
Multi-Behavior Multi-Agent Reinforcement Learning
for Informed Search via Offline Training

Songjun Huang†, Chuanneng Sun†, Ruo-Qian Wang‡, and Dario Pompili†
† Department of Electrical and Computer Engineering, Rutgers University–New Brunswick, NJ, USA
‡ Department of Civil and Environmental Engineering, Rutgers University–New Brunswick, NJ, USA

{songjun.huang, chuanneng.sun, rq.wang, pompili}@rutgers.edu

Abstract—In modern informed search missions, Multi-Robot
Systems (MRSs) are playing more and more important roles
due to their flexibility in exploring environments. Reinforcement
learning (RL) is now widely used as a decision-making method for
MRS. However, existing RL-based and conventional model-based
frameworks cannot deal with some challenges posed by the real-
world environment. To address these challenges, a Multi-Behavior
Multi-Agent Reinforcement Learning (MBMARL) framework
via offline reinforcement learning method was developed. In
this framework, each agent is deployed with multiple behavior
policies to let the agent have choices on behaviors given a
state. The proposed framework is compared with traditional
reinforcement learning frameworks, including Multi-Agent Ac-
tor Critic (MAAC) and REINFORCE. The result shows that
MBMARL outperforms others in both aspects of total reward
and convergence time.

Index Terms—Informed Search, Offline Reinforcement Learn-
ing, Multi-Agent Reinforcement Learning.

I. INTRODUCTION

Overview: Informed search, also known as heuristic search,
is a type of search algorithm to efficiently navigate through
large search spaces utilizing heuristic information. The main
objective of informed search is to find a solution or path
to a goal state while minimizing the number of steps or
nodes expanded during the search process. Informed search
is widely used in various robotics applications such as search
and rescue (SAR) [1], path planning [2], [3], and under-
water space exploration [4]. In these applications, Multi-
Robot Systems (MRSs) find extensive employment, prompting
researchers to develop various algorithms and frameworks to
enhance MRS functionalities. However, the real-world envi-
ronments in which these frameworks are implemented pose
various significant limitations and challenges that can make
these algorithms and frameworks infeasible.

Motivation: The first challenge is the absence of compre-
hensive global environmental information. For example, in cer-
tain search tasks, robots and participants do not know the loca-
tions of the targets. Instead, only location-related information
is available, such as field strength or substance density. This
situation poses challenges for conventional informed search
algorithms such as A* and its derivatives [5], [6]. Typically,
these algorithms are based on heuristic functions defined using
distance metrics [7], [8] to achieve optimal performance. How-
ever, it is difficult to establish a connection between distance
metrics and available location-related information. As a result,

This work is supported by the NSF RTML Award No. CCF-1937403.

Data Collection
Phase

DQN

Interact

Offline Training Phase

s(0), a(0), s_next(0), reward(0)

s(n), a(n), s_next(n), reward(n)
..........

Behaviors Generator

BCQ

BCQ

......

train

R&ESN
train

R&ESN

train

train

Online Training Phase

Get State

with

Feed all
behaviors

Behavior
Selector

Choose one

Action

Fig. 1: The MBMARL framework can be divided into three phases: Data
Collection, Offline Training, and Online Training. In the Offline Training
phase, R&ESN means replicating and embedding structured noise.

such distance metrics are unattainable in these scenarios. Even
if we can adopt location-related information as a heuristic
function, it is difficult to design a cost function that can be
coupled with the adopted heuristic function.

The second challenge is the complexity of real-world en-
vironments, which often leads to problems of sparsity and
local optimum. For example, consider an MRS tasked with
finding the origin of a diffusive substance in a marine ecology
mission [9]. The substance’s distribution can become notably
sparse because of factors such as wind and currents. At the
same time, unpredictable eddy currents can create irregular-
ities, leading to locally high concentrations away from the
source. A similar complexity arises when MRS is required
to autonomously explore equally significant Points of Inter-
est (PoIs). These scenarios present several issues: (i) Tradi-
tional machine learning is not suitable, lacking appropriate
datasets for training in each distinct environment; (ii) Model-
based approaches, such as density gradient ascent tracking, fail
because robots can become trapped in local high-concentration
areas and cannot escape; (iii) Conventional reinforcement
learning methods struggle due to sparse reward problems [10].

The third challenge is poor communication conditions.
In some scenarios, like underwater environments or post-
disaster situations, stable communication cannot be ensured.
This makes conventional multi-agent reinforcement learn-
ing (MARL) frameworks impractical, where stable commu-
nication is required and difficult to achieve. Although some
researchers propose centralized training with decentralized
execution (CTDE) [11], achieving this is challenging for
several reasons: (i) Discrepancies exist between real-world

19

2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT)

2325-2944/24/$31.00 ©2024 IEEE
DOI 10.1109/DCOSS-IoT61029.2024.00014

20
24

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
in

 S
m

ar
t S

ys
te

m
s a

nd
 th

e
In

te
rn

et
 o

f T
hi

ng
s (

D
C

O
SS

-I
oT

) |
 9

79
-8

-3
50

3-
69

44
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

D
C

O
SS

-I
oT

61
02

9.
20

24
.0

00
14

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

and simulated environments; (ii) The real-world effectiveness
of policies trained in simulations is heavily based on the
accuracy with which the simulated environments model reality;
(iii) Policies lack the capacity to optimize during execution
without communication. As a result, a framework that ad-
dresses these challenges with good performance is needed.

Related Work: Researchers have proposed frameworks
to perform individual informed search tasks using a single
robot or collaboratively with MRS. In these studies [12]–
[15], the researchers proposed several model-based frame-
works improved from conventional informed search algorithms
such as A*. Although they can achieve better performance
in their applications, they still need global environmental
information to acquire the distance needed to design the cost
and heuristic function. The use of location-related information
to search has led to research on gradient tracking methods. In
these works [16]–[18], researchers proposed several gradient
tracking algorithms for searching and planning. However, they
do not take into account the local optimum introduced by
the complexity of the real-world environment. To address the
mentioned challenges, researchers are increasingly focusing on
the development of learning-based algorithms, particularly RL.
In these works [19]–[21], the proposed MARL frameworks
achieve good performance. However, all frameworks need
consistent state exchange among agents, which is impractical
under poor communication. Also, the sparse reward problem
is not fully considered in these works. The researchers then
introduced the concept of offline RL [22]. The proposed offline
RL frameworks [23] can deal with the sparse reward problem.
However, they are all done in a single-agent manner. At the
same time, since there is only one behavior policy, the local
optimum problem cannot be solved.

Our Approach: To tackle these challenges, we propose
a framework called Multi-Behavior Multi-Agent Reinforce-
ment Learning (MBMARL). This stable RL-based framework
circumvents the need for comprehensive global environmen-
tal data, effectively handles intricate real-world settings, and
minimizes dependence on communication. Fig. 1 describes
the proposed framework. The framework can be divided into
three different phases. The workflow is the following—i) the
real-world data collected in the data collection phase will be
used in the offline training phase to develop multiple behavior
policies via offline RL; ii) the behavior policies together with
a behavior selector are equipped for each agent; iii) each
agent is deployed to the environment while the behavior
selector is trained in the online training phase. This framework
addresses challenges as follows: (i) Global Information Not
Needed: The learning-based method negates the requirement
for global environmental data. Throughout training, optimal
performance does not necessitate distance metrics; (ii) Sparse
Reward and Local Optima: The sparse reward issue is tackled
through offline RL training of behavior policies [22]. Agents
possess multiple behavior policies, mitigating local optimum
entrapment and improving action selection diversity within
states; (iii) Reduced Communication Dependency: Training of
behavior policies, which guides agents to act under different
states, occurs offline, obviating the need for communication.

Behavior selector training involves communication, but incor-
porates measures to accommodate poor communication con-
ditions. Under different communication scenarios, our frame-
work consistently outperforms the baseline approaches.

II. PROPOSED SOLUTION

In this section, we will elaborate on the theoretical basis,
design, and functionalities of our MBMARL framework.

A. Data Collection Phase

In our MBMARL framework, data collection is done by
letting agents interact with the environment using any policy.
We adopt an untrained Deep Q-Learning (DQN) model for data
collection, and this model is trained iteratively during the pro-
cess. The training process is as described in [24]. Actually, any
interaction policy can be used here, even random movement,
since we just need to let agents gather a series of transitions for
offline training. The reason why we use this untrained DQN
model during data collection is that it allows us to showcase the
advantage of offline RL, where the performance of the policy
obtained from offline RL can exceed the performance of the
policy used in data collection. This makes offline RL a viable
option in certain applications compared to imitation learning
and supervised learning. More detailed results are presented in
Sect. III.

During the data collection phase, an agent will first receive a
state s. The agent will select an action a from the set of actions
A given s with the ε-greedy policy to encourage exploration
to gather more data. Q is a neural network with input values s
and output values for all actions a ∈ A. Based on the selected
action a, the agent will reach the next state sn. For each step i,
we collect the state si, action ai, reward ri, and the next state
sni to form a transition d =< st, ai, ri, sni > and store it in
the replay buffer B, which will be used for training Q. To train
this Q, we introduce a target network T , which is initialized
to have the same weights as Q and updated at a predefined
frequency by loading the weights of Q. We first sample a batch
of B. The states are fed to Q, and the next states are fed to T
to obtain the outputs q and y, respectively. Then, q and y will

be used to calculate the loss as L(ω) = 1
2

(
q − (r + γ · y))2,

where ω is the weight of Q; r is the reward and γ is the
discount factor. In this way, we collect massive transitions and
use them as our data set D.

B. Offline Training Phase

The data set D is used for offline training, as described
in Algo 1. In the offline training phase, various offline policy
constraint RL algorithms described in [22] can be used to train
a model. In our experiment, we take BCQ as an example due
to its notable performance in mitigating the extrapolation error
and incorrect estimation of Q value [25]. We first divide D into
multiple batches and build 3 new networks Qbcq , Tbcq and G.
Qbcq and Tbcq are defined as those used in data collection. G
is the network with the input of the state and the output of
action values, and we can compute the probability of every
action with G since G(a|s) ≈ π(a|s). When selecting an
action, rather than directly choosing the action that maximizes

20

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Offline Training Phase

for Epoch = 1, 2, do
for ba in all batches do

Choose batch β from D
Constrain βnew from β with BCQ
Train Qbcq with βnew

if Epoch mod e == 0 then
R-and-P Qbcq to k new models

if Number of models meets requirement then
break

Get r of each model
Remove low reward models
Calculate KL-divergence among models
Choose minimum-dependency n behaviors

Qbcq(s), we first filter the batch by only considering the actions

that satisfy
G(a|s)

maxâ G(â|s) ≥ τ, where τ is a threshold. We call

this condition C. If τ = 0, it is traditional Q-learning. If τ = 1,
it becomes the cloning of the behavior in the data collection.
During the offline training phase, to prioritize training the
model based on D while also exceeding the performance of
the behavior policy used in data collection, we set τ at 0.3.
Then, the policy becomes the following,

π(s) = argmax
a| G(a|s)

maxâ G(â|s)≥τ

Qbcq(s, a). (1)

In this policy, rather than selecting an action from all actions,
we select an action from the actions that satisfy C at each step.
To train the policy, the loss function is as follows,

L(θ) = lR

(
r + γ max

a| G(a|s)
maxâ G(â|s)>τ

Tbcq(s
′, a′)−Qbcq(s, a)

)
,

(2)
where lR is the learning rate; s′ and a′ are the next state and
action. For each epoch, we train the whole data set D once.
After every training interval e, we perform R&ESN.

R&ESN: This process involves replicating the model, em-
bedding structured noise in each new model, and getting mod-
els closely related to the original model. R&ESN is just one
possible method to generate multiple distinct behaviors, and
there may be other potential methods that can be explored in
future research. Structured noise is not completely random, but
instead is based on the average of the absolute weight values
in each layer of the model nrd = U

(−∑
ω∈Ω ω,

∑
ω∈Ω ω

)
,

where U represents the uniform distribution, two items in the
parentheses are the lower bound and upper bound, ω is each
weight in this layer, and Ω is the set of all weights in this layer.
The structured noise in our design is intended to be distinct
for different models while retaining some original features of
the model. The number of R&ESN times required depends
on the desired number of behavior policies, and the number
of behaviors needed should be decided from experimental
experience.

Behavior Policies Filtering Mechanism: The workflow
or R&ESN and this mechanism are depicted in Fig. 2. We

Calculate
test

rewards

Calculate
KL-

Divergence

select by
rewards

Selected
Behaviors

……

Behaviors Generator

BCQ

train

R&ESN

BCQfor
training

R&ESN

for
training

train

………

………

Fig. 2: The workflow of Replicate and Embed Structured Noise (R&ESN) and
Behavior Policies Filting Mechanism.

test each behavior policy in the pool by deploying it to an
agent to interact with the environment and record the total
reward. The low-reward behavior policies are then removed.
To ensure diversity between the selected behavior policies,
we minimize interdependencies by calculating the Kullback-
Leibler (KL) divergence [26] among the remaining behavior
policies. Only when different behavior policies offer different
actions for the same state can the agent choose the most ap-
propriate action from them. We first sample a set of test states
Stest = (stest1 , stest2 , · · · , stestn) from the environment. Then
we input Stest into each behavior policy model and record the
output actions as Oi = (ai1, a

i
2, · · · , ain), where i indicates

that this is the output set of the behavior policy ith. The KL
divergence between the ith and the jth behavior policy can be
calculated as KLij = KL(Oi,Oj

)
= Oj ·

(
logOj − logOi

)
.

The KLij will then be further used to calculate the total KL
value of each policy behavior. For the ith behavior policy,
it can be calculated as KLVi =

∑nbp

j=1,j �=i KLij where nbp

means the number of behavior policies. After we have KLV
for all behavior policies, we choose the n behavior policies
with the largest KLV .

C. Online Training Phase
During online training, we train behavior selectors for

different agents to select behavior policies based on the state.
The behavior selector uses ε-greedy exploration with ε initially
set to 0.9 and the decay rate is 0.001 per step.

To train this neural network model Cθ parameterized by θ,
we define a target neural network Ct

θ′ , where θ′ is initialized
to be the same as θ. Then Ct

θ′ remains unchanged until Cθ

is updated 100 times. Then, Ct
θ′ is updated to be the same as

Cθ. In other words, Ct
θ′ is updated after each 100 updates of

Cθ. The loss function is,

Lθ =
1

2

(
Cθ(s|a)− r + γ · Ct

θ′(s′|a′)
)2

, (3)

where a and a′ are the selected model id and the next selected
model id, s and s′ are the current input states and next input
states. r is the reward obtained from the action guided by the
selected behavior. γ is the discount factor and it is 0.95 here.

Fig. 3 illustrates the behavior selector training process. Each
agent is equipped with a behavior selector, and these selectors
can communicate to share agent states. The behavior selector
then uses all states to train itself. However, if communication
is poor between agents, the behavior selector uses the last re-
ceived information. The selected behavior policy is used for
the next steps i, where i is the switching interval.

21

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

State

State_next

Behavior Selector
Evaluate Network

Behavior Selector
Target Network

MSE Loss Optimizer

Update Behavior Selector
Evaluate Network

Behavior Selector Target
Network Update

Fig. 3: The workflow of the training process of behavior selector. The behavior
selector evaluates a network and is trained and updated after each step.

This framework relies less on communication, as the infor-
mation exchange for training behavior selectors is less than the
training of behavior policies, and behavior policies are trained
in the offline phase, which requires no communication. At the
same time, the framework does not need global environmental
information for training. Additionally, agents deployed with
multiple behavior policies trained with offline RL can deal
with local optimum and sparsity.

III. PERFORMANCE EVALUATION

Comparison Plan: We compare the proposed algorithm,
MBMARL, with two other algorithms: (i) Decentralized RE-
INFORCE, in which each agent follows the REINFORCE
algorithm to act without exchanging any information [27];
(ii) Multi-Agent Actor-Critic (MAAC) [28], where each agent
observes/receives the states and actions of all other agents to
update its critic and independently updates its actors based on
its own experiences; when an agent is isolated (i.e., cannot
communicate with others), it cannot receive the states and
actions from others and therefore cannot perform the update
for both its actor and critic; (iii) model-based gradient ascent
tracking methods.

Environment Setup and Definition: We model two envi-
ronments and conduct a field experiment and emulation. The
first environment is an underwater gas leak scenario and is also
where we conduct most of our experiments. We believe that
this is a typical example of an informed search in a complex
environment. The spatial distribution cannot be described with
mathematical equations, and the dataset we use to describe this
distribution is based on real-world situations, which encompass
the complexities of sparsity and local optimum due to currents
and eddies. To simulate it, we define an agent as a 3D
rigid body capable of translating in space and moving in six
directions (forward, backward, right, left, up, and down). The
state of each agent includes its position and the concentration
of the plume at that position. The environment is described
by a cube with dimensions defined as the differences between
the maximum and minimum coordinates on the x, y, and z
axes. The action is a vector of size 6, corresponding to the six
possible directions. After each step, the agent finds the nearest
point in the data set and updates its state accordingly.

The reward function is defined as follows: (i) If the con-
centration from the current state is greater than that of the
previous state, the reward is defined as +5. In contrast, the
reward is defined to be -5; (ii) If the agent explores outside
the boundary, the reward is defined as -100 and the agent will

go back into the boundary; (iii) If the location with the highest
concentration in the data set is in the detection range of the
agent, the reward is defined to be +100 and this episode is
performed.

To validate the generalizability of our framework in
regular 2D navigation and search, we tested it in the
second environment, which is the open benchmark environ-
ment MiniGrid-Empty [29]. We first enlarged the size of the
grid environment to 30×30. Then we set the initialization
positions of the agents randomly in the upper left part of the
environment. Additionally, we define the reward function as
r = 1/(dai

t + 1), where dai
t is the distance between the agent

ith and the target. If the agent moves outside the boundary,
the current episode is done and the reward for this step is -10.

To further test the framework, we conduct a field experiment
in a parking lot. This experiment simulates the application
of searching for injured or lost personnel with uncertain
information about their whereabouts. Possible locations can
be regarded as equally significant POIs. We also performed
an emulation with an underwater environment simulator and
tested the framework on an embedded AI computing device,
which can be used in future experiments.

Training and Testing Setup: Both the models of DQN,
BCQ, and behavior selectors have a two-layer fully connected
neural network structure with a hidden layer size of 256. For
MAAC, the actor model has two layers with a hidden size of
256. The first layer is followed by a ReLU and the second
is followed by a Tanh. The critic model has three layers with
a hidden size of 256. The first two layers are followed by
ReLU, respectively. The critical learning rate is 0.005. It uses
the Ornstein-Uhlenbeck noise [30] to encourage exploration.
For REINFORCE, the model has one shared input layer with
a hidden size of 256 followed by ReLU and two output layers.
For all unspecified models, the learning rate is 0.001, the
Horizon is 1, and the discount factor is 0.99.

Another thing worth noticing is that, in the experiments, we
uniformly use a discrete space in the action space for compari-
son. However, we claim that the proposed framework can also
work for continuous state and action spaces by changing the
action space to continuous space, the data collection method to
the algorithm for continuous action space such as DDPG, and
the offline training method to continuous offline RL algorithms
such as continuous BCQ [25].

A. Simulation Results from Environment 1

Different Policies Act Differently: We must ensure differ-
ent behavior policies can behave differently under the same
states in order to make them work as expected. Fig. 4(a)
shows the action distributions of different behavior policies.
Each behavior policy is tested under the same 20,000 randomly
sampled states. The result shows that they behave differently,
with behavior 1 showing more evenly distributed actions
compared to behaviors 2 and 3. Behavior 2 tends to move
backward along the x-axis and left along the y-axis, while
being conservative in the z-direction. Behavior 3 is more active
along the z-axis but conservative in other directions. However,

22

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

backward forward right left up down
actions

0

2000

4000

6000

8000

10000
ac

tio
n

co
un

ts
Behavior 1
Behavior 2
Behavior 3

(a)

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−25

−20

−15

−10

−5

0

Av
er

ag
e

Re
wa

rd
s

MBMARL
DQN

(b)

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Av
er

ag
e

Re
wa

rd
s

3 behaviors
4 behaviors
5 behaviors
6 behaviors

(c)

Fig. 4: (a) Action distribution of different behavior policies; (b) Average episode rewards over agents at each step for the data collection policy and MBMARL
in online training; (c) Average episode rewards vs. number of episodes for the number of behaviors = 3, 4, 5 and 6 under the communication failure probability
= 0.5 and behavior switch interval = 50.

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−10

−8

−6

−4

−2

0

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC
BCQ
REINFORCE

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−6

−4

−2

0
Av

er
ag

e
Re

wa
rd

s

MBMARL
MAAC
BCQ
REINFORCE

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−5

−4

−3

−2

−1

0

1

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC
BCQ
REINFORCE

Fig. 5: Average episode rewards of the agents vs. Number of training episodes when Number of agents = 2, 4, 6, respectively. The communication failure
probability of MBMARL and MAAC is 0.5; the behavior switch interval of MBMARL is 10.

agents with these behavior policies are able to navigate to areas
with larger concentrations when necessary.

Trained Policy vs. Data Collection Policy: Offline RL
offers the advantage of achieving better policies compared
to the data collection algorithm, making it more practical
than other similar approaches such as imitation learning and
supervised learning [31]. Even with data sets collected from
less optimized behavior policies, the trained offline RL model
can perform better. In our experiment, the data collection
policy is a DQN model trained during the process. Fig. 4(b)
shows that the behavior policy does not converge to a specific
reward value and fluctuates over 2000 episodes, while the well-
trained 3-behavior framework performs better with an average
reward of 0 to +5. This demonstrates that the offline RL model
can achieve high rewards and fast convergence even when
trained with a poorly behaved data collection policy.

Rewards vs. Number of Behaviors: The number of be-
haviors is a critical parameter in our MBMARL framework.
With more behaviors, agents have more action choices for
a given state. In Fig. 4(c), we plot the average rewards
of episodes against the number of behaviors, assuming a
probability of communication failure of 0.5 and a switching
interval of 50. The average rewards for different numbers
of behaviors fluctuate between -0.25 and +1, with slightly
higher rewards observed with more behavior policies. The
large switching interval is the reason for this, as agents may
not change behaviors in time based on the acquired state,
resulting in unsuitable behavior selection. As the switching
interval decreases, the advantages of this become evident, as
confirmed by the following results.

Rewards vs. Number of Agents: In Fig. 5, we compare

the average rewards on agents at each step versus the number
of agents for the MBMARL (with 3 behaviors), MAAC, and
REINFORCE frameworks in online training. During the online
training, for MBMARL, the behavior policies are already well
trained offline and only the behavior selectors are updated; for
MAAC and REINFORCE, the behavior policy is updated. The
communication failure probability for MBMARL and MAAC
is set to 0.5. We found that a switching interval of 50 steps
is too large, so we set it to 20 in this experiment. The three
figures show that MAAC performs better with more agents, as
each agent acquires more information after each step, leading
to better trained critics. However, MAAC still converges to
a negative value after around 1000 episodes. REINFORCE
performs poorly due to lack of communication and monotony
in behavior policy. MBMARL quickly converges to the range
of 0 to +2 after around 500 episodes. As the number of agents
increases, the intensity of the fluctuations decreases. Compared
to traditional RL algorithms with or without communication,
our MBMARL framework achieves shorter convergence times
and higher total rewards with varying numbers of agents.

Ablation Study on the Effect of Multi-Behavior: From
the comparison of MBMARL and BCQ in Fig. 5, we want to
prove that multibehavior is effective. BCQ has all the same
offline training procedures with the same number of episodes
but without R&ESN and behavior filtering mechanisms. From
the results, we can find that MBMARL outperforms BCQ.

Reliance on Communication: Fig. 6 compares the perfor-
mance of MBMARL and MAAC with 4 agents with different
probabilities of communication failure with the switch interval
of 20. This is also the online training phase, as described in

23

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

-6

-5

-4

-3

-2

-1

0

1
Av

er
ag

e
Re

wa
rd

s

MBMARL
MAAC

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

-6

-5

-4

-3

-2

-1

0

1

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

-6

-5

-4

-3

-2

-1

0

1

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC

Fig. 6: The episode average reward over agents at each step in the online training of MBMARL and MAAC vs. number of episodes when communication
failure probability = 0.8, 0.5, 0.2, respectively, when switching interval of MBMARL is 20, number of behavior policies of MBMARL is 3 and number of
agents 4. REINFORCE is not compared in this result, since in REINFORCE there is no communication in the REINFORCE framework.

10 20 30 40 50
Switch Interval

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e

Re
wa

rd
s 5 Behaviors

4 Behaviors
3 Behaviors

(a)

10 20 30 40 50
Switch Interval

350

400

450

500

550

600

650

St
ep

s

5 Behaviors
4 Behaviors
3 Behaviors

(b)

0 0.2 0.4 0.6 0.8 1
Communication Failure Probability

250

300

350

400

450

500

550

St
ep

s

5 Behaviors
4 Behaviors
3 Behaviors

(c)

Fig. 7: (a) Episodes average rewards vs. switch interval when the number of agents is 4 and communication failure probability is 0.5; (b) Steps to find the
source vs. switch interval when the number of agents is 4 and communication failure probability is 0.5; (c) Steps to find the source vs. communication failure
probability when the switching interval is 10 and the number of agents is 4.

the previous paragraph. From the figures, it is evident that the
performance of MAAC is highly dependent on communication.
When the probability of communication failure is high (e.g.
0.8), MAAC’s average episode reward does not converge and
remains low. As communication improves, MAAC performs
better with increasing episodes. We find that the improvement
is not substantial as the probability of communication failure
decreases (e.g., from 0.5 to 0.2). This is due to the lack of
data in underwater environments, where the behavior policy
lacks sufficient information for training even with improved
communication. In contrast, our MBMARL framework consis-
tently outperforms MAAC in terms of average episode reward
and is less affected by different communication conditions.
The complete impact of communication on behavior selector
training cannot be adequately illustrated solely by using a
single metric in Fig. 6. The reason is that in each episode,
there is a limitation on the number of steps in which the agents
are not able to find the source. However, it will be noted in
the following results.

Switch Interval and Communication Condition: Fig. 7(a)
and 7(b) demonstrate that increasing the switching interval
in behavior selectors leads to decreased total rewards and
increased steps to find the source for each agent. However,
the rate of decrease in rewards and increase in steps is lower
as the switching interval increases. Fig. 7(c) shows that better
communication results in fewer steps to find the source, espe-
cially for agents with more behaviors. Despite similar average
episode rewards under different communication conditions (as
shown in Fig. 6), agents can find higher concentrations in
various directions under different communications. As we

described in the previous subsection, if the limitation on
the number of steps is removed, improved communication
allows behavior selectors to select behaviors more effectively,
resulting in decreased steps to find the source.

We also test the traditional density ascent tracking method
and evaluate it with the number of steps to find the source.
Out of 100 independent trials, agents only found the source
27 times and the mean steps were 643. For our MBMARL
framework, under 4 behavior policies, 0.5 communication
failure probability, and a switching interval of 10, the agents
find the source in 93 out of 100 trials, and the average steps are
389. This demonstrates the ability of our framework compared
to model-based methods.

B. Simulation Results from Environment 2

Our framework’s generalizability is validated in the
MiniGrid-Empty benchmark environment with slight modi-
fications. By doing this experiment, we want to claim that
our framework is still effective in regular 2D navigation and
search missions where global environmental information is
available so that distance metrics can be used. Fig. 8 presents
the results, showing that our MBMARL outperforms MAAC
and REINFORCE. Although MAAC and REINFORCE require
continuous action spaces, we successfully adapted our frame-
work. Despite differences in action distributions from different
behavior policies, MBMARL performs well when the number
of agents is 4 or 6, similar to the results in environment 1.
On the other hand, MAAC and REINFORCE show negative
convergent average rewards, suggesting that agents are moving
out of the environment boundary. We also record the steps

24

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

backward forward right left
actions

0

2000

4000

6000

8000

10000

12000
ac

tio
n

co
un

ts
Behavior 1
Behavior 2
Behavior 3

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC
REINFORCE

0 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

Av
er

ag
e

Re
wa

rd
s

MBMARL
MAAC
REINFORCE

Fig. 8: Results in environment 2, where the first figure is the action distribution of different behaviors. Average rewards over the agents at each step vs. Number
of training episodes when Number of agents = 4 and 6 are presented respectively in the second and the third picture. The probability of communication failure
for MBMARL and MAAC is 0.5 and the behavior switch interval for MBMARL is 20.

(a) (b) (c)

Fig. 9: (a) The underwater environment in the simulator. (b) The figure describes the result of the distance between the target and the BlueROVs during the
search process. (c) The result of the hardware test using NVIDIA Jetson TX2.

Fig. 10: The field experiment in the parking lot. The two solid line circles
in both figures indicate that the only target could be within this region with
a 40% probability. The dashed arcs represent the probability field of each
region. The black dot is the starting position of the agent. The solid red line
is the trajectory of our framework, and the solid black is the trajectory of the
single-behavior framework.

to find the target with different numbers of behavior policies.
Across 20 independent tests, the targets are found in 54.7, 39.8,
and 32.4 steps with 3, 4, and 5 behavior policies, respectively.
These results demonstrate the generalizability of MBMARL
beyond underwater environments, as long as the information
received by agents indicates a correlation with the target state
in an MDP, making it applicable for informed search.

C. Field Experiments
We define the environment with two regions where the target

could be of equal probability. Each region can be regarded as
a source of a probability field. Influenced by a region, each
location has a value v. The closer the location to this region,
the larger v. As a result, the value at each location influenced
by the two adapted regions is v = vb+vg , where vb and vg are
the values caused by the blue and green regions, respectively.
The target is in the blue circle region, which is not known by
the agent. We expect the agent to travel to the blue region.

The performance of the single behavior depends on the
starting position of the agent. If the starting position is closer

to the blue region in the first scenario, a single behavior can
find the blue region as well as the multi-behavior framework.
The steps to find the region are almost the same: 134 (single-
behavior) vs. 137 (multi-behavior). However, in the second
scenario, where the starting point is closer to the green field,
with only one behavior, the agent is trapped because once it
leaves the green region, v decreases, since in the area near
the green region, the region field is stronger. To increase the
reward, the agent returns to the green region and cannot travel
to the blue region. With multiple behaviors, the agent initially
gets lost in the area near B. However, once the behavior switch
interval is met and the agent can select a more appropriate
behavior compared to the previous one, it moves out of the
area near B towards A.

D. Emulation Experiments
To test the framework, we also performed an emulation.

The selected application is to find the source of the plumes
in an underwater environment. The underwater environment
is built in Unreal Engine 4.26 with the ocean and landscape
shown in Fig. 9(a). We chose a spot on the underwater land
as the source of the plume. To allow the AUVs to work, we
rendered the distribution model of the plume in this underwater
environment so that the AUVs knew the concentrations. Each
AUV can move along the x, y, and z axes at each step. The
step size can change from 1 to 10. We placed a particle
system at the source position and a light source to make
it visible. AUVs are controlled by the open-source AirSim
simulator [32]. By importing the BlueROV model into that, we
can control it with Python. This video shows the process of
two BlueROVs searching along the concentration to the plume
source. These two BlueROVs are working together. Fig. 9(b)
shows the change in distance between the two agents and the

25

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

target with the number of steps. We also tested the algorithm
on an embedded AI computing device, Nvidia Jetson TX2, as
shown in Fig. 9(c). We ran another 500 simulations of plume
source search tasks to test the device more comprehensively.
The working power consumption is approximately 3 watts.
However, we must admit that in real experiments it will
increase due to the Wi-Fi connection and the sensors working,
but the increment will not be significant. As a result, the power
consumption level is acceptable to work on a robot for real
experiments. In 500 different search missions, we use 6 agents
with a communication failure probability of 0.8 and a behavior
change interval of 2. In total, those 500 tasks took around
39,000 seconds. Each task takes an average of 78.7 seconds.
Each task takes an average of 21.3 steps, and each step takes
an average of 3.7 seconds to finish.

IV. CONCLUSION AND FUTURE WORK

We proposed an MBMARL framework, where agents pos-
sess multiple behaviors for adaptive actions in a single state.
Our experimental results demonstrated that: (i) MBMARL
outperforms compared frameworks in terms of rewards, con-
vergence time, and steps to find the target in complicated
environments with uncertain information; (ii) more behaviors
provide agents with diverse strategies for handling sparsity
and local optimum; (iii) the dependency on communication
of MBMARL is lower than compared frameworks.

For future work, we plan to: (a) Utilize Offline RL to build
models for explainable behaviors; (b) Conduct fair compar-
isons between MBMARL and MAAC by training the latter
offline; (c) Explore methods for generating structured noise in
R&ESN using techniques such as Variational Auto-Encoder
(VAE); (d) Enhance and update the behavior model in real-
time during online tests as needed.

REFERENCES

[1] A. Quattrini Li, R. Cipolleschi, M. Giusto, and F. Amigoni, “A
semantically-informed multirobot system for exploration of relevant
areas in search and rescue settings,” Autonomous Robots, vol. 40,
pp. 581–597, 2016.

[2] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and
S. Scherer, “Regionally accelerated batch informed trees (rabit*): A
framework to integrate local information into optimal path planning,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4207–4214, IEEE, 2016.

[3] Z. Yao, X. Li, B. Lang, and M. C. Chuah, “Goal-lbp: Goal-based local
behavior guided trajectory prediction for autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, 2023.

[4] D. Uvaydov, D. Unal, K. Enhos, E. Demirors, and T. Melodia, “Sonair:
Real-time deep learning for underwater acoustic spectrum sensing and
classification,” in 2023 19th International Conference on Distributed
Computing in Smart Systems and the Internet of Things (DCOSS-IoT),
pp. 9–16, 2023.

[5] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] O. O. Martins, A. A. Adekunle, O. M. Olaniyan, and B. O. Bolaji, “An
improved multi-objective a-star algorithm for path planning in a large
workspace: Design, implementation, and evaluation,” Scientific African,
vol. 15, p. e01068, 2022.

[7] E. F. Krause, “Taxicab geometry,” The Mathematics Teacher, vol. 66,
no. 8, pp. 695–706, 1973.

[8] J. C. Gower, “Properties of euclidean and non-euclidean distance matri-
ces,” Linear algebra and its applications, vol. 67, pp. 81–97, 1985.

[9] Z. Meng, A. Williams, P. Liau, T. G. Stephens, C. Drury, E. N. Chiles,
X. Su, M. Javanmard, and D. Bhattacharya, “Development of a portable
toolkit to diagnose coral thermal stress,” Scientific reports, vol. 12, no. 1,
p. 14398, 2022.

[10] S. Liu and M. Zhu, “Distributed inverse constrained reinforcement
learning for multi-agent systems,” Advances in Neural Information
Processing Systems, vol. 35, pp. 33444–33456, 2022.

[11] G. Chen, “A new framework for multi-agent reinforcement learning–
centralized training and exploration with decentralized execution via
policy distillation,” arXiv preprint arXiv:1910.09152, 2019.

[12] Z. Zhang, J. Jiang, J. Wu, and X. Zhu, “Efficient and optimal penetration
path planning for stealth unmanned aerial vehicle using minimal radar
cross-section tactics and modified a-star algorithm,” ISA transactions,
vol. 134, pp. 42–57, 2023.

[13] S. Alshammrei, S. Boubaker, and L. Kolsi, “Improved dijkstra algorithm
for mobile robot path planning and obstacle avoidance,” Comput. Mater.
Contin, vol. 72, pp. 5939–5954, 2022.

[14] S. Erke, D. Bin, N. Yiming, Z. Qi, X. Liang, and Z. Dawei, “An
improved a-star based path planning algorithm for autonomous land
vehicles,” International Journal of Advanced Robotic Systems, vol. 17,
no. 5, p. 1729881420962263, 2020.

[15] Z. Yao, J. Xu, S. Hou, and M. C. Chuah, “Cracknex: a few-shot low-light
crack segmentation model based on retinex theory for uav inspections,”
arXiv preprint arXiv:2403.03063, 2024.

[16] L. Wang, S. Pang, and G. Xu, “3-dimensional hydrothermal vent
localization based on chemical plume tracing,” in Global Oceans 2020:
Singapore–US Gulf Coast, pp. 1–7, IEEE, 2020.

[17] E. Heiden, L. Palmieri, S. Koenig, K. O. Arras, and G. S. Sukhatme,
“Gradient-informed path smoothing for wheeled mobile robots,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 1710–1717, IEEE, 2018.

[18] Z.-l. Meng, “Design and implementation of sound tracking multi-robot
system in wireless sensor networks,” in 2017 First International Con-
ference on Electronics Instrumentation & Information Systems (EIIS),
pp. 1–6, IEEE, 2017.

[19] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, K. Guo, and H. Xie,
“Multi-objective workflow scheduling with deep-q-network-based multi-
agent reinforcement learning,” IEEE access, vol. 7, pp. 39974–39982,
2019.

[20] A. Alagha, R. Mizouni, J. Bentahar, H. Otrok, and S. Singh, “Multi-
agent deep reinforcement learning with demonstration cloning for target
localization,” IEEE Internet of Things Journal, 2023.

[21] S. Liu and M. Zhu, “Learning multi-agent behaviors from distributed and
streaming demonstrations,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[22] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[23] Y. Yang, X. Ma, C. Li, Z. Zheng, Q. Zhang, G. Huang, J. Yang, and
Q. Zhao, “Believe what you see: Implicit constraint approach for offline
multi-agent reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 10299–10312, 2021.

[24] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[25] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, pp. 2052–2062, PMLR, 2019.

[26] J. M. Joyce, Kullback-Leibler Divergence, pp. 720–722. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011.

[27] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
pp. 1928–1937, PMLR, 2016.

[29] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic gridworld
environment for gymnasium,” 2018.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[31] J. Ho and S. Ermon, “Generative adversarial imitation learning,” Ad-
vances in neural information processing systems, vol. 29, 2016.

[32] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, 2017.

26

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on February 07,2025 at 18:51:13 UTC from IEEE Xplore. Restrictions apply.

