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Abstract— Wearable sensors are increasingly used for
continuous health monitoring, but their small size limits
battery capacity, affecting user experience and monitoring
capabilities. To overcome this, we introduce an ultra-low
power analog Folded Neural Network (FNN) for physiolog-
ical signal processing in a batteryless fashion. Our pro-
posed FNN, by serializing computation, provides several
benefits over traditional analog implementations, such as
lower space, lower power consumption, and lower peak-to-
average power ratio. We evaluate our method extensively
using a dataset designed for ECG-based screening and
diagnosis. Our analysis considers factors such as thermal
noise, spatial requirements, and power consumption. Ad-
ditionally, we evaluate detection performance, investigating
various parameters of the proposed FNN. This evaluation
provides insights into the optimal configuration for accu-
rate anomaly detection. We observe a good trade-off for ac-
curacy around 6 layers and a hidden size of 30 and further
demonstrate that such architecture could be implemented
in a wearable device and executed in a batteryless fashion.

Index Terms— Health Monitoring; Analog Neural Net-
works; Low Power Design; Wearable Computing; Dis-
tributed Sensing; Folded Neural Network.

I. INTRODUCTION

It is important to track and monitor our daily health data as
it enables the identification of deviations from normal bodily
patterns, facilitating early detection of diverse diseases in both
clinical and pre-clinical environments. Early diagnosis is criti-
cal to preventing fatal conditions such as myocardial infarction
and cardiomyopathy/heart failure [2], [3]. Wearable sensors
offer a lightweight and affordable solution for tracking phys-
iological markers, but simply collecting data is not enough.
The data must be analyzed to provide meaningful insights
into a person’s health. Currently, most of this analysis is done
on digital devices that receive data from wearable sensors,
incurring high communication costs, leading to severe energy
drain and low battery life of only 3 to 10 hours. To address this
issue, we propose an ultra-low-power neural network folding
approach on wearable devices to bypass the power consumed
on data transmission and central computation.
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Fig. 1: Envisioned hybrid analog-digital architecture for 12-
lead electrocardiogram (ECG) signal processing. Blocks rep-
resent the power budgets for conventional health monitor-
ing. An ultra-low power Folded Neural Network (FNN)
analyses the compressed Analog Joint Source-Channel
Coded (AJSCC) [10] signals, with low False Negative (FN)
rate while any False Positives (FP) are further analyzed by the
digital system (woken up only when needed, i.e., just in time).

Background and Motivation: To facilitate the intelli-
gent evaluation of physiological data, non-invasive continuous
monitoring of patients using multiple wearable sensors is
essential. Researchers have developed numerous non-invasive
approaches to aid in screening by analyzing the body’s phys-
iological responses [4]–[7], complementing traditional diag-
nostic methods such as medical imaging and clinical tests.
However, acquiring and analyzing these signals requires a
Body-Area Network (BAN) with low-energy nodes capable
of computation. In this direction, a two-tier wireless sensor
network architecture has been proposed [8], [9], that we use
as the underlying framework for our design (as shown in
Fig. 1). The lower tier of this architecture consists of multiple
smaller nodes sensing and evaluating physiological responses
at various points in the body. The upper tier consists of a
smaller number of cluster heads, such as mobile phones and
medical devices, that compile the results from the smaller
sensor nodes into meaningful information. This architecture
leverages the higher processing power available in small digital
handheld devices and the inexpensiveness of small sensor
nodes to place multiple sensors on the body.

While the two-tiered approach presents a promising solution
for BANs, it has some drawbacks in practice. One issue is
the high communication cost associated with using only a few
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cluster heads as central processing nodes, as it requires sending
all data collected by the numerous sensors to the said cluster
heads. Additionally, the nodes proposed in this approach, such
as TelosB and Mote2, require batteries to be integrated into
the design [11], leading to bulky, uncomfortable, and high-
maintenance sensors.

Traditionally, the power budget for a wearable health mon-
itoring sensor is distributed across various components as
follows: the display, contingent on its type (e.g., OLED,
LCD), may consume between 100 to 500 mW [12]; computing
elements, including the Micro-Controller Unit (MCU) and
signal processing unit, exhibit varying power requirements,
with a low-power MCU consuming around 1 to 10 mW [13];
and the signal processing unit necessitating an additional 10 to
50 mW [14]. Flash memory, utilized for storing health data,
is estimated to consume approximately 5 to 20 mW during
read/write operations. Connectivity components, such as Blue-
tooth Low Energy (BLE) modules, typically consume between
1 to 10 mW during data transmission [15]. Consequently, the
total power budget for the sensor may range from 120 to
600 mW, contingent on the specific components employed
and their respective efficiencies, making it unfeasible for
continuous monitoring on its own.

To address this issue, we propose a novel computation
architecture for processing data onboard, referred to as Folded
Neural Network (FNN). Our architecture reduces the space
needed to implement and process complex neural networks in
space- and resource-constrained sensors, thus bringing down
the size and power consumption. By enabling local smart
health monitoring on the sensor, we reduce communication
between nodes and minimize the associated communication
overhead. This concept is shown in Fig. 1 whereby intelligent
analog sensors act as a continuous processing filter before the
baton is passed on to a complex digital processor, yielding
gains in both energy efficiency and continuity of detection.
Bringing intelligence to the analog nodes makes the overall
architecture energy efficient by reducing the need for batteries.
This is evident as our proposed analog architecture consumes
very low power (on the order of µ-Watts, consumed only
for display or data transmission when needed) and could be
powered by harvesting energy from environmental sources,
such as patients’ thermal heat or vibrations. Small energy
harvesters working on thermo-electric principles have been
shown to generate power in the order of hundreds of µ-
Watts [16], [17], which could reliably power computational
architectures requiring only a few µ-Watts to operate, thus
eliminating batteries, and leading to further miniaturization
and affordability of the sensor nodes.

Finally, while our approach for continuous physiological
monitoring can be applied to many different applications,
this article focuses on Electrocardiogram (ECG) as a case
study. ECG is a well-established and widely used physiological
signal that provides important information about the heart’s
function. As such, ECG is an ideal signal for continuous moni-
toring that can help in the early detection of heart problems and
inform personalized treatment plans. Our focus on ECG allows
us to demonstrate the potential of our approach in a specific
and important context while also providing a starting point for

future work with other physiological signals and applications,
like electroencephalogram (EEG), fitness tracking, or even the
digital domain where resources available on smaller digital
Field Programmable Gate Arrays (FPGAs) are constrained and
could benefit from neural folding.

Our Contributions: This paper proposes and evaluates a
low-powered, all-analog architecture that enables Neural Net-
work (NN)-based computation for small, battery-less sensor
nodes. Our contributions are:

• We propose a novel Folded Neural Network (FNN)
architecture that enables complex NN-based analysis on
sensor data by serializing computation on an analog chip.

• We demonstrate the practicality of our architecture for
continuous monitoring by evaluating it on a publicly
available dataset that involves ECG-based diagnosis and
showcasing the ability to inform about potential anoma-
lies.

• We detail a comprehensive noise analysis of our proposed
architecture, showing the feasibility of its usage in a
wearable sensor.

• We study the various trade-offs involving architectural
design, the complexity of design, and the relevant
power/energy consumption, and identify parameters for
a batteryless operation.

Furthermore, the proposed FNN architecture refers to a
hardware architecture for the low-resource (power, space)
execution of feed-forward fully-connected neural network
and should not be confused with Recurrent Neural Net-
works (RNNs), which describe a class of neural networks
that include feedback in-between their layers due to which
their output depends upon inputs presented earlier in time
as well. This class includes Gated Recurrent Units (GRUs),
Long Short-Term Memory (LSTMs), etc. [18]–[20] However,
FNN does not implement recurrent networks and is, therefore,
unrelated to this class.

Outline: This article is organized as follows: Sect. II
positions our work with respect to related research; Sect. III
explains our proposed two-step approach; Sect. IV evaluates
our approach in both analog and digital domains, as well as
in a hybrid manner; and Sect. V finally concludes the article.

II. RELATED WORK

We present here a brief overview of the literature closely
associated with this article. Divided into three parts, the review
starts with a brief foray into wearable sensor networks, leading
to an exploration of the ECG signal processing domain, and
finally ends with neural network processing in the analog
domain.

Wearable Sensor Networks: The concept of a Wireless
Sensor Network (WSN) is central in enabling a real-time
monitoring system for any/all physiological signals [21]. Re-
searchers have approached it by proposing ubiquitous health-
care networks [22] that incorporate both body-area-networks
as well as wider wireless networks to enable continuous
ubiquitous healthcare [23]. However, both proposed [21], [24]
and implemented [25], [26] wearable WSNs have always
moved the computation to the edge (digital) nodes paying little
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Fig. 2: (a) Illustration of the Folded Neural Network (FNN), and (b) its analog implementation. The controller is responsible
for controlling the computation of hidden layers using the control signals HSW , HSR, HIN , HOUT , and HW supporting write,
read, input, output, weight-change operations respectively. The operational core of the NN is the VRPU array, building upon
which we create the input layer, hidden layer, and output layer.

to no attention to the high communication costs incurred at
the sensor-level, and hence, low battery-life and frequent need
for recharging or replacement [23]. In this work, we target this
neglected area and work towards an efficient in-situ processing
scheme for low communication & power costs.

ECG Signal Processing: Changes in ECG have been
linked to a wide range of conditions, such as congestive
heart failure, arrhythmias [27], glycemic events [28], sleep
apnea [29], Parkinson’s [30], and even hypertension in gen-
eral [31]. In order to successfully link ECG with the afore-
mentioned conditions, multiple methods have been proposed
including but not limited to time-frequency transforms [32],
[33], Artificial Neural Networks (ANNs) [29], [34], and
traditional classification algorithms such as Support Vector
Machines (SVMs) [35], eigenvector decomposition [36], and
hybrid signal processing [37]. However, the majority of these
techniques are proposed from a signal processing point-of-
view, making them unable to translate into a real-time signal
processing scenario where resources are limited.

Analog Neural Processing: In order to bring efficiency
to the processing of ECG signals, we propose analog signal
processing architecture, situating this work closer to circuit
design for signal analysis. Several architectures have been
proposed, including Resistive Processing Units (RPUs) [38],
memristive crossbar arrays [39], and various neural network
designs [40]–[42]. In [38], we observed DC-drift at the output
of each stage. To mitigate this issue, we suggested using a high
pass filter at the output stage to eliminate the DC-drifts. In this
vein, while architectures have been proposed, this is the first
work that targets analog processing from a healthcare point-
of-view and proposes a wearable-conscious fully-connected
neural network analog design. We take into consideration

the required chip area, system-based accuracy for monitoring,
effective wear time for the system, and power consumption to
optimize our design for wearable health monitoring. By doing
so, we aim to enhance the efficiency and effectiveness of ECG
signal processing in the context of healthcare.

III. PROPOSED SOLUTION

As shown in Fig. 2, our Folded Neural Network (FNN)
concept is based on the sequential processing of hidden layers.
In this section, we present our approach in a bottom-up
fashion, starting from a single neuron structure (see Sect. III-
A), then moving on to detailing control structure for serialized
computation (see Sect. III-B), and finally detailing how it
comes together for FNN operation (see Sect. III-C).

A. VRPU-based Neuron

Given a weights matrix w, and an input vector xin, an
artificial neuron maps it to output xout = σ(wTxin + b),
where b the bias vector, and σ represents a non-linearity.
This model of a neuron is hence based on three major
components: (i) multiplication, (ii) addition, and (iii) non-
linearity. As shown in Fig. 2b, we implement multiplication
using a Voltage-based Resistive-Programmable Unit (VRPU).
Our proposed VRPU design involves a Voltage-Controlled
Current Source (VCCS) offering several advantages: Firstly,
it eliminates the need to precisely control the DC bias voltage
on each node to ensure proper MOSFET operation; secondly,
the operation of multiplication becomes more accurate. In
contrast to earlier design [38], which used the gate and drain
of PMOS as inputs for the RPU, the VCCS design reduces
errors associated with multiplication outputs that are close to
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Fig. 3: Example oscillator output for 3 fold-FNN (TP = 3TF ),
and a temporal quantization of 5 (TF = 5TQ).

Parameter Definition
L Number of layers in the neural network
nl Number of neurons in the lth layer

W (l) Weight matrix of the lth layer
b(l) Bias vector of the lth layer
σ(l) Activation function of the lth layer
n1 Number of neurons in the input layer
nL Number of neurons in the output layer
nw Width of the network (hidden-size)
TF Time taken to process one fold
nlpf Layers processed per fold
nF Number of folds in one processing cycle
TP Processing time for one cycle
nQ Number of points sampled in the time window TF

TQ Time in-between two consecutive samples
fQ Sampling/quantization frequency

TABLE I: Definitions of various parameters used for describing
FNN architecture and function.

zero. VBP and VBN are network weights obtained by offline
training and stored in the weights-memory, updated by each
fold. These updates are detailed in Sect. III-B.

Furthermore, addition is implemented using an OpAmp-
based voltage adder as shown in Fig. 2b. Finally, we im-
plement two types of activation functions in this paper,
namely Sigmoid, i.e., σ(x) = 1

1+exp(−x) and Rectified Linear
Unit (ReLU), i.e., σ(x) = x · [x > 0] using Diode-Pair (DP),
and Diode-based (D) implementations [38], respectively. We
take advantage of OpAmp-based design to acquire the voltage
difference between two output nodes to read activation output.

B. Controller & Memory
For a fully connected neural network with L layers, let

x(l) ∈ Rnl be the input feature vector of the lth layer, where
nl is the number of neurons in that layer. The output of the
lth layer is given by y(l) = σ(l)(W (l)x(l) + b(l)), where
W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the weight matrix
and bias vector, respectively, of the lth layer, and σ(l) is the
activation function used in that layer. The input to the first
layer is the input feature vector, i.e., x(l) = x, and the output of

the last layer is the output of the neural network, i.e., y(L) = y.
For FNN, 1st and Lth are considered input and output layers,
with n1 = 12 and nL = 2 for 12 ECG input leads and 2
classification outputs, respectively. Lastly, to facilitate folding,
nl = nw, l ∈ {2, 3, ..., L − 1}, where nw is the width of the
network (hidden-size).

Folding multiple hidden layers into sequential computa-
tion requires careful temporal orchestration. The most basic
component of folded computation is a single fold. Let the
time taken to process on fold be TF , which also denotes
the time-window of ECG signal processed at once and can
involve either single or multi-layer computation, denoted by
nlpf (layers processed per fold). nlpf depends on the realized
circuit design and cannot be changed once implemented.
One processing cycle—through the whole network—requires
nF folds, resulting in a processing time of TP := nFTF .
Lastly, propagation of signals through multiple folds requires
saving the continuous temporal signal into discrete memory
in-between folds, resulting in temporal quantization, as only a
finite number of points (nQ) can be sampled from a signal in
the time window TF . Hence, quantization time TQ is related to
the TF as TF = nQTQ, with sampling/quantization frequency
(fQ) being 1/TQ, relating to how accurately we read/write the
temporal input in between folds. A concise description of each
parameter is also described in Table I for clarity.

As the weights and inputs in the VRPU are voltage-
controlled, we use a capacitor as the basic memory element.
We implement two types of memory: signal-memory and
weights-memory. These memories are arrays of capacitors
read/written by signals from the controller. The controller uses
five signals, namely, HIN , HOUT , HSW , HSR, and HW

for executing input, output, write, read, and weight-change
operations respectively (see Fig. 2). HIN controls the tri-state
switch SIN , and is HIGH (connecting to 1st layer output) for
the first fold and LOW (connecting to feedback) for all other
folds in a processing cycle. HOUT controls the tri-state switch
SOUT , and is HIGH (connecting to Lth layer input) for the
last fold and LOW (connecting to feedback) for all other folds
in a processing cycle. HSW controls write-operation to signal
memory and is a bus composed of nQ signals, each controlling
an individual capacitor in the memory. The bus writes to
nQ capacitors sequentially during each fold except the last
(when output is directed to the Lth layer input). Similarly,
HSR controls read-operation from signal-memory and is also
a nQ-wide bus. It reads from capacitors sequentially during
each fold except the first (when input is obtained from 1st

layer output). Finally, HW changes between nF discrete levels
during the processing window TP , to load the weights W (l)

from the weights-memory to the folded network to further
control VP and VN in the Fig. 2 in VRPU at the gates of
the left two transistors. The number of weights loaded for one
fold is nlpf ×nw×nw. A sample output for controller signals
is shown in Fig. 3 for nF = 3 and nQ = 5.

C. Folded Neural Network (FNN)

The base components, i.e., neuron, controller, and memory,
form the FNN architecture, as shown in Fig. 2b. Apart from
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TABLE II: Accuracy Comparison of Neural Network Architectures
with PhysioNet 2020 Challenge Dataset [43].

Model Accuracy (%) Feature Extraction

Deep transformer NN [44] 53 No features
Deep CNN [45] 66 CNN
Analog FNN (This work) 67 No features
P-QRS CNN [46] 74 P-QRS CNN
Bi-LSTM [19] 93 Bi-LSTM
LSTM [20] 94 LSTM

Fig. 4: Integration of dual ECG sensing inputs into a single
neuron-accumulator analog classifier prototype in the experi-
ment. CH1: The ECG signal from Sensor 1; CH2: The ECG
signal from Sensor 2; CH3: The summation of CH1 and CH2;
CH4: The accumulation of CH3 in the time domain.

the folded hidden layers for sequential computation, the 1st

and Lth layers are special as they are not folded (see Fig. 2a).
Furthermore, all layers except the output layer use the Sigmoid
non-linearity–implemented using Diode-Pair (DP) design–,
while the output layer uses an accumulator on the temporal
signal to get the final decision trigger for the digital network.
The 2 outputs refer to the classification between a normal or
abnormal ECG signal. If the accumulated first output is greater
than the second, the result is deemed normal, otherwise, it is
considered abnormal, and the digital system is triggered.

Using a folded neural network approach, we save space by
a factor of ∼ nF , with the overhead of the implementation
of signal-memory (nQ memory-elements) and the controller.
At the same time, we effectively only observe the underlying
ECG signal for a fraction of 1/nF times, resulting in ‘contin-
ual’ monitoring instead of ‘continuous’. Furthermore, during
sampling for multi-fold processing, temporal quantization is
incurred with an error directly proportional to 1/nQ. In this
article, we examine the performance trade-offs associated with
each of these network parameters, including but not limited
to optimal network width nw, accuracy, F1-score, power
consumption, and layers-per-fold (nlpf ).

IV. PERFORMANCE EVALUATION

In this section, we first show prototype of our proposed
circuit in Sec. IV-A and justify the fully-connected architecture
choice in use using Python training/simulation results (see
Sect. IV-B). Further we use SPICE to evaluate parameters of
the FNN architecture, the noise buildup with multiple-folds,
and finally the interplay between power, space, performance
for the analog architecture (see Sect. IV-C).

A. Prototyping

We have realized the fundamental prototype of an analog
classifier, as shown in Fig. 4. This prototype encompasses
the essential functions related to the addition of signals from
different ECG sensors and their accumulation over time. The
circuit of this prototype represents a neuron paired with
an accumulator. CH1 corresponds to the ECG signal from
sensor 1 multiplied by weight 1, CH2 corresponds to the ECG
signal from sensor 2 multiplied by weight 2, CH3 represents
the sum of the ECG signals from sensors 1 and 2, and CH4
illustrates the waveform obtained after the time accumulation
of the CH3 signal. In our experimental setup, we utilized the
signal generator model AFG1022 to generate ECG signals
from a database. The computational power was supplied by the
power supply unit 2231A-30-3, and the signals were observed
using the MDO3024 oscilloscope.

B. Detection Performance

We present here the results of various metrics concerning
the detection performance of FNN. This subsection starts
with the description of our experimental setup, follows with
a comparison with the State-Of-The-Art (SOTA) techniques,
and finally ends with a detailed architectural search of our
proposed design.

Experimental Setup: We use a publicly accessible dataset
published under PhysioNet 2020 challenge for the classifica-
tion of 12-lead ECGs [43]. The whole dataset for this chal-
lenge includes multiple sub-datasets collected from disparate
sources, covering multiple geographic regions, age, and gender
indices, making it a good candidate for the evaluation of our
proposed architecture. The dataset contains a total of 43,101
recordings out of which 20,177 are collected from females and
22,849 are collected from males. Furthermore, 698 recordings
are from ages 0–20, 5,172 from ages 20–40, 14,640 from
ages 40–60, 19,115 from ages 60–80, and 3,295 from people
aged 80 or above. In total, the dataset is divided into 27
classes (26 diseases and 1 normal class), which we use for the
evaluation of the digital part, while we only divide the dataset
into 2 classes (normal and abnormal) for the evaluation of the
analog circuit. Finally, the PyTorch library was used, and the
experiments were run on a Dell Precision 7920 workstation.

Comparison with SOTA: We compare our proposed net-
work with several other related works. Table II presents this
comparison in detail vis-a-vis accuracy metrics on PhysioNet
2020 challenge dataset [43]. The Deep Transformer Neural
Network [44] achieves an accuracy of 53% without performing
feature extraction. The Deep CNN [45], utilizing CNN for
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(a) (b)

Fig. 5: Performance metrics of our proposed fully-connected neural network architecture in terms of Accuracy, AUC, miss
rate, and F1-scores visualized along (a) number of layers, and (b) hidden-size (nw). We observe that we get a good trade-off
for accuracy around 5 layers and a hidden size (nw) of 30.

(a) (b)

Fig. 6: Performance metrics of our proposed fully-connected neural network on a compressed signal using AJSCC-based [10]
2:1 compression. Results are shown in terms of Accuracy, AUC, miss rate, and F1-scores, visualized along (a) number of
layers and (b) hidden size (nw).

simple feature extraction, achieves a performance accuracy of
66%. The P-QRS CNN [46] employs CNN training specifi-
cally designed for P and QRS signals in ECG, resulting in an
improved accuracy of 74%. Advanced Bi-LSTM and LSTM

methods [19], [20], when used for feature extraction, achieve
an accuracy of over 93%. Our proposed approach, on the other
hand, takes into account the various energy considerations that
go into real-time in-situ processing on wearable sensors with
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(a) Noise model for the two-input one-layer analog neural network. (b) Low temperature at 25◦C. (c) High temperature at 80◦C.

Fig. 7: (a) First stage is the signal amplifier, the second stage is the voltage adder, and the third stage is the activation function
and signal acquired through a voltage subtractor; (b, c) Noise simulation for all stages of the noise model under 1V AC sweep.
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Fig. 8: (a) The natural log of the Root Mean Squared Error (RMSE) as the digitally-trained weights are implemented in analog
circuit, simulated via SPICE (ngpsice 36). We observe that a marked increase in error is seen in higher layers as the number
of neurons go above 50 neurons per layer; (b) The average accuracy loss due to added noise because of execution on analog
circuit. The neural network is resilient to smaller noise levels, leading to only a small accuracy loss in smaller networks.
(c) Percentage error in execution when the designed digital network is executed on tinyFPGA with a fixed-point width of 16.
The error is more pronounced for a greater number of layers, but tolerable (within 5%) for up to 7 layers of computation.

compatible accuracy. Furthermore, the principal function of
our proposed FNN is not to replace digitally implemented
signal processing, but rather to act as a pre-filter for reducing
power consumption, hence, even a lower—but acceptable—
detection performance should suffice. Overall system could be
made better by using a more complex digital implementation
while relying on analog to filter out most normal signals.

Neural Architecture Analysis: We perform a combina-
torial analysis of our proposed architecture based on the
parameters of our proposed architecture, namely a number of
layers (L) and hidden size (nw). In a folded neural network,
the decision to fold layers does not have a direct impact on the
theoretical performance of an unfolded version of the network,
as the performance is degraded because of noise introduced
during multiple passes due to the reading/writing of voltage
signals and leakage currents. Therefore, these simulations can
be understood as a feasibility analysis for training a fully-
connected neural network to detect if an abnormality exists
in a given ECG signal. Fig. 5 shows the performance metrics
accuracy, Area Under Curve (AUC), miss-rate, and F1-score
for various hidden sizes and several layers. For Fig. 5a,
we observe that performance increases for around 5 layers
(increasing network capacity) but then stagnates. Similarly,
looking at Fig. 5b, we conclude that a hidden-size (nw) of
30 shows the best performance.

We repeat this combinatorial analysis for compressed sig-
nals using AJSCC [10] (2:1 ratio), as shown in Fig. 6,
showing that the machine-learning approach is compatible

with compression as well, and can be used to save space &
energy during the implementation in the analog domain. We
do observe a slight drop in performance (∼ 5% in terms of
accuracy) but gain space-saving in terms of the input layer,
where the size of weights-matrix is reduced to nw × 6 from
the original size of nw×12, resulting in 2× less space required
for the implementation of the input layer.

C. Analog Noise, Space and Energy Analysis

In this sub-section, we present our analysis and discussion
of various considerations for noise, space, and energy usage
of our design.

Noise Analysis: To gain insights into the robustness of our
design against noise, we created a design space using LTSpice
software. This involved evaluating the output voltage noise and
taking into account all significant noise sources. To validate
our calculations, we compared them to the results obtained
from simulating the circuit model. The noise energy of a two-
input one-layer neural network (divided into three stages) can
be expressed as (see Fig. 7a): For the first stage,

E2
n1 = I2n1(R3||R1)

2 +
R2

3

R2
1

(V 2
n1 + V 2

1 ) + V 2
3 . (1)

E2
n2 = I2n2(R4||R2)

2 +
R2

4

R2
2

(V 2
n2 + V 2

2 ) + V 2
4 . (2)
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For the second stage,

E2
n3 = I2n3(R5||R6||R7)
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For the third stage, assuming diode D1 is forward-biased,
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Assuming diode D1 is reverse-biased,
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Considering the above-mentioned equations and simulation
results as shown in Fig. 7, we have found that the second
stage is the most susceptible to noise in the low-frequency
bandwidth among the three stages. This is expected as the third
stage adds onto the fluctuations it receives from the earlier
stages, although there is a difference in the noise analysis
depending on whether the diode D1 is forward-biased or
reverse-biased, as derived in (4) and (5), respectively.

Apart from the theoretical noise-model analysis, we also
performed circuit simulations via SPICE (ngspice 36) software
to evaluate the impact of noise on the analog circuit empiri-
cally. Figs. 8a and 8b show the natural log of the Root Mean
Squared Error (RMSE) as the proposed circuit is simulated
in SPICE for a different number of layers and hidden size,
and the associated accuracy loss, respectively. The proposed
network yields quite low error for networks with a hidden
size smaller than 50, cementing its feasibility for execution
in analog. Furthermore, the accuracy loss for networks with
4 layers is within 10% demonstrating the robustness of the
associated network. Finally, in Fig. 8c, we also evaluate the
errors incurred as the network would be implemented on
a small digital node (using FPGA). The associated error is
always within 10% for computation with a fixed-point width
of 16, meaning that our network is amenable to execution on
smaller digital nodes as well, with tolerable error and a very
small associated accuracy loss.

Furthermore, the FNN’s noise tolerance, when folded, is
assessed through a process that involves storing the output
in a capacitor array after each fold and then reading it back
into the recurrent path. This mechanism introduces a natural
capacitor discharge effect as analog signals are stored and
retrieved. The effect becomes more pronounced with each
fold, leading to a gradual decay of the signals over time,
reducing the noise tolerance of the hidden-layer computation.
To assess this tolerance, in Fig. 9, we present the signal-to-
noise ratio (SNR), space occupation, and power consumption
analysis. Fig. 9a shows SNR across multiple folds for four
different noise levels. At the output, we can observe that as

we take FNN with one layer per fold (nlpf = 1), the noise
ratio to the original signal increases with each fold. When
a larger capacitance is used to implement signal memory,
also known as a lower angular frequency (higher RC time
constant), the SNR at the second layer experiences a faster
drop after the first fold. However, the rate of dropping slows
down during the second fold. Conversely, a smaller capacitor
improves noise tolerance during the second fold. For the higher
angular frequency, as the number of folds increases, the SNR
significantly drops, which is undesirable, and the SNR noise
ratio becomes more unstable, as shown in the error bar. On
the other hand, when we recurrently add two layers at a
time (nlpf = 2), as the SNR of each layer shown in Fig. 9b, the
SNR remains unaffected between the first and second layers.
Between the third and fourth layers, it is notable that the SNR
slightly drops compared with the third layer. The SNR only
drops significantly during each fold. In this case, a smaller
capacitor also results in a lower SNR.

Device mismatch considerations: The analysis of ECG
signals (0.05−150 Hz) permits the neglect of device mismatch
effects on opamps, NMOS, and PMOS due to low operational
frequency. Meanwhile, we did not utilize signal amplification
that also effectively reduces the impact of mismatch. To
support the statement, the small-signal AC voltage gain of
a differential pair in an analog circuit can be expressed as
Av = gm·ro

2 , where gm is the transconductance of each
transistor, and ro is the output resistance of each transis-
tor [47]. Introducing device mismatch by representing gm and
ro as random variables, we have gm = g0 · (1 + ∆g) and
ro = ro0 ·(1+∆ro), where g0 is the nominal transconductance,
∆g is a random variable representing the relative variation in
gm, ro0 is the nominal output resistance, and ∆ro is a random
variable representing the relative variation in ro. Substituting
these expressions into the voltage gain equation, we obtain,

Av = Av0 · (1 + ∆g) · (1 + ∆ro), (6)

where Av0 is the nominal voltage gain. The equation de-
rived shows how device mismatch introduces variations in
the voltage gain of the circuit. At low frequencies, the DC
operating point of the circuit becomes more dominant. Since
device mismatch is often more pronounced in AC or dynamic
conditions. The variations are assumed to be small (∆g and
∆ro) in the case, the impact of device mismatch on Av is
relatively minor.

Space and Energy Consumption: In our design, capacitors
are the largest devices, with the most important parameter to
consider being capacitance density for manufacturing. Murata
Manufacturing Co., Ltd. has recently started producing two
new multi-layer ceramic capacitors for automotive applica-
tions. The first capacitor, NFM15HC105D0G3, is the world’s
smallest three-terminal low-equivalent series inductance (ESL)
multilayer ceramic capacitor, measuring only 0402 inches
(1.0×0.5mm). The second capacitor, NFM18HC106D0G3,
has the highest capacitance for a three-terminal low-ESL
multilayer ceramic capacitor, providing 10µF in the compact
size of 0603 inches (1.6×0.8mm). By utilizing Murata’s thin-
layer technology and high-precision lamination technology,
the NFM15HC105D0G3 is 60% smaller in volume com-
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(a) SNR of FNN with one
layers per fold (nlpf = 1,
nF = 6). Top: angular fre-
quency of the signal mem-
ory ω = 0.21Hz; mid: ω =
1Hz; bottom: ω = 2.12Hz.

(b) SNR of FNN with two
layers per fold (nlpf = 2,
nF = 3). Top: angular fre-
quency of the signal mem-
ory ω = 0.21Hz; mid: ω =
1Hz; bottom: ω = 2.12Hz.

(c) Capacitor space w.r.t folding of a
6 hidden-layers neural network given
temporal quantization (nQ) of 10. Top:
nlpf = 1, nF = 6; mid: nlpf = 2,
nF = 3; bottom: nlpf = 6, nF = 1.

(d) Power consumption for folding of
a 6 hidden-layers neural network w.r.t
temporal quantization nQ. Top: nlpf =
1, nF = 6; mid: nlpf = 2, nF = 3;
bottom: nlpf = 6, nF = 1.

Fig. 9: Signal to noise ratio, space occupation, and power consumption analysis.

pared to their conventional products with the same capaci-
tance. The NFM18HC106D0G3 has a capacitance ten times
higher than similar-sized conventional products. The density is
128nF/mm2, which we use for the following demonstrations.
Considering the integration of analog components within the
analog chip, it becomes apparent that capacitors dominate in
terms of space utilization. In Fig. 9c, the space occupation
of a capacitor is illustrated for various sizes of hidden layers
(nw). Observing the results, we find that the space occupation
is directly proportional to the number of neurons per layer.
The difference in space occupation between the 4.7nF and
10nF capacitors is minor but significantly smaller than that
of the 47nF capacitor. This indicates that larger capacitors
require more physical space within the circuit. Comparing
different nlpf , we can observe that folding can save physical
space. The larger number of nlpf , the smaller space occupation
for the same computation, albeit at the expense of continual
monitoring interval. Moving on to Fig. 9d, we explore the
power consumption in relation to the number of neurons
per layer and the sampling number nQ. Higher sampling
resolution costs more power. Overall, these findings shed light
on the relationship between signal-to-noise ratio, capacitor
size, space occupation, and power consumption, providing
valuable insights for circuit designers seeking to optimize their
designs in terms of space utilization and power efficiency.

Batteryless Operation: As mentioned in Sect. I, the typical
power budget of a digital wearable health monitoring sensor
is 120 to 600 mW. However, by using the proposed analog
pre-filter that requires less than 1 mW of power, we can
reduce power consumption by 99% while being able to detect
anomalies in ECG signals continuously. The digital part,
comprising of screen display, MCU, and flash memory only

has to be woken up when a potential anomaly is detected.
Furthermore, display or data transmission is only powered
up on demand, enabling feasible operation without a bulky
battery, which we explain in detail as follows.

A human movement energy harvester (silicon/quartz) at a
frequency 2Hz [48] can have 40µW output power energy using
a chip size 20mm × 45mm (around the size of a wearable
watch), with a maximum power density of 0.044µW/mm2.
Assuming 16 hours (waking hours) of 40µW and 8 hours
(sleeping hours) of 0W energy harvesting, our system can
spend an average of 26.7µW. Looking at Fig. 9d (Top), a fully-
folded 6-layer network (nlpf = 1;nF = 6) with nQ = 20, and
a hidden-size (nw) of 10, can be operated with an average
power of around 25µW. On the other hand, with a duty
cycle of 50%, we can execute a fully-folded 6-layer network
with a hidden size (nw) of 30 with an equivalent average of
53µW, which is one of the best performing neural network
architectures as demonstrated in Fig. 5a. This operation is
not possible with unfolded network architecture as it con-
sumes more space (38.2mm2) and more power (202.15µW)–
as evidenced in Figs. 9c (Bottom), 9d (Bottom). Utilizing a
supercapacitor, typically possessing an energy density ranging
from 1 − 30mWh/g, we can effectively store and deliver
power for the circuit’s operation. Therefore, our FNN approach
reduces power consumption to enable batteryless operation. It
can be argued, however, that a similar reduction in average
power could be achieved by simply reducing the duty cycle
by 6×, instead of folding 6× as shown in Fig. 9d (Top). But
the point of note here is that our folded approach consumes a
steady low power (equal to average power) while decreasing
the duty cycle leads to a peaky power consumption pattern
(peak-to-average power ratio of 6), albeit with a similar
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apparent monitoring interval. A higher peak power, hence,
means a bigger supercapacitor, hindering a compact wearable
design. Hence, our FNN is not only amenable to batteryless
operation but is the only way to save enough space and power
for continual monitoring.

D. Operational Speed

When it comes to designing analog/digital models of our
proposed network, fine-tuning or training the weights is the
most time-consuming task. Offline training as processed on
an Nvidia RTX 2080 Ti GPU, takes around 47 seconds per
epoch, whereby usually a training of 10–20 epochs is needed
to achieve acceptable performance. These times signify the
delay in training and designing new weights for updates in the
device with new data. However, such updates are infrequent
and done offline, meaning that for the real-time operation
of the device, only delays relating to the digital and analog
execution should be relevant. The analog operation showcases
a markedly swifter processing speed in anomaly detection
compared to its digital counterpart. By configuring various
RC time constants to represent distinct charging/discharging
intervals, as illustrated in Fig. 9a and Fig. 9b, a combination
of a 4.7µF capacitor and 100kΩ resistor results in an RC
time constant of 2.95 seconds or a 2.12 Hz angular frequency.
We observed its ability to encompass information over ap-
proximately 2.5 times the RC time constant, equivalent to 7
to 10 heartbeats, contingent on heart rate. The operational
mode maintains acceptable SNR conditions. Crucially, this
design ensures that the processing time remains at or below
TQ, thereby not affecting TF and TP , ensuring real-time
signal processing, as evidenced by the prototype depicted
in Fig. 4. Analog operation inherently operates in real-time,
contrasting with digital processes that involve considerations
of computational time.

V. CONCLUSION AND DISCUSSION

We proposed an ultra-low power analog design for physi-
ological signal processing, utilizing an all-analog neural net-
work architecture and a physical folding architecture with an
analog oscillator as a timing signal. Our method eliminates the
need for a battery and undergoes extensive evaluation using an
ECG-based diagnosis dataset. We consider factors like thermal
noise, spatial requirements, and power consumption. We also
evaluate detection effectiveness, exploring hidden layer sizes
and the number of layers. In the broader context of wear-
able monitoring, our FNN approach demonstrates significant
potential beyond its current use for ECG monitoring. It can
be expanded to encompass other monitoring applications like
EEG monitoring, sleep monitoring, fitness tracking, and more.
Additionally, it can be applied to cross-domain scenarios such
as continuous computation in Radio-Frequency Identification
tags (RFIDs), smart fabrics, implantable tattoos, tiny digital
FPGA devices, and others. Overall, the FNN architecture
proves beneficial in situations where resources are limited in
terms of energy and space while necessitating continuous yet
straightforward computation. There is, however, no free lunch,

as folding capability imposes limitations on the network struc-
ture, restricting the full utilization of recent advancements in
neural network research in the analog domain. Further research
is needed to incorporate powerful architectures like CNNs,
Transformers, and others into the analog domain. This article
represents the first step towards achieving low-powered analog
neural network computation. Finally, although our current
analog FNN prototype is built using commercially available
components, resulting in a large size, future iterations will be
designed as analog ICs, leading to a significant reduction in
volume. This advancement will also allow for a substantial
increase in the number of neurons and the complexity of the
FNN.
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