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Abstract—In this article, we introduce a groundbreaking
approach for ultra-low-power hybrid analog-digital processing of
multimodal physiological data at multiple locations, emphasizing
EEG signals. We propose an innovative analog Convolutional
Processing Unit (CvPU) that uniquely harnesses the properties
of anisotropic diffusion in electrical circuits for convolution. This
novel use of anisotropic diffusion-driven convolution sets our
work apart. Additionally, we present a controller architecture
that allows for the sequential execution of multiple consecutive
convolutional layers using the same CvPU array. The proposed
neural network architecture to detect seizures using EEG signals
is evaluated on a publicly available clinical dataset. Our CvPU
array-based convolution’s performance and feasibility metrics
have been assessed using SPICE simulation software. Further-
more, we have delved deep into studying the scalability of our
approach in terms of power and space and its feasibility for
battery-less and implantable applications and have compared it
with both digital and hybrid analog-digital methods.

Index Terms— Analog processing circuits, convolutional neural
networks, low power electronics, electromagnetic nanonetworks,
implantable biomedical devices, body area networks, Internet of
Nano Things.

I. INTRODUCTION

HE Internet of Things (IoT), especially its nanoscale

counterpart, the Internet of Nano Things (IoNT) [2], [3],
[4], holds transformative promise for healthcare monitoring.
By embedding minuscule sensors within the body, IoNT could
offer real-time, granular insights into physiological changes,
optimizing early disease detection and personalized treatment
regimens. However, actualizing these nanonetworks presents
significant obstacles, namely energy consumption and commu-
nication [5]. To address these challenges, we propose in-situ
processing on the nanosensors themselves, bringing down
energy requirements by distributing computation and reducing
communication costs by not communicating raw physiological
signals to microdevices for analysis. Multiple physiological
signals can be analyzed to paint a holistic monitoring picture
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Fig. 1. Concept visualization for ultra-low-power hybrid analog-digital pro-
cessing via multiple nanosensors forming an implantable nanonetwork. EEG
data is processed in-situ at multiple nanonodes and subsequent post-processing
is done at gateways. The communication between nanodes and gateways is
achieved by terahertz band (0.1-10 THz) electromagnetic communication.

local processing on gateways

of the body, but not all analyses carry the same difficulty. For
example, heart rate or breathing rates are easy to measure and
analyze but carry far less information on the body’s overall
condition than, say, electroencephalogram (EEG) or electro-
cardiogram (ECG) signals. However, analyzing such complex
signals is considerably harder as well. Harnessing the power of
neural networks, our approach is geared towards enabling such
complex analyses on nanosensors. In this vein, we choose to
focus on EEG as a case study for implantable nanosensors,
but we acknowledge that the proposed technology can be
reconfigured for other complex physiological signals in an
on-body implantable IoNT network, leading to comprehensive
multi-modal monitoring.

A. Motivation

Beyond clinical diagnosis and research, EEG assessments
can divulge critical insights into the brain’s health and func-
tioning. Long-term and real-time tracking, both in clinical
and pre-clinical scenarios, can pinpoint aberrations in cerebral
activities, facilitating early detection of neurological maladies
like epilepsy and Alzheimer’s [6], [7]. While regular clinical
EEG sessions may be cumbersome and inaccessible to many,
integrating nanosensors, when implanted, can revolutionize
this landscape. These implanted nanosensors promise uninter-
rupted, in-depth cerebral monitoring, bridging the gap between
periodic clinical visits. Yet, raw EEG data accumulation alone
is insufficient; the transformation of this data into actionable
insights is pivotal. Traditionally, this processing is done on
bulky digital platforms, culminating in substantial energy
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consumption and delays in procuring analyzed information [8].
Moreover, the operational span of such wearable EEG sensors
is short (a few days), and they disrupt users’ everyday routines.
To counteract these issues, we champion the employment of
ultra-low-powered, battery-less processing on an implantable
scale. This innovation promises to pare down energy demands
related to transmission and computation, ensuring uninter-
rupted insights into brain health.

B. Our Approach

To combat the drawbacks of current monitoring technology,
our proposed approach includes a two-tier wireless sensor
network architecture inspired from [2]. The lower tier consists
of multiple EEG nanosensors (as shown in Fig. 1) implanted
in the head to sense and process EEG signals. The upper tier
includes fewer gateways, such as mobile phones or medical
devices, that collect data/pre-processed decisions from the
nanosensor nodes and forward them to the cloud or per-
sonal devices that compile them into meaningful information.
Communication between the two tiers can be established
through electromagnetic communication in the terahertz fre-
quency band, made possible through nano-antennas based on
carbon nanotubes (CNTs) [4]. Furthermore, our conception for
continuous EEG monitoring can be extended to multi-modal
whole-body monitoring by using multiple low-level sensors
doing local processing, as well as multi-modal aggregation
on more powerful mobile devices or the cloud (see Fig. 1).
By placing multiple sensors on the body and taking advantage
of the processing power available in small digital handheld
devices, this architecture is both cost-effective and capable
of generating a comprehensive picture of an individual’s
brain health. This can enable early detection of neurological
disorders and the development of personalized treatment plans.
Leveraging a low-power convolutional framework, our system
can offer real-time EEG monitoring without direct reliance
on cloud infrastructure. Our approach harnesses an innovative
anisotropic diffusion-driven convolutional processor to cul-
minate in an analog detection mechanism. As a final step,
the digital component executes computation on a trigger-
based mechanism, delivering just-in-time determinations to the
user.

Our Contributions can be summarized as follows:

« We propose a novel analog Convolutional Processing
Unit (CvPU) using the properties of anisotropic diffusion
in electrical circuits.

e We propose a novel controller architecture for the
sequential execution of multiple consecutive convolu-
tional layers by reusing the CvPU array.

e« We propose a novel end-to-end hybrid analog-digital
architecture to detect seizures using EEG signals, using
hardware-software co-design principles, and evaluate it
on a publicly available clinical dataset.

o We evaluate the performance and feasibility metrics of
our CvPU array-based convolution using SPICE simula-
tion software.

o We study, in detail, the scalability of our approach, vis-
a-vis power as well as space, and compare it with other
approaches.
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C. Outline

The remainder of this article is organized as follows.
In Sect. II, we position our work with respect to works related
to our proposal. In Sect. III, we explain our proposed two-
step approach. In Sect. IV, we evaluate our approach, first
analog and digital domains separately, and then in a hybrid
manner. Sect. V involves discussion about the limitations and
advantages of our approach. Finally, in Sect. VI, we conclude
the article.

II. RELATED WORK

In this section, we thoroughly describe the literature relevant
to the Internet of Nano Things (IoNT), EEG signal processing
and analysis, wearable EEG devices, and analog computation
for neural networks.

A. Internet of Nano Things (IoNT)

The idea of IoNT was described by Akyildiz and Jornet [3],
and it fundamentally consists of nanosensors communicating
together to form a nanonetwork, for widely varying appli-
cations, such as an intrabody nanonetwork for healthcare
monitoring or an interconnected office space. Nanosensors
are envisioned to communicate at Terahertz frequencies using
graphene-based nano-antennas, while a few ‘microgateways’
are responsible for collecting and parsing data received from
these nanosensors, later conveying it to the cloud or other
mobile devices for analysis and interpretation. In this con-
text, much of the work done so far has been to investigate
ways to communicate between nanosensors reliably [9], [10],
[11]. Balasubramaniam and Kangasharju [5] enumerate the
challenges faced in realizing the IoNT. The authors put the
challenges addressed by our approach—energy efficiency and
communication costs—into context, whereby the proposed
CvPU architecture specifically addresses sensor-level chal-
lenges by reducing bandwidth requirements and middleware
computation requirements by introducing intelligence to the
nanosensors themselves. Added benefits include continuous,
long-term monitoring that has been shown to be more effective
at recognizing epilepsy and Alzheimer’s early [7].

B. EEG Signal Processing & Analysis

Electroencephalogram (EEG) involves sensing non-invasive
electrical signals on the scalp. It has been used for tasks
as diverse as motor-imagery inference [12], emotion recog-
nition [13], and speech comprehension [14], as well as
preliminary diagnosis for neurobiological conditions such as
cognitive impairment, Parkinson’s, schizophrenia, and demen-
tia [15]. Furthermore, several types of neural networks have
been designed to help with such diagnosis, including but
not limited to Convolutional Neural Networks (CNNs) — i.e.,
EEGNet [16] —, Long Short-Term Memories (LSTMs), as well
as Recurrent Neural Networks (RNNs) [17]. Specifically,
Lawhern et al. [16] proposed a compact CNN for analyzing
EEG signals which surpasses many prominent works in per-
formance metrics. Moreover, SeizureNet [18] proposes an
architecture based on several convolutional and dense layers
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to predict seizure types. However, works such as SeizureNet
are designed in isolation, assume unlimited resources, and
do not take into account the resources required to process
the underlying EEG signals, and hence are unamenable to
in-situ processing of EEG signals to alert users of any possible
seizure. This work, on the other hand, proposes a novel analog
architecture using 1 to 3 orders of magnitude less power than
the average digital processor, as well as provides a hybrid
analog-digital approach for real-time in-situ processing of
EEG signals.

C. Wearable EEG Devices

The wearable devices market has been experiencing signifi-
cant growth in recent years, driven by advances in technology,
increasing demand for health and fitness tracking, and rising
consumer awareness of the benefits of wearable devices.
Wearable devices include smartwatches, fitness trackers, smart
glasses, and other wearable technology that can monitor and
track various health and fitness metrics, such as heart rate,
steps taken, sleep patterns, and more. In North America,
the market for Neurotechnologies is expected to hit USD
38.17 billion, growing at an annual rate of 11.53% [19].
In fact, there are several startups harnessing the power of
EEG signals harvested through wearable helmets to target
markets as diverse as stress management, mental well-being,
as well as sports diagnosis [8]. However, the limiting factors
for the state-of-the-art wireless EEG monitoring systems are
low battery life (3 to 10 hours) and the dependence on the
cloud for timely analysis of the collected data [8]. We note that
while this might not be an issue for low-stakes applications,
such as entertainment and meditation; for applications such as
continuous stress monitoring, real-time concussion monitoring
for athletes, or continuous monitoring for seizures, a longer
battery life (for longer wearing) as well as a real-time analysis
is required. Our proposed solution handles both of these
challenges as we propose an in-situ low-powered approach
to provide fast as well as low-powered analysis to the end-
user, resulting in a tighter feedback loop as well as a longer
operational life for EEG monitoring devices.

D. Analog Computation for Neural Networks

There has been a great push toward analog computation
for neural networks in recent years. The major motivation
behind this push is the ability to break free from the tra-
ditional von-Neumann architecture for computing by having
computation in-memory [20]. Analog offers a new way out of
this by enabling in-memory computation, whereby data can
flow through at blazing speeds. The main proposed ways of
accomplishing this task have been memristors [21], [22], and
resistive processing units (RPUs) [23] based cross-bar arrays.
These analog circuits specialize in Matrix-Vector Multipli-
cations (MVMs) or Vector-Matrix Multiplications (VMMs),
which form the backbone of the computation in modern neural
networks. Simulators for analog design include but are not
limited to ALPINE [24], SpiNNaker Project [25], PUMA [26],
and DIANA [27]. However, we argue that the impetus behind
these projects is more about executing existing digital designs

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 8, AUGUST 2024

(such as MVMs, or VMMs) using analog circuitry rather than
thinking about co-design aspects to produce efficiency in both
the algorithm and the hardware. We, on the other hand, pro-
pose a co-designed architecture leading to better performance
in both aspects. Furthermore, while SPICE models [28], [29],
[30] have been developed for simulating large number of mem-
ristors, real-life implementations of memristor-based designs
are lagging due to the practical considerations, with only small
array sizes (256 x 512, 256 x 64, etc.) realized in-practice [31].
On the other hand, our proposed architecture, that is entirely
based on components amenable to CMOS fabrication and is
compliant with Very Large-Scale Integration (VLSI), is real-
izable and scalable. Furthermore, Correll et al. [32] report
that an effective memristor cross-bar implementation requires
extensive support circuitry for dealing with the aforementioned
problems and ensuring that the computation is performed
accurately. An RPU-based implementation [23], [33] solves
these issues but lacks the simplicity and the ability to scale
efficiently with chip size. Closest analogue to our CvPU
design is the Folded Neural Network (FNN) proposed by
Hsieh et al. [34], but it is only applicable to fully-connected
neural networks, while our proposed design is targeted at
Convolutional Neural Networks (CNNs).

III. PROPOSED SOLUTION

We propose a low-powered approach to process EEG signals
in-situ to provide feedback to the user in real time. In order to
enable this application, we propose to implement convolution
in the analog domain leading to in-situ processing at the
nanosensors, which relay their outputs to on-body gateways
via electromagnetic THz communication. We describe our
proposed approach in the following manner: the isotropic and
anisotropic diffusion in electrical systems, then their applica-
tion in constructing a CvPU, a hardware-software co-designed
CNN, and finally we end by describing the approach’s inte-
gration into an electromagnetic nanonetwork.

A. Isotropic & Anisotropic Diffusion in Analog Circuits

Diffusion is a fundamental process of nature and has been
harnessed in many scientific fields, including physics, chem-
istry, and biology. Our focus, however, is its application in
vision. In image processing literature, diffusion refers to a
class of algorithms that aim to smooth out the image — similar
to how heat pattern diffuses in a 2D material. The equation
for diffusion in image processing (as stated in the early vision
literature [35]) is typically given by the diffusion equation,

% =V - (c(z,y,t)VI) = c(x,y,t)AI + Ve - VI, (1)
where I (z,y,t) is the image at time ¢, c¢(z, y, t) is the diffusion
coefficient at input (x,y) and time ¢, and V is the gradient
operator.

In the case of isotropic diffusion, the diffusion coefficient
c(x,y,t) is a constant, which means that the diffusion process
is equal in all directions. This results in a smoothing effect
equivalent to convolving the original image with Gaussian
kernel of variance t, i.e., I(z,y,t) = I,(x,y) * G(z,y;t).
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Fig. 2.  Circuit implementation for anisotropic diffusion as envisioned by
Perona and Malik [35]. This architecture is useful for edge preservation and
segmentation but not convolution.

Anisotropic diffusion, on the other hand, is a type of diffusion
where the diffusion coefficient varies based on the local image
structure, i.e., c(z,y,t) is a function of the local image
structure. In this vein, the most relevant implementation is
Perona-Malik diffusion [35], where they modified the diffusion
coefficient in (1) to be a nonlinear function of the gradient
magnitude, i.e.,

ol

ot
where |VI| represents the gradient magnitude of the image,
and g(|VI|) = ¢(.) is a nonlinear function of the gradient
magnitude. The function g(|VI|) is typically defined as:

1

g(IVI|) = 1T (S
where k is a constant that controls the strength of the diffusion.
In practice, this non-linear function ¢(.) is implemented using
a resistive fuse circuit [36], [37], and the process realized
using a neat 2D-array as shown in Fig. 2. Each resistor in
Fig. 2 is a resistive fuse implementing the non-linear behavior
as its I-V curve, as the voltage difference across each resistive
fuse corresponds to the gradient of the image. The voltages
on the capacitors correspond to the pixel intensities, which
are read out after a certain time, depending on the application
requirements. However, the simplicity of the original design
does not lend itself to anything other than edge preservation
using anisotropic diffusion, especially not arbitrary convolu-
tion (a linear operation). This is exactly our novelty lies, as we
modify the architecture to support a subset of convolutional
kernels and then co-design the corresponding algorithm for the
analog implementation.

V- (g(IVI)VI) 2)

3)

B. Convolutional Processing Unit (CvPU)

Although, the Perona-Malik diffusion [35] circuit (see
Fig. 2), was designed for early vision applications, our
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proposed architecture takes a leap towards general-purpose
convolution (although constrained by the number of Degrees
of Freedom (DoF)) and is not specific to image pixels, but
rather can be applied to any general input array. We take a
step further and postulate if there exists a choice of ¢(.), which
is equivalent to convolving input array I with an arbitrary
convolutional kernel K, i.e., finding the choices of ¢(z,y,t),
for which (1) is satisfied by the equation (where * denotes the
convolution operator),

I(x,y,t) = Io(z,y) x K(z,y;1). 4)

1) Mathematical Description of CvPU: It turns out that
there does exist a ¢(x,y,t) which satisfies convolution with
an arbitrary kernel K albeit with a modified architecture
(shown in Fig. 3) and some restrictions on the degrees of
freedom of K. This can be proved by looking at (i,5)—th
input, corresponding to voltage v; ; as shown in Fig. 3. In our
modified architecture, the adjacent inputs in the array are not
connected together directly (by a conductance element, see
Fig. 2), but rather the summation of adjacent inputs serves
as the median between the two — achieved using analogue
adder [38]. Furthermore, conductances are defined according
to cardinal directions: ¢y, cg, Cs, ¢w, CNE, CNW»> CSE,
and cgy correspond to North, East, South, West, Northeast,
Northwest, Southeast, and Southwest respectively. As evident
from various layers in Fig. 3, the conductance elements
are alternated along their respective directions in the array.
As noted in [35], the discrete solution to (1) for a square
lattice can be written as a summation of the gradients in each
direction. Using N (4,7) = {(i—1,7), (1,7+1), (i+1,7), (i, 5—
1)’ (Z +1,7+ 1)’ (7' +1,7 - 1)) (Z -17+ 1)) (Z -1,7- 1)}
to define the set of neighbors to the input (i, j), we can write
the evolution of I; ; as,

=Ii+A Y e VL, ©)
neN(i,5)

t+1
1

where I}, corresponds to input at node (i,j) which is
represented by voltage v; ; in practice. The conductances c
are controllable and directly depend on the I-V curves of
conductance elements (shown in Fig. 3). The symbols Vv,
denote nearest-neighbor differences between I; ; and I,Vn €
N(i,7). Furthermore, the A\ parameter controls the variance
of convolution (number of passes), the time constant, and
the stability of the circuit. For this work, we consider A €
[0.5,1] for a perfect approximation of the convolutional filter.
In Fig. 3, the nodes are arranged so that the neighboring nodes
are always equal (at time ¢) to the sum of the node and the
corresponding adjacent input. This is to say that VYn € N(i,7):

t t t t
Voli ;=M1 +1; ;) — 1; (6)
Using (6), one can rewrite (5) as:
==X ) e)Il+x D el @
neN (i,5) neN(4,5)

As Zn cn, 1S a constant for a given choice of conductances,
(7) is equivalent to convolution with a 3 x 3 kernel
with 8 Degrees-of-Freedom (DoF). We will now discuss how
this convolution is implemented using a 3D circuit design.
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Layer 2 Layer 3

Cap Array 1

CvPU Array

Cap Array 2

Fig. 3.

3D 8-DoF CvPU design centered on input (i, 7), that can be tessellated to create arbitrarily large input arrays for convolution. A 4-DoF CvPU can

be implemented by using Cap. Array 1 and Layer 1 only. A total of 13 capacitors (9 in Cap. Array 1 and 4 in Cap. Array 2) are connected to nodes N/,
O,P, AR, ST, UV, W, X, Y, and Z. These capacitors are used for input and output, whereby the voltages v written underneath each capacitor are
the initial voltages for each node. Through connections to each layer are marked by letters associated with the nodes. Only node N is connected to all the
layers. Furthermore, the nodes marked with a dot (-) are connected to a capacitor element, while the nodes marked with a cross (x) are left floating. Floating
nodes only exist in layer 1. Finally, 8 unique conductance elements (relating to the convolutional kernel) are defined according to spatial directions: ¢y, cg,

Cs, CW, CNE> CNW, CSE, and cgw .

2) 3D Architecture of CvPU: As shown in Fig. 3, the
CvPU consists of a circuit with 3D architecture containing
through connections between layers. The architecture consists
of 2 capacitor arrays (for input and output), and 3 intermediate
layers consisting of conductances. The central idea of the
architecture is to mediate connections to neighboring inputs
to (4,7)-th input by the summation of the two, connected by
the relevant conductance. Looking closely at capacitor array 1,
we can see that the initial voltages of all the neighboring
capacitors are indeed the sum of the principle (4, j)-th voltage
and the neighboring voltage. Using through connections to
internal layers, they are then connected together by relevant
conductances. Finally, capacitor array 2 contains capacitors
that are relevant for connections of other inputs, but have to
be co-located with other capacitors in array 1. For example,
in Fig. 3, node S mediates connection between (4, j) —th and
(i—1,j+1)-th input and is placed array 1, but it collides with
the placement of node WV that mediates connection between
(¢ —1,7)-th and (4,7 + 1)-th inputs. To resolve this, W is
placed in array 2, and the relevant connections of both nodes
in the internal layers are shown using the letters.

Furthermore, we would like to mention that the CvPU
architecture is designed in a way that it is scalable. The given
architecture for a singular node can be extended to an arbitrar-
ily large array for computation. It is also scalable in the other
direction, whereby if only capacitor layer 1 and conductance
layer 1 are used, a 4-DoF CvPU can be implemented (see [1]
for more details). We now discuss the operational parameters
of the CvPU and how different kernels can be implemented.

3) Operational Parameters of CvPU: 1t is desirable that
the capacitors at principal nodes I; ; discharge slower than
the mediator nodes, whose initial capacitor voltages are the
summation of the two neighboring nodes. In our experiments,
we have found out that a capacitance ratio of 10 works great,
e.g., 10uF for principal nodes, while 100uF for the mediator
nodes. Furthermore, (7) shows that the operation of CvPU
is equivalent to convolution with the conductance elements
cnVn € N(i, ), therefore during implementation, the conduc-
tance values can be chosen accordingly on-the-fly based on the
desired kernel to convolve with. The conductance elements can
be implemented using a voltage-controlled resistor, i.e., using
HRES resistor element [39]. As it is presented, one arbitrarily
sized CvPU array can be used to implement one convolutional

Reader
Output Fully-connected +
o
Trigger layers ": O Non-linearity
________ Hor " R
Adder Analog
Inputs —¢ Sampler —
P ! P Array CvPU Array
1 >
1 >
1
HINE HRPV 4
| o
B ]
Hy Memory oader

Fig. 4. Controller circuit design for multi-layer computation using limited
fixed-sized CvPU array. The controller orchestrates the read/write operations
to execute multiple consecutive layers sequentially.

array in a neural network, followed by further circuit for non-
linearities. However, neural networks typically have multiple
layers, and in order to save space (limited to small devices),
we propose a controller architecture below that can reuse the
CvPU array for consecutive neural network layers.

4) Controller Architecture: For a convolutional neural net-
work with L layers, the 1°¢ and L!" are considered input
and output layers with array size depending on the nature of
inputs. In order to reuse the same CvPU array for multiple
layers, careful temporal orchestration is needed. The overall
concept of our controller circuit is shown in Fig. 4, where
consecutive convolutional layers can be executed sequentially
from the same neural network. The most basic component
of such computation is a single fold. Let the time taken to
process one fold be T, which also denotes the time-window
of EEG signal processed at once, and can involve either
single or multi-layer computation (if the CvPU array contains
multiple stacked convolutional layers), denoted by n;, s (layers
processed per fold). ny,; depends on the realized circuit design
and cannot be changed once implemented. One processing
cycle—through the whole network—requires n g folds, result-
ing in a processing time of Tp := npTr. Lastly, the time
taken for each fold depends upon the time it takes to charge
input- and summation-capacitors in the CvPU array (7yy), the
time it takes for diffusion to happen (1), and then finally,
the time it takes to read the outputs of the array (Tg).

As the weights in the CvPU array are voltage-controlled
(using HRES resistor element [39]), we use a capacitor as the
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Fig. 5. Example controller output for 3-fold computation (T’ = 3T'F) using
an arbitrary-sized CvPU array.

basic memory element. We implement a weights-memory that
holds the values of weights required for sequential processing.
These memories are arrays of capacitors read/written by
signals from the controller. The controller uses four signals,
namely, H;n, Hour, Hrw, and Hy for executing input,
output, write/read, and weight-change operations respectively
(see Fig. 4). H;y controls the switch S7y, and is HIGH
(connecting to 1°¢ layer output) for the first fold and LOW
(connecting to feedback) for all other folds in a processing
cycle. Hoyr controls the tri-state switch Soyr, and is HIGH
(connecting to L' layer input) for the last fold, and LOW
(connecting to feedback) for all other folds in a processing
cycle. When Hopyr is HIGH, the output is forwarded to
fully-connected layers to output the final decision by the
network. Hyyr controls read/write-operation to the CvPU
array and controls if input is being fed or output is being
read from the CvPU array. For both reading and writing, the
conductances are made zero so that the capacitors can either
be charged (written to) or read from. Finally, Hyy changes
between np discrete levels during the processing window
Tp, to load the weights into the loader circuit for sequential
computation. A sample output for controller signals is shown
in Fig. 5 for np = 3.

5) Additional Layers: We use analogue adders [38] as a
means to implement average pooling in between adjacent
convolutional layers in a neural network implemented using
the Convolutional Processing Unit (CvPU). In our architecture,
we implement both 2 x 2, and 3 x 3 average pooling filters
in between layers as we focus on the square lattice structure
with 4-DoF, and use it for spatio-temporal processing of EEG
signals in the next subsection.

C. Hardware-Software Co-Design for EEG Signal Processing

To effectively extract useful information from EEG signals
and employ the aforementioned techniques to make real-time
decisions based on raw input data, it is important to use
a reasonable neural architecture. To this end, Convolutional
Neural Networks (CNNs)—such as SeizureNet [18]—have
been shown to achieve great performance in classifying EEG
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signals. Therefore, we choose a CNN architecture for our
EEG processing. It is crucial to transform the input signal
into a format appropriate for our analog array. For this
purpose, we propose to gradually delay the instantaneous
analog sensor outputs to provide a window into their temporal
behavior, as shown in Fig. 6. For modeling the temporal
behavior, convolutional connections work best as they model
the relation between future and past time-steps as well as
adjacent channels. Mathematically, given an analog output
A(t), the corresponding time-delayed signal is given by
A.;(t) = A(t — 7). Furthermore, as we have multiple
delay elements with delays 71,72, ..., 7y with M being the
total number of delay-elements, the set of temgoral inputs
to the convolutional array becomes {A(t — > ., 7;)|k =
1,2,...,M}. The spatial resolution, on the other hand,
depends on the number of channels we have available at our
disposal, denoted by V. All in all, the first input to the analog
array is M x N, where M denotes the number of temporal
components (proportional to the length of the time-window),
and N denotes the number of spatial components. For this
work, we choose M x N = 300 x 19. This can be seen
clearly in Fig. 6, where multiple delay-line elements give rise
to an array with channels and time as its dimensions. This
array is then input into successive 4-DoF convolutional layers
with 25, 50, 100, and 150 convolutional filters, respectively.
Here, 4-DoF CvPU is used for simplicity in simulation and
implementation, but the concept is still valid for 8-DoF CvPU.
In the analog domain, the pooling is achieved by simply
using analog voltage adders in between the successive con-
volutional layers, making them equivalent to average pooling.
Furthermore, the ReLU non-linearities are implemented using
Diode Pair (DP) architecture [33] after each layer. At last,
a dense layer (implemented using the Resistive Processing
Unit (RPU) [33]) maps the input from the filters into a vector
of length 2, to which softmax is applied to determine the final
decision from the network.

For training, given that we have a training dataset of input
signal windows and labels (d,y) € (D,Y), where each
sample belongs to one of K classes (Y = 1,2,... K).
Our objective is to determine a function f(D) : D — Y
that maps each input d to a label y. To train our model,
we use the parameterized function f(D,60), where 6 are
the learned parameters obtained by minimizing the training
objective function: 6* = argming Log(y, f(D,0)). Here,
Lcg represents the Cross-Entropy loss, which is applied to
the outputs of the ensemble with respect to the ground truth
labels. Mathematically, Lcg can be expressed as: Lop =
S Ik = yi)logo(Oe, i), where O, = N%Zé\;lOk
denotes the combined logits produced by the ensemble, Oy
denotes the logits produced by an individual sub-network, I is
the indicator function, and o is the SoftMax operation given
by: o(z;) = %. To initialize the network weights,
we use zero-mean Gaussian distributions with a standard
deviation of 0.01 and set the biases to 0. At the same time,
given the limitations of the nature of analog convolutions,
we constrain the 3 x 3 kernel weights to values allowed by (7).
We train the network for 400 epochs with a starting learning
rate of 0.001, which is divided by 10 at 50% and 75% of
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Fig. 6. Our proposed scheme for co-designed analog spatio-temporal processing of EEG signals. The spatial array of signals is gradually delayed to offer

insight into the temporal behavior of the instantaneous signal. This spatio-temporal picture is then processed using multiple layers of analog convolutional
layers until a decision is reached in analog. An EEG Helmet is shown for validation purposes on available datasets, but the approach is trivially extendable

to CvPU-based processing on individual implanted nanosensors.
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Fig. 7. Hybrid analog-digital architecture for continuous and energy-efficient
seizure detection on nanosensors (conceptual design shown on the top left)
that can communicate triggers/sensor data to micro-gateways. Here, the analog
inference is designed to have a very low False Negative (FN) rate to not miss
any probable event, while any False Positives (FP) are further analyzed by
the digital system (woken up only when needed, i.e., just in time).

On-demand

the total number of epochs. We also apply a parameter decay
of 0.0005 on the weights and biases. Our implementation is
based on the PyTorch library [40], and we train the network
using the ADAM optimizer with a batch size of 32.

D. Integration Into an Electromagnetic Nanonetwork

Our hybrid analog-digital HW/SW co-designed system rev-
olutionizes EEG seizure detection by leveraging the best of
both analog and digital domains. The analog part of the
system (CvPU) acts as a pre-stage only, using sensors to
collect EEG data and filter out irrelevant information. This
stage is energy-efficient and less accurate, but it is crucial
in identifying interesting cases that require further analysis.
The digital part of our system consists of an FPGA that
processes the EEG data in greater detail, providing more
accurate results. However, this stage is less energy-efficient.
To conserve energy, the digital stage is triggered only when
the analog system’s output goes high, indicating a positive
indication of an EEG seizure. We implement the digital side
using Seizure-Net [18] with Multi-Spectral Feature Sampling.

Inspired by the conceptual design presented by
Canovas-Carrasco et al. [41], we propose to fit our CvPU
array into a nanosensor (shown in Fig. 7), whereby the
trigger/sensor data would be communicated to gateways
via antennas composed of graphene, i.e., carbon nanotubes
(CNTs) [4], using simple modulations such as TS-OOK [42]

when an anomaly is detected by an individual nanosensor.
Furthermore, a supercapacitor is used as an energy source,
coupled with piezoelectric energy harvesting [41] for battery-
less operation. Overall, our hybrid analog-digital HW/SW
co-designed system provides a comprehensive solution to
EEG seizure detection.

IV. PERFORMANCE EVALUATION

In this section, we first introduce the experimental setup
used to evaluate the proposed algorithm and then go on to
describe the feasibility of analog spatio-temporal processing
and end-to-end evaluation of the system. We finally end the
section with a scalability, power & noise analysis of the
proposed architecture.

A. Experimental Setup

1) EEG Channels Used: There is an internationally recog-
nized system for placing EEG sensors on the scalp, known
as the 10-20 system. In this system, electrodes are placed at
specific locations on the scalp relative to the landmarks on
the skull. The system divides the scalp into regions named
according to their position and laterality relative to the midline.
The electrodes are labeled with letters and numbers For
example, electrodes placed on the midline of the forehead
are labeled Fz, while those on the left and right sides of
the forehead are labeled F3 and F4, respectively. Similarly,
electrodes placed on the left and right sides of the temporal
region are labeled T3 and T4, respectively. The system also
includes electrodes placed on the mastoid processes behind the
ears (M1 and M2) and on the back of the head (O1 and O2) to
serve as reference and ground electrodes, respectively. Overall,
the placement of EEG sensors follows a standardized system
to ensure that recordings can be compared across studies and
that results are consistent and reliable. For our experiments,
we limit ourselves to a total of 19 channels, including channels
FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4,
TS, T6, CZ, Al, and A2. The inputs to our experiments were
the outputs subtracted from the reference average of all EEG
channels.

2) Dataset: The TUH EEG Seizure Corpus (TUH-EEGSC)
[43] was utilized as the source of data for our study. It is
the largest publicly available dataset of seizure recordings
with type annotations worldwide. The dataset was released
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[0,1], and 7 represents the time constant for the arrays (simulated using ngspice).

TABLE 1

STATISTICS OF TUH EEG SEIZURE CORP (v2.0.0) IN TERMS OF SEIZURE
TYPES, NUMBER OF PATIENTS, AND SEIZURES COUNT

Seizure Type Patients ~ Seizures
Focal Non-Specific (FN) 160 649
Generalized Non-Specific (GN) 86 258
Simple Partial Seizure (SP) 2 5
Complex Partial Seizure (CP) 37 166
Absence Seizure (AB) 8 15
Tonic Seizure (TN) 3 10
Tonic Clonic Seizure (TC) 13 19
Myoclonic Seizure (MC) 1 2

in three versions, with TUH-EEGSC v1.4.0 being released
in October 2018, TUH-EEGSC v1.5.2 being released in May
2020, and v2.0.0 being released in March 2022. Only TUH-
EEGSC v2.0.0 was available at the time of the analysis
and used for results in this article. This corpus has EEG
signals that have been manually annotated data for seizure
events (start time, stop, channel, and seizure type). Table I
provides an overview of TUH-EEGSC’s statistics regarding
various seizure types and patient numbers. To ensure statistical
significance, Myoclonic (MC) seizures were excluded from
the study since they had only two seizures, as indicated
in Table I. Seizure-level cross-validation was performed for
evaluations. For training & evaluation, the dataset was sampled

into windows of 300 samples, with a sampling frequency
of 250 Hz, with a stride of 100, yielding the input-size of
300 x 19.

3) Simulation Setup: In our study, we conducted digital
and analog simulations using different tools and software.
For digital simulations, we used Python (version 3.10.10),
a widely used programming language for scientific comput-
ing and data analysis, for design and execution. For analog
simulations, we used two different circuit simulators, LTspice
(version XVII) and ngspice (version 36) — both based on the
SPICE3 simulator published by the University of California,
Berkeley. These tools allowed us to simulate and analyze the
behavior of complex analog circuits and validate our designs.
To run simulations, we used a Dell Precision 7280 computer,
which provided us with the necessary computational power
and performance to execute our simulations in a timely and
efficient manner.

B. Analog Convolution

In this subsection, we use SPICE circuit simulation software
to evaluate and discuss errors in the convolutional calculation,
time for steady-state, and second-order effects.

1) SPICE Simulation of Anisotropic Convolution: Further-
more, we simulated 3 x 3 and 4 x 4 anisotropic diffusion
arrays in SPICE. These arrays were simulated with capacitors
of 50uF, and the conductances cy, cg, cg, and cy represented
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Mean Squared Error (MSE) for different sized arrays as simulated in SPICE. We see that the MSE dips until 47 and then slowly increases as the

circuit dissipates the voltage. (a) shows the MSE for a 3 by 3 array; (b) shows the MSE for a 5 by 5 array; (c) shows the MSE for a 20 by 20 array. The
results are averaged over 50 random inputs for each experiment (simulated using ngspice).

by resistances of 20k€), 10k€2, 15k€2, and 5k respectively.
Also, note that the same kernel values are shown in Fig. 8 but
after normalization of values to be in the range [0,1]. Using
the effective parallel resistance that each capacitor sees, and
the capacitance (same for all C), we derive the time-constant
for the arrays to be 7 = 0.12s. Looking at the first row of
the input kernel, we see that the analog and correct outputs
are very close for the 3 x 3 array, with mean-squared error as
low as 0.08%, and the capacitors’ voltages to become steady
around 47. We see a similar trend for the 4 x 4 array in the
third row, where we see that the error is < 1% again, and
the final voltages show a very smooth trend towards fixed
values. For the second row, however, we observe a higher
error-rate (~ 4%). One salient difference here is that the input
array is variable, but in spite of higher error, we see that the
general structure of the output is preserved. We postulate this is
because of the inefficiency of adder circuits, as variable input
leads to variations in the linearity of the output. However,
the overall trend is clear that anisotropic diffusion-based
convolution is possible using circuit elements in SPICE as
well.

2) SPICE Simulations for Larger Arrays: In Fig. 9, we use
SPICE simulations to explore the Mean Squared Error (MSE)
across arrays of varying sizes. The MSE, which measures the
gap between expected and actual results, first decreases, hitting
its lowest at 47, and then gradually rises due to voltage loss in
the circuit. 9(a) illustrates the behavior for a 3 x 3 array, (b) for
a 5 x b array, and (c) for a more extensive 20 x 20 array. It’s
crucial to highlight that each depicted trend is averaged from
50 random input scenarios to ensure a broad understanding of
the MSE patterns.

3) SPICE Simulations for Multi-layer Convolution: In
Fig. 10, we examine the Peak Signal to Noise Ratio (PSNR)
in relation to varying layer counts for different sizes of CvPU
arrays. PSNR is proportional to the log of the inverse of
Mean Squared Error (MSE). A swift decline in PSNR is
seen when no activation functions are present, challenging
the viability of multi-layer analog computations for larger
networks. However, with the inclusion of nonlinear activation
functions like the Sigmoid, the performance remains stable
despite increasing layers. We posit this stability is because
a nonlinear activation function, such as Sigmoid, reduces
numerical discrepancies between higher and lower output
values. This action not only boosts the intermediate PSNR
but also prevents these differences from escalating as the
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Fig. 10. Peak Signal to Noise Ratio (PSNR) as the number of layers varies for
different sizes of CvPU arrays stacked on top of each other. We observe that
the PSNR decreases quite fast without activation functions in between, making
multi-layer analog computation unfeasible for larger networks. However, with
activation functions—e.g., Sigmoid-we get almost no performance drop as the
number of layers is increased (simulated using ngspice).

signal progresses through subsequent layers. This result is
encouraging for analog computation for neural networks as
activation functions are necessary for the functioning of a
neural network, and they provide a performance boost for our
architecture as well.

4) Comparison with Related Works: Related works that
implement analog computation are geared towards vastly
different applications than our proposed CvPU architecture.
Architectures such as DIANA [27] and PUMA [26] implement
analog convolution using multiple Matrix-Vector Multipli-
cations (MVMs) and have a significant digital part (power
hungry). These works are geared towards the acceleration of
high-precision convolution at the cost of higher power con-
sumption, while this work is not concerned with high-precision
convolution at all, but rather is concerned with power-savings.
As a result, the CvPU architecture only consumes power in the
order of a few milli-Watts for larger arrays (discussed in IV-D),
while architectures such as PUMA [26] consume upwards of
62.5 Watts of power for their computation. Hence, our work is
novel in trying to implement convolution with low power, but
we pay the price in terms of the loss of generality. Our work is
limited in the Degrees-of-Freedom (DoF) of the implemented
kernels we can achieve and has the constraint of only being
able to implement a 3 x 3 convolutional kernel.

C. End-to-End Evaluation

In this sub-section, we evaluate the performance of our pro-
posed analog CvPU architecture against other approaches from

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:20:36 UTC from IEEE Xplore. Restrictions apply.



ANJUM AND POMPILI: BATTERY-LESS IMPLANTABLE CONTINUOUS EEG MONITORING 2105
1.0 1.0
0.8
BKJe&EY) 0.1 0.01 O 0.01 O 0.010.01 BKAE] 0.02 O 0 0.01 0 0.010.01
0.7 0.8 0.8
: FN 0.01 0.01 O 0 001 O FN10.01 fe&efe) 0.01 0.01 0O 0 001 O
0.6 CcpP| O CcpP 0 0 0 0 0
— 0.6 _ 0.6
o 26N EGN‘0.0Z 0.23 0.01 [(0lyjeR 0.01 0 0
e & ®
- 0.5 v o
g 'g AB{ O 'g AB: O 0 0 0 1 0 0
= 0.4 0.4
04 SP O sp 0 011 0 0 o [EE o oO
TN| O TN| O 0.02 0.07 O 0 0 0
0.3 0.2 0.2
TC o TC{ 01 02 O 0 0 0 0
57 0.2 BK FN CP G.N AB SP TN TC BK FN CP G_N AB SP TN TC
Predicted label || . Predicted label Lloo Predicted label Lloo

()

(b

(©

Fig. 11. (a) Confusion matrix for detection using the analog neural network (using CvPU arrays), (b) Confusion matrix for classification using a power-intensive
digital network, (c) Performance of the end-to-end joint analog-digital system which uses the analog network as a continuous detector (simulated using python).

the literature, evaluate its efficiency with respect to power, and
evaluate metrics such as accuracy and false positives. Fig. 11
shows the confusion matrix for the analog convolutional neural
network simulated using anisotropic diffusion-based 4-DoF
convolution. Although simulated in python, additive random
Gaussian noise is added to the analog convolution to induce
a target mean-squared error in it. This is done to make sure
that the errors due to convolution are also included in this
simulation. However, as shown in Fig. 10, the non-linearities
help greatly in the non-deterioration of performance in con-
secutive layers even in the presence of imperfect analog
computation. We see that the network does quite well at
detecting the onset of seizures in given windows with an
accuracy of 78.5% with a false-negative rate of only 16% (see
Fig. 11(a)). Furthermore, the Seizure-Net [18] trained on the
TUH seizure corpus attains an accuracy of 86.7% using the
resource-intensive digital implementation of the convolutional
network. However, as shown in Fig. 11(c), we note that the
final system outperforms the digital system as the analog
part helps it in filtering out a lot of the data, achieving an
accuracy of 88% as a whole. This is not all, as using an
energy-efficient analog filter helps reduce power consumption
by many orders of magnitude. We can estimate the energy
savings by considering that almost 99% of the TUH seizure
corpus data is non-seizure and assuming a similar ratio holds in
real-life deployments. If the analog detector outputs (correctly
or incorrectly) ~ 73% of the time that the data is non-seizure
(background EEG), the digital part is then woken up only 27%
of the times, elongating the lifetime of the device by ~ 4x,
i.e., from 3 to 10 hours to 12 to 40 hours, providing enough
time for a natural charging/recharging schedule, or even being
able to harvest the said power from piezoelectric harvestors.

D. Scalability, Power & Noise Analysis

We tackle each of the questions of scalability, power, and
noise analyses sequentially in this subsection.

1) Space Scalability: Using the enhanced CvPU architec-
ture as the building block of convolutional layers, we can
calculate the number of resistors and capacitors one needs to
build a convolutional layer with the input size of M x N. For
a 4-DoF 3 x 3 kernel and a convolutional layer with an output

size of (M + 2) x (N + 2), the number of resistors comes
out to be (2M + 2)(2N + 3) + (2N + 2)(2M + 3) while the
number of capacitors used comes out to be (2N + 3)(M +
2)+ (M +1)(N +2). Both of these numbers are linear in area
(M N), which means that the simple circuit scales linearly as
the input size is increased. For an input size of 300 x 19
(same as our EEG dataset), the number of resistors and
capacitors required for one layer comes out to be 48802 and
18703, respectively. Using a 5 nm process, which features
around 130-230 million transistors per square millimeter,
all the resistors (implemented using 10 transistors) can be
furnished in a few qu. Furthermore, the above-mentioned
silicon process also offers a capacitance density of around
300 fF/um?, meaning that we could implement the full
capacitor array using an area of a few mm?. However, since
individual nanosensors do not need full capacitor array to
be implemented as they will not be processing all 19 leads
of EEG, a smaller array can be furnished in a space of the
order of pm?, making the CvPU feasible for a nanosensor-
based application. A few layers of this circuit, hence, may
be incorporated into a nano-implantable device that could
do in-situ processing and continuous monitoring. We have,
unfortunately, not realized a prototype yet and are working
actively towards it.

2) Power Scalability: As anisotropic diffusion is essentially
a rearrangement of voltage in the capacitors in a particular
fashion that mimics convolution, the overall power consump-
tion comes only from the leakage currents in capacitors,
currents through resistors during diffusion, and adders. For our
simulated 3 x 3 and 4 x 4 arrays in SPICE, we observed the
current and voltage curves of transient simulations for all indi-
vidual elements. By multiplying both to get power consump-
tion and then adding for all components, we concluded that the
3 x 3 and 4 x 4 arrays consume about 130.8uW and 221.6uW,
respectively. An adder only consumes 0.9uW of power, and
there are 12 and 24 adders used in 3 X 3 and 4 x 4 arrays,
respectively, making a total of 10.8uW and 21.6uW respec-
tively. Furthermore, for a 300 x 19 array (with all 19 EEG chan-
nels in conjunction), the power consumption is estimated to be
around 55.58mW. A small nanosensor, however, does not pro-
cess all the EEG channels in conjunction, meaning the power
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Fig. 12. Noise analysis for 3 x 3 (top) and 4 x 4 (bottom) arrays across

temperatures from —25°C to 125°C. The noise is comparatively higher
(although still in the order of nano-volts per /Hz) at lower frequencies
(1-10 Hz). Our operating point for EEG-signal processing is around 250 Hz
(simulated using nspice).

consumption will be of the order of a few hundred ©W for a
small-enough array, and it could be powered using piezoelec-
tric energy harvesters. A detailed model for energy consump-
tion and harvesting, however, is out-of-scope for this article
and will be investigated in future studies. On the other hand,
efficient FPGAs capable of executing neural networks usually
consume from 0.5 (TinyFPGA BX)-10 (Xilinx Ultra96v2)
Watts, which is 1 to 3 orders of magnitude greater than the
analog power consumption. This is why analog computation
is invaluable for energy-efficient continuous monitoring. It is
important to note here that the power might also depend
further on the capacitance as it dictates how quickly the charge
accumulates on the capacitor, dictating how energy-efficient it
is (with a lower time-constant). Therefore, more analysis is
needed for determining energy consumption with respect to
the frequency and the operating point of the circuit.

3) Noise Analysis: We present noise analysis for 3 x 3 and
4 x 4 arrays for temperatures ranging from —25°C to 125°C,
with a step of 25°C in Fig. 12. The noise is comparatively
higher (although still in the order of nano-volts) at lower
frequencies (0-10 Hz). However, our operating point for EEG
signal processing is around 250 Hz, meaning that the operation
of our proposed circuit is resilient against noise introduced
from external sources.

V. DISCUSSION

The proposed hybrid analog-digital architecture for EEG
processing comes with advantages and limitations. The pri-
mary motive behind the hybrid approach is to save energy
by using the analog part (implemented using CvPU) to act as
a pre-filter to the digital part, which can then wake up and
expend energy in detecting and identifying the seizure type.
By using novel CvPU as the analog part of the implementation,
one inherits its limitations, such as its inability to represent a
general convolutional kernel, but only a kernel with 8-DoF
at the maximum. Furthermore, the values of the resistances
and the capacitances limit its speed, as one has to wait atleast
until the time constant of the circuit for stable readings. There
is also the limitation concerning the ability to only implement
a 3 x 3 kernel. However, even with all these limitations, one
has to keep in mind that the analog part is designed to be a
filter with a low false-negative rate so that it can filter out
normal signals but not miss any positive events. After the
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digital part is woken up, the architecture can be made much
more efficient and complex for proper computation, leading
to the proper identification of seizure events relating to EEG.
In return for the limitations of our architecture, the benefit
we achieve is low-powered computation with an architecture
that is small enough to be implanted. Indeed, as shown in
the Sect. IV-D, the considerations of space and power show
that the resulting device (comprising CvPU) can be small
enough—a few pm?—to be implantable in the human body
and allow for battery-less monitoring (at least for the analog
part), while the digital gateways will be needed to be powered.

VI. CONCLUSION

The article proposes a novel neural network architecture
for the early detection of seizures using EEG signals and
presents its evaluation on a clinical dataset. An analog CvPU
architecture implementation is proposed for continuous in-situ
processing, with estimated energy consumption compared to
digital and hybrid analog-digital approaches. Our system offers
real-time EEG monitoring without the direct need for cloud
infrastructure, ensuring extended observation intervals without
the hassle of frequent battery replacements or recharges. The
culmination of our efforts is a hybrid system with an analog
detection mechanism that simulates the time-sequential nature
of EEG signals. The digital component executes computations
based on a trigger mechanism, delivering timely determina-
tions to users. A SPICE-based evaluation is conducted, and
noise analysis is performed at various temperatures. We show,
through extensive performance evaluation, that the proposed
system can be used for wearable and implantable applications
for monitoring physiological signals.
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