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Abstract—In modern post-disaster rescue missions, the de-
ployment of Multi-Robot Systems (MRSs) plays a key role in
minimizing injuries and deaths among rescue personnel and
civilians involved in the disaster. Achieving optimal MRS efficiency
requires the implementation of a well-suited task allocation
mechanism and a highly efficient pathfinding algorithm. However,
due to inconsistent communication and low bandwidth, traditional
frameworks in the mentioned domains may be impractical or may
not work well. To address these problems, a novel Bi-Layer Joint
Training Reinforcement (BJoT-RL) framework is proposed where,
in the first layer, a Multi-Head Deep Q-Learning (MHDQN)
is designed to perform task allocation; whereas, in the second
layer, a Condition-Constrained Q-Learning (CCQ) is proposed
to perform pathfinding. Noticeably, the output of each layer is
used in the training of the other layer to realize a tight coupling,
hence the innovative joint training. Thorough simulations show
that the BJoT-RL framework performs better than state-of-the-art
solutions in such applications.

Index Terms—Multi-Agent Reinforcement Learning, Dis-
tributed Learning and Computing, Task Allocation, Pathfinding.

I. INTRODUCTION

Overview: With the intensification of global climate change,

people’s lives and property are increasingly threatened, espe-

cially in some urban areas, which contain a large fraction of

the global population and wealth, and are still more vulnerable

to intensified natural and anthropogenic disturbances [1]. As

a result, post-disaster rescue is becoming increasingly im-

portant [2], [3]. Multi-Robot Systems (MRSs) are used in

such applications to reduce the injuries and deaths of rescue

personnel. A well-designed MRS rescue framework comprises

two critical components, task allocation, and pathfinding. To

enhance the operational efficiency of an MRS, it is essential

that each robot is assigned appropriate tasks and subsequently

navigates quickly to designated Points of Interest (PoIs). How-

ever, post-disaster environments can pose significant challenges

that prevent MRSs from working efficiently [4]. To address

these challenges, which have not been addressed by prior re-

search efforts, the development of a novel framework becomes

necessary.

Motivation: Post-disaster challenges can manifest them-

selves in various forms, and some exert a particularly pro-

nounced influence on the operational efficiency of MRSs.

The first challenge is the inconsistent communication [5].

Drones

Computing device

Rescue robot

Bi-directional communication channel
Channel not affected by communication network

Target’s location
A robot is allocated with a target

Fig. 1: This is an example deployment of Hierarchical Multi-Robot Sys-
tem (HMRS) for Search And Rescue (SAR) in post-disaster scenes.

Due to the instability of post-disaster environments, the tem-

porary network systems established by rescue teams often

face significant disruptions and encounter challenges in main-

taining consistent connectivity throughout their operations.

This makes conventional and commonly used task alloca-

tion frameworks impractical. These frameworks predominantly

encompass market-based, optimization-based, behavior-based,

complexity-based, and their related variants [6], necessitating

consistent communication or substantial human involvement.

Inconsistent communication severely compromises the efficacy

of these frameworks, or considerable human resources become

imperative. The second challenge is the low bandwidth of the

network. With such constraints, the size of the data transmitted

in an MRS cannot be large. This can affect the performance

of pathfinding algorithms because, in conventional pathfinding

algorithms such as A* and its derivatives [7], the map or global

environmental information must be shared between agents.

However, in scenarios characterized by limited bandwidth and

inconsistent communication, successfully transmitting data of

such a substantial size is not feasible. The third challenge

is the problem of coordination between robots during the

task allocation process. In the aforementioned task allocation

frameworks, there exists a deficiency in coordination among the

robots, as each robot primarily seeks to maximize its objective

function rather than striving for the overall enhancement of

system efficiency. Each task can only be assigned according to
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the order in the task list. For instance, if a task is just on the

way of a robot to another task and another robot picks it up,

this can probably result in a waste of resources. In other words,

a broader view to capture the task interdependencies is not easy

to achieve using classical approaches. Therefore, a framework

is needed to address challenges with good performance.

Our Approach: To address the challenges mentioned above,

we propose an RL-based framework that can be applied to

an MRS. The MRS is structured into three distinct layers:

the scanning layer, the computing layer, and the execution
layer. The scanning function can be performed by Unmanned

Aerial Vehicles (UAVs) or high-resolution satellites, allowing

area scanning and the collection of location data for all PoIs.

The algorithms executed in the scanning layer are studied

in the work like [8] and are not our focus points. In the

computing layer, we employ portable computing devices as

Access Points (APs) for computational tasks and broadcast

tasks to rescue robots. These devices, such as smartphones,

tablets, or laptops, are chosen for their portability and the

relative simplicity of the computing tasks involved. These

devices can be connected by cable or Bluetooth. Finally, in

the execution layer, rescue robots are deployed to travel to the

identified PoIs.

The BJoT-RL framework includes two algorithms, Multi-

Head Deep Q-Learning (MHDQN) in the first layer and

Condition-Constrained Q-Learning (CCQ) in the second layer,

for task allocation and pathfinding in post-disaster rescue

missions. MHDQN trains a task allocator based on the locations

of all robots, victims, charging stations, the residual and the

estimated energy cost of rescuing, while CCQ finds paths using

only the PoI coordinates. The trained CCQ models, with precise

information on travel distance and energy consumption, will be

sent back to the computing layer to refine the task allocator. The

exchange of location data between layers remains small, under

1kb, ensuring quick transmission even in low-bandwidth or in-

terrupted scenarios. Larger model transmissions require dropout

mechanisms to handle packet loss. In particular, this framework

exhibits better performance compared to baseline approaches,

and detailed elaboration will be provided in Sect. III.

II. RELATED WORK

We will first review a few studies in Multi-Robot Task

Allocation (MRTA), and then discuss some work related to

robotic rescue missions.

A. Multi-Robot Task Allocation

Currently, MRTA approaches can be broadly classified into

three distinct classes: market-based, optimization-based, and

behavior-based [6]. In market-based approaches, each robot

tries to complete tasks more efficiently by maximizing profit,

which is decided by its bid and the cost of each task. Recent

work includes [9], [10]. All of these works attempt to decrease

the uncertainty to maximize the number of PoI visits, minimize

the completion time, or reduce power consumption. However,

there are two major drawbacks: (1) Consistent communication

is required in these frameworks, since robots continuously ex-

change information to make allocation decisions; (2) Charging

or fueling the robots is not considered thoroughly in these

frameworks during execution.

For optimization-based approaches, recent work

includes [11]. The main drawbacks of these frameworks are:

(1) The optimization strategy consumes high computational

resources and power; (2) These frameworks consider single-

objective optimization only. The objective can be the

completion time, the number of PoIs visited, the power

consumption, or other related metrics.

Behavior-based task allocation approaches rely on the idea

of assigning tasks to agents based on their capabilities and

behaviors rather than relying on a centralized planner or con-

troller [12]. However, most frameworks do not perform well on

task redundancies. At the same time, although global commu-

nication is not needed, consistent local communication is still

required. With these drawbacks, these existing frameworks are

hard to apply to post-disaster environments.

B. Robotics Rescue Missions

In robotics rescue missions, researchers mainly focus on

enabling robots to navigate environments efficiently and travel

to PoIs rapidly. Recent studies are divided into two categories:

optimization-based and learning-based. In optimization-based

approaches, optimization techniques are used to improve exe-

cution efficiency. This approach aims to find the best possible

solution by optimizing various factors such as route planning

and decision-making to increase the success rate and efficiency

of rescue. Recent work includes [13]–[17], which optimizes

precollected information, such as the number of waypoints

visited, the estimated amount of time, the range of exploration,

or the tracking and classification of the collected images.

Although these optimization-based methods can achieve good

performance, they are all built on the premise of stable com-

munication. At the same time, there is a great deal of prior

knowledge of the environment, such as preset waypoints or a

large database of human images in the disaster environment.

With inconsistent communication and low bandwidth, large-

size data transmission is difficult to achieve.

For RL-based methods, researchers have proposed works

for such applications [18]–[20]. Some approaches prioritize

efficient exploration and pathfinding using task-specific models

like actor-critic. Others combine a robot’s experience with RL

in a frontier exploration framework to create reliable explo-

ration policies. Some utilize self-attention modules to learn

environmental characteristics. Although these methods excel

in certain scenarios, they often rely on single-agent strategies,

which can be inefficient. Moreover, in all of these investi-

gations, insufficient emphasis is placed on the rescue phase,

particularly regarding the automation of path finding for each

robot to reach its target position. Without a proper pathfinding

algorithm, the efficiency of the system cannot be substantially

improved solely by improving the search methodology.
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Fig. 2: Structure of the proposed BJoT-RL framework, which can be divided
into two layers: Allocation and Pathfinding.

III. PROPOSED SOLUTION

In this section, we present our BJoT-RL framework designed

for post-disaster rescue missions, which can increase the ef-

ficiency of MRSs by allocating the tasks appropriately and

traveling to PoIs rapidly under environmental challenges.

A. Problem Definition and Notations

Intuitively, to solve a complex task, we should decompose

the task into several subtasks. In post-disaster rescue missions,

if we want to solve task allocation and pathfinding in a single-

layer RL framework, the dimension of the state space will be

huge. In our MRS, we first scan the entire SAR area to get

the coordinates of the PoI locations. POIs include the set of

victim positions Pv and the set of charging stations Pcs for the

rescue robots. pvi and pcsi represent the position of the ith victim

and charging station, respectively. A team of rescue robots Rr

is used to reach the positions of the victims and rescue. The

set of rescue robot positions is Pr, and the set of residual

energy is Br. For the ith rescue robot rri , its position can be

represented as pri , and its residual energy can be represented as

bri . The rescue robots will be divided into Nc different groups

using k-nearest neighbors (k-NN) algorithm [21], where Nc

is also the number of AP. The training process for the task

allocator is carried out on APs, including smartphones, tablets,

or laptops. These devices are interlinked through physical

cables or Bluetooth connectivity. The ith computing device is

represented by ci. After training the task allocator, each AP will

transmit the assigned tasks to one group of rescue robots based

on relative positions. The ith rescue robot’s task sequence is ti.
Then each rescue robot will travel to the tasks assigned with

the trained CCQ pathfinding policy. The trained CCQ models

are then sent back to the APs to further train the task allocator,

and a mechanism is designed to deal with packet dropout. The

reason for this further training is that, in the pre-training of the

task allocator, the Euclidean distances between rescue robots

and PoIs are used to calculate the reward function because

the actual path length is not known. After training the CCQ

models, these models can provide the actual path length so that

the allocation can be more realistic and more appropriate. The

framework is shown in Fig. 2. The BJoT-RL training process

can be described with Algo. 1. More details will be introduced

in Sects. III-B and III-C.

B. Multi-Head Deep Q Learning

MHDQN is an RL-based framework for training the task

allocator. The state of the ith rescue robot salloi includes pri ,

bri , Pv , Pcs and a victim visited list that records whether a

victim has already been rescued. The dimension of the action

space of each rescue robot is the sum of the number of victims

nv and the number of charging stations ncs, which is nv+ncs.

Each victim and charging station has a unique target ID stored

in a target ID list lt id. If the action of rri , denoted as ai, is m,

it means that its next target assigned by the task allocator is

the target with ID m. We assume that the initial battery power

of all rescue robots is 100; Traveling a 1-unit distance will

cost one unit of power, and rescuing one victim will cost a

random unit of power from 10 to 20. For rri , if the assigned

task is a victim, the energy consumption ci is the sum of travel

and rescue costs. Then we set the residual energy buffer bre.

The purpose of setting this bre is that in pre-training of the

task allocator, we use Euclidean distance to calculate the travel

distance. However, the real path length is larger. To prevent

rescue robots from running out of energy, we require that during

pre-training of the task allocator, bri must be larger than bre
all the time. This bre is an important parameter, and we will

discuss more in Sect. IV.

The reward is designed as follows,

• If bri − ci < bre, rri will not accept this allocation, stay at

its current position and get a reward ri = −100.

• If bri − ci > bre but after traveling and rescuing, the

residual energy bri−ci−bre is less than the cost of traveling

to the nearest charging station cnext cs, rri will still not

accept this allocation, will stay in its current position and

will get a reward ri = −100.

• If it is not the above cases: if the target is a victim not

visited, ri = 40; if the target is a charging station, ri = 10;

if the target is a victim visited, ri = −20.

Then, update pri , bri , and Pv . The next state of rri , de-

noted as sallo−i , includes pri , bri , Pv , and the updated list

of the victims visited. During pre-training, the travel cost is

calculated with the Euclidean distance between pri and the

position of the allocated target. Then we get the four-element

tuple (salloi , ai, ri, s
allo−
i ). The ith entry of the output is the

maximum expectation of the return Ut of the ith action, which

is,

Q�(st, at) = max
π

E
[
Ut|St = st, At = ai

]
, (1)

where Ut = rt + γ ·∑n
k=t+1 γ

k−t−1 · rk. In this equation, rt
is the reward and γ is the discount factor.

To train the task allocator, we build two networks, evaluation

network Q and target network T , and the weights of the two

networks are initially set to the same. The multi-head design

in Q and T is that each rescue robot has its output layer rather
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Algorithm 1 BJoT-RL Training Process

// Start pre-training of task allocator
1: Collect Pv , Pcs, Pr and Br

2: Initialize the current allocation policy πallo

3: while pre-train is not finished do
4: Gather dataset with πallo

5: if dataset is enough then
6: Train πallo with dataset

7: Update πallo

// End pre-train of task allocator
// Start training of CCQ

8: for rri , i = 1, 2, ...... do
9: rri interact with environment

10: Gather data with path-finding policy πf

11: while training is not finished do
12: Gather dataset with πf

13: if dataset is enough then
14: Train πf with dataset

15: Update πf

// End training of CCQ
// Start further training of task allocator

16: Send all πf back to APs

17: Further train πallo with πf

18: Update πallo

// End further training of task allocator

than only one output layer. The hidden size is empirically set

to 256, and the size of each output layer is the same as the size

of the action space of each rescue robot. The hidden layers are

shared layers. We assume that the sets of weights of Q and

T are w and w−, respectively. Given a state st, the output of

the evaluation network Q(st | w) is a vector with the same

dimension as the action space of each rescue robot. The ith

entry of each output is described in (1). The purpose is to train

this evaluation network Q as a task allocation policy.

The training process can be described with Algo. 2. At

the beginning of each episode in the same round, the Br are

all set to 100, Pr are reset randomly, Pv , and Pcs will stay

unchanged. In each different round, the environment changes

and the weights of Q and T are reset. Pv and Pcs are also reset

randomly. In each round, the action policy will use a ε-greedy

algorithm [22] to guarantee that there is enough exploration at

the beginning to gather a variety of data to train the evaluation

network. εmin is set to be 0.9, εmax is set to be 0.01 and ε decay

steps are 100,000. In one episode, each rescue robot will collect

(salloi , ai, ri, s
allo−
i ) and store them in the replay buffer B. If

the size of B is more than 10 times the batch size, a batch

will be used to train and update Q. The training method is

the Temporal Difference (TD) [23]. Given a four-element tuple

(st, at, rt, s
−
t ), Q(st, at | w) is the maximum expectation of

the sum of all future rewards given that the current state is st

Algorithm 2 Task Allocator Training Process

1: for round = 1, 2, ...... do
2: for episode = 1, 2, ... do
3: for steps = 1, 2, ...... do
4: for rri , i = 1, 2, ...... do
5: Collect data d
6: Store d to buffer B
7: if len(B) > l then
8: Sample batch β from B
9: Train Q with β

10: Update hidden layers and the ith output layer

and the chosen action at, that is,

Q (st, at | w)︸ ︷︷ ︸
Predict q̂t

≈ rt + γ ·max
a∈A

T
(
st+1, a | w−)︸ ︷︷ ︸

TD Targetŷt

. (2)

To train the evaluation network Q, we calculate the loss,

L(w) =
1

2
[Q (st, at | w)− ŷt]

2
. (3)

The gradient of loss can be calculated as,

∇wL(w) = (q̂t − ŷt)︸ ︷︷ ︸
TD error δt

·∇wQ (st, at | w) . (4)

Finally, we update the weighs of Q w,

w ← w − α · δt · ∇wQ (st, at | w) . (5)

In each training step, the shared hidden layers are updated Nr

times, where Nr is the number of rescue robots. Each output

layer is updated once. After every 100 training times, w− is

set to the current weights of the evaluated network w. The

subsequent training process of the task allocator after receiving

the CCQ models is the same. The difference is that instead of

using Euclidean distance to calculate the travel cost, we use

CCQ models to derive the actual path length and then calculate

the travel cost. During this training process, bre is no longer

needed.

Data transmission from the scanning layer to the APs and

from the APs to the rescue robots is nothing more than PoI

IDs and coordinates. Let us say that there are K PoIs, Nc

APs and Nr rescue robots, the size of the data sent from the

scanning layer to the APs is 0.125×3×Nc bytes, and the size

of data sent from the AP layer to each rescue robot is around

0.125×3×K/Nr bytes. Given the number of PoIs and rescue

robots, the data sizes involved are well below 1KB. Throughout

the experiments, no instances of packet dropout of such data

have been observed.

However, the size of the CCQ models transmitted from

rescue robots to APs is comparatively larger, typically ranging

from approximately 2 to 3 MB. Given inconsistent communi-

cation conditions, the occurrence of packet dropout is possible.

Certain weight values within the model sent by a specific rescue

robot, denoted robot A, may be lost in such cases. A mitigation
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strategy is employed to address this issue. Initially, missing

weight entries in the CCQ model received from robot A are

identified. Subsequently, the weights of identical entries in the

CCQ models sent by other rescue robots that initially belong to

the same group as robot A are recovered. Finally, the average

value of these retrieved weights is calculated and inserted into

the positions of the lost weights, thereby rectifying the data

loss. In general, with such a network structure, the task allocator

can make decisions from a higher system-level perspective

while simultaneously maximizing the reward of each rescue

robot.

C. Condition-Constrained Q Learning

The CCQ algorithm handles pathfinding for each rescue

robot when the rescue area’s map is unattained. The proposed

RL-based CCQ algorithm aims for two essential features: rapid

convergence during training and relatively short path generation

in the environment.

First, we grid the rescue area maps that are not known by

the rescue robots. For the rescue robot rri , at each position, it

will first detect if there are obstacles in the eight cells of the

grid around it. If there are no obstacles in a cell and rri can

reach the cell, the cell is marked with 0. Otherwise, the cell is

marked with 1. Then store these numbers in a list laroundi . The

state of rri , denoted as si, includes the position of the rescue

robot pri , the remaining battery power bri , the position of the

target allocated pti and laroundi . The dimension of the action

space of a rescue robot is 8, which means that the rescue robot

can move to any of the eight grid cells surrounded if there is

no obstacle. If the distance between the current pri and pti is

dti and the distance between the initial position of rri , when rri
just finished the last task, and pti is d0i , the reward function can

be defined as follows,

Ri(p
r
i , p

t
i) =

{
100

exp (dt
i/d

0
i )
, pri �= pti,

100, pri = pti.
(6)

As rri approaches pti, from (6) we can see that lt is decreasing

and ri is approaching 100. The closer lt is to 0, the higher the

rate of increasing ri. This setting of the reward function will

strongly encourage the rescue to travel to the allocated target.

After ri moves to a new position with a travel cost cti, update

laroundi , set pri to this new position, and bri = bri − cti. Then

the next state s−i includes pri , bri , pti, and the updated laround i.

After rri moves to a new position with a travel cost cti, update

laroundi , set pri as this new position and bri := bri −cti. Then the

next state s−i includes pri , bri , pti and the updated laroundi . For

each agent, we get a tuple (si, ai, ri, s
−
i ).

Like MHDQN, we build two networks, the evaluation net-

work Q with weights w and the target network T with weights

w−, with the same initial weights to train the path-finding

algorithm. Each rescue robot is equipped with its own Q
and T . Q has three hidden layers with 256 and an output

layer of size 8. With an input state st, the output of Q is

Q(st | w) is a vector, where the ith entry is the value of the

maximum expectation of the return with the selected action i.

However, when choosing actions with Q network, traditional

DQN follows the rule,

at = max
a∈A

Q(st, a | w). (7)

But in our application, before a rescue robot selects an

action, it already knows that there might be some actions that it

should not select based on the detection of the eight surrounded

grid cells. In other words, to avoid colliding with obstacles

or traveling outside the boundary, we should add a constraint

based on the current condition of the robot. The rescue robot

rri should only choose the actions that can move the robot to

the grid cell marked with 0 in laroundi . The set of these eligible

actions Aeli is a subset of A. The action selection policy is,

at = max
a∈Aeli

Q(st, a | w). (8)

Similarly, if ε-greedy decides to randomly choose an action

in this step, the rescue robot will randomly choose an action

in Aeli. From (8), we can know that,

Q (st, at | w)︸ ︷︷ ︸
Predict q̂t

≈ rt + γ · max
a∈Aeli

T
(
st+1, a | w−)︸ ︷︷ ︸

TD Target ŷt

. (9)

From the difference between q̂t and ŷt, TD is used to train

and update Q. The trained CCQ models are then sent back

to the APs, and the allocator will be further trained with

these models to calculate the actual path length and the power

consumption.

IV. PERFORMANCE EVALUATION

In this section, we will introduce the setup for the exper-

iments and evaluate the performance of our proposed frame-

works versus other related algorithms.

A. Comparison Plan

To check the efficacy of the multi-head setting in MHDQN,

we compare it with a traditional DQN where there is only one

output layer. We assume that the size of the output layers in

MHDQN is m and the number of the rescue robot is Nr, then

the size of the output layer in this traditional DQN is m×Nr.

The initial set of values m corresponds to the output of the

first rescue robot, the subsequent values m pertain to the output

of the second rescue robot, and this pattern continues for the

subsequent rescue robots. To check the performance of our task
allocator using MHDQN, we compare it with the auction-based

and behavior-based task allocation framework, which requires

consistent communication [10], [12]. We evaluate it with the

total travel distance to all PoIs. The path we used to calculate

the distance here is derived from our CCQ model. To check the
efficacy of the designed mechanism to deal with packet dropout
that might occur during the transmission of the CCQ model. We

compare this with the ideal situation where all CCQ models are

successfully sent to APs without dropout. We also carried out

experiments to assess the influence of residual energy buffer
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(a) (b) (c)
Fig. 3: Average reward per agent vs. number of training episodes with the number of rescue robots = (a) 4; (b) 6; (c) 8 when the number of victims = 48 and
the number of charging stations = (a) 4; (b) 6; (c) 8. The bre is set to 20%.

bre. Finally, we compare our CCQ path-finding algorithm with
A* with different metrics to prove its feasibility in post-disaster

rescue missions.

B. Training and Testing Setup
Both MHDQN and CCQ employ a fully connected three-

layer neural network with a hidden size of 256. In MHDQN,

the hidden layers are shared by several output layers, and the

number of output layers is equal to the number of rescue

robots. Gives each rescue robot a sequence of tasks. During the

MHDQN and CCQ training, the learning rate is set to 0.0001;

the batch size is 32; the horizon is 1; the loss is calculated with

Mean Squared Error (MSE) loss.

C. Simulation Results
Efficacy of the Multi-Head Design: Fig. 3 illustrates

the average episode rewards against the number of episodes

for scenarios involving 4, 6, and 8 rescue robots after the

pre-training of the task allocator. Analyzing Figs. 3(a), 3(b),

and 3(c), MHDQN demonstrates convergence, stabilizing at

around 30. On the contrary, DQN lacks convergence, maintain-

ing stable rewards at approximately 10. The disparity arises

from a key difference in training. DQN lacks unique output

layers for each robot, hindering the continuity between state

inputs. This leads to suboptimal strategies that consistently

head to charging stations for positive rewards. In contrast,

our MHDQN framework achieves an average reward of 30,

indicating that robots prioritize recharging after rescuing two

victims, considering energy consumption. The results align with

expectations, validating the effectiveness of MHDQN.
Average number of allocated tasks per robot vs. number

of victims: From the result of Fig. 3, we know that after

pre-training of the task allocator, a robot tends to visit the

charging station once after rescuing two victims. To validate,

we plotted Fig. 4(a) to analyze the relationship between the

average number of tasks assigned per rescue robot vs. the

number of victims. This result is after the further training of the

task allocator. As the number of victims increases, the average

number of tasks assigned per rescue robot should increase

linearly, which is accurate from Fig. 4(a) when the number

of robots is 4, 6, and 8.
Performance of our task allocator using MHDQN vs.

baselines: Fig. 4(b) presents the relationship between the total

travel distance of all rescue robots and the number of victims

in a scenario involving six rescue robots. As we mentioned

previously, the auction-based mechanism exhibits two promi-

nent shortcomings. First, when a robot bids for a task, its

primary objective is to maximize its gain, rather than optimize

the entire system. Second, the high degree of randomness

inherent in selecting tasks from the list significantly affects

the results. This randomness is particularly pronounced at the

beginning of task allocation and when the number of victims

is relatively small. The figure reflects this by showing broader

confidence intervals for scenarios with fewer victims. The

behavior-based task allocation framework faces performance

degradation as the number of victims increases, primarily due to

its inability to handle task redundancy. However, such issues are

mitigated within our MHDQN framework, where APs possess

comprehensive information on all victims and charging stations

from the outset. Consequently, the task sequences assigned to

each agent represent optimal solutions.
Efficacy of the mechanism of packet dropout: In Fig. 4(c),

we assess the efficacy of the devised mechanism for addressing

packet dropout occurrences during the transmission of CCQ

models. We compare its performance with a scenario in which

no packet dropout is assumed. Notably, as the number of

victims increases, the system’s performance converges toward

that of the ideal, dropout-free scenario. This phenomenon can

be attributed to the fact that, with a greater number of victims,

each rescue robot can navigate the environment in a more

comprehensive way. Consequently, CCQ models undergo more

robust training, allowing weights retrieved from other CCQ

models to better approximate missing weights. This outcome

underscores the utility of the mechanism, and it is expected

to show even better performance as the number of victims

increases.

TABLE I: The influence of bre evaluated with the success rate of reaching the
PoI and the total steps of visiting all PoIs.

bre 10% 15% 20% 25% 30% 35% 40%
Success rate 73% 87% 100% 100% 100% 100% 100%
Steps Fail Fail 247 251 289 316 337

Influence of the residual energy buffer bre: In the pre-

training phase of the task allocator, Euclidean distance is

employed to compute travel distances. However, the actual path

lengths are greater than those calculated using the Euclidean
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(a) (b) (c)
Fig. 4: (a) The number of allocations when the number of victims changes from 24 to 120 and the number of rescue robots is 4, 6, and 8. The bre is set to
20%. (b) The total travel distance of ours versus the auction-based task allocation when the number of victims changes from 24 to 120. The bre is set to 20%.
(c) The total travel distance of our framework with and without packet dropout in the transmission of CCQ models from rescue robots to APs. The number of
rescue agents is 6. The bre is set to 20%. All results are generated after further training of the task allocator.

(a) (b) (c)
Fig. 5: (a) The average reward per rescue robot per step vs. episodes when the number of rescue robots = 4, 6, and 8. (b) The ratio of the length of the CCQ
path to the A * path when the number of robots = 4, 6, and 8. (c) The ratio of CCQ exploration steps to actual A* exploration steps without teleportation.

distance. To ensure that rescue robots do not run out of energy,

we enforce that during pre-training of the task allocator, the

residual energy of each rescue robot must be greater than bre
all the time. Table I shows the influence of bre. We change bre
from 10% of the maximum energy to 40% of the maximum

energy. After CCQ training, each rescue robot will use the

trained CCQ model to calculate the cost of traveling to each

assigned PoI. If the rescue robot successfully reaches PoI, the

cost is calculated based on the path generated by the CCQ

model. Conversely, if the rescue robot is unable to reach the

PoI, it is treated as a failure, with the assumption that the robot

reaches the designated PoI with residual energy as determined

by the pre-trained task allocator. Then we record the total steps

to visit all PoIs. It should be noted that when bre is set to a

lower value, failures become more prevalent, mainly because

the current task allocation is based on the heuristic Euclidean

distance, which is smaller than the actual path lengths. On the

contrary, when bre increases, the total number of steps required

to visit all PoIs also increases. This result can be attributed to

the fact that with a higher bre, each rescue robot has access to

less available energy, requiring more frequent visits to charging

stations. Consequently, the selection of appropriate bre values

during the pre-training of the task allocator is crucial, as it

influences the model’s convergence speed in the further training

of the task allocator.

CCQ rewards vs. episode: In Fig. 5(a), we plot the average

reward per robot per step in one episode when the number of

Fig. 6: The trajectories of robots to travel to allocated tasks. The CCQ model
is trained in various maps. After training, we use the trained CCQ model to
find paths in our post-disaster environment. The red dots are the positions of
the allocated tasks, and the green dots are the beginning positions of the robots.

rescue robots is 4, 6, and 8. According to (6), as lt decreases

from l0 to zero, the reward increases from 36.79 to 100, and

the derivative of the reward function increases. If the robot can

travel to the target through a straight line, the average reward

per step should be calculated as r = 1
l0

∫ l0
0

100e−lt/l0dlt.
The expected reward is theoretically 63.2. However, in real

environments replete with obstacles, the robot’s path to reach

victims cannot always be a straight line. Consequently, the

converging lines tend to settle at a value slightly lower than

63.2. The figure shows that the CCQ path-finding framework

converges very rapidly, which is crucial as it implies even if

the trained model exhibits sub-optimal performance in a new

environment, it will not take a long time to retrain it to adapt

to the new environment.

CCQ vs. A*: In Figs 5(b) and 5(c), we conduct a compara-
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tive analysis of the performance between CCQ and the classical

path-finding algorithm A*. Applying A*, a robot must explore

at most 8 steps to calculate the value f before deciding its next

action. The major drawbacks of A* algorithm are: (1) A* needs

maps to work. However, with low bandwidth and inconsistent

communication, transmissions of high-resolution maps are not

practical; (2) Although A* can find the shortest path, it has to

explore the surrounding cells at every step. If the current path

is not the shortest, the robot must travel back to one previous

position step by step rather than teleporting, which requires a

large number of explorations and must repeat in each step.
Fig. 5(b) illustrates the ratio of the CCQ path length to the

shortest path length identified by A*. CCQ converges rapidly.

After CCQ converges, the derived paths are only slightly longer

than those produced by A*, typically 5% to 15%. However,

CCQ can converge very rapidly and the actual exploration

distance is much less than A*, as presented in Figs. 5(a) and

5(b), making CCQ more suitable for pathfinding in a post-

disaster rescue mission.
Fig. 6 presents several examples of the robot’s trajectory

towards the designated task. In these illustrations, the red dots

indicate the task’s location, while the green dots mark the

robots’ initial positions. It is evident that, although the paths

generated by CCQ may not be the absolute shortest, they

remain within an acceptable range. Consequently, we assert

that our CCQ algorithm offers greater practicality compared to

A*, particularly in post-disaster environments.

V. CONCLUSION AND FUTURE WORK

We proposed a BJoT-RL framework for rescue missions in

post-disaster scenarios. In the first layer, an MHDQN frame-

work is proposed for task allocation. In the second layer,

a CCQ-based pathfinding framework is designed to allow

each rescue robot to travel to the assigned tasks within an

acceptable path length. MHDQN and CCQ show significant

advantages over related algorithms in this application, where

communication is inconsistent and bandwidth is low.
There are still some limitations in our framework. First, it

cannot deal with new targets during execution. Furthermore, the

level of synchronicity among robots is relatively high. To solve

these problems, in future studies, we plan to (i) assign to each

victim a priority level based on their conditions; (ii) consider

the influence of the condition of the road on the performance

of the robot; (iii) reduce synchronicity among robots to further

reduce the waiting time of each robot after finishing each task.
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