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In the quest to model neuronal function amid gaps in physiological data, a promising
strategy is to develop a normative theory that interprets neuronal physiology as
optimizing a computational objective. This study extends current normative models,
which primarily optimize prediction, by conceptualizing neurons as optimal feedback
controllers. We posit that neurons, especially those beyond early sensory areas,
steer their environment toward a specific desired state through their output. This
environment comprises both synaptically interlinked neurons and external motor
sensory feedback loops, enabling neurons to evaluate the effectiveness of their control
via synaptic feedback. To model neurons as biologically feasible controllers which
implicitly identify loop dynamics, infer latent states, and optimize control we utilize the
contemporary direct data-driven control (DD-DC) framework. Our DD-DC neuron
model explains various neurophysiological phenomena: the shift from potentiation to
depression in spike-timing-dependent plasticity with its asymmetry, the duration and
adaptive nature of feedforward and feedback neuronal filters, the imprecision in spike
generation under constant stimulation, and the characteristic operational variability
and noise in the brain. Our model presents a significant departure from the tradi-
tional, feedforward, instant-response McCulloch–Pitts–Rosenblatt neuron, offering a
modern, biologically informed fundamental unit for constructing neural networks.

neuron | control | dynamics

Despite the wealth of mechanistic insights into neuronal physiology, constructing
generalizable models of brain function remains a formidable challenge in neuroscience.
This difficulty largely stems from the inherent variability of biological neurons,
characterized by an array of challenging-to-quantify parameters like ion channel densities.
A promising strategy to overcome this challenge involves developing a normative theory
of neuronal function, conceptualizing neuronal physiology as an optimization of a
computational objective. Such a normative theory can potentially mitigate the limitations
posed by incomplete physiological data through a focus on the functional integrity of
computational models.

Shining examples of such a normative approach are the efficient coding and predictive
information theories. Efficient coding (1–7), by maximizing transmitted information
under physical constraints, views spike-triggered averages (STAs) as optimal feedforward
filters and rationalizes their adaptation with input statistics. Predictive information
theories (8–12), by optimizing the encoding of future-relevant information, have
demonstrated quantitative congruence with experimental observations in early sensory
areas. These theories apply beyond these areas, as evidenced by the adaptive nature of
feedforward filters in other neuronal types (13, 14).

However, this perspective does not fully account for certain physiological attributes
of neurons. Our analysis reveals that neurons adapt not only their feedforward filters but
also their spike-history-dependent (feedback) filters, suggesting a functional role beyond
basic housekeeping operations like sodium channel de-inactivation during refractory
periods. Furthermore, whereas current injections in neurons with identical high-variance
waveforms produce consistent spike trains, constant current injections result in more
variable outputs (14). Neither feedback filter adaptation nor inconsistent response to
constant current injections is predicted by efficient coding.

While prediction remains a crucial aspect of neuronal computation beyond early
sensory areas, it likely isn’t the sole computational objective. Neurons, particularly in
motor and premotor areas, are tasked with not only forecasting but also influencing
future states of the external environment through precise control signals. Additionally,
the pervasive presence of feedback loops in the brain (15–18) underscores that neuronal
outputs often modulate their own inputs physiologically.
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These observations have led us to expand the predictive
neuron model, incorporating optimal feedback control into the
normative framework. We posit that neurons, especially those
beyond early sensory areas, act as feedback controllers, aiming
to steer their environment toward a desired state, as depicted
in Fig. 1A. The neuronal environment encompasses both the
circuits of interconnected neurons and external motor sensory
loops, allowing the neuron to assess control efficacy through
synaptic feedback.

At first glance, the task of being a feedback controller
appropriate for the whole brain (19–21) may seem daunting for
a single neuron. To begin with, the dynamics of its environment
are not known to the neuron a priori, necessitating learning them
from data. Traditional system identification methods tackle this
by deducing dynamic parameters (e.g., parameters A, b, and
C in linear state-space models, as illustrated in Fig. 1A) from
historical observations and control signals (22). These parameters
form the basis for deriving a control law that optimizes specific
objectives, like optimal or robust control (23). When dealing
with low-dimensional or noisy observations, the control law
must be based not only on immediate observations, y, but on
an estimated state, x̂, (23) derived from past data (see output
feedback control and Kalman filtering) (Fig. 1A). Although, for
linear dynamics, the above tasks have known solutions (22, 23),
they are computationally too demanding for a single neuron to
perform or even to represent the dynamic parameters explicitly.

To implement a biologically plausible feedback controller, we
adopt the contemporary direct data-driven control (DD-DC)
framework (24–26). The crux of DD-DC is to sidestep the
explicit representation of the controlled dynamical system and
the explicit inference of the latent state, instead directly mapping
observations to control signals. This mapping is learned from
historical pairings of observations and control signals. In scenarios
where the remainder of the loop is represented by a linear dy-
namical system of order n ≥ 1, with scalar input (control signal)
and output (observations), this relationship is characterized by
an autoregressive moving average (ARMA) process.

Conceptualizing neurons as controllers in general and mod-
eling them as DD-DCs in particular provides insights into
multiple seemingly unrelated experimental observations. First,
it can explain the potentiation/depression transition in spike-
timing-dependent plasticity (STDP) and its asymmetry (Fig. 1D)
(27–29). Second, it can account for the temporal extent (nonin-
stantaneous nature) of feedforward (STA) and feedback (spike-
history dependent) filters and their adaptation to input statistics
(Fig. 3 B–F ). Third, it explains the loss of temporal precision in
the neuronal spike-generation mechanism under constant input
(Fig. 4, Right) (14). Fourth, the operation of DD-DC in the
online setting requires variability and/or noise (Fig. 2, Right),
which is consistent with many neurophysiological observations
(30–36). Finally, viewing neurons as controllers is consistent with
the observations of movement-related activity throughout much
of the brain including traditionally sensory areas (37, 38).

Our model applies not only to neuroscience but also to
machine learning and artificial intelligence. Current artificial
neural networks are typically based on a neuronal unit inspired by
an outdated view of neurons (39, 40). This neuronal unit is overly
simplistic in that it lacks internal feedback and temporal dynamics
(for more details, see Relationship to other work). Therefore,
our proposed DD-DC model of the neuron could serve as
an alternative foundational building block for constructing
biologically inspired artificial neural networks.

A preliminary publication of this work has appeared in the
abstract form (41, 42).

Fig. 1. (A) A schematic representation of the neuron as a feedback controller
in a closed loop. (B) A scalar fully observed dynamical system controlled
by tuning the weight of a synapse, w, in the control law. (C) The subspace
of valid pairings of observations and controls (blue plane) is spanned by
the previously observed states (blue vectors). The intersection of the valid
dynamical subspace with the xt+1 = 0 plane defines the control law (red
line). (D) STDP: the relative change in the synaptic weight, Δw/w, vs. the
time interval between the pre- and postsynaptic spikes, tx − tu, showing the
potentiation (causal) and depression (anticausal) windows (27–29). Adapted
from ref. 28. Copyright 1998 Society for Neuroscience.

The DD-DC Framework

In this section, we provide an overview of theDD-DC framework
(24–26). In our exposition, we use lowercase letters to denote
scalar variables, lowercase boldface for column vector variables,
and uppercase boldface for matrices and row vectors.
For the sake of clarity, we model the neuronal environment

as a linear dynamical system in a discrete-time state-space
representation (Fig. 1A):

xt+1 = Axt + but , [1]

yt = Cxt , [2]

where xt ∈ R
n represents the latent state of the environment at

time t, ut is the control signal generated by the neuron, and yt is
the observation received by the neuron. In the realm of model-
based control, the dynamics parameters A, b, and C are typically
predefined, an unrealistic presumption in a biological context.
We consider the system Eqs. 1 and 2 to be fully controllable and
observable. In some cases, the optimal control signal is linearly
related to the estimated latent state variable, x̂,

ut = Kx̂t . [3]

When the parameters A, b, and C are unknown to the
controller, the optimal control signal can be constructed using
DD-DC. In this case, control signals are generated directly from
the observations, bypassing an explicit representation of the
system dynamics and the latent state. The DD-DC controller
learns the mapping from observations to control signals from the
history of such pairings. The intuition behind DD-DC is that
any valid observation-control pairing belongs to the subspace
delineated by Eq. 1 spanned by historical pairings (Fig. 1C).
This intuition is formalized by Willems’ fundamental lemma
(24), which posits that each observation-control pairing (in the

2 of 9 https://doi.org/10.1073/pnas.2311893121 pnas.org

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 1

8
4
.1

8
9
.2

2
1
.4

5
 o

n
 F

eb
ru

ar
y
 7

, 
2
0
2
5
 f

ro
m

 I
P

 a
d
d
re

ss
 1

8
4
.1

8
9
.2

2
1
.4

5
.



fully observed scenario) can be expressed as a linear combination
of k historical pairings (1, 2, ..., k < t),

[
xt+1

xt
ut

]
=

[
x1+1 . . . xk+1
x1 . . . xk
u1 . . . uk

]
g, g ∈ R

k, [4]

assuming the matrix composed of x and u rows on the right
has full row-rank (linear independence), a condition known as
persistent excitation.

The DD-DC computes the control signal directly from
historical pairings by solving Eq. 4 for ut , thereby obviating
the need for an explicit representation of the dynamical system
(A, b, and C) and the latent state, x̂, in the controller. Initially
formulated for ideal, noise-free, linear dynamics in offline settings
with extensive datasets (24), DD-DC has recently been expanded
to accommodate noisy observations, nonlinear dynamics, online
applications, and limited datasets (26, 43–46) making it a potent
model of computation in biological neurons. In the following
sections, we explore the implications of this hypothesis and
demonstrate its alignment with existing experimental evidence
and original analysis.

Basic DD-DC Accounts for STDP

In this section, we demonstrate how even the most basic DD-DC
neuron model can account for the principal characteristics of
STDP (Fig. 1D).We start with the assumption that all dynamical
variables are scalar (n = 1) and that the system is fully observed;
thus, x̂ = y = x (Fig. 1B). This allows us to express Eq. 1 in a
scalar form:

xt+1 = axt + but . [5]

We posit that the neuron aims to stabilize the environment’s
state at x = 0, even when its dynamics are unstable (a > 1). To
achieve this, we employ a one-step time-horizon linear quadratic
regulator (LQR), where the optimal control signal u∗

t minimizes
the sum of squared state error and control energy:

u∗
t = argmin

ut
q‖xt+1‖

2 + r‖ut‖
2. [6]

This LQR objective is fulfilled by a linear control law:

u∗
t = w∗xt , [7]

with w∗, a scalar, in place of K from Eq. 3 because it is naturally
implemented by the synaptic weight, as shown in Fig. 1B.
For simplicity, we initially address the limiting case of LQR

with zero control cost (r = 0), and later present the solution for
nonzero r. In the r = 0 scenario, Eq. 6 is minimized by xt+1 = 0.
By substituting Eq. 7 into Eq. 5 and ensuring xt+1 = 0 for any
given xt , we deduce a closed-form LQR solution, w∗ = −a/b.
As argued above, neurons must implement this control law

without prior knowledge of a and b, a challenge adeptly addressed
by the DD-DC model. Incorporating xt+1 = 0 into Eq. 4, we
obtain:

[
0
xt
u∗
t

]
=

[
x1+1 . . . xk+1
x1 . . . xk
u1 . . . uk

]
g =

[
X+

X
U

]
g, [8]

where we introduced row-vector notation, X = [x1 . . . xk],
X+ = [x1+1 . . . xk+1], and U = [u1 . . . uk].
To determine the optimal control signal u∗

t , we first solve the
top two rows of Eq. 8 for g. Given the underdetermined nature

of the problem (k typically exceeds the combined dimensions of
x and u), we compute g with a minimum l2-norm found via a
pseudoinverse:

g =
[
X>

+
X>

] ([
X+

X

] [
X>

+
X>

])−1 [
0
xt

]

=

[
X>

+
X>

]

X+X>
+
XX> − (X+X>)2

[
XX> −X+X>

−XX>
+

X+X>
+

] [
0
xt

]
,

[9]

Subsequently, we substitute this g into the bottom row of
Eq. 8 to obtain

u∗
t = Ug =

UX>X+X>
+

− UX>
+
X+X>

X+X>
+
XX> − (XX>

+
)2

xt , [10]

This formulation can be interpreted as a control law Eq. 7, with

w∗ =
UX> − UX>

+
X+X>(X+X>

+
)−1

XX> − (XX>
+

)2(X+X>
+

)−1
. [11]

Notably, this control law obviates the need for a neuron to
calculate g at each timestep or retain all past values of U, X,
and X+. Instead, it requires only the storage and update of their
covariances, a biologically plausible process previously utilized in
similaritymatching networks (47). Rewriting these covariances as
sums over recent history and omitting the denominator (a positive
scalar independent of the control signal) yields:

w∗ ∼

k∑

�=1

u�x� − cos (X̂X+)

k∑

�=1

u�x�+1, [12]

where cos (X̂X+) = (X+X>
+

)−1X+X>.
In the neurophysiological context, x and u in Eq. 12 symbolize

pre- and postsynaptic neuronal activities, respectively, with
nonzero values during spikes. Consequently, the sums in Eq. 12
accrue contributions solely when pre- and postsynaptic spikes
are temporally proximate, depending on their temporal order.
Note that although the indices of u and x are the same in
the first sum, this is an artifact of the discrete-time setting,
and u must be delayed by at least a fraction of the time
step to be computed from x. This model naturally accounts
for the transition from potentiation to depression observed in
STDP, as well as depression being weaker than potentiation (as

cos (X̂X+) < 1 generically), aligning with empirical findings
(27–29) (Fig. 1D).
Whereas the potentiation window of STDP can be viewed

as the extension of the Hebbian rule (48) to the temporal
interplay between spikes, the rationale behind the relatively
narrow depression window in STDP has remained elusive, largely
due to its seemingly anticausal nature. Current explanations
of this phenomenon, e.g., refs. 49 and 50, rely on ad hoc
assumptions. In contrast, our work shows that the apparent
anticausal aspect of STDP is a natural outcome of conceptualizing
neurons as feedback controllers. Specifically, the absence or
presence of a presynaptic spike following a postsynaptic spike
conveys information to the neuron about the effectiveness or
ineffectiveness of its control of the environment. Thus, what is
initially perceived as an anticausal feature in STDP transforms
into a causal mechanism when viewed through the lens of the
feedback loop inherent in the controller model.

PNAS 2024 Vol. 121 No. 27 e2311893121 https://doi.org/10.1073/pnas.2311893121 3 of 9
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Next, we consider a DD-DC LQR controller with a nonzero
control cost, r > 0, which in the scalar, one-step time-horizon
case is given by:

w∗ =
UX>‖X+‖2 − UX>

+
XX>

+

‖X‖2‖X+‖2 − (XX>
+

)2 + (‖U‖2‖X‖2 − (UX>)2) r/q
.

[13]
The full derivation of this solution is given in SI Appendix,
section A. One can see that it aligns with the optimal LQR
gain:

w∗ =
−ab

b2 + r/q
, [14]

by substituting X+ = aX + bU into Eq. 13 and dividing both
the numerator and the denominator of Eq. 13 by the common
expression

(
‖U‖2‖X‖2 − (UX>)2

)
, thus reducing it to Eq. 14.

This solution provides a potential framework to interpret the
variance in STDP profiles documented in various studies (51) in
terms of variance of r.
However, as our Eq. 12 involves covariances with only two

time lags, it does not fully describe the time-course shown in Fig.
1D. This limitation, inherent to the scalar dynamics model Eq. 5,
motivates the exploration of higher-order dynamics, as discussed
in an upcoming section on reconstructing temporal filters.

Closed-Loop DD-DC: Malfunction Under
Constant Control Law and Restoration of
Function by Adding Noise to Control

In this section, we investigate the functioning of the DD-DC
LQR controller through numerical simulations aimed at sta-
bilizing a potentially unstable scalar dynamical system, Eq. 5.
Initially, we operate the controller in an open-loop mode for four
time steps, implementing white-noise control, u, and tracking
the resultant state variable, x. Subsequently, we compute the
controller gain, w, by integrating the recorded values of u
and x into the general LQR solution, Eq. 13. Following this
initialization, we transition to a closed-loop operation of the
DD-DC LQR controller, recalculating w at each time step (see
SI Appendix, section B for details). Our findings reveal that the
DD-DCLQR controller successfully identifies andmaintains the
optimal value of w up to time = 25, Fig. 2, Left.

For the DD-DC controller to effectively replicate the adap-
tive behavior of a biological neuron, it must adjust to the
evolving dynamics within a real-time, closed-loop framework.
Accordingly, the update algorithm for w incorporates a discount
factor, progressively diminishing the influence of older data on
covariance calculations (see SI Appendix, section B for details).
Initially, the controller learns and applies the optimal value of w.
When the parameters a and b undergo a switch (at time = 25), x
remains at zero initially, indicating no direct loss impact, Fig. 2,
Left. To demonstrate that the controller fails to adapt, we apply a
jolt Δx = 0.2 (dashed line in Inset) to the state variable x at time
t = 55. This results in significant and often unstable deviations
from equilibrium, Fig. 2, Left.
To uncover the cause behind the DD-DC controller’s failure

to adjust following the static control law phase, we reexamined
the data matrix entering Eq. 8:

[
x1+1 . . . xk+1
x1 . . . xk
u1 . . . uk

]
=

[
x1+1 . . . xk+1
x1 . . . xk
wx1 . . . wxk

]
. [15]

Note that the submatrix composed of the x and u rows is
rank deficient, thereby contravening the persistence of excitation

Fig. 2. The gain, w, of the online DD-DC LQR controller (Top) and the state
variable, x, of the scalar dynamical plant (Bottom) as a function of time
for switching system dynamics parameters. Left: In the absence of noise
in control, the DD-DC controller fails to adapt to the changing conditions
because of the loss of persistence of excitation. Each of the five colored lines
represents a different simulation trial. Right: Adding noise to the control law
Eq. 16 enables exploration that restores the persistence of excitation and
performance of the controller (also see SI Appendix, section B). The dashed
line showsoptimal LQR values ofweights for every time step. Thewhite bands
within the gray shaded areas in the w plots represent regions of stability and
instability respectively. Insets plot |x| on a log scale–representative of the
control loss.

condition. This rank deficiency signifies a critical limitation in
theDD-DC’s learning capability, as it impairs the system’s ability
to extract meaningful information from the data. Operationally,
this issue manifests in the denominator of Eq. 13 approaching
zero.
Considering that sensory input may sometimes be constant

(52) and control efforts typically aim for optimality, the question
arises: how can the vulnerability of the online DD-DC controller
be mitigated? Building upon the suggestions of control theorists
(46), we propose that the brain deliberately generates variability
and/or noise, denoted as �, to sustain the persistence of excitation
condition even under static input or control regimes. Formally,

u∗
t = w∗xt + �t . [16]

Implementing the control law Eq. 16 in the same dynamical

system is illustrated in Fig. 2, Right, for VAR(�t) = 10−6. The
addition of low-variance noise to the control signal facilitates
exploration thus reestablishing persistence of excitation and
overall controller performance. This is evidenced by x swiftly
returning to zero and w reverting to its optimal state. However,
introducing too high-variance noise could cause significant
deviations of the control signal from the LQR optimal Eq. 14,
implying that there might exist an ideal noise variance level for
optimal control performance (see SI Appendix, section B for
details).
There are multiple empirical observations of noise that could

play such a role within the brain. Locally, such noise might
originate from the inherent unreliability of synaptic transmission
(31). On a broader scale, the brain encompasses specific circuits
and neurons dedicated to introducing noise and/or variability, as
evidenced in studies on songbirds (33) andCaenorhabditis elegans
(32). Additionally, the brain can introduce variability in sensory
inputs through the generation of corresponding motor outputs,
exemplified by microsaccades (53). Given these mechanisms, the

4 of 9 https://doi.org/10.1073/pnas.2311893121 pnas.org

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 1

8
4
.1

8
9
.2

2
1
.4

5
 o

n
 F

eb
ru

ar
y
 7

, 
2
0
2
5
 f

ro
m

 I
P

 a
d
d
re

ss
 1

8
4
.1

8
9
.2

2
1
.4

5
.



A B

C D

FE

Fig. 3. (A) Illustration of the neuron modeled as an ARMA controller, characterized by feedforward, Kff , and feedback, Kfb, temporal filters. (B–D) Adaptation

of experimentally measured temporal filters (depicted in black, yellow, and blue) to input signal statistics. Solid lines represent mean values, while thin dotted
lines denote standard errors of the mean. Regions where differences are statistically significant (P < 0.05, Wilcoxon rank-sum test with Bonferroni correction
for multiple comparisons) are highlighted in red. (B) Variation in feedforward (akin to decorrelated spike-triggered average, STA) and feedback (analogous to
spike-history dependence) filters of the blowfly H1 neuron (54), responding to visual motion against different background luminance levels. (C) Feedforward
and feedback filters in pyramidal cells from the mouse primary visual cortex (55) responding to current injections with varying mean levels. (D) Feedback filters
in a salamander retinal ganglion cell (8) for stimuli comprising a drifting bar and a fishmovie (meta data for the feedforward filter is unavailable, see SI Appendix).
(E) Adaptation of feedforward and feedback filters in a Drosophila olfactory receptor neuron (ORN) (56) to odorant concentrations with varying variances. (F)
Feedback filters in rat somatosensory cortex pyramidal neurons (57), responding to current injections modulated by an Ornstein–Uhlenbeck process atop a DC
component. Feedforward filters are provided in SI Appendix.

operational variability observed in neural representations (34, 35)
appears less paradoxical and more a natural consequence of the
brain’s function as a DD-DC controller.

Reconstruction of Feedforward and Feedback
Temporal Filters from Data

We now explore the DD-DC of a dynamical system of order
n > 1, equipped with a scalar control signal, u, and a scalar
observation, y (Fig. 3A). In such systems, observations are partial
and insufficient for direct control, necessitating that the controller
estimate the latent state, x. For linear systems, this latent state can
be inferred from recent sequences of observations and controls
using time-delay embedding techniques (25),

x̂(t) = [yt−n . . . yt−1 ut−n . . . ut−1]
>
, [17]

enabling us to reformulate the control law, Eq. 3, as:

ut =
[
Kff Kfb

]
[yt−n . . . yt−1 ut−n . . . ut−1]

>
. [18]

Here, the feedforward, Kff , and feedback, Kfb, temporal filters
collectively form an ARMA model of the neuron (Fig. 3A).
In this section, rather than optimizing feedforward and

feedback temporal filters, we estimate them from experimental
data. In these experiments, neurons are isolated from the loop
and stimulated with sensory input or injected current, y, and the
neuronal response, u, is recorded. These data are compiled into

matrices U = [u1 . . . ut ] and X̂ = [x̂1 . . . x̂t ], which are
linearly related:

U =
[
Kff Kfb

]
X̂. [19]

We solve for the filters by linear regression using a pseudoin-
verse,

[
Kff Kfb

]
= UX̂>

(
X̂X̂>

)−1
. [20]

Utilizing Eq. 20, we reconstruct the feedforward, Kff , and
feedback, Kfb, temporal filters from experimental data across
various model systems, Fig. 3 (see SI Appendix, section C for
details).

PNAS 2024 Vol. 121 No. 27 e2311893121 https://doi.org/10.1073/pnas.2311893121 5 of 9
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Fig. 4. High-variance current injections into a neuron yield remarkably consistent spike trains over multiple trials, showcasing the precision of the spike-
generation mechanism. Right: In contrast, a constant current input leads to notably variable spike trains, revealing a significant reduction in spike-timing
precision. This dichotomy highlights the neuron’s differential response to varying and constant stimuli. Adapted with permission from ref. 14.

While these temporal responses have been previouslymeasured
(58–60) and interpreted as optimal feedforward filters, our
controller-based perspective offers a different interpretation. In
a partially observed system, instantaneous observations alone are
inadequate for control. Thus, feedforward and feedback filters
with finite temporal extents are essential for control actions that
are coherent with the latent state Eq. 17. The temporal extension
of these filters aligns with the hypothesis that neuronal output
influences the environment’s latent state and acknowledges the
partial observation of the system.

In each system we studied, neurons were recorded under
various conditions, with stimulus statistics changing between
these conditions. These included the blowfly H1 neuron with
varying background luminance (54), mouse V1 pyramidal
neurons responding to differentmean injected current waveforms
(55), salamander retinal ganglion cells exposed to distinct visual
stimuli (8), Drosophila olfactory receptor neurons reacting to
varying odorant concentrations (56), and pyramidal neurons in
the rat somatosensory cortex stimulated with current injections
of diverse means and variances (57). As shown in Fig. 3, the filter
shapes adapt to both the mean, �, and variance, �, of the input
statistics.

The adaptation of feedforward filters to input changes is well
documented (2, 4, 14) and suggests a functional role beyond
mere biological necessity, explainable by efficient coding and
predictive information theories (3, 5, 12). The adaptation of
feedback filters to changing stimulus statistics demonstrated by
our analysis is not predicted by existing theories. This calls for
a framework that treats feedforward and feedback filters equally,
such as the controller neuron model.

Spike Generation Mechanism Loses Precision
Under Constant Input

Neuronal spike generation typically showcases remarkable pre-
cision: repeated injections of the same current waveform into
a neuron yield highly reproducible spike trains, precise down
to milliseconds (13, 14) (Fig. 4, Left). This level of precision
in spike timing must incur metabolic cost and is therefore
suggestive of a functional significance. Intriguingly, this precision
deteriorates when the neuron is subject to a constant current
input (14) (Fig. 4, Right), exposing a notable limitation in the
spike-generation mechanism.

The DD-DC model of neuronal function offers an insightful
explanation for this observed decline in spike-timing precision
with constant input. The DD-DC model posits that a neuron
reconstructs any state as a weighted sum of past states, which

is effective only when these past states are sufficiently varied
(24). This is rooted in the persistency of excitation condition,
requiring the matrix of past states in Eq. 4 to have full row-
rank. Under constant input, however, this condition fails as the
lag vectors in Eq. 17 become uniform. Consequently, when a
neuron processes recent history (approximately 100 ms in Fig. 4,
Right), the DD-DC model predicts erratic outputs in response
to a constant current, mirroring the vulnerability of the spike-
generation mechanism to such inputs.
Traditionally, the variability in spike timing under constant

input was ascribed to intrinsic ion channel noise, not controlled
for in experimental setups (61). This noise was thought to be
inconsequential for spike timing in the presence of highly variable
inputs, as its effects would be overshadowed by the abundance of
open ion channels. However, under constant input, even slight
variations in injected current (STD ≈ 50 pA) are observed to
restore spike-timing precision (57), posing questions about the
underlying mechanisms of such sensitivity. Our model offers
a different perspective, suggesting that this sensitivity to low-
variance noise stems from the high condition number (ratio
of the largest to the smallest singular values) of time-delay
covariance matrices. These matrices must be inverted to compute
a neuron’s response (akin to Eq. 20). Our hypothesis posits that
the singularity at constant current can be empirically validated
by measuring spike time variability against noise variance below
the threshold reported in ref. 14, and correlating it with the
condition number of the time-delay covariance.

Discussion

The power of the proposed DD-DC model of the neuron is in
that, starting from a single postulate, it offers explanations for
multiple previously unrelated neurophysiological phenomena,
including the switch between potentiation and depression in
STDP and its asymmetry, the extended nature and input-
dependent adaptation of feedforward and feedback temporal
filters, the imprecision of the spike-generation mechanism under
constant input, and the prevalence of operational variability and
noise in the brain. Although each of these explanations provides
only circumstantial evidence, their multitude and variety provide
strong support for the DD-DC model. This perspective has the
potential to deepen and refine our understanding of the brain and
may also aid in the development of biologically inspired artificial
neural networks.

Nonlinear Dynamics and Control. In this study, we focused on a
DD-DC model that assumes discrete-time and linear dynamics
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Fig. 5. Left: Illustration of controlling a nonlinear dynamical system using multiple switching DD-DCs. Right: Depiction of a deep network model where each
neuron exerts control over its immediate environment, contributing to the broader control exerted by the entire brain over the external environment.

of the environment. In reality, the dynamics are continuous-time
and nonlinear. As is often the case in control theory, we expect
that our framework can be naturally extended to continuous
time. As nonlinear dynamics of the loop can be approximated
locally as linear, we speculate that they can be modeled by a
switching linear system controlled by a set of switching DD-DCs
(Fig. 5, Left). This would explain why layers of processing in the
brain contain many neurons in parallel performing analogous
functions.

How to derive a nonlinear controller model of a neuron
from the normative perspective? Even for linear plant dynamics,
apart from special cases like LQR, the optimal controller may
not be linear. Perhaps neuronal action potentials, in addition
to having higher information transmission capacity relative to
graded potentials in noisy environments (62–64), have other
operational advantages similar to widely used bang-bang control
(65). Deriving such a controller may help model neurons with
active conductances and spikes (66) on the algorithmic level.

Stability and Performance Objectives. In control theory, the
stability of the closed loop is of primary concern.While a stability
criterion for DD-DC can be formulated (25), it allows for
numerous solutions. How to select a specific solution out of
the stable set is not clear. One approach could be to look
for the most stable solution, which would remain stable even
in the presence of noise and uncertainty about the parameters of
the dynamical system. Another approach could be based on the
observation that the brain operates at the edge of chaos (67, 68),
favoring borderline stable solutions. A similar borderline stable
solution is suggested by viewing a neuron as an integrator, which
would require the top eigenvalue to have a unit norm (69). Such
flexibility in the choice of the objective may allow one to use
different solutions to model different neuronal classes.

A Network of DD-DC Neurons. The DD-DC model of the
neuron presented here lumps the rest of the neurons into a
single dynamical system, yet each fellow neuron can also be
modeled as a DD-DC. This raises the question of how multiple
DD-DC neurons interact with each other in a network. We
leave this question to future work and comment only on several
experimental observations that support this view.

First, measurements of synaptic plasticity may shed light on
the temporal lag caused by the feedback loop. In the case of
STDP (Fig. 1D), pre- and postsynaptic spikes must be almost
synchronous for plasticity to occur, indicating that the loop
traverses an order of one synapse. This finding corresponds to
the known abundance of short local feedback loops in the cortex

(16, 70). At the other extreme, the plasticity of some synapses
in the cerebellum and the hippocampus peaks when the spikes
lag by tens of milliseconds (71, 72). This suggests longer loops
involving different brain regions or even the external environment
(73). The abundance of loops is not limited to mammalian brains
(15) and has been reported in invertebrates as well (17, 18).
Second, the ability of individual neurons to control long

(multisynaptic and transenvironment) loops may seem unreal-
istic. However, theoretical analysis (74, 75) and experimental
observations seem to support long-range propagation of signals
from individual neurons (76). Specifically, rodents can be trained
to behaviorally report single-neuron electrical stimulation in the
barrel cortex (77) suggesting that the spikes of a single neuron can
make an impact sufficiently far downstream to elicit behavior.
Also, stimulation of single neurons in the motor cortex evoke
whisker movements (78), suggesting that single neurons can
produce observable effects on the environment. Taken together,
these experiments support the propagation of individual neurons’
spikes around long loops.
Third, modeling neurons as DD-DC controllers offers an

explanation for the representation of movement outside of the
motor cortex (37, 38). As DD-DC neurons in every layer
(Fig. 5, Right) combine systems identification and control, they
acquire characteristics of both sensory andmotor representations.
Therefore, it is natural to expect a mixed representation at every
layer with a gradual transformation from sensory to motor. The
controller perspective also accounts for the context dependence
of neuronal representations (36). As neuronal activity should not
just reflect the sensory stimulus but rather optimal control, which
is context dependent, it is natural to expect such representations.

Relationship to Other Work

The concept of modeling neurons as controllers intersects with
several established research avenues. A notable idea in neuro-
science relates neuronal output to a prediction of future inputs
(2, 6, 11, 12). To optimize control, the DD-DC neuron implic-
itly infers environmental dynamics, which could also be used for
prediction. However, the controller neuron does not just predict
the future input but aims to influence it through its output.
Normalization of neuronal responses, which have been both

experimentally observed and theoretically modeled (79–81), re-
sembles the feedback filter in ourmodel. However, normalization
models focus on interactions among parallel channels under
static stimuli, overlooking temporal correlations and stimulus
dynamics. In contrast, the DD-DC model proactively controls
inputs through its influence on the underlying dynamical system.

PNAS 2024 Vol. 121 No. 27 e2311893121 https://doi.org/10.1073/pnas.2311893121 7 of 9
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Our approach also aligns with the idea that spiking neuron
networks encode temporally variable inputs (82). Although
these networks are predominantly feedforward and do not
allow neuron outputs to modify network inputs, both concepts
emphasize learning generative dynamics.Moreover, our approach
allows for unstable, partially observed dynamical systems.

Data-driven control in network contexts, including brain
networks, has previously been investigated (83). However, these
studies generally involve controlling networks through external
perturbations and lack a focus on biological plausibility. Unlike
our neuron-centric DD-DC model, they require access to
multiple network nodes and are constrained by the resolution
of technologies like fMRI.

The DD-DC ARMA model for neurons (Fig. 3A) shares
similarities with generalized linear models (GLMs) (60), notably
in possessing feedforward and feedback filters. But, while GLMs
are stochastic and nonlinear, the DD-DCmodel is deterministic,
linear, and provides a rationale for the duration and adaptation
of these filters. The concept of temporal integration in our
model also echoes the principles of integrate-and-fire models
(84), laying groundwork for future connections between these
theories. The intraneuronal feedback loop similar to ours has
been previously used to combine encoder and decoder functions
in the same neuron (85). In that model, an integrate-and-fire
neuron spikes when the error between its input and reconstructed
signal crosses an adapting spike threshold. This is similar in
spirit to our approach in that a neuron spikes when it is
attempting to align its input to a target value. Our model
adds the interpretation that the neuron is not just reporting
the error but acting in an effort to modify the incoming
input.

Differing from the conventionalMcCulloch–Pitts–Rosenblatt
(MCPR) unit in artificial neural networks, the DD-DC neuron
integrates inputs over time and features an autoregressive loop,
unlike the instantaneous response of the MCPR units. Also, in
contrast to network-wide optimization in artificial neural net-
works, the DD-DC model optimizes objectives at the neuronal
level. The DD-DC neuron uses its inputs as a teaching signal
as opposed to biologically implausible error backpropagation in
artificial neural networks.

Neurons are sometimes conceptualized as agents in the
reinforcement learning (RL) paradigm, (86, 87). While control
theory and RL share commonalities, key distinctions include
control theory’s implicit dynamical systems model of the
environment and its focus on optimizing specific objectives
based on controls and observations, as opposed to the reward-
maximization approach in RL.
Previous studies have conceptualized the whole brain as a

controller acting on the external world (19–21), and used LQR
with delays/noise to model internal feedback (88). Our DD-DC
approach extends this concept to individual neurons. If both the
entire brain and single neurons can be modeled as controllers,
intermediate levels of brain structure might also fit this model
(89, 90). Earlier models separated sensory system identification
and motor control (91), but our unified neuron-as-controller
model eliminates the need to match corresponding sensory and
motor units.
Our results may apply to cell types other than neurons and

allow modeling their function as feedback controllers of their
environments. This view is natural in the light of evolution as
single-cell organisms must act as feedback controllers to survive.
Future research could explore how coherent controller actions
emerge in self-organized networks of neuron (or cell) controllers.

Data, Materials, and Software Availability. Previously published data were
used for this work (8, 54–57). Analysis code available at https://zenodo.org/
records/11399185 (92).
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