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Climate change exacerbates the environmental
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BACKGROUND: Modern agriculture has large
global environmental impacts, from green-
house gas (GHG) emissions to water and air
pollution to biodiversity loss. It is widely ex-
pected that agriculture’s environmental im-
pacts will escalate because a growing and
richer global population will likely demand
more agricultural products, including foods,
feeds, fibers, and biofuels. Climate change,
though less studied in this regard, is a second
potential amplifier of agricultural environ-
mental impacts. As climate change intensifies,
it not only poses great risks to agricultural
productivity, but its deviation from the rela-
tively stable state under which modern agri-
culture evolved and has long operated also has
profound implications for how agriculture in-
teracts with the environment, and vice versa.
In this Review, we present a synthesis of how
climate change could amplify the environmen-
tal impacts of agriculture, from increases in
GHG emissions, water use and scarcity, soil

erosion, nitrogen and phosphorus pollution,
pest outbreaks and pesticide use and pollution,
and biodiversity loss. We discuss solutions to
the challenges raised by how climate change
could affect agricultural sustainability.

ADVANCES: Two major findings emerge from
our synthesis. First, climate change will likely
exacerbate the already large environmental
impacts of agricultural production. It would
do so by (i) directly and negatively affecting
agricultural productivity; (ii) reducing the effi-
cacy of agrochemicals and increasing their loss
to the environment; and (iii) increasing crop
pests and soil erosion. Yield reductions and
loss of fertile soils would lead to increased
land clearing and subsequent species extinc-
tions and GHG emissions, and/or to agrochem-
ical intensification to retain or increase yields.
Greater agrochemical inputs mean greater
chemical pollution of the environment and
greater GHG emissions. Decreased agrochem-
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ical efficacy could also lead to compensatory
increases in agrochemical use. These climatic
impacts can be independent of, hence addi-
tive to or multiplicative of, one another, mak-
ing climate change a potentially important
amplifier of agriculture’s environmental foot-
prints. Second, agriculture already accounts
for almost a quarter of global GHG emissions,
and agriculture’s response to climate change
could create a powerful positive GHG feedback
loop through multiple pathways. Climate change
could intensify agricultural GHG emissions
directly—for example, through increasing CH,,
emissions from rice paddies, N,O emissions
from soil, and CO, emissions from land clear-
ing and soil tillage. It could also induce more
GHG emissions indirectly—for example, if more
agrochemicals are needed to compensate for
their reduced efficacy; if drier conditions require
more energy- and carbon-intensive irrigation;
or if greater losses of nutrients from agricultural
fields stimulate more biogenic GHG emissions
in aquatic systems. These climate-agriculture
feedback effects warrant increased attention.

OUTLOOK: Agricultural reliability and sustain-
ability are of key long-term importance for
human and planetary health. The challenges
raised by climate change require accelerated
adoption of practices and technologies that
improve agriculture’s environmental sustain-
ability and climate resilience, especially those
that can simultaneously deliver multiple bene-
fits, such as diversification and integrated soil
fertility management. However, socioeconomic
barriers impede adoption of sustainable prac-
tices and technologies. Improved context-specific
understanding of these barriers is urgently
needed, as are innovative policies to overcome
them. Greater investments in the discovery,
adaptation, and cost reduction of emerging
agricultural technologies could help make agri-
culture more reliable, sustainable, and climate
resilient, as could the adoption of novel foods
and healthier diets that would require far less
land, water, and chemicals per capita than at
present. Our synthesis also identifies many un-
answered questions. Although the direction
of climate impacts is often clear, the relevant
magnitudes are not. Quantitative assess-
ments from local to global scales will be
needed, especially for the climate-agriculture
feedback loop. Other feedback loops, such as
the climate-agriculture-biodiversity loop, are
also complicated and require mechanistic and
quantitative analyses.
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Climate change exacerbates the environmental
impacts of agriculture

Yi Yang"??, David Tilman*>*, Zhenong Jin®*, Pete Smith’, Christopher B. Barrett®*,

Yong-Guan Zhu®*°, Jennifer Burney'', Paolo D'Odorico®, Peter Fantke'*'5, Joe Fargione®®,
Jacques C. Finlay*", Maria Cristina Rulli*é, Lindsey Sloat'®, Kees Jan van Groenigen®®,

Paul C. West??2, Lewis Ziska?3, Anna M. Michalak?*?525, the Clim-Ag Teamt, David B. Lobell?’*

Agriculture’s global environmental impacts are widely expected to continue expanding, driven by
population and economic growth and dietary changes. This Review highlights climate change as an
additional amplifier of agriculture’s environmental impacts, by reducing agricultural productivity,
reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding
the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways
through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially
powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore
the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires
investments that both accelerate adoption of proven solutions that provide multiple benefits, and that

discover and scale new beneficial processes and food products.

gricultural production of crops and live-

stock covers 40% of Earth’s ice-free land

surface (7) and has experienced substan-

tial growth over recent decades, provid-

ing enough food to support an increasing
global population. However, it has also con-
tributed greatly to global environmental prob-
lems, including climate change, air and water
pollution, and biodiversity loss, mainly through
the intensive use of fertilizers, animal farm-
ing, irrigation, chemical pest control, and land
clearing (I). Agriculture accounts for 25% of
global greenhouse gas (GHG) emissions, 85% of
all human blue water consumption, and 80 to
90% of global nitrogen (N) and phosphorus (P)
use (I). Without major changes in the global
trajectory of the agri-food supply chain, agri-
culture’s environmental impacts will continue
increasing as global food demand rises be-
cause of population growth, economic develop-
ment, and income-associated dietary changes
(2). Under current trends, GHG emissions solely

from agri-food systems would be sufficient to
prevent achievement of the Paris 2°C climate
warming limit (2), and anticipated cropland ex-
pansion poses great threats to biodiversity in
many regions of the world (3).

There is yet another amplifier of agricultural
environmental impacts that is less recognized
and appreciated, namely, climate change. Human-
driven global climate change is altering the
regional distribution of precipitation and tem-
perature at an unprecedented rate, resulting
in increases in the frequency and intensity of
climate extremes worldwide, including heat
waves, droughts, wildfires, and storms. These
changes affect both the productivity of agri-
culture and how agriculture affects the environ-
ment. For example, stronger storms can increase
nutrient runoff and soil erosion, especially in
regions where such problems are already se-
vere (4). Warmer temperatures can increase
pest populations and expand their ranges,
resulting in more intensive and frequent use

of pesticides (5). However, such examples of
climate impacts on agricultural systems have
been often studied in different disciplines. A
systematic understanding of how climate change
affects the wide range of environmental impacts
of agriculture is lacking and will be essential
for the development of sustainable agriculture
under a changing climate.

In this Review, we synthesize knowledge
across various research fields to provide a sys-
tematic evaluation of how climate affects ag-
riculture’s multiple environmental impacts.
We elaborate on the mechanisms and examine
the potential magnitudes of the impacts, and
their geography. We also evaluate climate-driven
interactive feedback effects that link these im-
pacts, propose solutions to the challenges raised
by climate change, and highlight major unan-
swered questions for future research. Our Review
focuses primarily on the biophysical impacts
of climate change on the various aspects of crop
and livestock systems, while we also comment
on fisheries and forest plantations. We exclude
natural forests and other wild environments,
which merit attention in future research.

Climate impacts on agricultural production

Improving agricultural productivity and its
year-to-year stability will be crucial for long-
term global food security and environmental
sustainability (2). Climate change compounds
this challenge. Crop yields are affected by nu-
merous components of Earth’s changing cli-
mate, including rising temperatures, changing
precipitation and cloud patterns, elevated CO,
levels, and increasing frequency of climatic ex-
tremes such as heat waves, floods, and droughts
(6). The Intergovernmental Panel On Climate
Change (IPCC) 6th assessment report found
that global climate change impacts on yields
were generally negative across most regions
and food groups (7). Among other mechanisms,
higher temperatures can reduce yield by short-
ening the life cycle of crop growth and increas-
ing water stress (8). Zhao et al., for example,
found that 1°C of warming was associated with
a 3 to 7% decrease in global yields of major sta-
ple crops (9). Warming during the cold season
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may reduce cold stress for crops, but warmer
winters may risk inadequate chilling and ver-
nalization, an essential requirement for flower-
ing and fruiting in many temperate horticultural
crops (10). Similarly, livestock productivity tends
to be negatively affected by warming, with lower
feeding and growth rates and higher incidence
of disease (6). Many fisheries and aquaculture
systems are also negatively affected by warm-
ing and related changes; for example, Lotze et al.
projected a decline of 5% in marine biomass
for each 1°C of warming (7).

Changing precipitation has altered the crop
production landscape, with projected impacts
expected to intensify. Rainfall shortages and
droughts have historically harmed food sup-
plies. From 1983 to 2009, about three-fourths
of global croplands experienced marked yield
losses from one or more droughts (72). Extreme
weather conditions and crop failures in 2021
and 2022 caused millions of people in 10
countries of Africa and Central America to be
newly faced with acute hunger or starvation
(13). Even in industrialized countries, droughts
lead to major decreases in crop production,
as in the US in 2012 and Australia during
2001-2009 (14, 15). Extreme rainfall and flood-
ing events are also increasing local food in-
security crises (16). Ortiz-Bobea et al. estimated
that climate change has already reduced agri-
cultural productivity over the past few deca-
des, resulting in a loss equivalent to ~7 years of
technology-driven productivity growth (17).

A source of uncertainty is the extent to which
rising CO, levels might enhance crop photo-
synthesis and yields and decrease crop water
demand. Based on 30 years of free-air CO,
enrichment (FACE) experiments, C,, crops (e.g.,
maize, sorghum, millet) only benefited from
higher CO, concentrations under drought con-
ditions, but C; crops (e.g., rice, wheat, soybean,
and most fruit and vegetable crops)—and espe-
cially those with high yield potential—generally
benefited (18). Roughly 75% of present-day
cereal supplies have the C; photosynthetic path-
way. However, a CO, benefit to C; crop yields
could be offset at least in part by increasing
drought, which negatively affects crop pro-
ductivity independent of temperature (19).
Crop models suggest that the combined effects
of climate change and increased atmospheric
CO, could decrease yields, especially for maize
in mid-latitude regions such as the US Mid-
west, Central Asia, and North China, unless
irrigation patterns are changed (20, 2I).

In addition, air pollutants such as ozone (Os3)
and its precursor NO,—which are co-emitted
with GHGs—can be toxic to plants. Widespread
exposures to these pollutants decrease yields.
In the US, for example, pollutants such as Os,
NO,, SO,, and PM, ; (fine particulate matter)
are estimated to have caused ~5% yield loss in
maize and soybean yields over the past two
decades (22). Croplands in China are exposed
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to high concentrations of NO,, which, if re-
duced to the background level, could enhance
winter crop yields by ~25% and summer crop
yields by ~15% (23).

Climate impacts on water use and scarcity

Crop and livestock production is impossible
without adequate water supplies and, of all
economic activities, is the dominant user of
global water resources. Presently, ~20% of
global cropland is irrigated, producing ~40%
of global crops and accounting for ~90% of
human water use (24). Direct consumption of
water by livestock accounts for another 1 to 2%
(25). Without irrigation, cereal yields on ir-
rigated lands might decrease ~50%, equivalent
to losing ~20% of global cereal production (24).
Even if climate change were not a factor, ir-
rigation and fertilization would need to be
expanded to meet the increasing demand for
agricultural products without clearing land
for cultivation (2).

The impact of climate change on precipita-
tion (i.e., its intensity, seasonality, and timing)
and on warming, enhanced by land-atmosphere
feedbacks (26), is expected to alter both water
need and availability for rainfed and irrigated
agriculture (27), but water demand by some
crops may also be reduced by elevated CO,
(28). The resultant global reshaping of the
regions suitable for production, especially for
those crops less benefited by elevated CO,, is
poorly understood but could have profound
societal impacts. For such crops, analyses sug-
gest that, with a 1.5°C increase in global mean
temperature above preindustrial levels, irrigation
may be needed in mid- and high-latitude areas
across the US, Canada, Brazil, China, and Russia
that are currently suitable for rainfed agriculture
(29). The global rainfed cultivated area that is
rarely susceptible to water scarcity might shrink
from 140 to 60 Mha, and some rainfed lands may
become unsuitable for irrigation unless annual
water shortages are overcome with new water
reservoirs where feasible (29). Moreover, loss
of seasonal snowpack in the American Sierra,
European Alps, and Asian Himalaya could lim-
it irrigation in those regions (30-32). Demand
for water storage would be increased even more
in regions that become much hotter and dryer,
as projected for parts of South Asia, the Middle
East-North Africa (MENA) region, Sub-Saharan
Africa, and Central America (33).

A major impact of shifting precipitation
patterns is the increasing reliance on ground-
water for irrigation (34). Groundwater is the
world’s largest distributed store of fresh wa-
ter (except for ice and glaciers) and is more
ubiquitous than surface waters. Global ground-
water use has increased markedly over the past
decades and accounts for ~40% of irrigated
cropland (35). However, using groundwater
for irrigation poses long-term threats to food
security if groundwater recharge is insuffici-
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ent to offset withdrawals, as is already the case
in many regions (34). Climate change could in-
crease the reliance on groundwater by increas-
ing the intensity, duration, and frequency of
droughts, further exacerbating regional ground-
water depletion. Drought-induced shifts to
groundwater have already occurred in many
regions worldwide (36). Globally, groundwater
pumping has been projected to increase >20%
from 2010 to 2050 largely driven by anticipated
climate changes (37). In a +3°C global warming
scenario, agricultural regions that require irriga-
tion to sustain yields are often projected to have
groundwater depletion (Fig. 1).

Influences of precipitation change on agri-
culture could lead to increasing reliance on
groundwater use and result in more energy use
and thus more GHG emissions. In cases where
water must be brought from other basins, e.g.,
China’s south-to-north water diversion project,
the energy and GHG footprint could be even
higher per unit of water irrigated (38). Another
source of additional GHG emissions is irrigation-
oriented reservoirs, the number of which has
grown substantially in recent decades and is
expected to grow further to help agriculture
adapt to climate change (38). In reservoirs,
the microbial decomposition of sedimentary
organic matter under anaerobic conditions
produces substantial methane (CH,) emissions,
which could intensify as more nutrients are
washed off farm fields under climate change
and fuel algae growth and deposition (39).

Climate impacts on agricultural N,O
and CH, emissions

Agriculture is a major source of nitrous oxide
(N,0) and CH,, emissions, accounting for nearly
half of global non-CO, GHGs (40). Agricultural
N,0 is driven primarily by N fertilizers and ma-
nure management, and agricultural CH,, emis-
sions are primarily from ruminants (cattle, sheep,
goats) and flooded rice paddies. Though emis-
sions of these non-CO, GHGs are not required to
be cut down to net-zero under the Paris climate
target, they must be substantially reduced for
temperature targets to be achieved (41). As
shown below, however, the agricultural emis-
sion rates of these potent GHGs are predicted
to be intensified by climate change.
Terrestrial biosphere models project that
climate change would increase agricultural
N,O emissions (42) because warmer temper-
atures and increased precipitation create soil
conditions that favor N,O production (43).
Fertile but poorly drained soils, such as those
in more than half of the US Corn Belt, may
be highly susceptible to this (44). Increased
drought events can reduce N,O emissions
from pastures (45), but drying and subsequent
rewetting may stimulate N,O emissions (46).
Elevated atmospheric CO, generally increases
soil N,O emissions from cropland and fertil-
ized grassland, but these CO, effects are highly
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Fig. 1. Areas expected to be affected by green water scarcity in a 3°C global climate warming scenario. Affected areas are shown in ivory yellow [data from
(29)], and current rates of groundwater depletion are in blue to green yellow (152).

variable (47, 48), making global-scale predic-
tions unclear. Winter climate change may play
a greater-than-expected role by affecting non-
growing season N,O emissions, which account
for 35 to 65% of annual emissions in season-
ally frozen croplands in the Northern Hemi-
sphere (49). Reduced snow cover and/or soil
warming often coincide with more frequent
freeze-thaw cycles that boost soil N,O emis-
sions (50). Increased precipitation before soil
freeze and at soil thaw, as well as faster snow-
melt caused by higher air temperatures, may
also promote soil N,O emissions (57).

Similarly, climate change is projected to in-
crease global CH,, emissions from rice paddies.
Rising CO, levels promote rice root growth
and the release of root exudates, thereby stim-
ulating CH,-producing microorganisms (52).
Meta-analyses indicate that future atmospheric
CO, levels could boost rice paddy CH,, emissions
by ~34 to 43% (53), although these increases
may diminish over time (54) and are smaller
in paddies with straw incorporation (53). Warm-
ing also affects CH, emissions from rice pad-
dies, with +1.5°C increasing CH,, emissions by
~23% because of warming-induced increases
in decomposition (55).

Climate change impacts on peatlands drained
for agriculture require special attention. Peat-
lands are vital ecosystems that store vast amounts
of C and are a main natural source of CH,, Glob-
ally ~10 to 20% of peatlands have been drained
for agricultural purposes (56). Although peat-
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land drainage reduces CH,, emissions, it strong-
ly increases CO, emissions from organic matter
decomposition and N,O emissions, turning
peatlands from providing net climate benefit to
being a net source of GHGs (57). Warming has
been shown to exacerbate these carbon losses,
especially with deeper water tables (58, 59),
emphasizing the importance of careful water
management of agricultural peat soils.

Global warming also seems to have positive
effects on livestock CH, emissions, but the
mechanisms are complicated, and the mag-
nitude of the total effects remains uncertain
and unquantified. First, warming can stimu-
late CH, emissions from manure storage (60).
Second, elevated atmospheric CO, and rising
temperatures can decrease forage dry matter
digestibility, increasing CH,, through decreased
efficiency of ruminant production (6I). Third,
heat stress can reduce milk and meat produc-
tion (62), and if this occurs on a large scale,
global milk and meat production would need
to expand substantially to meet demand (2). A
shift away from ruminant meat in global di-
etary choices could help reduce livestock CH,
emissions and counter the potential positive
climate-CH,, feedback from this sector.

Climate impacts on soil degradation

Soils contain the largest terrestrial stores of or-
ganic carbon (63). Cultivated agricultural soils
are a major source of CO, emissions as their
organic matter decomposes, which also reduces
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soil water holding capacity, increases irrigation
need, and lowers soil fertility (63). Soil fertility
underpins the delivery of all agricultural eco-
system services. Globally, soil loss already ne-
cessitates $110 to 200 billion/year of fertilizer
to replace nutrients lost to erosion (64), with
this soil depletion being most rapid in the low-
income countries where future food demand
will be greatest (65).

Climate change is expected to exacerbate
soil degradation through several pathways.
Soil warming accelerates soil organic matter
respiration and thus increases CO, emissions
(66). It can also cause the release of toxic me-
tals, such as arsenic in paddy rice. Cumulative
global CO, emissions from the top meter of soil in
2100 under 2°C of warming could be as high as
232 + 52 Pg C (67), equivalent to all global CO,
emissions from 2001 to 2021. In addition, cli-
mate change is expected to increase the number
of extreme precipitation events, when most soil
erosion occurs (68). Global erosion rates are
projected to increase by 30 to 66% by 2070
(69), but with considerable regional variation
in forecasted erosion (70). Extreme precipita-
tion events wash away both soil and nutrients.
Erosional P losses are greatest in regions with
intensive farming or frequent heavy rains (69).
Jang et al. estimated that ~30% of N fertilizer
input in US maize production has been used
to compensate for long-term fertility loss due to
soil erosion (77). The need for additional ferti-
lizers, whose production is energy and carbon
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intensive (72), adds to the climate-driven CO,
losses from soil erosion, elevating the impor-
tance of conservation tillage and cover crops (70).

The previously discussed increased preva-
lence of drought under climate change can
also worsen soil degradation, through increased
wind-driven soil erosion, reduced crop yields,
increased decompositional CO, emissions from
soils, and increased risk of soil salinization from
expanding irrigation. For example, after in-
tense droughts, soils with greater than 2% or-
ganic carbon show increased CO, release to the
atmosphere (73). Droughts affect yields and
thereby both reduce carbon inputs to the soil
(74) and increase the need for land expansion.

Increasing irrigation in response to climate
change exacerbates the impacts of soil salin-
ization (75). High salinity is already estimated
to have reduced yields by 8 million tonnes on
1.6 million acres in California alone, resulting
in $3.7 billion of reduced revenue (76). A re-
cent modeling study suggests that dryland
areas of Mexico, South America, southern
Australia, southwest US, and South Africa are
at risk of higher soil salinity under future cli-
mate change, whereas in the drylands in the
Horn of Africa, the northwest US, Eastern
Europe, Turkmenistan, and west Kazakhstan,
the risk of soil salinity could decrease (77). Salin-
ization can also be caused by sea level rise,
another impact of climate change (78). Sea
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level rise and the associated saline contam-
ination of soils threaten coastal agriculture
and thus could undermine food security.
Bangladesh is at particularly high risk, where
nearly 200,000 coastal farmers are projected
to become affected by salinity intrusion (79).

Climate impacts on N and P pollution

Climate change may aggravate the already great
negative environmental impacts of N and P
fertilizers. A substantial fraction of N and P
fertilizers are released to the environment (e.g.,
7 t0 19% in runoff and leaching and 13 to 20%
volatized as ammonia), contaminating ground-
and surface waters, degrading air quality, and
reducing biodiversity (80, 8I). Cyanobacterial
blooms in highly polluted lakes and rivers that
make major water supplies unusable are increas-
ingly common owing to synergistic effects of
climate change and agricultural pollution (82).

Altered precipitation patterns and rising
temperature are changing the form, amount,
and timing of N and P loss from agricultural
soils and their transport through the land-
scape (4, 83). Greater variability in precipitation
increases fertilizer loss to the environment
(84). In the US, changes in heavy precipitation
events increased riverine N loads and are
projected to increase total aquatic N loads by
~20% by the end of the century (4). Projected
hotspots of increased agricultural N loss in-
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clude China, Southeast Asia, East Africa, and
Brazil (Fig. 2). Because P is far less soluble and
volatile than N, erosion and runoff account for
most agricultural P losses (69). Regions with
intensive agriculture and/or extreme climates,
including Eastern China, Indonesia, East
Africa, Southeast Brazil, Southern Africa, and
Bolivia, have the highest P losses (69). Intensified
rainfall under future climate could increase
global P losses by 55% under Representative
Concentration Pathway (RCP) 2.6 and 75%
under RCP8.5 by the end of the 21st century
(85), aggravating both environmental pollu-
tion and global P fertilizer shortages (69).

‘Warming could increase atmospheric emission
from broadcasted fertilizers of health-harming
ammonia (NHs) (which forms fine particulate
matter, PM, 5) and NO,, (which forms ground-
level ozone) because volatilization of these chem-
icals is temperature dependent (86, 87). Over
several decades, warming increased atmospheric
NH; emissions ~10 to 15% in China (88) and
Australia (87). For Europe and the US, warming is
projected to increase such emissions by ~40
and ~80%, respectively (86, 89). The human
health costs of this air pollution can be greater
than the value of harvested crops (90).

Other aspects of climatic variability can cause
elevated agricultural N and P losses, although
their effects are often more region specific
and can be considered as secondary. Reported

120°E

Fig. 2. Global regions likely to experience increases in nitrogen pollution of ground and surface waters due to projected precipitation increases. Regions
with excessive N fertilizer application (red to yellow colors) [data from (153)] and increased precipitation (dots) will likely observe greater N losses to the environment.
Dots indicate regions where precipitation is projected to increase, according to most (=80%) global climate models of the Coupled Model Intercomparison

Project (CMIP6) [data from (154)].
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mechanisms include summer heat waves (91),
more frequent freezing and thawing cycles in
arid and cold environments (92), and drought
(93). In some situations, climate change may
ameliorate N losses, when spring warming or
elevated atmospheric CO, enhances crop N up-
take (94), or decreased precipitation reduces
leaching losses.

Increased N and P emissions might also
create a climate feedback effect by stimulat-
ing GHG emissions from other ecosystems.
Rising N and P transport to lentic waters are
projected to potentially stimulate aquatic CH,,
emissions by 30 to 90% by the end of the 21st
century (39, 95). Although negative feedback
has been reported when agricultural fertilizers
increase algal abundances and their CO, up-
take (96), its magnitude is relatively small and
insufficient to offset the stronger feedback be-
tween eutrophication and lake GHG emission
(97). Climate-smart farm management practices,
such as cover crops and conservation tillage, can
reduce N and P emissions. However, they may
have differential effectiveness on N versus P (98).
The best management strategy to reconcile C, N,
and P stewardship goals is yet to be determined
and may be site specific.

Climate impacts on pest pressure and
pesticide pollution

Chemical pest control is key for global food

production as uncontrolled pests (insects, path-

ogens, and weeds) cause yield losses of ~17 to
30% (99). Global use of chemical pesticides,
dominated by agricultural uses, has increased
by 600% from ~0.5 Tg year™" in the 1950s to
~3.5 Tg year™! in 2021 (100). However, only a
small amount of most pesticides reaches tar-
get pests, whereas the rest is lost to the envi-
ronment, threatening the health of humans,
especially farm workers, and ecosystems (101).
Climate change can affect many aspects of pest
control—from pest pressure, to pesticide use
and related efficacy, persistence, and toxicity—
in ways that may increase pesticide use and
the associated ecological and human health
impacts (Fig. 3).

Climate change is increasing the spatial
spread and migration of pest populations, such
as subtropical species migrating into temper-
ate zones (102). Warmer temperatures can result
in greater pest survival, more pest reproduc-
tive cycles during longer growing seasons, and
faster evolution of resistance to pesticides and
plant defenses. Increased climate variability
and extreme weather events may increase the
onset, incidence, and severity of pest infesta-
tions of crops (103). In China, for example, cli-
mate change has increased the occurrence of
crop pests and diseases by ~90% since 1970
and could further double to quadruple by the
end of the century (104).

The efficacy of pesticides might also de-
crease because of climate change (105). Higher

|

temperatures and elevated CO, levels can in-
crease pesticide metabolic degradation and
translocation (106), or cause more rapid evap-
orative loss of pesticides. These effects of climate
change could increase the likelihood of farm-
ers taking additional control measures such as
more frequent pesticide application (107). Higher
pest resistance may require a larger diversity
of pesticides (108), which would increase farmer
costs and environmental risks. Increased pes-
ticide use can also result from disruption of
optimal application timing because of variable
weather, necessitating more frequent pesticide
application, as reported for maize farmers in
Kenya (109). Based on the positive correlation
between insecticide use and temperature in
the European Union, Kattwinkel et al. pro-
jected that insecticide use could increase by
~300 to 2200% from 1990 to 2090 (5). Greater
pesticide use increases health harm for farm-
ers, consumers, and nontarget species. It also
induces greater energy use and increased car-
bon emissions in the production, transport,
and application of pesticides (110).

In addition, pesticide volatilization rates can
increase with temperature and/or soil moisture
(111), and leaching and wash-off rates can in-
crease with precipitation, both resulting in lower
pesticide efficacy. In drier soils, lower pesticide
degradation and mobility rates generally result
in increased pesticide persistence (112, 113).

On the effect side, the toxicological potency of
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Fig. 3. Impacts of climate change on pest pressure, pesticide use, and pesticide fate and toxicity. How the various aspects of pest pressure and pesticides are
affected by climate change is described in the boxes. Up arrows indicate that climate change generally has positive effects and down arrows, negative effects.
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pesticides can increase with temperatures for
a variety of reasons (114). However, higher en-
vironmental pesticide degradation rates (114),
more efficient organismal elimination and/or
detoxification rates (115), and decreases in
nervous system vulnerability (e.g., for pyreth-
roids (713)) at higher temperatures may de-
crease pesticides’ impacts on ecosystems. Hence,
effects of changing climate conditions on the
fate and toxicity potency are strongly depen-
dent on pesticide and specific environmental
settings.

Although climate impacts on pesticide po-
tency are pesticide- and environment-specific
(111, 113, 115), on average climate change seems
likely to increase agricultural pest pressure,
hence increasing pesticide usage. Its impacts
on how pesticides are transported in the en-
vironment and affect ecosystem and human
health are more complicated, requiring fur-
ther research to elucidate the mechanisms and
quantify the net effects. Overall, there is a critical
need to reassess optimal use of pesticides and
crop choices to minimize the ecological and
human health risks from climate-dependent
shifts in pesticide use.

Climate impacts on biodiversity loss
through agriculture

Biodiversity provides ecosystem services of
great value to society, including services that
can increase food security (116), but agricul-
tural land clearing is the single greatest cause
of extinction risks worldwide (I). Pressure to
clear land would increase under climate change
if crop yields and livestock productivity de-
crease. Even without reduced agricultural pro-
duction from climate change, global dietary
shifts associated with higher incomes and
greater global population are expected to cause
land clearing that could double the number of
vertebrate species threatened with extinction
within 50 years (117).

If extreme climate events result in yield
losses that drive up global crop prices, farm-
ers would be incentivized to clear lands for
production (718), thus threatening biodiver-
sity. An analogous process occurred in the US
when promotion of bioethanol from maize
reduced maize and soybean supply as food
and feed sources, increased their prices, and
likely led to the conversion of millions of hec-
tares of native grasslands to cropland domesti-
cally (719). Agricultural intensification can also
threaten biodiversity, especially for amphibians
and insects, through pesticide and nutrient pol-
lution (720).

Farmers are already changing crops in re-
sponse to regional temperature changes (121).
Further climate change might force some
farmers to abandon croplands that are no
longer viable at the same time climate change
makes other lands become suitable for agricul-
ture. Suitability is projected to increase in the

Yang et al., Science 385, eadn3747 (2024)

northern midlatitudes and decrease in the
lower latitudes (20). As a result, climate-driven
changes in land suitability could cause in-
creased land clearing and habitat fragmenta-
tion, and their threats to biodiversity (122).
The direct impacts of climate change on bio-
diversity could also affect agricultural systems
by diminishing the services that diverse eco-
systems provide for agricultural systems.

Multiple climate-agriculture feedback effects

The synthesis above suggests that climate
change seems likely to exacerbate agriculture’s
multiple adverse environmental impacts (Fig. 4.
Among the environmental problems exacer-
bated, the climate-agriculture feedback effects
are worth emphasizing given the already large
global carbon footprint of agriculture [~25%
of anthropogenic GHG emissions (7)], how it
continues to expand because of increased in-
comes and global population size (2), and the

multiple feedback pathways (Fig. 4). Some
feedback effects take place directly on agricul-
tural fields, resulting from intensified emissions
of N,O from fertilizers and CH, from flooded
rice paddies owing to elevated CO, concentra-
tions and/or warming (42, 52). Other feedback
effects are less direct, such as from the greater
reliance on irrigation water sources that are
more energy and/or carbon intensive [e.g.,
groundwater pumping or water pumped from
other basins or newly constructed reservoirs
(38)]. There could be additional emissions from
greater production of agrochemicals to com-
pensate for their reduced efficacy or increased
release to the environment. In particular, the
production of N fertilizers is energy and car-
bon intensive (72), and can be a major con-
tributor to crop carbon footprints (723). Also,
under climate change, greater losses of nu-
trients from farm fields intensify CH, emis-
sions from lakes and reservoirs (39). Another
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Food production
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Agriculture’s Climate Climate- Indirec
environmental change driven climate
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Fig. 4. The major environmental impacts of agricultural systems and potentially exacerbating
effects of climate change. The dark red circle in the center represents climate change. The yellow donut
represents agricultural systems, and the small circles inside indicate the processes through which it
affects the environment (black arrows). Dark red arrows indicate impacts of climate change on agriculture,

and plus signs indicate its reinforcing effects on agriculture’s environmental problems, including direct feedback to

climate change (e.g., intensified CH, and N,O emissions). Dashed arrows indicate indirect climate-change

feedback from the different environmental impacts of agriculture (e.g., stimulated CH, emissions in lakes from

nutrient runoff).
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feedback loop results from climate-driven yield
losses (7), which, through global food trade, can
lead to land clearing worldwide and associated
carbon emissions (718). These feedback effects
must be thoroughly evaluated and mitigated if
we are to achieve the climate goals of limiting
warming to 1.5° to 2°C.

Solutions

The linked food-environmental challenges raised
by climate change, global population growth,
and economic development necessitate rapid
transitions to more sustainable and climate-
resilient food systems that ameliorate environ-
mental impacts. We must accelerate wide-scale
adoption of the many existing sustainable prac-
tices and technologies proven effective at mit-
igating agriculture’s environmental impacts.
That requires overcoming related socioeco-
nomic barriers to uptake. We also need greater
investments in agricultural research to develop
new processes, as well as alternative food pro-
ducts that are tasty, cheap, and easily accessi-
ble to facilitate transitions to sustainable and
healthy diets.

Many existing agricultural practices and
technologies can simultaneously improve agri-
cultural sustainability, productivity, and agri-
cultural systems’ resilience to climate change’s
negative impacts. Chief among these are ex-
panded use of improved cultivars that increase
food output per unit of land, water, and chemical
input, often through genetic resistance to pests
and pathogens; integrated pest management
that boosts crop output while minimizing use
of toxic chemicals; integrated soil fertility man-
agement that combines biological, chemical,
and physical measures to sustain soil health;
and agricultural diversification that improves
yield and yield stability, resource use effi-
ciency, biodiversity, and human well-being
(124-126). Context-appropriate combinations
of these solutions typically outperform un-
coordinated approaches and have the poten-
tial to greatly reduce GHG emissions from
staple crops (127).

Boosting adoption of known solutions re-
quires identification and targeting of barriers
that presently impede uptake. This requires
some combination of extension and education
activities to boost awareness, subsidization of
acquisition costs, taxation of harmful prac-
tices, payments for adoption of best practices,
and/or insurance against loss while growers
learn new methods, or typically combinations
of these to make practices available and attrac-
tive to producers (128). The pervasive hetero-
geneity of barriers to uptake makes scaling
adoption challenging and demands decentral-
ized processes (128). In some places, policies
must secure land and water tenure to promote
adoption and safeguard the rights of vulnera-
ble subpopulations (729). In other places, pro-
gress requires overcoming obstacles to the use
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of genetically modified cultivars that reduce
pesticide use and boost yields and smallholder
farmer profits (130, 131). The expansion of re-
newable rural energy production could accel-
erate off-farm production of novel foods or
allow energy-efficient controlled environment
agriculture (132, 133).

Boosting sustainable food production should
be matched by increased efforts to slow and
reverse the increasing per capita demand for
crops used for feed or fuel, not food, and as-
sociated negative health and environmental
impacts. Although global food demand per
capita has remained fairly constant since the
turn of the millennium, livestock feed pro-
duction per capita has grown steadily, reflect-
ing the dietary transitions associated with per
capita income growth (134). The gains from
reversing that trajectory would be huge but
remain elusive. Diets with less meat and more
healthier food are better for both humans and
the planet (135). However, healthier diets re-
main unaffordable for many people (136), and
dietary behavioral change interventions have
had at best mixed results in small-scale studies,
with no evidence of impacts at scale (137, 138).
Food choices appear driven more by proximate
factors such as convenience, price, and taste
than by a food’s health or environmental im-
pacts. Shifting diets will require investments
to develop, discover, and popularize delicious
and convenient foods that are also healthy,
environmentally beneficial, and affordable. It
also requires policy interventions that induce
dietary change at scale through offerings in
institutional settings and, to the extent such
changes can be made without exacerbating
food insecurity and hunger, by reducing sub-
sidies for agricultural products with low health
benefits and sustainability. Policies should tran-
scend their historical focus on staple crops and
create incentives for diversifying production in
response to the growing market demand (139).

Accelerated adoption of proven and new
farming practices is essential in regions where
intensive agricultural practices currently cause
most GHG emissions and water and air pol-
lution, such as the US Midwest, central and
north China, and north India (81). But efforts
to promote better farming practices and to
prevent potential increases in per capita crop
demand must also focus on locations where
income and population growth will drive most
global food demand growth, including many
African and Asian countries (140). Because most
food is consumed in the country where it was
produced (741), solutions based on international
trade may prove less impactful than increasing
domestic yields and sustainability.

Future research needs

Four key priority questions merit research.
First, we must accelerate the discovery, adap-
tation, and cost reduction of emerging agri-

6 September 2024

cultural technologies and practices and of
novel and healthy foods and diets. The ~20-fold
benefit/cost ratio of investments in interna-
tional agricultural research suggests that dou-
bling global agri-food research investments
would offer major benefits (142). For instance,
reallocating about a tenth of high-income coun-
try agricultural subsidies could more than dou-
ble public agri-food research and development
investments globally (127).

Many research areas hold particular prom-
ise for such investments. Artificial intelligence,
machine learning, nanotechnology, remote
sensing, and precision agriculture could help
growers diagnose and address water, nutrient,
and pest issues more effectively through op-
timal application of irrigation, fertilizers, and
pesticides. Integrating more perennial crops
might help enhance agriculture’s climate resi-
lience, reduce nutrient loss, and increase soil
carbon stocks (143). Agrivoltaics and floating
solar energy may deliver techno-ecological win-
wins (144). Genetic and biotechnological ap-
proaches might enable cereals to fix nitrogen
or mine phosphorus (745), or increase yields
without increasing fertilization (746), or re-
duce rice CH, emissions (147). New genome
editing methods exhibit considerable poten-
tial to improve the productivity and resilience
of globally important staple crops (748). Novel
foods offer the potential to reduce the environ-
mental footprint of protein consumption by of-
fering plant-based or cultured alternatives to
conventional meat and dairy products (135).
These and other promising practices and tech-
nologies merit expanded research investment.

Second, climate-agriculture feedback effects
merit particular attention given agriculture’s
large GHG footprint and the multiple mech-
anisms by which agricultural GHG emissions
are amplified by climate change. Global-scale
quantitative studies are required to better de-
termine the magnitude, distribution, and greatest
drivers of these feedback effects.

Third, how could the complex feedback loops
among climate change, agriculture, and biodi-
versity loss be reduced or eliminated? The direct
impacts of climate and habitat fragmentation on
biodiversity loss are being evaluated (749), but
the indirect impacts through the feedback with
agriculture remain largely unknown. If climate
change induces agricultural extensification and
increased agrichemical leaching, the feedback
might negatively affect biodiversity, which it-
self could adversely influence agricultural pro-
duction and climate stability (150).

Fourth, what might be the unintended or
indirect effects of adoption of known better
practices or new foods? For example, how might
the adoption of on-farm robots and other tech-
nological changes affect N, P, and herbicide
applications, crop prices, and dietary shifts?
Technologies that advance one objective could
adversely affect others (151).

7 of 10

GZ0T ¢ L0 ATeNIQa,] UO SIOUDIDS [BIUSUIUOIIAUF J0F I9U)) PUBIAIRIAl JO AJISIOATU[) I8 SI0°90USIOS" MM //:sd)IY WIOI) papeo[uUMO(]



RESEARCH |

REVIEW

Science has substantially advanced our un-

derstanding of how agriculture affects climate
and the environment and has identified viable
agri-food system approaches to both mitigate

and adapt to climate change. But the pace of

climate change demands increased attention
to the feedback effects of agri-food systems that
could aggravate the closely coupled challenges
of feeding an expanding human population,
addressing the climate crisis, and conserving
biodiversity.
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