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SUMMARY

Agricultural activities contribute almost half of the total anthropogenic nitrous oxide (N2O) emissions, but
proper assessment of mitigation measures is hampered by large uncertainties during the quantification of
cropland N2O emissions and mitigation potentials. This review summarizes the up-to-date datasets and ap-
proaches to provide spatially explicit and crop-specific assessment of the global mitigation potentials. Here,
we show that global cropland N2O emissions have quadrupled to 1.2 Tg N2O-N year!1 over 1961–2020. The
mitigation potential is 0.7 Tg N2O-N without compromising the crop production, with 86% from optimizing
nitrogen fertilization, three-quarters (78%) from maize (22%), vegetables, and fruits (16%), other crops
(15%), wheat (13%), and rice (12%), and over 80% from South Asia, China, the European Union, other Amer-
ican countries, the United States, and Southeast Asia. More accurate estimation of cropland N2O mitigation
potentials requires extending the N2O observation network, improving modeling capacity, quantifying the
feasibility of mitigation measures, and seeking additional mitigation measures.

INTRODUCTION

Nitrous oxide (N2O) is a long-lived stratospheric ozone-depleting
substance and greenhouse gas, which has a 100-year global
warming potential 273 times higher than that of carbon dioxide.1

The concentration of atmospheric N2O has increased by more
than 20% from 270 parts per billion (ppb) in 1750 to 331 ppb in
2018.2,3 Cropland is the largest contributor of anthropogenic
N2O emissions, accounting for approximately one-third of total
anthropogenic N2O emissions.2 To sustain an increasing global
population and the demand for food, N2O emissions are pro-
jected to increase by 35%–60% between 2005 and 2030, largely
driven by excessive use of synthetic nitrogen (N) fertilizers and
manures to croplands.4–6 Reducing cropland N2O emissions
while maintaining crop production is thus conducive to achieving
low levels of climate warming and preventing stratospheric
ozone depletion. It is prerequisite to have a comprehensive un-
derstanding of croplandN2Oproductionmechanisms and an ac-
curate assessment of cropland N2O emissions.7,8

Cropland N2O emissions is a net result of N2O production,
reduction, transformation, and diffusion through the soil layers
to the atmosphere,9 with each process controlled by various

abiotic and biotic factors.Microbial metabolic pathways account
for approximately 70% of global N2O emissions, including mi-
crobial nitrification and denitrification.10 Key drivers of N2O emis-
sions influencing these processes include soil properties,
climate conditions, agricultural management practices, and mi-
crobial communities.10–13 A fair amount of research has explored
such key drivers of each specific process under various specific
conditions primarily based on field experiments or laboratory in-
cubations. However, the relative importance of each process to
N2O production under different environmental conditions re-
mains largely unknown, which is a barrier for accurate estimation
of cropland N2O emissions.
Significant efforts have been made to quantify cropland N2O

emissions from the field to regional and global scales, albeit large
uncertainties still exist.14,15 Uncertainties from direct measure-
ments lie in a deficit of coverage for the developing countries,
limited sampling frequency, replication, and lack of detailed re-
cords of site information (e.g., local microscale biophysical
characteristics and management history).7,16 Large discrep-
ancies also exist among cropland N2O emission estimates
derived from different approaches (e.g., statistical upscaling
models, process-based models, and atmospheric inversion
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models4,17,18). These discrepancies are primarily attributable to
high spatiotemporal variability and the complex mechanisms of
N2O production and consumption controlled by multiple biotic
and abiotic factors, while it is under debate whether observed
variation does not imply uncertainty but merely reflects themulti-
tude of situations occurring in practice in large sets of measure-
ments.19 Knowledge gaps may, however, also derive from com-
bined impacts from multiple drivers across different cropping
systems and predominant underlying mechanisms.14 Taken
together, these limitations pose challenges to the accurate
quantification of cropland N2O emissions and, thereby, the
assessment of mitigation potentials.

Besides the efforts to improve cropland N2O emission esti-
mates, effective mitigation measures and their potentials have
also been increasingly investigated, based on field experiments
and regional models.5,20–23 A series of knowledge-basedNman-
agement practices have been proposed to mitigate cropland
N2O emissions, including the optimization of fertilization (i.e.,
rate, type, timing, placement), and the adoption of more efficient
irrigation technologies.5,23–25 A possible shift in human diets aim-
ing to decrease meat consumption could also play a role, since it
would change feed production and associated emissions.26,27

However, most previous studies have focused on the individual
mitigation options, specific crops, or local regions. Such assess-
ments of mitigation potential have shown large uncertainties in
the magnitude and even direction, depending on crop types,
environmental factors, and management-related properties.5

As shown above, a comprehensive understanding of the
achievable mitigation potentials from each of the aforemen-
tioned options, and their combinations, across global croplands

and its spatial pattern is currently lacking. To address this issue,
we collated existing emissions estimates and derived spatially
explicit and crop-specific N2O emission maps for the past de-
cades from recent scientific literature on this topic. We then re-
estimated results based on a newly developed linear mixed-ef-
fects (LME) model and a set of high-resolution management
datasets (e.g., fertilization rate, types, timing, placement).7 We
also used this approach to assess achievable mitigation poten-
tials from optimizing N fertilization, improving irrigation practices,
shifting human diets, and their combinations by integrating miti-
gation potentials of these measures derived from meta-ana-
lyses, N fertilization within planetary boundaries, food security,
and planetary health diet into N2O estimates. We addressed
three questions. (1) How do key biotic and abiotic factors regu-
late N2O production in croplands? (2) What are the spatiotem-
poral patterns of crop-specific N2O emissions? (3) How much
and where could mitigation be achieved while maintaining crop
yields? This review advances our understanding of global crop-
land N2O emissions and mitigation opportunities and provides
references for future research and policy priorities for cropland
N2O mitigation.

MECHANISM AND DRIVERS OF CROPLAND N2O
EMISSIONS

Cropland N2O is produced from a range of abiotic and biotic
processes (Figure 1). Microbial metabolic pathways account
for approximately 70% of global N2O emissions,28 which
mainly include nitrification, denitrification, nitrifier denitrification,
dissimilatory nitrate reduction to ammonium (DNRA),

Figure 1. Conceptual framework for processes and key drivers regulating N2O production from cropland
(A) Plant growth through photosynthesis, productivity, biomass allocation, and litter and root exudates impact on soil properties and pathways for N2O pro-
duction.
(B) Main biotic processes through microbial pathways for N2O production, reduction, transformation, and diffusion from cropland.
(C) Main abiotic processes through chemical pathways for N2O production and diffusion from cropland.
(D) Soil properties control on biotic and abiotic pathways for N2O production.
(E) Climate change impacts on cropland N2O production through plant growth, soil properties, and microbial and chemical pathways.
(F) Agricultural management practices impact cropland N2O production through plant growth, soil properties, and microbial and chemical pathways.
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nitrification-coupled denitrification, complete ammonia oxida-
tion (Comammox), and fungal denitrification.10,29 Nitrification in-
volves ammonia-oxidizing bacteria (AOB)- and ammonia-
oxidizing archaea-mediated ammonia oxidation (conversion of
NH3 to NO2

!) and nitrite oxidation bacteria-mediated nitrite
oxidation (NO2

! to NO3
!).30,31 The main products of nitrification

process are NO2
! and NO3

!, accompanied by smaller amounts
of N2O and NO. Denitrification involves several stepwise reduc-
tion reactions (the reduction of NO3

! to NO2
!, NO, N2O, and N2)

of enzymatic pathways,32mediated by several species of denitri-
fiers (e.g., Paracoccus denitrificans, Pseudomonas sp.,33,34 and
Thiobacillus denitrificans35), dissimilatory nitrate reductase (Nar
and Nap), dissimilatory nitrite reductase (Nir), nitric oxide reduc-
tase (Nor), and nitrous oxide reductase (Nos), with the narG and
napA, nirK/S, norB, and nosZ genes encoding correspond-
ingly.36–38 Nitrifier denitrification is the process whereby
ammonia is first oxidized to NO2

!, which is further reduced to
NO and N2O by AOB (specific nitrite reductase NIR) as the elec-
tron acceptor for denitrification under varying degrees of micro-
aerophilly.39–41 DNRA is a pathway of internal N cycling, referring
to the process of NO3

! reduction to NO2
! and NH4

+mediated by
cytochrome nitrite reductase (NrfA), accompanied by the tran-
sient accumulation of NO2

! and production of N2O under obli-
gate anaerobic or facultative anaerobic conditions.42–44

Apart from the aforementioned pathways, the remaining mi-
crobial processes and the abiotic process of chemodenitrifica-
tion, decomposition, and nitrosation reaction also play important
roles in cropland N2O emissions.45–47 It is essential to quantify
the relative contribution of different processes to the production
of N2O, whether for the accurate simulations or abatement of
N2O emissions. However, with the development of molecular
and stable isotopemethods,48,49 accounting for the relative con-
tributions is still challenging, since multiple pathways for N2O
production and reduction are simultaneously activated in
different microenvironments even in the same soil, as discussed
above.11

Cropland N2O emissions are a net result of N2O production,
reduction, transformation, and diffusion through the soil layers
to the atmosphere.9 Factors impacting N2O emissions through
regulating the aforementioned processes are generally catego-
rized into four groups (Figure 1): soil properties, climatic
variables, agricultural management practices, and biological
properties.10–13 Edaphic factors mainly refer to soil physico-
chemical conditions that control N2O emissions through medi-
ating N and carbon substrates, metabolic energy sources, aera-
tion conditions, and enzymatic activity, including soil-available N
and carbon, moisture, oxygen, texture, pH, and soil tempera-
ture.10,11,13,50–62 Climatic variables (including the change of pre-
cipitation and temperature, elevated atmospheric CO2 concen-
trations, and the increase in atmospheric ozone concentration
and atmospheric N deposition) can affect cropland N2O
emissions not only directly by changing soil moisture and tem-
perature regimes but also indirectly via crop and soil interac-
tions.63–72 Agricultural management practices, such as fertiliza-
tion, irrigation and drainage, and tillage, play an important role
in cropland N2O emissions through shaping spatiotemporal vari-
ability in soil processes.25,73–85 Cropland N2O emissions mainly
occur through nitrification and denitrification driven by microor-
ganisms. Therefore, the population abundance, structure, and

activity of related microorganisms in soil have important effects
on the emission of N2O.86,87

The processes for cropland N2O production are generally
complex and diverse, being affected by various drivers (Figure 1).
As a consequence, quantitative conclusions about the main pro-
cess for cropland N2O emissions and corresponding contribu-
tion under combined influences of different climate, soil, and
agricultural managements are challenging. The relationships be-
tween N2O emissions from cropland and each environmental
factor are usually investigated by laboratory experiments and
simple correlation analysis without considering the influence of
other factors. Besides, the effects of climate change, soil prop-
erties, and agricultural management on soil N2O emissions
may interact with each other; for example, the effect of climate
change and soil properties on soil N2O emissions may be
obscured by the agricultural management. The incomplete un-
derstanding of the processes and mechanisms of N2O produc-
tion leads to large uncertainties in field observations and
modeling. Therefore, for the purpose of accurate modeling and
effective abatement, a multi-gradient and multi-factor network
of field experiments is urgently needed to clarify themechanisms
of climate, soil, and agricultural management practices on N2O
emissions from cropland.

CURRENT N2O EMISSIONS BY CROP AND REGION

A key starting point for assessing the mitigation potential and
prioritizing mitigation measures from cropland is understanding
the baseline levels of cropland N2O emissions for which mea-
surements of N2O fluxes across diverse soil-crop-climate sys-
tems are fundamental. Through combining up-to-date N2O-
emission observation datasets from online data repositories
and peer-reviewed meta-analyses, this review formed an exten-
sive global observation dataset from 515 sites spanning 37
countries covering the period from 1978 to 2018 (Figure S1
and Table S1). Although most observations still focused on
main grain crops (e.g., wheat, maize, rice) from large-emission
regions (e.g., China, United States [US], Europe), increasing
attention on cash crops (e.g., orchard, vegetables, tea) and
from previously under-represented regions (e.g., Oceania,
Sub-Saharan Africa) were noted.
To estimate cropland N2O emissions at regional or global

scales, considerable efforts have been taken in recent decades
and have formed two broad types of approach, namely, top-
down and bottom-up approaches.2 Top-down approaches refer
to estimating N2O emissions using atmospheric inversion
models by integrating measured N2O concentrations from tall
tower or aircraft flask sampling as constraints and often use prior
information of bottom-up estimated emissions. Bottom-up ap-
proaches include emission inventories based on Intergovern-
mental Panel on Climate Change (IPCC) tier 1 or tier 2, spatial
extrapolation of field flux measurements by statistical models,
and processes-based modeling constrained by ground-based
observations (IPCC tier 3) (Table S2).14

To obtain comprehensive insights on total quantities and tem-
poral-spatial patterns of current cropland N2O emissions, this re-
view synthesized previous estimates and additional conducted
estimates using the model of Shcherbak et al.76 and crop-spe-
cific emission factor (EF) models of Cui et al.7 (experimental
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procedures, Table 1, and Figure 2). Global cropland N2O emis-
sions by these approaches ranged from 0.7 to 3.6 Tg N year!1

(Table 1).14,15,18,88–90 The variations in these estimates were
mainly attributed to differences in terms of emission sources (fer-
tilizer-induced, background, indirect, and other anthropogenic
sources), modeling structure (linear or non-linear, fixed or
random intercept and slope), influencing factors considered (cli-
matic-, soil-, and management-related factors), and N input
(types and crop-specific disaggregation) (Table 1). For example,
estimates from top-down approaches are higher than those from
bottom-up by a factor of 2 for the US Corn Belt, mainly because
top-down approaches additionally account for other direct emis-
sions (e.g., from fossil fuels, industry, biomass burning, waste,
and waste water) and indirect emissions (e.g., from atmospheric
deposition, leaching to aquatic systems where emissions occur,
human sewage, and unmanaged soils).17,91,92 The difficulty for

top-down approaches to distinguish emission sources results
in bottom-up approaches beingmore usually used for estimating
cropland N2O emissions. Spatial discrepancies between
different bottom-up approaches were reported in India, south-
eastern US, Brazil, Europe, and South and East Asia, owing to
differences in EFs or N inputs used.4,18,93

This review primarily focuses on fertilized-induced (including
synthetic fertilizer, manure, and crop residue) cropland N2O
emissions because fertilizer application is the primary target of
mitigation measures; therefore, emissions from fertilized pas-
tures or soil mineralization processes (i.e., background) were
removed for comparison (Figure 2). Global fertilizer-induced
cropland N2O emissions showed an overall increasing rate of
15–22 Gg N2O-N year!2 (1.6%–2.6%) over the past six
decades, while the increase leveled off from 27 Gg N year!2

before 1984 to 18 Gg N year!2 after 1984 (Figure 2). Estimates

Table 1. Summary of approaches for estimating N2O emissions

Approach Methodology EF

N input

(types)

N input

(crop-specific)

Emissions

(Tg N2O-N) Sources

Bottom-up Inventory FAO94 constant S, M, C crop uniform 1.14 ± 0.36

(1961–2020)

F

EDGAR95 constant S, M, C crop-specific;

25 crops

1.25 ± 0.29

(1961–2020)

F, B

GAINS96 constant S, M, C crop-uniform 1.53 ± 0.13

(1961–2014)

F

Statistical

models

L-N-RR90 dynamic

(Nrate)

S, M crop-specific;

171 crops

0.77 (2000) F, B

NL-N-RR90 dynamic

(Nrate)

S, M crop-specific;

171 crops

0.66 (0.56–0.78)

(2000)

F, B

REML15 dynamic

(C, S, M)

S, M crop-specific;

3 crops

2.692 (2000) F, B

SRNM18,88 dynamic

(C, S, M)

S, M, C paddy rice;

upland crops

0.82 ± 0.34

(1961–2014)

F

Random

forest97
dynamic

(C, S, M)

S, M crop-specific;

26 crops

1.39 (2014) F

Based on

Shcherbak

et al.76

dynamic

(Nrate)

S, M, C crop-specific;

26 crops

0.91 ± 0.36

(1961–2020)

F

LME7 dynamic

(C, S, M)

S, M, C crop-specific;

26 crops

0.74 ± 0.26

(1961–2020)

F

Process-

based

models

NMIP14 dynamic

(C, S, M)

S, M, D crop-uniform 3.3 ± 1.1

(2007–2016)

F, B, I

DLEM4 dynamic

(C, S, M)

S, D, F crop-specific;

10 crops

2.0 ± 0.1

(2000–2014)

F, B, I

DNDC98,99 dynamic

(C, S, M)

S, M, C,

D, F

crop-specific

(corn and wheat)

3.6 (2.96–4.35)

(1996–2013)

F, B, I

DAYCENT dynamic

(C, S, M)

S, M, C crop-specific

(corn, wheat,

soybean)

1.77 (1991–2000) F, B,

Top-down Davidson92 S, M crop-uniform 2.2 (1.5–2.4) (2005) F, B, I, O

Thompson et al.91 S, M, D, F crop-uniform 2.3% ± 0.6%

(EF, 2013)

F, B, I, O

For emission factors (EF): S, soil; C, climate; M, management; Nrate, only N application rate was considered.

For N input type: S, synthetic; M, manure; C, crop residue; D, deposition; F, N fixation.

For sources: F, fertilizer-induced (corresponding to N inputs including S, M, C, and F); B, background emissions; I, indirect; O, other anthropogenic

sources.
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of process-based models (e.g., N2O Model Intercomparison
Project [NMIP]) showed larger interannual variation compared
to that of the other bottom-up approaches due to accounting
for influence of climate variability (Figure 2).4 The temporal evo-
lution of cropland N2O emissions differed among regions. Crop-
land N2O emissions have become relatively stable in the US
since the 1980s, while they began to decrease in Europe.14

The growth in cropland N2O emissions in China began to slow
down around the 2000s,22,89 while maintaining rapid growth in
South and Southeast Asia.2 As a result, emission hotspots
shifted from Europe (111.3 Gg N2O-N year!1) and US (43.5) in
the 1960s to China (198.6 Gg N2O-N year!1), South Asia
(171.3) and Southeast Asia (127.6) in the 2010s. This result was
highlighted by both statistical models and process-based
modeling.4,18 The temporal dynamics of croplandN2O emissions
were primarily driven by changes in N fertilizer input rates but
also for diverse reasons associated with agronomic manage-
ment, socioeconomic development, and policy enforcement
(Figure 2).100–108 Process models also highlighted the contribu-
tions frommanure use and atmospheric N deposition, especially
for East Asia and India.98,109

From a crop-specific perspective, previous estimates were
conducted in a fixed year (e.g., 2000 from Gerber et al.90), for
limited crops (e.g., maize and wheat from Tesfaye et al.93) or re-
gions (e.g., China from Ma et al.110 and US from Lu et al.111). In
other words, there is no reconciled framework of the global

N2O emission dynamics by crop. Therefore, this review specif-
ically estimated N2O emissions for 26 crops from 1961 to
2020. This was done by combing the crop-specific EF models
of Cui et al.7 and the newly crop-specific N fertilization dataset
at 5-arcminute spatial resolution from 1961 to 2020112 (experi-
mental procedures and Figure 2). This EF model was selected
to account for impacts from various climatic, edaphic, and man-
agement-related factors while avoiding assumptions associated
with the representation of complex N2O production processes
as in process-based models.
Overall, different estimates all highlighted the largest contribu-

tions of wheat andmaize (12%–22% and 17%–19%),7,90 primar-
ily from East and South Asia and Europe.93 Vegetables and fruits
currently account for only 9% of global cropland N2O emissions
but are the largest contributor of the increased rate of global
cropland N2O emissions over 1961–2020 (21%), especially in
developing regions (e.g., China). Crop-specific contributions
varied among regions. The overall increase of cropland N2O
emission in the US, Central America, Brazil, and South Africa
are mainly contributed by the emissions from maize (62%,
48%, 48%, and 43%, respectively), while the emissions in China,
Central Asia, and the Middle East are mainly contributed by veg-
etables and fruits (50%, 38%, and 36%, respectively). The domi-
nant contribution of corn-soybean cropping systems for
increasing N2O emissions in the US was also confirmed by
high-resolution estimates using Dynamic Land Ecosystem

Figure 2. Global and regional estimates of fertilizer-induced N2O emissions from cropland from 1961 to 2020
(A) Global fertilizer-induced N2O emissions from cropland.
(B) Regional fertilized-induced N2O emissions from cropland. Examples of estimations of N2O emissions are shown here. We normalized the FAOSTAT94 and
GAINS96 by removing the contribution from synthetic fertilizers applied to pasture, the EDGAR95 version 6.0 by excluding the contributions from synthetic fer-
tilizers applied to pasture and soil mineralization, and the NMIP14 by excluding the contribution from ‘‘background’’ emissions. We also estimated emissions from
1961 to 2020 using models from Cui et al.7 and Shcherbak et al.76 The study regions are USA, European Union (EU), China, Southeast Asia (SEAS), South Asia
(SAS), other America (OAM), Africa (AF), and rest of world (ROW).
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Model (DLEM) processmodels.113 In addition, recent less rapidly
increasing cropland N2O emissions in China were contributed by
wheat, rice, legumes, and other crops with reduced N fertilizer
input.22 The decrease in N2O emissions in Europe since the
1990s was primarily contributed by wheat and barley as a result
of reduced N input. The insights regarding spatial hotspots and
crop-specific contributions of N2O emissions are essential for
prioritizing mitigation measures.

MITIGATION POTENTIALS

N2O emissions from croplands could be mitigated by improving
management practices during crop production, such as opti-
mizing N fertilization and improving irrigation practices or adjust-
ing the consumption of food products. In the sections below, we
review the mitigation strategies and provide updated estimates
for the mitigation potentials of N2O emissions by crop types
and regions.

Potentials from optimizing N fertilization
Soil-available N, as a substrate for N2O production, mainly
comes from fertilizer input.12 However, improper N fertilization
may cause environmental and food security issues.114,115 It
has been proved that a substantial reduction of N2O emissions
can be achieved through the optimization of N fertilization,
such as the ‘‘4R nutrient stewardship’’ (i.e., right application
rate, right fertilizer type, right application placement, and right
application time).7,22,93,116 These measures mainly aim to pro-
vide better synchronization between crop N demand and N sup-
ply and, therefore, simultaneously increase N-use efficiency and
decrease N2O emission or other N losses (e.g., NH3, N runoff,
and NO3

! leaching).23 Moreover, these measures would
decrease N2O emissions and N2O EFs through several inter-
related biogeochemical mechanisms, including changing soil
properties, microbial activities, physical adsorption and diffu-
sion, and physiological and ecological characteristics of plants
(Figure 1). Mitigation effects from these measures have been
investigated by a number of experimental studies and meta-an-
alyses in which substantial variations were noticed in magnitude
and directions depending on multiple factors (e.g., environ-
mental conditions and crop types).23–25,116–122

Fertilizer N application rate is not only an important predictor of
cropland N2O emissions but also an unambiguous proxy for N2O
reductions.123 Generally, the enabling potentials to optimize N
inputs can be indirectly expressed by N surplus (defined as the
sum of N inputs [fertilizer, manure, biologically fixed N, and N
deposition] minus N outputs).114,124 N surplus value is particu-
larly useful for researchers, policymakers, and international or-
ganizations, since it could be used for capping the N inputs to
the realistic benchmarks or a proposed planetary boundary.125

Previous studies have shown that the global N surplus (total N
input minus N uptake by crops) would need to be reduced to
40–52 Tg N year!1 in order to remain within a safe boundary
without breaching the bounds for acceptable air and water qual-
ity (Table S3).7,8,114,126,127 However, reducing N inputs to lower
the N surplus within a proposed planetary boundary is one-
sided, and crop yield should be maintained at the same time.7

Based on the regional N boundaries for arable land to close yield
gaps in regions where environmental thresholds for eutrophica-

tion of terrestrial and aquatic ecosystems and nitrate in ground-
water are not exceeded, the newly updated global cropland N
surplus was estimated at 102.0 Tg N year!1 in 2020 and would
need to decrease to 46.5 Tg N year!1 (Figure 3A). Reduction of
N surplus would be mainly contributed by rice, wheat, maize,
and vegetables and fruits (with a reduction of 11.6, 10.4, 9.0,
and 8.9 Tg N year!1, respectively), accounting for 71% of total
N surplus (Figure 3A), which is 10% lower than that when only
a planetary boundary was considered.114

Mitigation potentials of global cropland N2O emissions from
the reduction of excess N inputs varied largely with different bot-
tom-up approach estimates, ranging from 30% to 51%.7,93,127

For example, the mitigation potential of N2O emissions from
global cropland was estimated to be 423 Gg N year!1 for 17
main crops using the IPCC tier-1 approach with a reduction of
51 Tg N year!1 excess N input,127 while only a 304 Gg N year!1

reduction in N2O emissions was reported using the non-linear
response of EF to N input approach with a reduction of 34 Tg
N year!1.7 It is worth mentioning that for the same reduction of
N input at different baseline applications, constant EFs overesti-
mated the reduction of N2O where N was applied at low N appli-
cation rate, while it underestimated the reduction of N2Owhere N
was overapplied.76 Considering the non-linear relationship be-
tween EF and N input, as well as the goals of remaining within
the N threshold of the planetary boundary while not compro-
mising yields in the estimatementioned above,8 global mitigation
potential of N2O emissions from reducing fertilizer N inputs was
re-estimated as 409.7 GgN year!1, equivalent to a 33.4% reduc-
tion in total global N2O emissions (Figure 3B). Fruits and vegeta-
bles contributed 89.0 Gg N year!1 reduction and accounted for
about 21.7% of the overall mitigation potentials, followed by
maize (72.5 Gg N year!1, 17.7%), rice (55.6 Gg N year!1,
13.6%), and wheat (46.3 Gg N year!1, 11.3%) (Figure 3B), an or-
der different from the reduction of N input (DNsurplus) to the
respective crops. Approximate mitigation potentials from maize
(i.e., 70 Gg N year!1) and higher mitigation from wheat (i.e., 85
Gg N year!1) were reported by Tesfaye et al.,93 equivalent to
36% and 35% reduction of total global N2O production of maize
and wheat, due to a higher method of N excess estimation (75%
reduction of N excess) and different EF models (aggregated EF
models including CCAFS-MOT, IPCC tier 1, IPCC tier 2, and
Tropical N2O).93

Spatially, regardless of the approaches for modeling EFs or
assessing N surplus, mitigation priorities generally are in the re-
gions where crops produce high emissions or where N is applied
in excess, such as China, India, and Southeast Asia, accounting
for more than half of global N reduction (Figure 3A).7,8,114 In the
updated assessment of N2O emissions, South Asia, China, and
Southeast Asia had the largest mitigation potentials, totaling
229.8 Gg N year!1 and accounting for 56.9% of total N2O emis-
sions (Figure 3B). Similarly, due to the large harvested area and
relatively higher excess N, major maize-growing countries such
as China, US, India, and Brazil and major wheat-growing coun-
tries such as China, India, US, and Russia are not only the re-
gions of highest N2O emission but also mitigation priorities.93

However, the hotspots of N2O mitigation do not overlap
completely with the hotspots of excess N application, because
the mitigation potentials may have a Pareto optimum between
high-N-surplus and high-EF regions.7 For example, the priority
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areas for mitigation might be either underestimated in low-N-
input regions (such as parts of eastern Europe) or overestimated
in high-N-input regions (such as parts of the North China Plain).7

Therefore, apart from N reduction, the local environmental con-
ditions incorporated into crop-specific EFs are critical for accu-
rate estimates of N2O mitigation.
Fertilizer types (here widely referring to synthetic chemical

fertilizers, organic amendments, controlled-release fertilizers,
and fertilizer inhibitors, as well as the combination of synthetic
and organic fertilizers) can affect the cropland N2O emissions
due to difference in content of NH4

+, NO3
!, and organic car-

bon. In addition to the enhanced efficiency fertilizers (EEFs),
the reduction effect of fertilizer types on N2O emissions was

insignificant or inconsistent among current studies, depending
on the soil, climate, cropping system, and agricultural manage-
ment.23,116,117,128–131 EEFs, including controlled-release N fer-
tilizers (CRFs), nitrification inhibitors (NIs), urease inhibitors
(UIs), and double inhibitors (DIs), have been proven as the
most efficient approach for reducing the conventional N
application rate, while overall N2O emissions were reduced
by up to 24%–42%, as shown in previous meta-analyses
(Figure 4A).23,116–121,132 Meanwhile, the use of EEFs could
significantly enhance the crop yield regardless of crop type,
although for DIs the change in wheat yield is not significant
(Figure S2). The use of EEFs can enhance crop uptake and
reduce the potential of nutrient losses to the environment

Figure 3. Reduction of N surplus and mitigation potentials of N2O emissions for optimizing N fertilization
(A) Spatial pattern of reduction of N surplus (DN surplus [all crops]).
(B) Spatial pattern of mitigation potentials (all crops).
The bars show DN surplus and mitigation potentials for each crop.
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mainly through delaying N transformation processes or slowing
the release of N.133 However, the efficacy of EEFs varies greatly
with EEF types, cropping systems, biophysical conditions, and
management conditions.

For example, the efficacy of EEFs on N2O reduction varied
among types, CRFs (19%) being less effective than NIs (38%)
and DIs (30%).118 The efficacy of NIs also varied by NI formula-
tion, i.e., 3,4-dimethylpyrazole phosphate (DMPP) is assumed to
be more effective in inhibiting nitrification than dicyandiamide
and nitrapyrin due to the similar mobility of DMPP with NH4

+ in
soil.118,134 Compared to paddy rice, the efficacies in upland
crops were more complicated and generally less effective.24 Up-
land crops are generally subject to variable biophysical condi-
tions (i.e., soil temperature and soil moisture), which affect the
N-release patterns from EEFs and therefore preclude synchro-
nicity of N release and uptake.24 Despite the overall lower effi-
cacy, the effects of CRFs (!49.8%) on rice are larger than those
of inhibitors (!35.0% to !45.2%) and less so for wheat and
maize (Figure 4A). The soil biophysical conditions also control
the effectiveness of EEFs; for example, DMPP is only effective
in alkaline soils for the reduction of N2O through inhibiting the
growth of AOB.125 Based on the adoption rate of EEFs related
to N application rate proposed by Gu et al.,116 the mitigation po-
tentials of N2O emissions with the implementation of EEFs by
crop and region were identified. The mitigation potential of

EEFs ranged from 197 to 259 Gg N year!1, in descending order
by DIs, NIs, UIs, and CRFs (Figure 4B). The reduction priorities of
EEFs were mainly in South Asia, China, Southeast Asia, other
America (OAM), and the European Union (EU), accounting for
about three-quarters of the total mitigation potentials (Figure 4B).
Timing and placement of N fertilization are also important for

achieving a significant containment of N2O emissions without
decreasing potential yield.5 For fertilization measures, the effect
of deep fertilization on crop yield was better than that of
increasing fertilization frequency, and paddy rice was better
than upland crops (Figure S2). Appropriate timing of N fertiliza-
tion ensured synchronization between N supply and crop de-
mand, while the effect of fertilization timing on N2O emissions
was usually substituted with N fertilization frequency. The effects
of optimizing N application methods and frequency (e.g., deep
placement and increasing splitting frequency of N fertilizer) on
N2O emissions and N2O EFs are contradictory among different
studies (e.g., significant reduction, non-significant reduction, or
increase) and vary across crop types (e.g., rice, wheat, and
maize).23,116,122 For example, the effect of deep placement on
N2O mitigation is more significant for rice (!39.8% [95% confi-
dence interval !64.5% to !13.0%]) than that for wheat
(!11.7% [!14.4% to !10.3%]). By contrast, increasing splitting
frequency is more effective for wheat (!20.4% [!36.9% to
!9.8%]) compared to rice (!3.8% [!5.2% to !2.0%])

Figure 4. Mitigation potentials of additional management practices and technologies
(A) Aggregated effects of management practices and technologies on N2O emissions from field and meta-analysis studies.23,116–122 Error bars represent 95%
confidence intervals (CIs).
(B) Regional mitigation potentials while applying these technologies on croplands based on current N application rates and social-economic level. The potential
implementation rates for different technologies were based on Gu et al.116 (see experimental procedures). The regions are South Asia (SAS), China (CHN),
European Union (EU), Southeast Asia (SEAS), USA, Brazil (BRA), other America (OAM), Africa (AF), and rest of world (ROW).
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(Figure 4A). However, there are risks of increasing N2O emissions
through increasing splitting frequency of fertilizer N application
for maize (2.6% [!7.5%–13.6%]) (Figure 4A). The substantial un-
certainties are in close association with amount and types of fer-
tilizer application.5,132 Deep placement of fertilizer, as compared
to surface spreading or shallow placement, would decrease con-
centrations of NH4

+ and NO3
! in the surface soil (upland) or

flooded water (paddy rice) and form a thicker soil layer before
N2O diffusion into air, which potentially facilitates more N2O be-
ing reduced to N2. Moreover, both deep placement and
increasing splitting frequency could increase crop N uptake
and partially reduce excessive inorganic N as substrate for mi-
crobial communities, thereby reducing losses in the form of
N2O.116,132 Following the implementation rate of ‘‘4R nutrient
stewardship’’ as described by Gu et al.,116 the mitigation poten-
tial of N fertilization methods and frequency were 48.8 Gg N
year!1 and 134.4 Gg N year!1, mainly from EU and Asia, respec-
tively (Figure 4B).

Potentials from improving irrigation practices
Several improved irrigation practices have been proposed that
may influence soil processes, including alternative wetting and
drying (AWD) for rice and drip irrigation and sprinkler irrigation
mainly for upland crops. Although AWD shows potential to
reduce methane emissions, frequent alternate aerobic and
anaerobic conditions under AWD could prompt N2O emis-
sions.135 Across the other practices, drip irrigation is the most
promising practice to deliver N2O mitigation benefits.25,136 Drip
irrigation refers to delivering a low volume of water to the rooting
zone of crops, resulting in different spatiotemporal distribution of
water moisture compared to sprinkler, furrow, or flooding irriga-
tion.5,25 This also has consequences for N2O emissions. Due to
more NH4

+ being concentrated in wet areas and NO3
! in dry

areas, lower soil activity of N2O-producing microbes, and better
synchronicity between water delivery and crop N needs, drip irri-
gation favors N2O reduction to N2 and prevents the production of
N2O emissions.33,137–139

Overall, improved irrigation (such as drip irrigation) is also an
effective strategy for significantly reducing N2O emissions by
25%–44% and enhancing crop yield by 7%–16% compared to
furrow and sprinkler irrigation or flooding irrigation, depending
on different crop types (Figures 5A and S3).25,116,121 The global
drip-irrigated agricultural area in the year 2020 was 14.4 million

Figure 5. Mitigation potentials of improved
irrigation practices
(A) Effects of improved irrigation on N2O emis-
sions.25,116,121 Error bars represent 95%confidence
intervals (CIs).
(B) Regional mitigation potentials while applying
improved irrigation practices based on irrigated
area. The potential implementation rates for irriga-
tion were based on Gu et al.116 (see experimental
procedures). The regions are South Asia (SAS),
Southeast Asia (SEAS), Brazil (BRA), China (CHN),
European Union (EU), North Africa (NAF), USA,
Central America (CAM), Equatorial Africa (EQAF),
and rest of world (ROW).

ha, which is widely spread in arid and
sub-arid climate zones, accounting for
5% of the total irrigated area.140 Therefore,

significant mitigation potentials might be achieved through the
expanded adoption of drip irrigation. The magnitude and spatial
pattern of mitigation potentials on N2O emissions under drip irri-
gation was estimated using the adoption rate of improved irriga-
tion provided byGu et al.,116 which is closely related to the rate of
N uptake. The mitigation potentials of improved irrigation
(excluding rain-fed areas) were 147.7 Gg N year!1, where hot-
spots for mitigation are cropland in high-priority areas requiring
drip irrigation, mainly in South Asia, Southeast Asia, Brazil, and
China (Figure 5B). Since generally fewer N fertilizers are used
in the drip-irrigation systems, the combined mitigation potential
is possibly even larger than the current figures suggest.

Potentials from shifting human diets
Greenhouse gas (GHG) mitigation through sustainable dietary
change has attracted growing research interest, especially since
the 2010s, and has been proposed as an indispensable demand-
side option to meet climate change targets.16,27,141,142 Sustain-
able dietary changes typically refer to a shift in human diet
from animal-sourced and processed foods toward plant-
sourced foods. Such a shift could deliver double dividends to
mitigate GHG emissions from both direct and indirect (i.e., less
land for crop cultivation of livestock feed) pathways domestically
and from large exporters.143 Direct mitigation of livestock-
related N2O emissions from shifting diet is beyond the scope
of this review, although livestock production was reported as a
major source of anthropogenic emissions.144–146

The N2Omitigation potential from dietary change is usually as-
sessed together with that of CO2 and CH4 (combined as total
GHG emissions or carbon footprints) and calculated as emission
differences between baseline and diverse diet scenarios27,141,147

mainly embedded in the reduced harvested areas together with
reduced fertilizer inputs.147 However, noticeable differences of
N2O mitigation potentials from dietary change are found in
related studies, mainly associated with modeling approaches
to calculate N2O emissions and design diet scenarios. Diet sce-
narios are generally classified into three types, i.e., reduced an-
imal products (e.g., less meat or dairy, no ruminant or red meat,
no dairy, meatless Monday, Mediterranean diet), modified vege-
tarian (e.g., vegetarian [lacto and/or ovo], vegan, pescatarian),
and dietary recommendations (e.g., modeled based on recom-
mendations from Food and Agriculture Organization [FAO],
World Health Organization [WHO], national governments, or
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expert organizations [e.g., American Heart Association]).148 The
former two scenarios primarily target environmental sustainabil-
ity, forming simple scenarios of reduction in per-capita meat
consumption or substitution of grains or low-N-footprint meat
(e.g., pork, poultry, or fish) for high-N-footprint meat (e.g.,
beef), without considering dietary nutritional balance.149,150

With improved knowledge of the link between human health
and environmental sustainability, ‘‘dietary recommendations’’
are well established at both national151 and international levels
(e.g., WHO) proposed by the EAT-Lancet Commission as the
‘‘planetary health diet.’’152

The EAT-Lancet Commission152 and Sun et al.26 assessed the
potential of the EAT-Lancet diet for changing crop production
and sparing cropland, respectively. Assuming that crop yield is
constant, the relative changes in food production by the EAT-
Lancet diet could be converted into changes in harvested areas.
Such changes are provided as globally average results by
the EAT-Lancet Commission, which were further spatially
segmented by Sun et al.26 Notably, the impacts of diet shifting
on N2O emission from pasture and other land was not consid-
ered for this review. Combining the two sets of projected
changes in crop-specific harvested areas and the updated
LME-estimated spatial-explicit EFs, the overall mitigation poten-
tials were approximately 115 and 57 Gg N2O-N year!1 from
Sun et al.26 and the EAT-Lancet Commission, respectively
(Figure 6A). Both results indicated maize (an important source
of direct feed for livestock or as a component of forage for
pigs, poultry, and cattle22) as the largest contributors of reduc-
tion, accounting for 33% and 144% (mainly due to the increased
intake of oil crops offsetting the mitigation by maize) of total miti-
gation potentials from dietary changes. However, the secondary
contributors differed between the results derived from Sun
et al.26 and the EAT-Lancet Commission152 (wheat and sugar
crops, respectively), possibly reflecting differences in crop-spe-
cific demand to achieve the EAT-Lancet diet (in other words, har-

vested area) between high-income and medium- or low-income
countries (Figure 6B) as well as the emissions by crop (Figure 2).
In addition, these mitigation potentials are difficult to directly
compare with those of other related studies, which assessed
mitigation potentials from all GHG emissions. Indirectly taking
advantage of their results was also complicated, since more in-
formation is required about feed-to-food conversion efficiency of
animal products and complex trade relationships between food
producers and consumers. Notwithstanding, this assessment
highlightsmitigation hotspots by crops and regions and provides
implications for mitigation priority.

Potentials from measure combinations
Although N2O emissions from cropland are inevitable, a compre-
hensive assessment of combined measures on N2O reduction is
imperative for evaluating overall mitigation potential and identi-
fying the priorities of measures implemented by region and
by crop.
Different assessments have reported mitigation potentials as

22%–60% of total N2O emissions, with the variations ascribed
to the assessed emission systems (i.e., cropland, agricultural
sources, and anthropogenic sources) and types, efficacy, and
adoption rate of mitigation measures.96,147,153,154 For example,
based on the assessment in this review, mitigation potentials
over cropland N2O emissions from optimization of N fertilization
rate, irrigation, and diets were approximately 751.9 Gg N year!1,
accounting for 61.2% of direct emissions (Figure 7A). However,
only 34% mitigation of cropland N2O emissions was achieved
from mitigation management practices reported by Gu
et al.,116 as these measures were implemented to decrease los-
ses of all N pollutants, which may increase the risk of N2O emis-
sions.116 In contrast, relatively higher mitigation potentials
(accounting for 35%–60% of total N2O emissions) from agricul-
tural sources could be achieved from integrated measures of
improved efficiency of crop and animal production and manure
use, reducing food loss and waste and changing diets.154

Approximately 22%–26% of N2O emissions from global anthro-
pogenic sources could bemitigated through improved efficiency
measures, diet change, food waste, and loss reduction, with the
largest mitigation potentials from agricultural soils.96,147,153

Generally, optimizing N fertilization was the most effective
pathway for N2O mitigation in these studies; however, this
does not mean that other agronomic practices and demand-
side adjustment are negligible.
Globally, the distribution of N2O mitigation potentials was un-

even (Figure 7B); South Asia, China, EU, OAM, US, and South-
east Asia altogether contributed 81.1% of the total N2O mitiga-
tion potentials (Figure 7C). The substantial regional differences
were further identified regarding the most effective pathway for
N2O mitigation. In general, optimizing N fertilization contributed
the largest proportion (70%–92%) of N2O reduction for the afore-
mentioned regions with the highest N2O mitigation potentials;
for the EU and US, changing human diets also significantly
mitigated N2O emissions (11.6% and 19.3%, respectively)
(Figure 7C). Maize production contributed 22.3% of the overall
mitigation potentials, followed by vegetables and fruits
(16.2%), other crops (14.5%), wheat (13.0%), and rice (12.9%)
(Figure 7D). Optimizing N fertilization is the greatest mitigation
strategy among crops, while shifting diet and irrigation are also

Figure 6. Change of harvested area and N2O emissions of each crop
group toward targeting the EAT-Lancet diet
Changes in global cropland N2O emissions (A) and harvested area (B) due to
shifting human diets. Blue bars indicate the spatially explicit change of har-
vested area provided by Sun et al.26 and corresponding changes of cropland
N2O emissions in high-income nations; green bars indicate the global average
change of harvested area by the EAT-Lancet Commission152 and corre-
sponding changes of global cropland N2O emissions.
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efficient in mitigation for maize and other crops. Since a dimin-
ishing marginal effect was detected when combining all the
practices, practices should be prioritized with the highest effect
size on N2O reduction and regions or crops with the highest N2O
emissions or mitigation potentials. Note that the mitigation po-
tentials were assessed in the ideal situation and not in actual pro-
duction,21 which is highly dependent on the implementation of
measures as well as the local soil and climate conditions. None-
theless, the mitigation potentials reported in this review may be
conservative due to the difficulties and uncertainties of inte-
grating the multiple mitigation pathways (such as biochar,155

food waste and loss,154 and microbial consumption of N2O
with fungivorous mites156).

RESEARCH AND POLICY PRIORITIES

Research priority 1: Extending N2O observations and
manipulation experiments
Limited availability of cropland N2O observations representing
diverse agroecological conditions is one of the major barriers
of better understanding and accurate quantification of N2O
emissions. Despite considerable efforts by international or
regional research programs (e.g., GHG-Europe, GRACEnet,
TRAnet), data availability still limits accurate N2O quantification
in a number of ways, such as spatiotemporal and crop-specific

coverage, observations at microbial levels, combined effects of
multiple factors, and detailed information from experiments.
First, most available N2O observations come from Europe, US,

and China but are scarce in some developing countries (such as
Sub-Saharan Africa, typically underfertilized),7,132 and globally
averaged EFs would likely overestimate N2O emissions for
such regions. Previous observations are also unevenly distrib-
uted across different crop types (primarily focused on staple
crops), while recent experiments have demonstrated that
some cash crops (such as vegetables and tea) are becoming
increasingly important N2O emitters.22,157–159 These cropping
systems are reported to feature excessive use of fertilization,
high N losses, and low N-use efficiency and are located in areas
with high precipitation and temperature favoring anaerobic con-
ditions. The overuse of fertilizers would further cause legacy N2O
fluxes and lead to bias in N2O estimates derived from growing
seasons. Nonetheless, more observations are needed from
some main planting areas (e.g., tea plantations in Africa, South
Asia, and Central Asia) and from the non-growing season.160,161

Meanwhile, to filter observation data and reduce the bias, more
detailed records of the status of control sites should be reported,
including the year when each control site was first fertilized
before the experiment and its level of soil residual N.7,8 There-
fore, extending the global coverage of direct and indirect N2O
flux measurements to encompass all major agricultural land-use

Figure 7. Mitigation potentials from combinations of all measures
(A) Waterfall plot shows current fertilizer-induced emissions (gray) and minimum emissions while optimizing N fertilization (Fertilization), applying improved
irrigation practices (Irrigation) and shifting diet structure (Diet) in 2020.
(B) Spatial pattern of mitigation potentials.
(C) Regional mitigation potentials. The regions are South Asia (SAS), China (CHN), European Union (EU), Southeast Asia (SEAS), USA, Brazil (BRA), other America
(OAM), Africa (AF), and rest of world (ROW).
(D) Mitigation potentials for each crop group (wheat, rice, maize, other cereals [OCE], vegetables and fruits [Veg & fru], oil crops [Oils], roots, sugar crops [Sugars],
soybean, and other crops [Others]).
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types and climates and land-use changes and management
practices, and conducting long-term high-frequency monitoring,
are particularly important to increase the reliability of N2O emis-
sions as well as upscale results from site to regional scales.2,16

Second, available manipulation experiments have primarily
examined the effect of single factors, not multiple factors, on
N2O emissions, posing critical challenges for estimating N2O
and future projections. Extensive manipulation experiments
should be conducted to investigate the interaction effects of
multiple factors on N2O emissions in the future, with microbial
data (including abundance, diversity, structure, and activity)
simultaneously measured. The combined effects should involve
interactions among multiple climate change scenarios (such as
warming, elevated O3 concentration, acid rain, and extreme
events162,163) and management practices (such as fertilization,
irrigation, drainage water management, land use, and cover
change164–168). The impacts of these factors on the indirect
N2O emissions from cropland need to be better evaluated.

Lastly, although the central role of microbial regulation on N2O
emissions has been increasingly recognized, microbial data are
generally absent from most field-based and laboratory experi-
ments at this time. This limits projecting the response of mi-
crobes to environmental changes and involvement of microbial
pathways in estimating N2O emissions.11 More efforts are
required for long-term and high-frequency monitoring of critical
N2O-relevant biomarkers and other corresponding biophysical
characteristics from both field studies and soil incubation, using
new approaches (i.e., stable isotope methods) and biological
technology. With more available microbial data, the spatiotem-
poral dynamics of soil microbes, their responses to environ-
mental parameters, and their regulation of N2O fluxes could be
quantified, enabling breakthroughs in the quantification of main
process contributions, driving factors, and precise simulation
and abatement.11

Research priority 2: Improving model representations
and quality of input datasets
Multiple process-based biogeochemical models have been
developed to simulate N2O emissions, and large discrepancies
are noticed among these models in terms of magnitude, spatial
pattern, and temporal trend as well as the contributions of natu-
ral and anthropogenic factors.14 These uncertainties indicate
that dominant processes of N2O emissions, associated driving
factors, and their quantitative correlations are under-repre-
sented in thesemodels. For example, effects of agronomic man-
agement practices (such as irrigation, tillage, and crop rotation)
and natural disturbances (such as freeze-thaw cycle or the
wet-dry cycle) are currently simplified or missing from NMIP
models.4 Moreover, model capabilities are also largely limited
by the quality of input datasets, especially for N inputs and man-
agement practices datasets at finer scales by crop type.169,170

Therefore, to improve model reliabilities in estimating cropland
N2O emissions, the top priority is to improve themodel represen-
tations and the quality of input datasets.

To improve the model representations and performance,
comprehensive understanding about the key processes regu-
lating N2O emissions, associated driving factors, underlying
mechanisms, and interaction with climate change should be
improved and represented explicitly and transparently in model

structures.14 Accurate representation of key processes
(such as nitrification and denitrification) and their responses
to climate change and human activities are of particular
importance.4

Joint community efforts and multiple means (e.g., investiga-
tion, remote sensing, large-scale machine learning, data-model
integration) are also required to develop detailed management
datasets at the global scale. Last but not least, model-model
andmodel-data intercomparisonwould be necessary to address
uncertainty and discrepancies among estimates.

Research priority 3: Quantifying spatial adaptability and
effectiveness of mitigation measures as well as their
applicability
According to manipulation experiments and meta-analyses,
mitigation effects on some improved practices from different
climate-soil-plant-agricultural systems are significantly diffe-
rent with respect to magnitude or even sign, suggesting
different spatial suitability of these agronomic practices, which
must be taken in accordance with the local conditions to maxi-
mize mitigation benefits.171 Key mechanisms and associated
factors underlying the varying mitigation effects should be
clarified with enough observations across large-scale environ-
ments (see research priority 1). Furthermore, the adoption of
the advanced practices should be done with caution to avoid
other unintended consequences (i.e., compromised yield,
increased risk of pollution swapping among reactive N losses,
indirect N2O emission, and greenhouse gas emissions [such
as N2O and CO2]).

23,24,132,172–176

To comprehensively assess the effectiveness of potential miti-
gation practices, other environmental and socioeconomic con-
siderations should also be incorporated. First, economic profits
and opportunity costs are generally the first consideration of
farmers, which would largely determine the successful imple-
mentation of these new practices. Other socioeconomic and cul-
tural considerations, including farm size, mechanization, intensi-
fication of management practices, and dietary needs and
preferences, also need to be considered.22 For example, more
comprehensive dietary shift scenarios, considering variations
in different age and gender groups as well as regional food cul-
tures and cuisines, could be established to support a more
robust assessment of food-related mitigation potentials.152

Third, the mitigation practices may have negative secondary im-
pacts on food security through influencing agricultural markets
and international trade.177,178 Therefore, to identify spatially
optimal strategies of mitigation practices, cost-benefit analyses
incorporating the aforementioned considerations should be con-
ducted for each individual practice and their combinations. As
such, it is possible to answer where, to what extent, and in
what order these practices should be adopted.

Research priority 4: Exploration of new mitigation
opportunities
Beyond the aforementioned agricultural practices for N2O miti-
gation, exploring new opportunities to achieve the win-win goals
of food security and environmental sustainability has become a
prominent global challenge in the coming decades.179 Recent
studies have proposed some new opportunities from technolog-
ical and management aspects. Improvements of new genetic

ll

412 One Earth 7, March 15, 2024

Review



techniques to breed or engineer crops with higher N-use effi-
ciency provide the possibility to match crop N demand and
soil-available N pools, and thus could maintain yields
with reduced N inputs and stem the leak of N into the environ-
ment.10,11,180,181 Some new microbes with the capability of
reducing N2O have been discovered, such as the denitrifier
phenotype of Paracoccus denitrificans in batch cultures and
nosZ-containing Bradyrhizobium japonicum.182,183 Enhancing
the gene expression of nosZ or activities of N2O-reductase
enzyme by manipulating the availability of required metal (such
as Cu, Fe, or Mo) could also ultimately reduce N2O emis-
sions.11,184,185 The application of coconut husks, as a natural so-
lution, could increase the abundance of mites and further pro-
mote consumption of fungal N2O producers, while its
universality needs to be further tested using different types of fer-
tilizer and soil.156 However, we also emphasize that the capacity
and effects of these new approaches across various environ-
mental conditions should be carefully examined and exemplified
before wide adoption.

Policy priorities
Despite the breakthroughs in agronomic and biological tech-
niques on N2Omitigation, N2O emissions from croplands cannot
be reduced unless these techniques are widely adopted.184

Therefore, the development of N2O mitigation techniques re-
quires effective two-way cooperation between researchers and
farmers and needs to be accompanied with innovative policies
that provide enabling socioeconomic conditions for wide adop-
tion of these techniques.22

Efforts to quantify the mitigation potentials from combinations
of measures would allow for prioritizing mitigation measures by
region and by crops, which are generally helpful for policymakers
to formulate reasonable and grounded policies. Regardless of
regions, optimizing N fertilization has proved to be the most
effective mitigation measure, and policy interventions must be
conducive to the implementation of measures and mitigation.
For example, for the hotspots of cropland N2O emissions and
mitigation (e.g., China), the implementation of optimizing N appli-
cation rate applied to cropland fueled by Chinese government
policies (e.g., the nationwide Soil Testing and Formulation Fertil-
ization Program and Zero Growth of Chemical Fertilizers and
Pesticides) have decelerated and reduced the cropland N2O
emissions by one-third.22 Some successful experience from
China (i.e., a campaign with integrated soil-crop system man-
agement recommendations and establishment of the Science
and Technology Backyard [STB] platform) could also be used
a reference for the other countries, especially the developing
countries where smallholder farming dominates agricultural pro-
duction (e.g., India and the Southeast Asian countries). The STB
platform has particular implications for countries where soil is
deprived of nutrients (e.g., Africa), where additional fertilizer
application for food production is needed but may exhibit signif-
icant growth of N2O emissions. Besides the technology exten-
sion services, some national subsidy programs should also be
established and incentives to farmers provided to gradually
adopt these advanced practices in developing countries.23

With regard to high-income countries (e.g., Europe), capital
assets and well-functioning financial markets have enabled
them to become more aware of the need to address N pollution

earlier and with better mechanisms than developing countries.
Special environmental protection measures have also been im-
plemented in the EU Nitrates Directive (91/676/EEC) in the
1980s, originally focusing on the optimization and reduction of
fertilizer use as well as the protection of groundwater. Attributed
to the implementation of the EU Nitrates Directive, N2O emis-
sions from European agricultural soils decreased by 21% be-
tween 1990 and 2010.2 Incentives and regulations have been im-
plemented by individual member countries to meet the targets of
the directive. The implementation of the directive in Germany
sets out the specific details of the German fertilizer regulations,
indicating that the adoption of measures requires not only the in-
centives such as subsidies available for farmers as in developing
countries but also adequate inspectionmechanisms if the results
of a measure extend beyond the immediate (economic) benefit
of the farmers.186

Beyond the technical realm, shifting human diet based on the
EAT-Lancet diet is another important mitigation measure, espe-
cially in maize cultivation for developed countries in Europe and
the US. Since the EAT-Lancet diet was first proposed as a scien-
tific goal for healthy diets based on sustainable food production
systems, the FAO and WHO have also developed guidelines for
promoting sustainable and healthy diets. However, it must be
acknowledged that implementing a uniform global dietary stan-
dard is relatively challenging, with limited guidance for different
regions and cultures. Therefore, in the future, countries should
formulate regional guidelines for sustainable healthy diets
tailored to their residents’ social, economic, and cultural con-
texts as well as other factors. For regions with special cultures
and dietary habits, leveraging international trade and investment
mechanisms to enhance residents’ dietary health is nonetheless
a good choice. International food trade can serve as a tool to
reduceN2O emissions by reallocating crop production to regions
where EF or N2O emissions are relatively lower and yields are
maintained.22 However, such reallocation needs to be incentiv-
ized by policies (e.g., a tax on N fertilizers or on N2O emis-
sions116), and the related GHG emissions for transport and
preservation need to be accounted for. In addition, through the
popularization of ‘‘food education’’ guiding residents’ food
consumption toward a sustainable and healthy pattern will
contribute to achieving the goals of a ‘‘sustainable diet.’’
At the national level, it is also critical to transit from the traditional

production-focused N policies to new policies with the consider-
ation of the environmental costs of N pollution. Agriculture as the
traditional primary production sector has been the target of multi-
ple policies, many of which incline toward improving production
conditions without consideration of environmental costs due to
the food security concerns. In fact, an analysis from a global legal
database found that about two-thirds of N-related policies aimed
to facilitate and incentivize N production and consumption.187

This exemplifies the challenges encountered when implementing
meaningful measures to reduce N2O emissions. While there are
various strategies to directly tackle N2O emissions with policy in-
struments,188 they rarely work in the reality of political arguments.
Instead, inmostcases, instrumentsmerely followtheopportunities
for improving theefficiencyofNuse.102Such improvementwithout
compromising crop yieldsmay bepromoted by economic consid-
erations, with mineral fertilizer as a valuable resource and a cost
factor in agronomy.
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Regarding international conventions, N2O is among the GHGs
targeted by the United Nations Framework Convention on
Climate Change, but few countries includeN2O in their GHGmiti-
gation plan.188 To prevent ozone depletion, the Montreal Proto-
col was followed and suggestions have been made to mitigate
N2O emission under the existing international treaty,189 but there
was little progress. The lack of progress in policy could be partly
attributed to the limited guidance available from science. Since
the emissions vary temporally and spatially, it is challenging to
calculate the exact attribution of emissions and precise quantifi-
cation of mitigation. Due to the inherent challenges in adequate
quantification and attribution of emissions to an individual
polluter, N2O mitigation generally is enabled in combination
with tackling excess agricultural N. The global goal to ‘‘halve ni-
trogen waste’’190 has been laid out as a rule of thumb for policies
in general, which could bring multiple activities of international
agreements in line.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Requests and questions should be directed to Feng Zhou (zhouf@pku.edu.cn).
Materials availability
This study did not generate new unique materials.
Data and code availability
All original codes have been deposited at Figshare under https://figshare.com/
s/fee2a89e0bd62766879f and are publicly available as of the date of publica-
tion. Requests for any additional information and resources required to rean-
alyze the data reported in this paper should be directed to and will be fulfilled
by the lead contact, Feng Zhou (zhouf@pku.edu.cn).

Global cropland N2O emissions and mitigation potentials
This review assessed the cropland-N2O emissions and mitigation potentials
based on the recent advances in mechanisms of N2O production, modeling,
and reduction effect size of measures from meta-analyses. The cropland
N2O emissions for the past six decades were evaluated and updated with a
newly developed LME model and a set of high-resolution management data-
sets (e.g., fertilization rate, types, timing, placement).7 The mitigation poten-
tials were achieved through optimizing N fertilization, improving irrigation prac-
tices, shifting human diets, or a combination of these methods. Here we briefly
summarize the approaches for modeling, prediction, and mitigation assess-
ments in this review.

Current N2O emissions
Observation datasets
To obtain comprehensive insights into available N2O emissions observation,
we compiled an up-to-date N2O emissions observation dataset from online
data repositories and peer-reviewed meta-analyses (up to 2023) (Tables S1
and S2). Information on geographic location (i.e., longitude and latitude),
crop, and observation year for each site were recorded. Such processes
formed a global observation dataset including 515 sites from 37 countries dur-
ing the period 1978–2018 (Figure S1 and Table S1). The spatial pattern of the
observation sites by crop and region is presented in Figure S1.
Data synthesis of previous estimates
We summarized N2O emission estimates from top-down and bottom-up ap-
proaches. Top-down approaches included estimates by Davidson92 and
Thompson et al.91 (see Table 1). However, these results cannot separate nat-
ural and different anthropogenic sources, so theywere not included in Figure 2.
Bottom-up approaches include inventories, statistical models, and process
models. (1) Emission inventory includes estimates from FAO,94 EDGAR,191

and GAINS.96 (2) Statistical models include the non-linear DEF model pro-
posed by Shcherbak et al.,76 the NL-N-RR model used by Gerber et al.,90

the SRNM model from Wang et al.,18 and crop-specific models from Cui
et al.7 In addition, machine-learning models (e.g., random forest) were also
used with extended observations available. (3) Process-based models for esti-
mating cropland N2O emissionsmainly includedDLEM, DNDC, and DAYCENT
(Table S2). Since estimates from process-based models were mostly unavai-
lable except for NMIP, these modeling studies are summarized in Table S2
but excluded for estimates comparison in Figure 2. To facilitate comparison,

fertilizer-induced cropland N2O emissions were isolated from estimates of
FAOSTAT and GAINS, EDGAR, and NMIP following the methods in
Wang et al.18

Modeling of crop-specific N2O emissions for 1961–2020
We only calculated fertilized-induced (including synthetic fertilizer, manure,
and crop residue) N2O emissions from cropland while excluding back-
ground emissions. The former were calculated as the product of crop-spe-
cific EFs and fertilizer N inputs, in which the crop-specific N2O EFs during
1961–2020 were updated with the constructed LME model by Cui et al.7

The EF model of Cui et al.7 was selected to account for impacts from
various climatic, edaphic, and management-related factors while avoiding
assumptions associated with the representation of complex N2O produc-
tion processes as in process-based models.7 In this model, EFs are mainly
regulated by bulk density (BD), soil clay content (Clay), soil organic carbon
(SOC) content, soil pH (pH), growing-season cumulative precipitation (Pre),
growing-season mean daily air temperature (Tem), humidity index (PPE),
fertilizer application per harvested area (Nrate), type (i.e., fraction of ammo-
nium nitrate [AN], calcium ammonium nitrate [CAN], Manure), frequency,
placement, irrigation fraction (i.e., rain-fed or irrigated for upland
crops, continuously or intermittently flooded for rice), tillage fraction (i.e.,
no tillage or tillage), and sampling duration (Days, i.e., days from starting
and ending dates). Detailed information for the modeling can be found in
Cui et al.7

Projections
The global patterns of crop-specific N2O emissions during 1961–2020 were
estimated using the LMEmodels by crop at 5-arcminute spatial resolution. Da-
tasets for the estimation were classified into two groups (i.e., environmental
data and agricultural management data), in which agricultural management
data were specially developed for this review. Detailed information about the
datasets is listed in Table S4.
Environmental data
Soil data (i.e., BD, Clay, SOC, and pH) were extracted from the Harmonized
World Soil Database (HWSD) v1.2 (1 3 1 km).191 Cumulative precipitation,
air temperature, and cumulative potential evapotranspiration over the growing
season were acquired from the CRU TS V4.06 climate dataset (0.5" 3 0.5"),192

where the growing season in each grid cell was identified as the period be-
tween the planting and harvesting dates obtained from Sacks et al.193 Humid-
ity index was calculated by cumulative precipitation divided by potential
evapotranspiration over the growing season. All data were resampled into
grid maps at 5-arcminute spatial resolution.
Agricultural management datasets
For fertilization, crop-specific N fertilizer inputs (including synthetic N fertil-
izers, crop residues, and manure), fertilizer types, and placement during
1961–2020 were obtained from Adalibieke et al.112 The frequency (i.e., one
or multiple times) of N fertilization was the same as in Cui et al.,7 and we
assumed that the frequency remained constant during the study period. For
tillage, the fraction of tillage by crop during 1961–2020was obtained fromAda-
libieke et al.,112 which was constructed with the country and province (or state)
level no-tillage area data during 1961–2020 and downscaled to grid with the
method of Porwollik et al.194 For irrigation, the History Database of the Global
Environment (HYDE version 3.2)195 and the MIRCA2000196 dataset were used
to compile the global crop-specific irrigation proportion data from the period
1961–2020. Categories of cropland in HYDE provided new distinctions with
irrigated and rain-fed crops (upland crops other than rice) and irrigated and
rain-fed rice during 1960–2017. The national-level dataset of ‘‘agricultural
area actually irrigated’’ was obtained from FAOSTAT,94 which was used to
scale the baseline year 2015 maps of irrigated area from HYDE over the period
2016–2020. The area of irrigated upland crops from HYDE was first disaggre-
gated into 21 crops based on the irrigated proportion from MIRCA2000 per
grid cell. We assumed an even share of irrigated area by each upland crop dur-
ing the period 1961–2020, like MIRCA2000. Finally, the crop-specific irrigated
areawasmasked by reporting harvested area, fromwhich the irrigated propor-
tion of each crop can be calculated as the crop-specific irrigated area divided
by the physical area of each crop. For rice, we further divided irrigated rice into
continuously and intermittently flooded systems as provided by Cui et al.,7 and
we assumed that the irrigation proportion was kept the same during the study
period.

Mitigation potentials
To explore themitigation potentials of N2O emissions from cropland at the pre-
sent time, we estimated the N2O reduction in 2020 by optimizing N fertilization,
improving irrigation practices, shifting dietary structure, and their combi-
nations.
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Optimizing N fertilization
First, the global crop-specific mitigation potential of N2O emissions from opti-
mizing N inputs was estimated by reducing fertilizer N inputs to cap N surplus
to the limit. TocapNsurpluswithout compromising yield, improvedN fertilization
management practices and technologies (e.g., N fertilization placement, N fertil-
ization frequency, enhanced efficiency fertilizers [EEFs]) should also be imple-
mented. Here, N surplus refers to the total N inputs (i.e., fertilizer N inputs, N
bio-fixation, and N deposition) minus N uptake. The limits of spatial N surplus
were generated with the regional N boundaries referred to by Schulte-Uebbing
et al.,8 who mapped the critical N surplus for arable land to close the yield gap
in regions where environmental thresholds for eutrophication of terrestrial and
aquatic ecosystems and nitrate in groundwater were not exceeded at 0.5" 3
0.5" resolution for the year 2010. Given that the mitigation potentials were as-
sessed for the year 2020 and that the harvested area was different from the
year 2010, we solely used the critical N surplus rate (units: kg N ha!1 year!1)
rather than the critical N surplus amount. Here, we assumed that as the critical
N surplus for each crop in 2020 was the same as ‘‘critical N surplus in arable
land in view of all thresholds simultaneously (kg N ha!1 year!1)’’ (one output
file in Schulte-Uebbing et al.8), we could ensure that N thresholds for the crop-
land are within the planetary boundaries. The targeted N fertilizer input by crop
was calculated as the sum of N surplus and N uptake minus N deposition and
biological fixation. The averaged gridded dataset of N deposition rate for the
year 2020 was obtained from the input4MIPs project.197 Crop N uptake and N
fixationwere calculated by crop yieldmultiplied by coefficient for cropN content
and cropNfixation.Crop yield, coefficient for cropN content, and cropN fixation
were obtained from FAOSTAT and Zhang et al.114 The LME model was used to
evaluate baseline emissions in 2020 (E0) and emissions after reducing fertilizer N
inputs (E1). E0 minus E1 was the mitigation potential from optimizing N inputs.
Next, the mitigation potentials of N2O emissions from improving management
practices and technologies (such as EEFs [including CRFs, NIs, UIs, and DIs],
deep placement, and increasing splitting frequency of N fertilizers) were esti-
mated based on meta-analyses and the spatial-explicit adoption rate of each
measure. We collected effect size of these measures on N2O-EFs (equal to
N2O emissions due to the sameN application rate between treatments and con-
trol) frommeta-analyses results23–25,116–122 and calculated theweightedaverage
effect size of each measure based on sample size. We then applied these
measures to each cropland grid based on their current N balance and social-
economic level, as described in the equation

MPc;m;g = Ec;g 3ESc;m 3 IRatem; (Equation 1)

where MPc,m,g is the mitigation potential (kg N per grid) from measures m of
crop c in grid g, Ec,g is the emissions of crop c in grid g, ESc,m is effect size
(%) of measures m on crop c, and IRatem is the potential implementation
rate (%) of measuresm. Determination criteria of the potential implementation
rate for different measures were from Gu et al.116 For details, see Table S5.
Improving irrigation practices
The global crop-specific potential of N2O mitigation from improving irrigation
practices was estimated based on the average effect size from meta-analyses
and the spatial-explicit adoption rate of improving irrigation.We collected the ef-
fect size of improving irrigation on N2O-EFs (equal to N2O emissions due to the
sameNapplication rate between treatments and control) frommeta-analyses re-
sults25,116,121 and calculated the weighted average effect size of each measure
based on sample size. We then applied the improving irrigation into each crop-
land grid based on the cropland N harvest rate as described by the equation

MPc;g = Ec;g 3ESc 3 IRate; (Equation 2)

whereMPc,g is the mitigation potential (kg N per grid) from improving irrigation
of crop c in grid g, Ec,g is the emissions (kg N per grid) of crop c in grid g, ESc is
the effect size (%) of improving irrigation on crop c, and IRate is the potential
implementation rate (%) of improving irrigation. Determination criteria of the
potential implementation rate for improving irrigation were from Gu et al.116

For details, see Table S5.
Shifting diet structure
The global crop-specific potential of N2Omitigation from shifting diet structure
was estimated by changing the production of crops to meet the demand of
food recommended by the Universal Healthy Reference Diet (EAT-Lancet).
The emissions after shifting diet structure were calculated as per the following
equation:

Edietc =
E0c

Hareac
3Hareac;diet ; (Equation 3)

where, E0c and Edietc are the emissions (kg N per grid) before and after shifting
diet structure, respectively, and Hareac and Hareac, diet are current and opti-

mized harvested area (ha) of crop c, respectively. Global or country-level
changes of crop productions were from the EAT-Lancet Commission152 and
Sun et al.26 To calculate the changes of harvested area, we assumed the pro-
ductions per harvested area here were consistent.
Combinations of measures
All measures from optimizing N fertilization (reducing N inputs, EEFs, N fertiliza-
tion placement, and N fertilization frequency), irrigation practice, and shifting
diet structure were combined to achieve the maximum mitigation potentials.
The emissions of the combination can be calculated from the following equation:

Eall = Nrate 3
Y

m

ð1 ! ESm 3 IRratemÞ 3 Hareadiet 3EF; (Equation 4)

where Eall is the emissions (kg N per grid) by combinations of all measures,
Nrate is optimized fertilizer N application per harvested area (kg N/ha), ESm

is effect size (%) of management practices and technologiesm, IRratem is their
potential implementation rate (%),Hareadiet is harvested area after shifting diet
structure, and EF is emission factor (%).
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