [Fourier transform in Fig. 3(a)] if the DHM system operates in in-line (or on-axis) regime. Note that in-line DHM 
holograms do not present any interference fringes. The reconstruction algorithm for in-line DHM systems is based on 
phase-shifting (PS) techniques, requiring the acquisition of multiple holograms in which the phase of the reference 
wavefront shifts (e.g., phase-shifted holograms)[14–17]. Traditionally, PS algorithms require five, four, and three phase-
shifted holograms among the different PS algorithms[10]. In the five- and four-step algorithms, the phase shift between 
the holograms is π/2, reconstructed phase images by 
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using five and four phase-shifted holograms, respectively. The third variable of the hologram distribution in Eqs. (5) and 
(6) denotes the phase shift of the reference wavefront. For example, h(x,y;π) is a recorded hologram in which there is a 
phase shift of π to the first hologram. The number of phase-shifted holograms can be reduced to three if the phase shift 
between holograms is 2π/3. Consequently, the reconstructed phase distribution with the three phase-shifted holograms is 
obtained by 
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Fig. 2. Analysis of the hologram and its spectrum to select the correct computational DHM algorithm to reconstruct accurate 

quantitative phase images. 

 

Reducing the number of required phase-shifted holograms presents a tradeoff between acquisition time and noise 
sensitivity. Whereas fewer holograms make the algorithm more suitable for dynamic imaging, the reconstructed phase 
maps are more sensitive to noise [18]. Nonetheless, the main advantage of these three PS algorithms [Eqs. (5)-(7)] is the 
computational efficiency since the reconstructed phase images are obtained via point-wise subtractions and division 
operations between the digitally recorded phase-shifted holograms.  

 
Fig. 3. Illustration of the different operating modes of a DHM system based on the interfering angle between the object and reference 

wavefronts. 

 

Setting up in-line DHM systems is nearly impossible since experimental holograms always exhibit residual interferential 
fringes due to aberrations of the optical components. Slightly off-axis DHM systems are characterized by holograms with 
interferential fringes featuring low spatial frequency[15]. This indicates partial overlapping between the DC term and  
terms on the hologram’s spectrum. Figure 3(b) shows two different slight off-axis DHM systems in which the interference 
angle varies. Although multiple phase-shifted holograms and a PS algorithm are still required to reconstruct phase 
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distributions in slightly off-axis DHM systems, there is also a need to compensate for the interference angle between the 
object and reference wavefronts. In 2002, De Nicola et al. reconstructed the complex amplitude distribution of an object 
by summing the individual products between the recorded phase-shifted holograms with a phase shift of π/2 and their 
corresponding digital reference wavefronts[19],  
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From Eq. (8), one can reconstruct both the amplitude and phase images via |𝑢̂(𝑥, 𝑦)| and 
atan(imag[𝑢̂(𝑥, 𝑦)], real[𝑢̂(𝑥, 𝑦)]), respectively.  

The PS algorithms in Eqs. (5) – (8) require a constant and fixed phase shift between the recorded holograms, demanding 
accurate optical components to achieve such phase shifts and DHM systems with high temporal stability[15,16]. Blind PS 
strategies have been proposed to have multiple holograms with a random and unknown phase shift. Among the different 
blind PS approaches, we proposed two blind iterative PS approaches for slightly off-axis DHM systems[17,20]. Both blind 
PS methods are based on the correct separation of the three different composing the hologram’s spectrum, Eq. (4). In the 
first blind PS method, the hologram distribution [Eq. (3)] is given by a linear combination of three components {d0, d+1 
and d-1} where d0 is the first two terms of Eq. (3), and d+1 and d-1 are, respectively, the third and fourth terms. In particular, 

( ) j sin
1 e ,kd u z − 

+ = x,y;  x  and ( )* j sin
1 , ; e ,kd u x y z 

− =  x . Note that each component in Eq. (3) has a different weighting 
depending on the phase shift (Δθ), h = d0 + e-jΔθ d+1 + ejΔθ d-1. The separation of complex object information can be 
reconstructed by estimating d+1 distribution as a linear system’s equation using three recorded holograms, {h1, h2, h3} with 
arbitrary phase shifts {Δθ1, Δθ2, Δθ3}. Accurately estimating the d+1 term requires the correct values of the phase shifts 
between the holograms. If the values of the phase shifts are incorrect (i.e., they do not coincide with the experimental 
ones), the spectrum of the d+1 component, D+1= FT[d+1], presents two frequency peaks. Our blind 3-step PS approach 
simultaneously estimates the phase shifts between the holograms, {Δθ1, Δθ2, Δθ3}, and the complex d+1 distribution by 
analyzing the spectral components of D+1 and ensuring that the spectrum D+1 distribution is unique (i.e., it only has a 
unique frequency peak). Estimating the phase shifts and the d+1 component is provided by minimizing a cost function that 
quantifies the difference between the absolute value of the D+1 component in the real and residual peaks. Reference [17] 
provides more details of the blind 3-step PS algorithm. Once the d+1 term is calculated, the amplitude image is obtained 
as ( )1 ,d x y+ , and the phase image is obtained as the angle of the product between d+1 and a digital reference wave,  

1angle[ ]Dd r +=   The second PS algorithm[20], which only requires two phase-shifted holograms, is only suitable for 
slightly off-axis DHM systems in which the spectra of the d+1 and d-1 terms do not overlap in the Fourier domain, see Fig. 
3(b). Under this condition, the hologram can be written as the sum of two components{d0, d2} as h = d0+ejΔθ d2 where d2 
= d+1+ e-j2Δθd-1 [ref]. Similarly to the blind 3-step approach, the d2 component and phase shift between both holograms are 
estimated by minimizing a cost function that focuses on the uniqueness of the spectrum of the d0 component. Because the 
spectrum of d2 component is composed of the spectrums of d+1 and d-1, one must filter the spectral frequencies of the d+1 
term and multiply the filtered d+1 term with a replica of the reference wavefront to reconstruct the phase distribution. 
Whereas the previous PS algorithms were linear, the blind 2-step PS method is not since it requires a spatial filter to 
retrieve the d+1 term. An important limitation of both blind PS approaches [17,20] is that they only work for DHM systems 
operating in telecentric regime since the center of the ±1 terms in the Fourier transform should correspond to a maximum 
peak. A priori, the traditional known-phase PS algorithms [Eqs. (5)-(8)] can be used for both non-telecentric- and 
telecentric-based DHM systems, noting that the reconstructed phase distribution is distorted by a spherical wavefront. 
Such distortion should be compensated for accurate quantitative phase analysis. An automated approach is discussed above 
for compensating for this factor with minimum user input.  

Both in-line and slightly off-axis DHM systems require multiple recorded holograms to implement the PS algorithm, 
limiting their dynamic imaging and analysis use. Off-axis DHM systems are the most suitable systems for real-time 
imaging since the complex object distribution can be reconstructed from a single hologram[21]. The spectral components 
in off-axis holograms are not superimposed [Fourier Transform in Fig. 3(c)] since the interfering angle between the 
interfering wavefronts is higher, generating interferential fringes of high spatial frequency. This means that the 
computational DHM framework for off-axis DHM systems consists of two main steps: (1) the spatial filtering of object 
spectrum located at the spatial frequencies (sinθx/λ, sinθy/λ), D+1 = U(u- sinθx/λ, v - sinθy/λ) [22], and (2) the phase 
compensation of the interfering angle between the object and reference wavefronts by multiplying hF = IFT[HF] with a 
digital reference wavefront, ( ) ( ) ( )ˆ .D Fu r h=x x x [23]. Assuming that the wavelength of the light source and the features 
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of the digital sensor (i.e., number of pixels and their pitch ) are well known, the generation of a digital plane reference 
wavefront requires the knowledge of the subtraction between the pixel locations of the DC and the +1 terms in the hologram 
spectrum [ref]. In particular, the only unknown parameter is the location of the +1 term. The determination of this 
parameter must be executed precisely to provide phase images without sawtooth fringes. In 2016, Trujillo et al. proposed 
an automated approach that finds the optimal non-integer pixel value of the maximum peak in the +1 term by searching 
for the optimal reconstructed phase image that presents the least number of phase discontinuities using nested loops[23]. 
In 2021, Castaneda et al. implemented a heuristic search of the non-integer pixel value of the +1 peak that provides the 
best reconstructed phase[24]. This heuristic algorithm finds the non-integer pixel corresponding to the minimum value of 
a cost function that tracks the number of phase jumps. Although the cost function presents a global minimum, sometimes 
it finds a local minimum, generating a reconstructed image that presents phase discontinuities. Last year, Obando-Vasquez 
et al. developed a semi-heuristic algorithm in which the search follows a path-oriented strategy, like the nested loop 
strategy [25], but with fewer steps. The proposed semi-heuristic algorithm is more time-efficient than the brute-forced 
search in Ref. [23], accurate reconstructed phase maps are provided 92x faster than the method using nested loops. On the 
other hand, comparing the heuristic and semi-heuristic approaches, the semi-heuristic approach produces more accurate 
phase measurements (i.e., lower standard deviation) and greater background stability between successive frames of the 
dynamic data, making it more suitable for video-rate quantitative phase imaging. In summary, although the three above 
off-axis reconstruction DHM algorithms look for the best reconstructed phase image via a summation-and-thresholding 
metric, their difference is how that search is performed.  

As Eq. (1) shows, the reconstructed phase images in DHM systems operating in a non-telecentric regime are distorted by 
a quadratic phase factor that needs to be removed to provide accurate quantitative phase measurements [26]. Without prior 
information on the optical setup in a DHM system, one can easily identify its configuration (i.e., telecentric versus non-
telecentric) by observing the shape of the ±1 terms, see Fig. 4. The shape of the ±1 terms in non-telecentric DHM systems 
is rectangular, see Fig. 4(a), compared to the circular one in telecentric DHM systems. In fact, the higher the rectangle, the 
smaller the radius of curvature C of the spherical wavefront in Eq. (1). The radius of curvature C for both lateral directions 
can be estimated knowing the maximum dimension of the ±1 terms, the sensor’s features (i.e., number of pixels and their 
pixel size) and the source’s wavelength, see Eqs. (8) and (9) in Ref. [11]. In that work, Bogue-Jimenez et al. describe a 
computational tool for reconstructing accurate phase images in non-telecentric off-axis DHM systems based on previous 
work from Kemper’s group [26]. An advantage of this non-tele DHM tool is that users only need to input two parameters 
(i.e., the sensor pixel size and source wavelength) to reconstruct phase images without distortions.  

 
Fig. 4. The shape of the ±1 terms varies from rectangular to circular based on the optical configuration of the DHM imaging system. 

 

Finally, DHM enables the 3D reconstruction of quantitative phase distributions from a defocused hologram by numerically 
propagating the reconstructed complex object wavefront, making DHM technology suitable for live cell imaging and 3D 
tracking applications [27,28]. This means that apart from the object's extraction information from the recorded hologram, 
the computational DHM framework should include numerical propagators based on the angular spectrum or Fresnel 
Transform approaches [29] to reconstruct the in-focus complex object distribution. Among the angular spectrum and 
Fresnel Transform approaches, the angular spectrum approach is the most common propagator in most DHM systems 
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because of its small propagation distance [30]. Assuming the angular spectrum approach, the in-focus complex amplitude 
distribution, , is estimated as 

   2 2 2ˆ ˆ( , ) IFT FT ( , ; ) exp j 1 ( ) ,IP I Iu x y u x y z kz u v  =  − +
   

 (9) 

where zI zI is the propagation distance, ˆ( , ; )Iu x y z  is the reconstructed complex object amplitude distribution, and IFT[·] 
and FT[·] are the 2D inverse and direct Fourier transforms, respectively. From Eq. (9), the in-focus amplitude and phase 
object distributions are estimated by the absolute square modulus and the angle of Eq. (9), respectively. Last year, 
Castaneda et al. investigated a computational tool for reconstructing quantitative phase images from defocused holograms 
recorded in an off-axis telecentric-based DHM system using a heuristic framework [31]. This computational algorithm 
provides in-focus phase images without or with minimum phase distortions by minimizing a cost function that tracks the 
minimum value of the normalized variance in the reconstructed amplitude image and the minimum value of the phase 
jumps in the reconstructed phase image. This proposed computational tool was validated in static and dynamic defocused 
holograms and demonstrated superior performance to the traditional strategy in which the phase compensation of the 
interfering angle and the numerical focusing are performed sequentially. This method enables the automatic phase 
reconstruction of defocused holograms in which different organisms are located at different axial planes. 

4. CONCLUSION 
The computational processing of DHM holograms significantly depends on the system’s optical configuration, which can 
be extracted from the hologram’s spectrum. This work presents a practical guideline to determine the DHM’s optical 
configuration and select the required computational DHM algorithm to provide phase images with minimum phase 
distortions. All the discussed computational algorithms are publicly available via GitHub. Figure 5 provides the QR codes 
to access them directly. We aim to offer open-source reconstruction codes for the DHM community using the two most 
accessible software (i.e., MATLAB and Python).  
 

 
Fig. 5. QR codes to access the open-source DHM algorithms developed through the collaboration between Drs. Trujillo’s and Doblas’ 

research team.  
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