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AbstractÐIn this study, we propose the first hardware imple-
mentation of a context-based recurrent spiking neural network
(RSNN) emphasizing on integrating dual information streams
within the neocortical pyramidal neurons specifically Context-
Dependent Leaky Integrate and Fire (CLIF) neuron models,
essential element in RSNN. We present a quantized version
of the CLIF neuron (qCLIF), developed through a hardware-
software codesign approach utilizing the sparse activity of RSNN.
Implemented in a 45nm technology node, the qCLIF is compact
(900um²) and achieves a high accuracy of 90% despite 8 bit
quantization on DVS gesture classification dataset. Our analysis
spans a network configuration from 10 to 200 qCLIF neurons,
supporting up to 82k synapses within a 1.86 mm² footprint,
demonstrating scalability and efficiency.

Index TermsÐSpiking neural network accelerator, hardware
software codesign, neocortical neurons, CLIF neurons

I. INTRODUCTION

As the demand for more efficient and capable computing

systems grows, neuromorphic computing has emerged as a

promising avenue for emulating brain-like processing capa-

bilities. This field, bridging artificial intelligence and neuro-

science, not only aims to replicate human brain functions

but also seeks to drastically reduce the power consumption

of computational systems [1], [2]. In this paper, we explore

how the integration of advanced neuron models can potentially

address these challenges. Spiking Neural Networks (SNNs),

termed the third generation of neural networks, offer a pathway

to this goal through spike-based computations. However, many

SNNs have not yet achieved the accuracy levels of ANNs.

Efforts to bridge the performance gap have explored various

approaches, including exploiting the multi-timescale dynamics

of neurons [10], [11], [23], local learning algorithms [12], [13].

A notable advancement in this domain is the integration of

context-dependent leaky integrate and fire (CLIF) neurons into

recurrent spiking neural networks (RSNNs) [3], [14].

The fundamental concept posits that understanding or locat-

ing items becomes more manageable with appropriate context.

Consider the scenario of entering a disorganized room and

being asked to find an object; the task proves challenging,

overwhelmed by numerous options, making decision-making

difficult. However, if the request specifies context, such as

ºfind something to play music with,º the search simplifies due

to the targeted nature of the inquiry. This process involves

*Equal Contribution

Fig. 1. Top: Basic idea of using context. Bottom : Comparison of Neuronal
Models and Synaptic Processing: Traditional LIF versus proposed qCLIF.
The Traditional LIF model exhibits a single-compartment with exponential
decay and spike generation upon reaching threshold voltage, with an analog
weight multiplication approach. The qCLIF model introduces an additional
apical compartment with linear decay dynamics and utilizes a digital weight
AND gate mechanism for synaptic processing, offering advantages in speed,
reconfigurability, robustness, and scalability of digital hardware methodology.

two distinct streams of information: 1) stimuli information

and 2) context. Though independent, correlating these streams

enhances object identification efficiency. Drawing parallels

with neocortical pyramidal neurons, this method employs dual

information pathways: the bottom-up stimuli received by basal

dendrites and the top-down context provided to apical tufts.

Each pathway processes separate informationÐbasal dendrites

handle stimuli while apical tufts manage context. A correlation
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Fig. 2. A comparison of test accuracy versus parameter count for diverse
network architectures addressing the DVS Gesture dataset. Notably, context
based Recurrent Spiking Neural Networks (cSNNs) achieve high accuracy
with significantly fewer parameters compared to other models referenced in
the literature.

between these streams may trigger an higher output frequency.

This integration has improved accuracy in gesture classifi-

cation and speech recognition tasks, outperforming several

existing models [4]±[9].

The unique feature of CLIF neurons in RSNNs is their

use of contextual input to enhance the somatic compartment’s

computational capacity (see Fig. 1). Using this additional

stream of information as context these networks give accuracy

on par with most of the network which are much larger in size

Fig. 2. There have been no hardware implementations of the

CLIF neuron model, although analog and digital versions of

other neuron models exist. This work introduces a hardware-

friendly variant of the CLIF neuron: the Quantized CLIF

neuron. This model retains the accuracy of the original while

being more amenable to digital implementation. The study sys-

tematically analyzes the model’s performance with quantized

neuron parameters and weights and examines network activity

patterns.

The proposed neuron model, including its synaptic com-

partment, was implemented using open source 45 nm tech-

nology [15]. Layout and post-synthesis evaluations assessed

area, power, and timing characteristics. These assessments

provide critical insights into the feasibility and efficiency

of implementing the qCLIF neuron model in neuromorphic

hardware. The following sections will elaborate on the detailed

methodology, results, comprehensive qCLIF neuron model

analysis, hardware synthesis, and performance evaluations.

II. PROPOSED QUANTIZED CONTEXT-BASED LEAKY

INTEGRATE AND FIRE NEURON MODEL

A. Mathematical Model

Neuronal computation is segregated into two primary do-

mains: the apical compartment, which assimilates contextual

information, and the somatic compartment, which processes

the primary stimulus inputs like spikes from various sensory

modalities. The classical CLIF neuron model [3] captures this

bifurcation with equations that reflect the dynamic interplay

between these compartments, as shown in eq. (1) (2).

V a
j (t+∆t) = αV a

j (t) + (1− α)RmIaj (t+∆t) (1)

Vj(t+∆t) =βVj(t) + (1− β)[RmIj(t+∆t)·

ReLU(V a
j (t+∆t))]− Vth

(2)

where α = exp
(

−

∆t
τa

)

and β = exp
(

−

∆t
τm

)

are the expo-

nential decay constants for the apical and somatic potentials,

respectively. ∆t is typically set at 1 ms, akin to biological

neurons. Iaj and Ij represent apical and somatic (stimuli) input

currents. Rm denotes the membrane resistance, Vth is the

spiking threshold, and sj(t), which can be either 1 (indicating

a spike) or 0 (no spike) Vj greater than or less than Vth

respectively. To tailor these dynamics for digital systems, we

adjust ∆t to equate to a single simulation timestep or clock

cycle, which aligns the model with the discrete nature of digital

computation. Further, we optimize by approximating many

computational steps. The proposed qCLIF neuron model is

expressed in eq. (3) (4).

V ap(t+ dt) = V ap(t)− αleak + V
ap

input(t+ dt) (3)

V som(t+ dt) =V som(t)− βleak

+
(

RELU (V ap(t+ dt)) · V som
input(t+ dt)

) (4)

αleak and βleak are the linear decay constants. V
ap

input(t+ dt)
and V som

input(t+dt) are the contextual and stimulus inputs chosen

to be of ‘N’ bit-width fixed-point numbers, respectively. A

new issue arises with constant linear leakage: it can cause

compartment voltages to fall below zero uncontrollably. To

address this, we set the lower limit of the voltages to zero.

Upon neuron spiking, a ’Reset to Zero’ mechanism is applied

to the somatic compartment. These inputs are defined by eq.

(5) (6).

V con
input(t+ dt) =

∑

(AND(Cspike,Wcontext)) (5)

V som
input(t+ dt) =

∑

(AND(Sspike,Wsoma))

+
∑

(AND(Pspike,Wrecurrent))
(6)

Cspike and Wspike represent the contextual and somatic spike

inputs, Wcontext, Wsoma, and Wrecurrent are the corresponding

synaptic weights, and Pspike denotes the previous spike in-

formation for recurrent connections. Despite these modifica-

tions, the fundamental characteristics of neuronal activity are

retained. The model leverages a piecewise-linear approach to

mimic the neuron’s response, especially in operational ranges

where linear and exponential decay patterns are virtually
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Fig. 3. Architecture of a Recurrent Spiking Neural Network layer made of qCLIF Neurons. The inset view highlights a single qCLIF neuron, which processes
both input and recurrent spikes using a combination of somatic and apical inputs along with somatic and recurrent, apical weights. It operates with a set of
parameters including somatic leak and apical leak, governed by a clock and reset mechanism generating a train of output spikes.

Fig. 4. Digital design of N bit qCLIF neuron. LS : Leakage Subtractor,
AA: Apical Accumulator, MU: Multiplication Unit, SLS: Somatic Leakage
Subtractor, SA: Somatic Accumulator, TC: Threshold Comparator.

indistinguishable. Moreover, the model effectively captures

the core processes of neuronal dynamics: it integrates and

decays inputs within the apical and somatic compartments

and enhances the somatic potential through interaction with

the modulated apical input. The next section will discuss the

digital implementation of the proposed qCLIF model.

B. Architecture

For building a recurrent layer of qCLIF neurons, a modular

approach is employed to process and integrate both external

inputs and internally generated feedback, which is a key char-

acteristic of the dynamics in recurrent neural network systems.

This architecture ensures efficient spike processing and tem-

poral data integration. The proposed architecture is outlined

in Fig. 3 and digital design of qCLIF is shown in Fig. 4. The

key modules in this architecture are detailed as follows: Spike

Weighting Module (SWM): The SWM processes incoming

spikes from external somatic and apical stimuli. Additionally,

it handles spikes generated internally by the network, which

are used as inputs in the next step. Incorporating recurrent

feedback is crucial for the temporal dynamics inherent in

the network’s processing. Each external or recurrent spike is

combined with its corresponding M-bit weight value using

bitwise AND operations. The module employs Carry Save-

Ahead (CSA) adders optimized for speed with a pipeline

structured in log3(N) stages. Apical Compartment (AC):

This component consists of a Leakage Subtractor (LS) and

an Apical Accumulator (AA). The AC processes the outputs

from the SWM, with the LS managing linear leakage from the

accumulated data and the AA adding contextual inputs along

with the recurrent feedback. Output registers connected to the

AA store the cumulative sums, allowing for their reuse in

subsequent accumulation cycles. The signed bit is checked in

each clock cycle. Whenever the output is negative, the register

is reset to 0. Multiplication Unit (MU): The MU receives

combined outputs from the AC, including external and internal

data. It multiplies this data with additional stimuli inputs using

an array multiplier, producing a 2N -bit binary product that is

then sent to the Somatic Compartment for further processing.

Somatic Compartment (SC): Structurally similar to the AC,

the SC comprises the Somatic Leakage Subtractor (SLS) and

the Somatic Accumulator (SA). It accumulates the 2N -bit data

from the MU, with the SLS adjusting for leakage and the

SA summing the inputs for threshold comparison. Threshold

Comparator (TC): In the final stage, the TC compares
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the aggregate output from the SC against a predetermined

threshold. If the output surpasses this threshold, a spike is

generated. This output spike plays a dual role as both the

neuron’s output and an input for the SWM in the subsequent

computational cycle, perpetuating the recurrent feedback loop

within the network. Further, the spike is connected as RESET

to somatic compartment register.

III. RESULTS

Fig. 5. (a) Setup for Gesture Recognition Using DVS: This setup is utilized
for recording gestures, which generate spatio-temporal event streams. The
images are adapted from source [16]. (b) Simulation Setup: This involves
the use of a spatio-temporal stream as somatic input spikes. Context spikes
are directed to the apical compartment, prompting the network to recognize
a specific class. The output indicates whether the input stream corresponds
with the context spikes.

The efficacy of the proposed qCLIF neuron model was eval-

uated within a context-dependent RSNN using the Dynamic

Vision Sensor (DVS) Gesture dataset [16]. This dataset com-

prises ten distinct categories of hand gestures, each recorded

with a spiking vision sensor. Inputs to the model are structured

as 512-dimensional spike trains, with durations ranging from

196 to 1476 milliseconds. The network architecture consists of

200 cLIF neurons, connected recurrently through their somatic

compartments. A context input mechanism incorporating ten

neurons, each aligned with a specific class, was integrated.

The target class is indicated by Poisson spikes at 200 Hz

from the respective neuron, and the network’s output is binary,

indicating the correspondence of a gesture to the target class.

The simulation setup The training was conducted over ten

epochs using Backpropagation Through Time (BPTT) with an

Adam optimizer. In Fig. 5, we present both the practical setup

for gesture recognition using a DVS and the corresponding

Fig. 6. Insights from the network simulation (a) Apical input spike activity
histogram, (b) Somatic input spike activity histogram, (c) Apical weight
Histogram, (d) Somatic weight histogram.

simulation framework, illustrating how spatio-temporal event

streams are recorded and processed for gesture classification.

For this task, we have determined that both somatic leak

and apical leak are uniformly distributed across neurons, with

values of (200, 7) and 7 respectively. This distribution is aimed

at aligning their exponential decay parameters at 200 δt and

20 δt. Additionally, we have adopted other parameters from

[3].

Initial tests focused on the impact of linear leakage of qCLIF

on network performance. With optimized leakage parameters

(choosing a linear regime of exponential decay), the qCLIF

model’s performance was found to be slightly below the state-

of-the-art accuracy of 95% by 0.5%, proving its efficacy.

Furthermore, removing leakage from the neuron model led

to a notable 4% decrease in accuracy at full precision.

The potential of quantization was also examined through

fixed point numbers for constants and variables in eq. (5) (6).

Considering over 500 inputs per neuron (context spikes, stim-

uli spikes, and recurrent spikes) processed through associated

weights (assumed quantized to 8 bits), an adder precision of at

least 16 bits was deemed necessary (to handle a maximum total

of 127,500). This would necessitate a 16x16 multiplier and a

final 32-bit adder. However, an in-depth analysis of network

activity showed that spiking occurred in only about 2% of the

neuron population, as depicted in Fig. 6 (a-b). This finding

justified the use of smaller bit widths.

The effects of quantizing neurons and weights on network

performance were also examined. The weight distribution

within the network was observed to follow a normal distri-

bution, with soma weights predominantly in the range of -0.5
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TABLE I
EFFECT OF QUANTIZATION ON NETWORK PERFORMANCE

Precision

Level

Neuron

Quantization

Accuracy (%)

Weight

and

Neuron

Quantization

Accuracy (%)

Full Precision 94.5 94.5

16-bit 93.4 93

8-bit 92 90

4-bit 77.5 73

2-bit 55 N/A

Fig. 7. Layout of the proposed design: (a) single cLIF neuron, (b) a complete
10 neuron qCLIF model with weight accumulator.

to 0.5 and apical weights between -2 and 2. This informed

the decision to quantize weights within these specific ranges,

deviating from the common -1 to 1 range, as shown in

Fig. 6 (c-d). This tailored approach to quantization aimed to

fully utilize the range, thus enhancing network efficiency and

effectiveness. The consequent impact of quantization on model

performance is elaborated in Table I.

The proposed qCLIF design, synthesized on a 45nm CMOS

process [15], was realized through Synopsys Design Vision

and Innovus automation tools. Simulation results for a single

neuron with 8-bit precision indicated an area footprint of 0.029

× 0.030 mm² (layout in Fig. 7 (a), a slack time of 5.62 ns,

and power consumption metrics as follows: switching power

at 0.020 mW, internal power at 0.041 mW, and leakage power

at 0.016 mW. This yielded a total power consumption of

0.077 mW and an energy efficiency of 0.773 pJ per spike,

as detailed in Table II. The performance metrics provided

in this study primarily reflect worst-case scenarios and may

not fully capture variations specific to different activities. It’s

plausible the networks exhibit sparse activity, hence could

potentially demonstrate lower energy consumption. Fig. 7 (b)

shows a complete ten neuron qCLIF model layout with an

accumulator. Further, all neurons are mapped at the right top

part of the floor plan since a weight accumulator is located

at the left part. Grouping the neurons in integrated circuit

layouts enhances signal integrity by minimizing transmission

distances and noise interference. This approach optimizes

power distribution and reduces noise, while also streamlining

the design and manufacturing process. This 10 qCLIF RSNN

layer was subjected to simulations at various clock frequencies

Fig. 8. Performance evaluation of a 10 qCLIF neuron layer: (a) The relation-
ship between clock frequency and energy per spike, showing lower energy
efficiency at higher frequencies. (b) Clock frequency versus timing slack,
illustrating the trade-off between speed and slack available for completing the
operation.

to evaluate network scalability. At a high clock frequency of

200 MHz, the network exhibited a minimal slack of 0.15

ns, albeit at the expense of increased power consumption.

Conversely, a lower clock frequency of 20 MHz significantly

reduced power consumption but increased the energy per

spike. A median frequency of 100 MHz was found to offer a

balanced trade-off, achieving a slack time of 5.10 ns and an

energy per spike of 1.342 pJ as can be seen from 8.

To assess the scalability of the proposed design, it was

applied to a larger network of 200 neurons, akin to a similar-

sized RSNN used for DVS gesture classification, and operated

at 100 MHz. With an 8-bit precision configuration, the network

achieved a timing slack of 4.07 ns, occupying an area of

1.925 × 1.925 mm² and registering an energy consumption

of 17.9 pJ per spike. A subsequent reduction in precision to

4 bits resulted in a smaller area of 1.365 × 1.365 mm² and

lowered the energy per spike to 8.7 pJ. This demonstrates

the design’s adaptability to larger networks. Notably, the

decrease in precision led to approximately a 50% reduction

in energy per spike and, interestingly, an increased timing

slack, suggesting the potential for higher clock frequencies. As

shown in Table II, both area and power requirements increase

sub-linearly with the number of neurons and synapses, further

indicating the scalability of the design methodology.

These results suggest that the qCLIF neuron model is a

viable candidate for high-speed, energy-efficient neuromorphic

computing applications. Compared to previous works, as seen

in Table III, while our design does not boast the highest neuron

count, it introduces a more complex neuron model within a

recurrent SNN framework for the first time while achieving

lower energy per spike. Despite the effectiveness of this

approach, it deviates from the asynchronous operation ideal

in fully digital neuromorphic systems, as synchronized func-

tioning is required for both apical and somatic compartments.

The design’s reliance on a digital accumulator, occupying sub-

stantial layout space, suggests potential for refinement. Space-

efficient alternatives, such as sparse accumulator or memristor

crossbar architectures output can be directly connected to the

qCLIF digital hardware. The exploration of smaller technology

nodes could yield further improvements.
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TABLE II
QCLIF NEURAL MODEL COMPUTING PERFORMANCE METRICS (@ 1.1V)

No.

of

qCLIF

Clock

Freq

(MHz)

Synapse

Count, Precision

Area

(mm2)

(LXW )

Slack

(ns)

Switching

Power

(mW )

Internal

Power

(mW )

Leakage

Power

(mW )

Total

Power

(mW )

Energy

Per

Spike

(pJ)

1 100 - 0.029 X 0.030 5.62 0.020 0.041 0.016 0.077 0.773

10 20 250, 8bit 0.125 X 0.125 45.13 0.079 0.130 0.266 0.475 2.377

10 50 250, 8bit 0.125 X 0.125 15.10 0.199 0.326 0.266 0.790 1.581

10 100 250, 8bit 0.125 X 0.125 5.10 0.397 0.651 0.266 1.315 1.342

10 200 250, 8bit 0.125 X 0.125 0.15 0.805 1.306 0.268 2.380 1.190

200 100 82K, 4bit 1.365 X 1.365 6.45 72.300 70.4 31.5 174.0 8.7

200 50 82K, 8bit 1.925 X 1.925 14.05 79.500 70.8 64.0 214.0 21.4

200 100 82K, 8bit 1.925 X 1.925 4.07 153.000 141.0 63.8 358.0 17.9

TABLE III
COMPARISON OF VARIOUS SNN HARDWARE

[18] [19] [20] [21] [22]
This

work

This

work

Fabricated Fabricated Fabricated Fabricated Fabricated Simulated Simulated

Technology

(nm)
65 90 65 10 28 45 45

Neuron

count
650 400 410 4096 1M 200 200

Network Type FF SNN FF SNN SNN FF SNN FF SNN cRSNN cRSNN

Neuron Type IF Stochastic IF LIF LIF qCLIF qCLIF

Synapse

count
67k 313k N//A 1M 256M 82k 82 k

Precision 6 bit 1bit 4 bit 7 bit 4 bit 4 bit 8 bit

Area (mm2) 1.99 0.15 10.08 1.72 430 1.86 3.71

Clock
frequency

70KHz@
0.52V

37.5MHz 20MHz
105MHz
@ 0.5V

1KHz@
1.05V

100MHz@
1.1V

100MHz@
1.1V

Energy per

SOP (pJ)
1.5 8.4 N//A 3.8 26 8.7 17.9

Dataset
GSCD

(4 Keywords)
GSCD

(2 Keywords)
GSCD

(10 Keywords )
TIMIT

(4 Keywords)
TDIGIT

(4 classes)
DVS Gesture

(10 Classes)

DVS Gesture

(10 Classes)

Accuracy (%) 91.8 94.6 90.2 94 90.8 73 90

IV. CONCLUSION

In this study, we propose a qCLIF neuron model featur-

ing variable precision utilizing networks sparse activity. We

implemented a scalable, reconfigurable qCLIF neuron layer,

marking the first hardware realization of a context-based

recurrent spiking neuron layer in the digital domain. These

designs are evaluated at a 45nm technology node through

synthesis and layout. Our evaluations across different oper-

ating frequencies aimed to balance computational efficiency

and hardware performance optimally. This work lays a step

towards digital efficient neuromorphic hardware systems.
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