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Abstract—The Zero Trust (ZT) paradigm has recently
emerged. The core idea of ZT is never to trust but always
authenticate. By incorporating ZT into network architectures,
neither users nor service providers need to trust each other, which
significantly enhances the security level of these architectures.
Cloud-based facial authentication is one of the plausible access
control solutions to bring ZT into network architectures. Many
of the state-of-art works on encrypted cloud-based authentication
use Fully Homomorphic Encryption (FHE) to protect users’
private data. FHE enables a cloud server to perform arithmetic
operations on encrypted inputs without decrypting them but with
a significant computing overhead. In this work, we introduce
novel approaches to incorporate Partially Homomorphic Encryp-
tion (PHE) into cloud-based facial authentication by changing the
distance metric from Euclidean distance to Manhattan distance.
As a result, we reduce the computational overhead by a factor
ranging from 20 to 55. In addition, we propose a novel two-
stage architecture for group facial recognition, which can further
reduce the total computation cost of authentications required to
identify an individual from a crowd. Compared with conventional
facial recognition methods, to find people of interest, group facial
verification can cut the cost of calculating facial recognition by
55%. With such a lightweight design, FaceGroup is scalable and
can be deployed on resource-constrained devices.

Index Terms—Face Recognition, Biometrics, Access control,
Siamese Network, Homomorphic Encryption, Group Testing

I. INTRODUCTION

Overview: To provide a high standard of security and
protection to users and service providers, Zero Trust (ZT)
paradigm [1] has recently emerged. Unlike Federated Learning
(FL) [2], [3], where only the server is not trusted, the basic
assumption that ZT makes is that none of the users and service
providers should be trusted. Therefore, ZT advocates the idea
of never trusting but always authenticating, and continuous
authentication methods have become a common type of im-
plementation of ZT. Although there are many authentication
methods for physical access control, the methods suitable for
continual authentication should be able to conduct remotely. A
popular method of continually remote biometric authentication
is identifying user identities via facial authentication.

Facial authentication methods can be classified into two
categories: on-device and off-device authentication, depending
on where the computation takes place. On-device facial au-
thentication methods use local devices for computation, while
off-device methods transfer most of the computation to third-
party servers. On-device methods provide fast authentication,
but their performance can suffer when onboard computation
is intensive. Off-device methods provide a high capacity for
large-scale authentication but can be vulnerable to malicious
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Fig. 1: Paradigm for FaceGroup system. Newly authorized
personnel must enroll in the system by following the enroll-
ment stage. Then, query faces are divided into batches, and
the batches are processed by the group authentication stage.
Only if the group authentication stage gives a positive result
for a batch, every identity in the batch will be accurately
authenticated in the individual authentication stage.

attacks and communication latency. Both of these two security
systems have flaws and are vulnerable in certain circum-
stances. In this paper, we propose a novel hybrid security
system to mitigate the flaws of on-device and off-device
systems.

Motivation: A hybrid authentication system can address
the limitations of on-device and off-device authentication
systems. On-device authentication systems store data locally
on cameras, requiring the access control system’s authorization
database [4] (i.e., the database that holds the information re-
garding who has access to rooms) to be updated for all devices
whenever an authorized individual’s access level changes.
Unsuccessful updates to the authorization database can grant
intruders access, making on-device methods unscalable and
not compatible with the dynamic policy requirements made
by ZT. Additionally, on-device methods have limited storage
space and require upgrades when the number of authorized
personnel increases.

Off-device authentication systems adopt a centralized struc-
ture, with heavy computation offloaded to cloud servers, en-
abling devices to be separated from the authorization database.
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However, off-device computation leads to communication
overhead and privacy concerns. Cameras need to transmit
collected data to cloud servers, leading to high latency when
authentication is frequently requested and increasing the risk
of malicious attacks during data transmission. While encryp-
tion is a promising approach to keep data safe from leakage, it
introduces high computational overhead, violating the original
intention of off-device authentication systems.

Thus, a hybrid authentication system is needed that i) does
not require large on-board storage space; ii) does not induce
heavy on-device computation; iii) protects data from leakage.

Our Approach: We propose a novel authentication system
called FaceGroup to address the challenges of current facial
authentication methods. The system has three stages: i) the
enrollment stage, ii) the group authentication stage, and iii)
the individual authentication stage. Fig. 1 illustrates the system
paradigm. During the enrollment stage, authorized personnel’s
images are preprocessed, encrypted, and stored on the server.
To reduce computational costs, we propose a group testing
mechanism inspired by biology and medical experiments [5],
[6] in facial recognition, which enables batch face authenti-
cation. Furthermore, we propose a morphing neural network
that merges multiple faces into one feature representation
while preserving the characteristics of each face, reducing
computation overhead and making off-device encrypted facial
authentication practical for resource-constrained devices in
real-life applications such as smart cities and access control.

Once the group authentication stage detects an authorized
face, the individual authentication stage determines which face
is authorized. To protect against untrusted cloud servers, we
adopt the Homomorphic Encryption (HE) approach [7] which
allows mathematical operations to be applied to encrypted data
and correctly decrypted. However, Fully HE (FHE), which
supports both multiplication and addition, induces significantly
high computational overhead. As FHE is computationally
expensive, we use Partially HE (PHE), which supports only
one of the two operations but is more efficient. To enable the
use of FHE in facial authentication, we propose a Manhat-
tan distance-based approach that relies only on additions to
compare query faces with stored faces.

Our contributions are summarized as,

• We propose a novel lightweight privacy-preserving cloud-
based facial authentication method that utilizes PHE and
significantly reduces computation costs.

• We propose a novel lightweight deep learning architecture
to achieve group testing in facial authentication. To the
best of our knowledge, we are the first work that achieves
group testing in face authentication.

• We proposed a comprehensive group testing framework
for face authentication, which can also be extended to
other biometric authentication methods (e.g., fingerprint).
It covers group testing procedures, design choices based
on deployment needs, and security measurements.

• We evaluate our method across multiple platforms,
datasets, distance metrics, and models to prove its ef-
fectiveness and robustness and show group testing can
save 55% computation.

Paper Outline: First of all, in Sect. II, we introduce
the related works in the fields of Homomorphic Encryption,
continual face authentication, and group testing and compare
our work with them. Secondly, we present our novel facial
authentication procedure and facial group testing architecture
in detail in Sect. III. Then, in Sect. IV, we extensively evaluate
our proposed work under different platforms, datasets, and
face feature extractors to show its scalability, effectiveness, and
robustness. Finally, in Sect. V, we summarize our contributions
and discuss future research directions.

II. RELATED WORKS

While existing works have focused on HE and facial au-
thentication at a fundamental algorithmic level, few papers
examine both aspects in conjunction. The key takeaway is
that conventional approaches do not provide attractive compro-
mises between accuracy, time, and security. In this section, we
compare our work with related works and show our advantages
over them w.r.t. computation cost and accuracy.

Siamese Network: Bertinetto et al. [8] introduced
fully-convolutional Siamese Networks in 2016. A fully-
convolutional Siamese Network is a structure that uses a pair
of images as inputs. Then, the inputs are passed into the
same Convolutional Neural Network (CNN) to generate two
feature vectors. After, a loss is calculated based on the distance
between the two vectors and the input labels. Intuitively, two
similar samples should have similar feature vectors while two
dissimilar samples should have distinct feature vectors, and
the similarity is represented by the distance. The distance
is generally calculated based on the Euclidean metric, but
little study has been done on incorporating Manhattan distance
with Siamese Network. In another work [9], the authors used
Manhattan Distance in Long Short-Term Memory (LSTM)
network in Natural Language Processing (NLP). However,
they used Manhattan Distance only from a performance per-
spective and made no further investigation. In our work, we
extensively experiment and analyze the differences between
Euclidean distance and Manhattan distance w.r.t. accuracy,
time cost, Siamese Network, HE, and practicability and show
that Manhattan distance can achieve similar performance as
Euclidean distance does in Siamese network training.

Group Testing: Aldridge et al. [10] gives an overview of the
history of group testing and its applications. In general, group
testing aims to reduce the number of tests needed to identify
defectives, and group testing has a wide range of applications.
The principle behind group testing is that we examine a subset
of samples at once, and the exam result can tell whether there
is a defect in the samples or not. According to Dorfman et al.
[11], group testing can significantly reduce testing costs when
the defect rate is low. Similarly, applying group testing in facial
authentication can greatly reduce the number of tests required
for identifying intruders, as the chances of encountering one
are low. Kim et al. [12] introduced GroupFace, a face authen-
tication framework that represents individuals using features
from multiple groups and their own features. While resembling
a group testing algorithm, GroupFace is primarily a feature
extraction method that utilizes self-extracted features and
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measures similarities to groups represented by latent variables.
However, GroupFace suffers from scalability issues due to the
need for numerous groups to represent a reasonable number
of identities. Determining an optimal number of groups for
deployment becomes challenging. Additionally, adding an ex-
tra group requires additional fully connected layers, resulting
in a model with a high parameter count, making GroupFace
less flexible and scalable. In our work, we propose a novel
approach that combines multiple face images into a single
sample for lightweight and scalable face verification. In our
work, we proposed the first and novel approach that morphs
multiple face images together as a sample for face verification,
which is lightweight and scalable.

Homomorphic Encryption: In 2009 Gentry pioneered the
first general fully HE scheme that can perform an arbitrary
number of additions and multiplications [13]. While earlier
implementations of HE suffered from performance drawbacks,
recent advances in performance, usability, and rapid devel-
opment have made it practical in certain applications [14].
On the other hand, Pascal Paillier invented the Paillier Cryp-
tosystem (PC) that satisfies the properties of a PHE scheme.
Therefore, PC is also known as Paillier Homomorphic Encryp-
tion supporting only addition operation on the ciphertext. In
our work, we extensively experiment PC with the latest FHE
schemes on different datasets and feature extractors to show
the effectiveness of PC or PHE in general. Most importantly,
although there are works done with HE, our work successfully
brings HE into real-time processing on resource-constrained
devices.

III. PROPOSED WORK

In this section, we introduce the proposed FaceGroup sys-
tem, which comprises three stages: i) enrollment (Sect. III-A),
ii) group verification (Sect. III-B), and iii) individual verifica-
tion (Sect. III-C). In the enrollment stage, photos of individuals
are collected and processed, PHE-encrypted, and stored on the
cloud server before system deployment. Then, in the group
verification stage, multiple photos are morphed and compared
with the enrolled faces to detect if any individual of interest is
present. The use of group testing in this stage significantly re-
duces computational costs while maintaining acceptable levels
of accuracy. If an individual of interest is detected, the system
proceeds to the individual verification stage, which employs a
higher-accuracy yet more computationally intensive detection
model to perform detection for each individual face. To the
best of our knowledge, we are the first work that achieves
group testing in face authentication.

A. Enrollment

Our authentication system, like many others, requires an
initial enrollment phase (see Fig. 2a) to process and transmit
the faces of authorized personnel to the server. During this
phase, we capture several photos of users under different
poses, crop them to highlight the facial regions and standardize
them to mitigate camera noise. We choose an image standard-
ization method that aligns with the preprocessing method used
by the machine-learning-based feature extractor used in the
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Fig. 2: Diagrams for (a) the enrollment phase, where faces of
authorized personnel are processed and stored in the server;
and (b) the authentication phase, which consists of group
authentication and individual authentication.

latter phase, enabling faster training and convergence. Finally,
we pass these pre-processed photos through the proposed
anchor neural network, which is a deep neural network-
based feature extractor that generates face embeddings, i.e.,
vector representations of the faces that are superior to the
original photos for the downstream authentication step. Unlike
traditional hand-crafted feature extraction methods [15], [16],
FaceGroup’s feature extractor is flexible and robust to outliers.
The anchor network produces a feature embedding on each
face, which is then encrypted to prevent data leakage when
uploading the face embeddings of the persons of interest to
the server. As discussed in Sect. I, we use PHE schemes to
perform computation on encrypted data without incurring high
computational costs. At the end of the enrollment phase, the
encrypted face embeddings are stored on the cloud server and
compared with any incoming face embeddings to determine
if the incoming face is among the enrolled ones. To add new
authorised personnel into the proposed system, instead of re-
training/fine-tuning like conventional methods, the to-be-added
personnel will go through this enrollment stage and upload
the extracted feature vector with a proper label for future
authentication purpose.

While PHE can lower the computational cost of using FHE,
performing facial authentication on each individual face se-
quentially can still be computationally demanding, especially
when there are numerous faces to verify. To address this issue,
we will introduce group facial verification in the next section,
which can further reduce the computational burden.
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B. Group Facial Authentication

Kim et al. [12] made an initial attempt at group testing.
However, their work lacked scalability and flexibility, mak-
ing it impractical. To address these challenges, our research
introduces an extended Siamese neural network [17], which
enables the authentication of multiple individuals using a
single detection. The objective of group testing is to achieve
comparable results to conventional facial authentication while
minimizing the number of required tests.

Architecture Design: The objective of our proposed ar-
chitecture is to determine whether a given individual is a
member of the enrolled identities. In order to achieve accurate
results with group testing, we must find a practical and
efficient method to combine multiple face images into a single
feature embedding. Unlike liquids, images are not readily
soluble, and there is no established mathematical model or
theorem for merging multiple images while retaining their
unique characteristics. To address this challenge, our approach,
FaceGroup, employs a data-driven methodology that employs
a deep learning model to extract features from N face images
in a single forward pass. To tackle this challenge, we introduce
a twin-neural network structure, also known as the Siamese
network, as illustrated in Fig. 3a. The Siamese network
comprises three components: i) a morphing network, ii) an
anchor network, and iii) a classifier network. The morphing
net is used to extract joint features from N face images of the
incoming faces, while the anchor network extracts features of
the person we are interested in. The pairwise distance between
the two feature embeddings is then forwarded to the classifier
to obtain a binary detection outcome. Both the morphing and
anchor networks have the same architecture, differing only in
their input layer configurations.

In general, an RGB image has a size of (Channels ×
Height × Width), where Channels = 3. In a Convolu-
tional Neural Network (CNN), kernels extract features from
input images using a sampling window that has a size of
(Channels×Kernel Height×Kernel Width), sliding over
the images. Our objective is to extract common features that
can effectively represent N images simultaneously. Drawing
inspiration from signal superposition, where kernels compute
features from all channels, stacking face images at the channel
dimension strengthens common features while averaging out
outlier values. Thus, we stack N images on the channel
dimension to enable the kernels to compute joint features of N
images. However, blindly stacking images without alignment
does not work, so we use [18] to crop, resize, and align
the faces before stacking them together. This ensures that
the stacked faces are aligned and fit our intuition. Once the
faces are stacked, the input size for the morphing net is
(3N × Height × Width) for N face images, and for the
anchor net, it is (3×Height×Width). However, the trained
morphing net cannot work with a varying number of faces in
the query images, which is a practical challenge since cameras
may not always capture enough faces to form a fixed-size
query image. To address this challenge, we use dummy images
full of 0s as padding in query images. In Sect. IV, we conduct a

comprehensive analysis of how the number of paddings affects
the performance of our approach. Additionally, we provide a
detailed guideline for choosing the query image size based on
numerous experimental results.

Deployment: Fig. 3b shows that during deployment, only
the morphing net is deployed on the cameras, which capture
incoming faces for authentication. To get the faces in a
camera frame, we use existing face extraction techniques [18].
The extracted faces are then morphed by the morphing net
and encrypted by PHE. The cameras then pass the morphed
and PHE-encrypted feature vectors, which are called query
embeddings, to servers for distance calculation. As all distance
results are encrypted, the server has no knowledge of the
identities involved, and the cameras have no access to au-
thorized personnel data. This approach significantly enhances
privacy preservation by blocking knowledge sharing between
the cameras and servers.

During the authentication process, the camera sends query
embeddings along with a query label that specifies the access
level needed to gain access. Then, the server fetches feature
vectors with labels that satisfied the query label from the
database, and the fetched vectors are called anchor embed-
dings. The classifier outputs the probability that the identity
corresponding to the anchor embedding is a member of the
corresponding identities of query embeddings. Since the output
is a probability, we can set a threshold to control how we
interpret the probability. For example, most binary classifiers
use a threshold of 0.5, where any output greater than or equal
to 0.5 is considered positive and any output less than 0.5 is
considered negative. However, lowering the threshold from
0.5 to 0.4 can increase the False Positive Rate (FPR) and
decrease the True Positive Rate (TPR). In group testing, FPR is
more important than TPR, which may sound counterintuitive,
because it increases the probability of detecting a positive
sample. The objective of group testing is not to obtain an exact
detection result, but to eliminate negative samples as much as
possible beforehand to reduce the total number of individual
facial authentication. We provide a more detailed analysis of
the affects brought by varying the threshold in Sect. IV.

C. Individual Facial Authentication

The individual facial authentication stage comprises two
parts: first, we select a random vector as the representative
vector, and second, we calculate a threshold that is the upper
bound of the x% confidence interval based on the distances
from the representative vector to all other enrolled face vectors.
We discuss the choice of x in detail in Sect. IV. By using the
x% confidence interval, we ensure that the threshold is less
influenced by extreme or corner cases from the input images,
leading to a lower False Positive Rate (FPR).

After encryption, the vector is ready to be stored on a
cloud server, while the threshold is saved locally for future
reference. As part of the authentication process, the server
needs to compute the similarity score between the query face
embedding and the enrolled face embeddings. Various norm
metrics can be used for this purpose, with L2 Euclidean norm
being a popular choice. For L2 norm, the distance between
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Fig. 3: (a) Neural networks used in FaceGroup. (b) Computational diagram for FaceGroup. The faces of a group of faces are
taken. Then, they are turned into one feature vector, which is encrypted by PHE. In the meanwhile, the server fetches the
feature vector of the person of interest/authorized personnel for distance calculation. Lastly, the computed distance is sent back
to the camera for decryption and decision-making. (c) The visualized kernel outputs from the first layer of the morphing net.
We can observe that the morphing net is trying to morph the two faces. This is most obvious in the highlighted faces.

2 vectors a, b ∈ R
n can be calculated as, DEuc(a, b) =√∑n

i=1(ai − bi)2, where ai and bi are the ith element in
vectors a and b. However, as Euclidean distance requires
simultaneous addition and multiplication, which can only be
performed using FHE, it is not compatible with our framework.
In contrast, Manhattan distance only involves addition, making
it a good candidate for our approach. The calculation of the
Manhattan distance between the two vectors a, b ∈ R

n can be
represented as, DManh(a, b) =

∑n
i=1 |ai − bi|.

From the security perspective, one potential security con-
cern is that an attacker could send a dummy vector x, which
they know, from a malicious camera. They could then use the
returned distance vector z to recover feature vectors stored
on the server by computing zi − xi = yi. To address this
challenge, we rearrange the elements of the vector z using
a predefined order during the training process. This order is
randomly generated but remains invariant throughout training,
testing, and deployment. As a result, the classifier net is trained
to implicitly adopt the predefined order, which is only known
by the server. Therefore, even if an attacker hijacks a camera
in our system, they cannot gain explicit knowledge about the
correct permutation. To guess the correct order, an attacker
would need v!

1∗109 seconds, where v is the length of a feature
vector even if the attacker can make 1 ∗ 109 guesses per
second. To put the amount of time required to guess a correct
permutation into perspective, when v = 512, the attacker needs
512!
1∗109 ≈ 3.477 ∗ 101157 seconds or 1.102 ∗ 101150 years to try
out all possibilities. Thus, it is infeasible for an attacker to
obtain the correct rearrangement order from the camera side
without leakage from the server.

We also argue that rearranging the positions of elements
does not affect the performance of the classifier net, which
is a multilayer perceptron (MLP), and threshold mechanism.
Firstly, each layer in an MLP is represented by a matrix. When
we focus on the first layer of the classifier net, the input feature
vector z has shape vx1 and the output shape of the first layer
is mx1, which v and m are chosen based on design choices.
Then, the matrix representation M of the first layer is vxm.
By calling the output vector as o, then oi = v ·Mi where oi is
the ith entry of o and Mi is the ith column of M . Therefore,
if there is an exchange between the positions of zi and zj , we

can get the same output by switching the positions of ith and
jth rows of matrix M . Secondly, for the proposed threshold
mechanism, the threshold is calculated as the sum of entries in
z, the order does not affect the summation result. Therefore,
the rearrangement of positions of entries in feature vector z
works on both the classifier net and the threshold mechanism.

IV. PERFORMANCE EVALUATION

To show the practicability of our proposed architecture, we
implement the proposed system and obtain results on different
hardware. The results of the evaluation show that our proposed
FaceGroup system is reliable, scalable, and practical in terms
of computational cost and accuracy. Furthermore, we also eval-
uate our FaceGroup with different query sizes, padding sizes,
and feature extractors. This section consists of the evaluation
of two parts–the group authentication part (Sect. IV-A) and
the individual authentication part (Sect. IV-B).

A. Group Authentication
By introducing group authentication, we aim to reduce the

computational cost of performing individual authentication
with acceptable sacrifice in accuracy. In this section, we will
use results obtained from experiments to support our claim
and show that group authentication can achieve a low False
Negative Rate (FNR) so that we do not miss authorized
persons at this stage.

Experiment Setup: We train our proposed group authenti-
cation model with CelebA Dataset [19], a dataset that consists
of images of celebrities with various backgrounds, poses,
lighting conditions, and noise levels. Before training, we use
the feature extraction layers from a pre-trained Inception-Net
V4 [20] model, a commonly used feature extractor, as the
backbone of FaceGroup.

Results: In Fig. 4a, we observe a decrease in TPR and TNR
as the number of faces in the query image increases. This is
expected as it is more difficult to represent multiple individuals
in a single feature vector with a fixed length. Additionally,
our experiments indicate that models trained with Manhattan
distance outperform those trained with Euclidean distance
in terms of TPR, while the models trained with Euclidean
distance outperform those trained with Manhattan distance in
terms of TNR. Despite the query size increasing from 2 to 10,
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a b c
Fig. 4: (a) True Positive Rate (TPR) and True Negative Rate (TNR) under Euclidean and Manhattan distance metrics;
Computational time in with (b) Euclidean distance and (c) Manhattan distance.

the accuracy of models trained with different distance metrics
remains within an acceptable range. However, as the query size
reaches 9 or 10, the ratio of TPR to TNR changes significantly
compared to the ratios observed when the query size is less
than 9. This is because of the insufficient kernels in the first
input layer to capture the joint features of all faces in the query
image. To ensure that our framework is indeed capturing joint
features, we visualized the kernels from the first layer of a
trained morphing net with a query size of 2 in Fig. 3c. The
figure shows that the morphing net represents input faces as
a single face while preserving the features of each individual
face. For example, some kernels highlight the areas where
the eyes overlap, while others highlight the hair areas. By
observing these visualized kernels, we can quickly identify
that there are two identities in the query image. Therefore,
our proposed morphing network can capture not only joint
features but also the unique characteristics of each individual.

Even though our models can capture the joint and unique
features of each individual, each trained model can only work
with a specific size of query images (the solution to this will
be discussed in Sect. V). Therefore, in the cases of insufficient
faces to construct a query image, we propose using dummy
images filled with 0s as paddings. We evaluate our proposed
model with query sizes ranging from 2 to 10 and padding
sizes ranging from 1-4, as shown in Fig. 5. The figure shows
that when the query size N is smaller than 7, a padding size
P >= N − 2 can positively affect the accuracy. Moreover, if
N >= 7, we can see that a padding size P >= 3 can increase
the accuracy. However, when P = N − 1, there is no need to
use padding as there is only one sample in the query image.
Thus, we can use the individual face authentication method
in such scenarios. If we set the possibility of using different
padding sizes to be equal, the query size of 4 will have the
highest expected positive effects on accuracy.

Lowering the threshold used to interpret the probability
output from the classifier can solve the high FNR problem.
Fig. 5c shows that decreasing the threshold decreases the
FNR. Thus, controlling the threshold can control the FNR in
our group authentication system. Although lowering the FNR
may lead to a higher FPR, a reasonable reduction in the FNR
can lower the expected number of tests. Before calculating
the expected number of tests needed, we want to introduce
a few terms: sensitivity Se, specificity Sp, and prevalence p.
Sensitivity is the probability that a specimen is tested to be

positive when the specimen is exactly positive in a group
test. On the other hand, specificity is the probability that a
specimen is tested to be negative when the specimen exactly
is negative in a group test. In other words, Se is the TPR of
a group testing, and Sp is the TNR of a group testing. Lastly,
prevalence is the assumed ratio of the total number of positive
specimens in a given population. Then, the expected number
of tests per person can be written as,

E(D2) =
1

n
+Pn, Pn = (1− Sp) (1−p)n+Se (1− (1− p)n) ,

(1)
in which n is the group size. In a simple example, we assume
that there are 100000 people in a smart city, and there are 100
persons of interest out of these 100000 people. Furthermore,
we assume that the second test is 100% accurate. Therefore,
the prevalence is 100/100000 = 0.001. By using the data
obtained from Fig. 4a, we get that Se ≈ 0.56 and Sp ≈ 0.55
when n = 8 and being trained with Euclidean distance. Thus,
the expected number of tests needed per person is ≈ 0.45.
Thus, the total number of tests needed to authenticate all 10
persons is 0.45 ∗ 100000 = 45000. This result is significant
because we reduced the computation cost by 55% in this
example by applying our proposed face group authentication
method. Although group testing has a higher computation
cost than FHE facial authentication, we reduced the number
of tests needed, resulting in lower total computation costs.
Additional parameters introduced by increasing the morphing
net’s n value are trivial when n is reasonably small, given the
large number of parameters in the anchor net.

By reducing the number of tests needed, we also reduced the
communication rounds required between cameras and servers.
This 55% reduction in computation costs can also be applied
to communication costs. Reducing communication costs is
crucial in our proposed work, particularly in smart cities and
smart buildings where there will be a high number of queries
issued each second. Neglecting communication costs can lead
to internet traffic congestion, especially for wireless connec-
tions that offer limited bandwidth. Thus, the 55% reduction in
communication costs enhances the feasibility and scalability
of our privacy-preserving group testing framework.

To show our architecture’s real-time performance, we
recorded the time for each step in FaceGroup in Fig. 4.
As query size increases, the time taken for stacking faces
increases, but inference time remains stable due to negligible
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a b c
Fig. 5: The impact of different padding sizes on accuracy with (a) Euclidean and (b) Manhattan distances; (c) False Negative
Rate (FPR) against the threshold value. When the threshold is increasing, the false negative rate increases.

TABLE I: Pictures and specifications on the three types of
hardware we tested. The most powerful one is the workstation
while the least powerful one is the Raspberry Pi.

Hardware Workstation Laptop Raspberry Pi

Picture

CPU
Intel

i9-10900KF
AMD Ryzen

3 3200U
Broadcom

BCM2837B0
CPU

Frequency
3.7GHz 2.6GHz 1.4GHz

GPU
Nvidia

RTX 3080
N/A N/A

parameter increase. A complete cycle from capturing images to
inferring results takes less than 500ms, making our framework
real-time. We recommend equipping each camera with two
models, N=4 and N=8, for optimal query size selection. The
N=4 model is used for padding, and the N=8 model saves
computation costs while maintaining accuracy when padding
is not needed.

B. Individual Authentication

In the previous subsection, we can observe that group
authentication achieves a good FNR so that the system does
not miss authorized persons and the computational cost is low.
In this subsection, we will show that individual authentication
can achieve higher accuracy on authentication but with a much
higher computational cost.

Experiment Setup: To show the computational perfor-
mance of the proposed system, we run the algorithm on
three different hardware–i) a powerful workstation, ii) a less
powerful laptop, and iii) a Raspberry Pi 3 Model B+. The
detailed specifications can be found in Tab. I. For FHE
implementation, we used Pyfhel, which is a python imple-
mentation of Microsoft SEAL [21] that wraps the CKKS
FHE scheme [22]. We used the python-paillier library [23]
as Paillier PHE implementation.

Impact of Different Distance Metric: We evaluate how
the interchange of Euclidean and Manhattan distance metrics
affects our proposed work’s accuracy and feature extractors
in the training phase, using Labeled Faces in the Wild [24]
and WebFace Dataset [25]. Both of the datasets cover face
images with different illumination, poses, background, and
noise conditions. Each iteration includes 20 test images per

identity and enrollment sets with k images per identity, ranging
from 2 to 9. We use two pre-trained machine learning models,
VGG16 [26] and Inception Net V1 [27], which output feature
vectors of 512 and 128 bits, respectively.

The results are shown in Figs. 6 and 7. Fig. 6b demonstrates
the TPR of using the Manhattan distance and Euclidean
distance in the Inception Net V1 and VGG16 with the LFW
Dataset. At first glance, Fig. 6b does not make any sense
because, with more enrolled samples, the TPR goes down.
However, in deep, this has to do with how we choose the
threshold. In our design, the threshold is the upper bound
of the 90% confidence interval of the distances calculated in
the enrollment phase. With a better choice of the threshold,
our system can achieve a TPR over 90% with FPR close
to 0%, as shown in Fig. 7b. Also, Fig. 7a shows that our
choice of threshold can reduce the FPR. Because Inception Net
V1 was trained with a face identification dataset and VGG16
was trained with an object detection dataset, Inception Net
V1 is much better than VGG16 in the face authentication
area no matter which distance metric we use. Furthermore,
Manhattan distance outperforms Euclidean distance on both
datasets with such a powerful feature extractor. Figs. 6a and 6c
confirm our assumption that Manhattan distance is comparable
to Euclidean distance even if the performance of the feature
extractor is ordinary. The takeaway is that the accuracy of our
proposed system is not significantly affected by the distance
metric. Rather, the accuracy of our proposed system is mainly
affected by the chosen feature extractor. To further justify
our assumption, we use ROC curves to demonstrate how the
TPR and FPR are affected by thresholds in Fig. 7. From
Fig. 7, the performance difference between using Manhattan
and Euclidean Distance is acceptable.

HE Computation Cost: To justify our choice of using
Manhattan distance w.r.t. computation cost and HE schemes,
we conducted experiments with three groups: Euclidean dis-
tance with FHE, Manhattan distance with FHE, and Manhattan
distance with PHE. We used two feature extractors, VGG16
and Inception Net V1, to extract feature vectors from 30
randomly chosen images from LFW Dataset in each group
and recorded the average encryption, distance calculation, and
decryption time. We run this same experiment on Raspberry
Pi, laptop, and desktop testbeds to further justify our design.

The result is shown in Fig. 8 and Tab. II. The figure is
divided into six groups–(i) Manhattan with Inception Net V1
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a b c
Fig. 6: True Positive Rate (TPR) in (a) WebFace dataset and (b) LFW dataset with different metrics and feature extractors;
(c) False Positive Rate (FPR) in WebFace Dataset with different metrics and feature extractors.

a b c
Fig. 7: (a) FPR in LFW Dataset with different metrics and feature extractors; (b) Receiver Operating Characteristic (ROC)
curve of using Inception Net V1; (c) ROC curve of using VGG16.

TABLE II: Encryption, distance calculation, decryption time in million seconds (ms) with different configurations recorded
on three hardware–a powerful workstation (we call it PC in this table), a less powerful laptop, and a Raspberry Pi 3 Model
B+ (RPi in the table). Running FHE on the Raspberry Pi exceeds the memory limit and therefore we put N/A here.

Feature
Size

Encryption
Method

Distance
Metric

Execution Time (ms)
Encryption Distance Calculation Decryption

PC Laptop RPi PC Laptop RPi PC Laptop RPi
128 PHE Manh 2.64 5.08 102.04 1.34 2.59 78.30 1.11 1.54 55.55
128 FHE Manh 109.92 5532.05 N/A 0.94 2.19 N/A 13.95 20.51 N/A
128 FHE Euc 105.70 5465.96 N/A 120.73 225.62 N/A 14.83 25.91 N/A
512 PHE Manh 487.80 776.92 430.71 8.49 10.72 322.13 4.17 4.27 211.28
512 FHE Manh 19958.69 1046582.70 N/A 5.70 7.76 N/A 51.50 77.51 N/A
512 FHE Euc 19941.31 1046540.76 N/A 481.95 898.93 N/A 58.64 99.79 N/A

Fig. 8: The total time taken by the three phases with different
combinations of HE schemes, distance metrics, and feature
extractors profiled on the desktop, laptop, and Raspberry Pi.
Running FHE on the Raspberry Pi exceeds the memory limit,
leaving the corresponding bar blank.

and PHE, (ii) Manhattan with Inception Net V1 and FHE,

(iii) Manhattan with VGG16 and FHE, (iv) Manhattan with
VGG16 and PHE, (v) Euclidean with Inception Net V1 and
FHE, and (vi) Euclidean with VGG16 and FHE. There are two
interesting observations from Fig. 8. First of all, no matter
which encryption method we use, the distance calculation
time is almost identical across the Manhattan distance groups,
indicating Manhattan distance can significantly reduce the
computation overhead caused by the HE schemes. Secondly,
the encryption and decryption time is consistent across groups
using the same encryption method, regardless of the feature
extractor chosen. This increases the flexibility of our system
for engineers to customize feature extractor selection without
affecting encryption and decryption time. Moreover, PHE can
handle 512 bits feature vectors within 0.5 seconds, while FHE
can take up to 20 seconds, limiting its scalability. Thus, our
work is more scalable than cloud-based facial authentication
implementations using FHE.

As for results for laptops, although we can see a huge
jump in encryption, distance calculation, and decryption time
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compared with results recorded on the desktop, the run time
of PHE is at the sub-second level. In comparison, FHE
roughly takes 5.5 seconds to encrypt a 128 bits-long feature
vector and over 1000 seconds or 17 minutes to process a
512 bits-long feature vector, which is not practical in any
sense. From the perspective of time complexity, PHE roughly
doubled the time taken from the desktop setup to the laptop
setup. In contrast to PHE, FHE roughly takes more than 50
times the original time taken from the desktop to the laptop.
Our proposed work is also feasible on resource-constrained
devices, as PHE completes the work cycle at a sub-second
level, while FHE fails due to insufficient memory space. Also,
Manhattan distance with FHE takes significantly less time to
calculate than Euclidean distance. These results show that our
proposed work applies to hardware with very limited compu-
tation resources, and this exciting finding further endorses our
choice of Manhattan distance over Euclidean distance.

In conclusion, on average, group authentication has worse
accuracy than the individual authentication system, regardless
of the distance metrics. On the other hand, group authentica-
tion can process face samples in batches, which significantly
reduces the number of tests needed. Furthermore, to reduce the
chances of falsely classifying a positive sample as negative,
we can change the classification threshold to control the false
negative rate. As a result, easy-to-classify samples are pre-
screened by the group testing stage while hard-to-classify
samples will be tested by the more accurate individual face
authentication stage.

V. CONCLUSION AND FUTURE WORKS

We have shown feasibility for key parts of our continual
facial authentication architecture. We have also demonstrated
using existing PHE is more than capable of processing real-
time comparisons of facial feature matrices. The results show
that we can process a single verification in under a second.
Moreover, we have shown the potential of Manhattan distance
in machine learning w.r.t. model training, computation cost,
and flexibility. Most importantly, we have shown that group
testing in facial authentication with practicability, flexibility,
and scalability is practical. Our trained group testing model
can save at least 55% computation cost.

For future work, we plan to i) introduce transformer ar-
chitecture [28] into the morphing network so that we do
not need to train one model for different numbers of faces;
ii) conduct in-the-wild experiments to collect performance data
(e.g. computation and storage requirements) from real-world
environments; iii) do an in-depth analysis of how our proposed
work can withstand Byzantine attacks.
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