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Abstract—In modern post-disaster rescue missions, the de-
ployment of Multi-Robot Systems (MRSs) plays a key role in
minimizing injuries and deaths among rescue personnel and
civilians involved in the disaster. Achieving optimal MRS efficiency
requires the implementation of a well-suited task allocation
mechanism and a highly efficient pathfinding algorithm. However,
due to inconsistent communication and low bandwidth, traditional
frameworks in the mentioned domains may be impractical or may
not work well. To address these problems, a novel Bi-Layer Joint
Training Reinforcement (BJoT-RL) framework is proposed where,
in the first layer, a Multi-Head Deep Q-Learning (MHDQN)
is designed to perform task allocation; whereas, in the second
layer, a Condition-Constrained Q-Learning (CCQ) is proposed
to perform pathfinding. Noticeably, the output of each layer is
used in the training of the other layer to realize a tight coupling,
hence the innovative joint training. Thorough simulations show
that the BJoT-RL framework performs better than state-of-the-art
solutions in such applications.

Index Terms—Multi-Agent Reinforcement Learning, Dis-
tributed Learning and Computing, Task Allocation, Pathfinding.

I. INTRODUCTION

Overview: With the intensification of global climate change,
people’s lives and property are increasingly threatened, espe-
cially in some urban areas, which contain a large fraction of
the global population and wealth, and are still more vulnerable
to intensified natural and anthropogenic disturbances [1]. As
a result, post-disaster rescue is becoming increasingly im-
portant [2], [3]. Multi-Robot Systems (MRSs) are used in
such applications to reduce the injuries and deaths of rescue
personnel. A well-designed MRS rescue framework comprises
two critical components, task allocation, and pathfinding. To
enhance the operational efficiency of an MRS, it is essential
that each robot is assigned appropriate tasks and subsequently
navigates quickly to designated Points of Interest (Pols). How-
ever, post-disaster environments can pose significant challenges
that prevent MRSs from working efficiently [4]. To address
these challenges, which have not been addressed by prior re-
search efforts, the development of a novel framework becomes
necessary.

Motivation: Post-disaster challenges can manifest them-
selves in various forms, and some exert a particularly pro-
nounced influence on the operational efficiency of MRSs.
The first challenge is the inconsistent communication [5].
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Fig. 1: This is an example deployment of Hierarchical Multi-Robot Sys-
tem (HMRS) for Search And Rescue (SAR) in post-disaster scenes.

Due to the instability of post-disaster environments, the tem-
porary network systems established by rescue teams often
face significant disruptions and encounter challenges in main-
taining consistent connectivity throughout their operations.
This makes conventional and commonly used task alloca-
tion frameworks impractical. These frameworks predominantly
encompass market-based, optimization-based, behavior-based,
complexity-based, and their related variants [6], necessitating
consistent communication or substantial human involvement.
Inconsistent communication severely compromises the efficacy
of these frameworks, or considerable human resources become
imperative. The second challenge is the low bandwidth of the
network. With such constraints, the size of the data transmitted
in an MRS cannot be large. This can affect the performance
of pathfinding algorithms because, in conventional pathfinding
algorithms such as A* and its derivatives [7], the map or global
environmental information must be shared between agents.
However, in scenarios characterized by limited bandwidth and
inconsistent communication, successfully transmitting data of
such a substantial size is not feasible. The third challenge
is the problem of coordination between robots during the
task allocation process. In the aforementioned task allocation
frameworks, there exists a deficiency in coordination among the
robots, as each robot primarily seeks to maximize its objective
function rather than striving for the overall enhancement of
system efficiency. Each task can only be assigned according to
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the order in the task list. For instance, if a task is just on the
way of a robot to another task and another robot picks it up,
this can probably result in a waste of resources. In other words,
a broader view to capture the task interdependencies is not easy
to achieve using classical approaches. Therefore, a framework
is needed to address challenges with good performance.

Our Approach: To address the challenges mentioned above,
we propose an RL-based framework that can be applied to
an MRS. The MRS is structured into three distinct layers:
the scanning layer, the computing layer, and the execution
layer. The scanning function can be performed by Unmanned
Aerial Vehicles (UAVs) or high-resolution satellites, allowing
area scanning and the collection of location data for all Pols.
The algorithms executed in the scanning layer are studied
in the work like [8] and are not our focus points. In the
computing layer, we employ portable computing devices as
Access Points (APs) for computational tasks and broadcast
tasks to rescue robots. These devices, such as smartphones,
tablets, or laptops, are chosen for their portability and the
relative simplicity of the computing tasks involved. These
devices can be connected by cable or Bluetooth. Finally, in
the execution layer, rescue robots are deployed to travel to the
identified Pols.

The BJoT-RL framework includes two algorithms, Multi-
Head Deep Q-Learning (MHDQN) in the first layer and
Condition-Constrained Q-Learning (CCQ) in the second layer,
for task allocation and pathfinding in post-disaster rescue
missions. MHDQN trains a task allocator based on the locations
of all robots, victims, charging stations, the residual and the
estimated energy cost of rescuing, while CCQ finds paths using
only the Pol coordinates. The trained CCQ models, with precise
information on travel distance and energy consumption, will be
sent back to the computing layer to refine the task allocator. The
exchange of location data between layers remains small, under
1kb, ensuring quick transmission even in low-bandwidth or in-
terrupted scenarios. Larger model transmissions require dropout
mechanisms to handle packet loss. In particular, this framework
exhibits better performance compared to baseline approaches,
and detailed elaboration will be provided in Sect. III.

II. RELATED WORK

We will first review a few studies in Multi-Robot Task
Allocation (MRTA), and then discuss some work related to
robotic rescue missions.

A. Multi-Robot Task Allocation

Currently, MRTA approaches can be broadly classified into
three distinct classes: market-based, optimization-based, and
behavior-based [6]. In market-based approaches, each robot
tries to complete tasks more efficiently by maximizing profit,
which is decided by its bid and the cost of each task. Recent
work includes [9], [10]. All of these works attempt to decrease
the uncertainty to maximize the number of Pol visits, minimize
the completion time, or reduce power consumption. However,
there are two major drawbacks: (1) Consistent communication

354

is required in these frameworks, since robots continuously ex-
change information to make allocation decisions; (2) Charging
or fueling the robots is not considered thoroughly in these
frameworks during execution.

For  optimization-based  approaches, recent  work
includes [11]. The main drawbacks of these frameworks are:
(1) The optimization strategy consumes high computational
resources and power; (2) These frameworks consider single-
objective optimization only. The objective can be the
completion time, the number of Pols visited, the power
consumption, or other related metrics.

Behavior-based task allocation approaches rely on the idea
of assigning tasks to agents based on their capabilities and
behaviors rather than relying on a centralized planner or con-
troller [12]. However, most frameworks do not perform well on
task redundancies. At the same time, although global commu-
nication is not needed, consistent local communication is still
required. With these drawbacks, these existing frameworks are
hard to apply to post-disaster environments.

B. Robotics Rescue Missions

In robotics rescue missions, researchers mainly focus on
enabling robots to navigate environments efficiently and travel
to Pols rapidly. Recent studies are divided into two categories:
optimization-based and learning-based. In optimization-based
approaches, optimization techniques are used to improve exe-
cution efficiency. This approach aims to find the best possible
solution by optimizing various factors such as route planning
and decision-making to increase the success rate and efficiency
of rescue. Recent work includes [13]-[17], which optimizes
precollected information, such as the number of waypoints
visited, the estimated amount of time, the range of exploration,
or the tracking and classification of the collected images.
Although these optimization-based methods can achieve good
performance, they are all built on the premise of stable com-
munication. At the same time, there is a great deal of prior
knowledge of the environment, such as preset waypoints or a
large database of human images in the disaster environment.
With inconsistent communication and low bandwidth, large-
size data transmission is difficult to achieve.

For RL-based methods, researchers have proposed works
for such applications [18]-[20]. Some approaches prioritize
efficient exploration and pathfinding using task-specific models
like actor-critic. Others combine a robot’s experience with RL
in a frontier exploration framework to create reliable explo-
ration policies. Some utilize self-attention modules to learn
environmental characteristics. Although these methods excel
in certain scenarios, they often rely on single-agent strategies,
which can be inefficient. Moreover, in all of these investi-
gations, insufficient emphasis is placed on the rescue phase,
particularly regarding the automation of path finding for each
robot to reach its target position. Without a proper pathfinding
algorithm, the efficiency of the system cannot be substantially
improved solely by improving the search methodology.
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Fig. 2: Structure of the proposed BJoT-RL framework, which can be divided
into two layers: Allocation and Pathfinding.

III. PROPOSED SOLUTION

In this section, we present our BJoOT-RL framework designed
for post-disaster rescue missions, which can increase the ef-
ficiency of MRSs by allocating the tasks appropriately and
traveling to Pols rapidly under environmental challenges.

A. Problem Definition and Notations

Intuitively, to solve a complex task, we should decompose
the task into several subtasks. In post-disaster rescue missions,
if we want to solve task allocation and pathfinding in a single-
layer RL framework, the dimension of the state space will be
huge. In our MRS, we first scan the entire SAR area to get
the coordinates of the Pol locations. POIs include the set of
victim positions P, and the set of charging stations P, for the
rescue robots. p¥ and p$* represent the position of the it victim
and charging station, respectively. A team of rescue robots R,
is used to reach the positions of the victims and rescue. The
set of rescue robot positions is P,, and the set of residual
energy is B,. For the i*" rescue robot 77, its position can be
represented as pj, and its residual energy can be represented as
by The rescue robots will be divided into [V, different groups
using k-nearest neighbors (k-NN) algorithm [21], where N,
is also the number of AP. The training process for the task
allocator is carried out on APs, including smartphones, tablets,
or laptops. These devices are interlinked through physical
cables or Bluetooth connectivity. The i** computing device is
represented by c;. After training the task allocator, each AP will
transmit the assigned tasks to one group of rescue robots based
on relative positions. The i’ rescue robot’s task sequence is ;.
Then each rescue robot will travel to the tasks assigned with
the trained CCQ pathfinding policy. The trained CCQ models
are then sent back to the APs to further train the task allocator,
and a mechanism is designed to deal with packet dropout. The
reason for this further training is that, in the pre-training of the
task allocator, the Euclidean distances between rescue robots
and Pols are used to calculate the reward function because
the actual path length is not known. After training the CCQ
models, these models can provide the actual path length so that
the allocation can be more realistic and more appropriate. The
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framework is shown in Fig. 2. The BJoT-RL training process
can be described with Algo. 1. More details will be introduced
in Sects. III-B and III-C.

B. Multi-Head Deep Q Learning

MHDQN is an RL-based framework for training the task
allocator. The state of the i*" rescue robot s¢/° includes pr,
by, P,, P.s and a victim visited list that records whether a
victim has already been rescued. The dimension of the action
space of each rescue robot is the sum of the number of victims
n, and the number of charging stations 7., which is 1, + 7¢s.
Each victim and charging station has a unique target ID stored
in a target ID list [, ;4. If the action of ], denoted as a;, is m,
it means that its next target assigned by the task allocator is
the target with ID m. We assume that the initial battery power
of all rescue robots is 100; Traveling a 1-unit distance will
cost one unit of power, and rescuing one victim will cost a
random unit of power from 10 to 20. For 7], if the assigned
task is a victim, the energy consumption ¢; is the sum of travel
and rescue costs. Then we set the residual energy buffer b,..
The purpose of setting this b,. is that in pre-training of the
task allocator, we use Euclidean distance to calculate the travel
distance. However, the real path length is larger. To prevent
rescue robots from running out of energy, we require that during
pre-training of the task allocator, b} must be larger than b,
all the time. This b, is an important parameter, and we will
discuss more in Sect. IV.

The reward is designed as follows,

o If b] —c; < bye, 7] will not accept this allocation, stay at

its current position and get a reward r; = —100.

o If b} —¢; > b, but after traveling and rescuing, the
residual energy b; —c; —b,.. is less than the cost of traveling
to the nearest charging station cpeq¢_cs, 77 Will still not
accept this allocation, will stay in its current position and
will get a reward r; = —100.

o If it is not the above cases: if the target is a victim not
visited, r; = 40; if the target is a charging station, r; = 10;
if the target is a victim visited, r; = —20.

Then, update pj, b}, and P,. The next state of ], de-
noted as s?””’, includes p;, b, P,, and the updated list
of the victims visited. During pre-training, the travel cost is
calculated with the Euclidean distance between p] and the
position of the allocated target. Then we get the four-element
tuple (s?ll°7ai7ri,sfllo_). The i** entry of the output is the
maximum expectation of the return U, of the it" action, which
is,

Q*(Staat) = m;iX]E[Ut\St =5, A = (14,]7 (1)

where Uy = 1y 4+ > p_, 17" "' - ri. In this equation, r
is the reward and + is the discount factor.

To train the task allocator, we build two networks, evaluation
network () and target network 7', and the weights of the two
networks are initially set to the same. The multi-head design
in Q and T is that each rescue robot has its output layer rather
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Algorithm 1 BJoT-RL Training Process

Algorithm 2 Task Allocator Training Process

// Start pre-training of task allocator
. Collect P,, P.s, P, and B,
. Initialize the current allocation policy 741,
: while pre-train is not finished do
Gather dataset with 7.,
if dataset is enough then
Train 7, with dataset
Update 740

A A o A

// End pre-train of task allocator
// Start training of CCQ
8: for r],i=1,2, do

9:  rj interact with environment

10:  Gather data with path-finding policy 7
11 while training is not finished do

12: Gather dataset with ¢

13: if dataset is enough then

14: Train 7, with dataset

15: Update 7

// End training of CCQ
// Start further training of task allocator

16: Send all 7y back to APs
17: Further train 7, with 7y
18: Update 710

// End further training of task allocator

than only one output layer. The hidden size is empirically set
to 256, and the size of each output layer is the same as the size
of the action space of each rescue robot. The hidden layers are
shared layers. We assume that the sets of weights of ) and
T are w and w™, respectively. Given a state s;, the output of
the evaluation network Q(s; | w) is a vector with the same
dimension as the action space of each rescue robot. The it"
entry of each output is described in (1). The purpose is to train
this evaluation network () as a task allocation policy.

The training process can be described with Algo. 2. At
the beginning of each episode in the same round, the B, are
all set to 100, P, are reset randomly, P,, and P., will stay
unchanged. In each different round, the environment changes
and the weights of () and T are reset. P, and P, are also reset
randomly. In each round, the action policy will use a e-greedy
algorithm [22] to guarantee that there is enough exploration at
the beginning to gather a variety of data to train the evaluation
network. €,,;,, is set to be 0.9, €4, is set to be 0.01 and € decay
steps are 100,000. In one episode, each rescue robot will collect
(s8¥ a;,r;, 527 and store them in the replay buffer B. If
the size of B is more than 10 times the batch size, a batch
will be used to train and update ). The training method is
the Temporal Difference (TD) [23]. Given a four-element tuple
(st,at,re,8; ), Q(St,ar | w) is the maximum expectation of
the sum of all future rewards given that the current state is s¢
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for round = 1,2,
for episode = 1,2, ... do
for steps = 1,2, do
for r[,i=1,2,......
Collect data d
Store d to buffer B
if len(B) > [ then
Sample batch § from B
Train Q with 3
Update hidden layers and the i*" output layer

1:
2
3 forsteps =1,2,......
4
5:
6
7
8
9

10:

and the chosen action a;, that is,

(@)

Q(styar |w) =ry +- lgleaj(T (st41,0 | w™).

Predict g TD Targety,
gt

To train the evaluation network Q, we calculate the loss,

! (@ (s¢,a¢ | w) — ﬂtf‘

L(w) = ; 3)
The gradient of loss can be calculated as,
VwL(w) = (G — 7t) Vw@ (st,a¢ | w) . “4)
————r
TD error &
Finally, we update the weighs of Q) w,
w(—w—oz~§t~va(st,at|’w). (5)

In each training step, the shared hidden layers are updated N,
times, where NN, is the number of rescue robots. Each output
layer is updated once. After every 100 training times, w™ is
set to the current weights of the evaluated network w. The
subsequent training process of the task allocator after receiving
the CCQ models is the same. The difference is that instead of
using Euclidean distance to calculate the travel cost, we use
CCQ models to derive the actual path length and then calculate
the travel cost. During this training process, b, is no longer
needed.

Data transmission from the scanning layer to the APs and
from the APs to the rescue robots is nothing more than Pol
IDs and coordinates. Let us say that there are K Pols, N,
APs and N, rescue robots, the size of the data sent from the
scanning layer to the APs is 0.125 x 3 x [N, bytes, and the size
of data sent from the AP layer to each rescue robot is around
0.125 x 3 x K /N, bytes. Given the number of Pols and rescue
robots, the data sizes involved are well below 1KB. Throughout
the experiments, no instances of packet dropout of such data

have been observed.

However, the size of the CCQ models transmitted from
rescue robots to APs is comparatively larger, typically ranging
from approximately 2 to 3 MB. Given inconsistent communi-
cation conditions, the occurrence of packet dropout is possible.
Certain weight values within the model sent by a specific rescue
robot, denoted robot A, may be lost in such cases. A mitigation
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strategy is employed to address this issue. Initially, missing
weight entries in the CCQ model received from robot A are
identified. Subsequently, the weights of identical entries in the
CCQ models sent by other rescue robots that initially belong to
the same group as robot A are recovered. Finally, the average
value of these retrieved weights is calculated and inserted into
the positions of the lost weights, thereby rectifying the data
loss. In general, with such a network structure, the task allocator
can make decisions from a higher system-level perspective
while simultaneously maximizing the reward of each rescue
robot.

C. Condition-Constrained Q Learning

The CCQ algorithm handles pathfinding for each rescue
robot when the rescue area’s map is unattained. The proposed
RL-based CCQ algorithm aims for two essential features: rapid
convergence during training and relatively short path generation
in the environment.

First, we grid the rescue area maps that are not known by
the rescue robots. For the rescue robot r;, at each position, it
will first detect if there are obstacles in the eight cells of the
grid around it. If there are no obstacles in a cell and 7} can
reach the cell, the cell is marked with 0. Otherwise, the cell is
marked with 1. Then store these numbers in a list [¢7°%"?, The
state of 7], denoted as s;, includes the position of the rescue
robot p7, the remaining battery power b}, the position of the
target allocated p! and [97°“"?, The dimension of the action
space of a rescue robot is 8, which means that the rescue robot
can move to any of the eight grid cells surrounded if there is
no obstacle. If the distance between the current p; and p! is
d! and the distance between the initial position of r, when r/
just finished the last task, and pf is d?, the reward function can
be defined as follows,

100
oxp (d!/d0)

100,

P # pl,

(6)
P =D}

Ri(p},pi) = {

As ! approaches p!, from (6) we can see that [; is decreasing
and r; is approaching 100. The closer [; is to O, the higher the
rate of increasing ;. This setting of the reward function will
strongly encourage the rescue to travel to the allocated target.
After r; moves to a new position with a travel cost c}, update
Jground " set p to this new position, and b} = bl — ci. Then
the next state s, includes pj, b, pt, and the updated loround_i-
After 77 moves to a new position with a travel cost ¢!, update
Jground "set pI' as this new position and b7 := b} — ct. Then the
next state s; includes p!, b, p! and the updated [¢"°“"?. For
each agent, we get a tuple (s;,a;, 7, 8; ).

Like MHDQN, we build two networks, the evaluation net-
work ) with weights w and the target network 7" with weights
w™, with the same initial weights to train the path-finding
algorithm. Each rescue robot is equipped with its own @
and T. @ has three hidden layers with 256 and an output
layer of size 8. With an input state s, the output of @ is
Q(sy | w) is a vector, where the i*" entry is the value of the
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maximum expectation of the return with the selected action i.
However, when choosing actions with ) network, traditional
DQN follows the rule,

)

ay = Igleaj(Q(sha | w).

But in our application, before a rescue robot selects an
action, it already knows that there might be some actions that it
should not select based on the detection of the eight surrounded
grid cells. In other words, to avoid colliding with obstacles
or traveling outside the boundary, we should add a constraint
based on the current condition of the robot. The rescue robot
r] should only choose the actions that can move the robot to
the grid cell marked with 0 in [¢7°%"?, The set of these eligible
actions A.;; is a subset of A. The action selection policy is,

®)

a; = max Q(st,a | w).

eli

Similarly, if e-greedy decides to randomly choose an action
in this step, the rescue robot will randomly choose an action
in A.;;. From (8), we can know that,

(€))

Q(styar |w) = re +- agljiT (5t+17a ‘ w_) :

Predict q;
TD Target y¢
From the difference between ¢; and 7;, TD is used to train
and update Q. The trained CCQ models are then sent back
to the APs, and the allocator will be further trained with
these models to calculate the actual path length and the power
consumption.

IV. PERFORMANCE EVALUATION

In this section, we will introduce the setup for the exper-
iments and evaluate the performance of our proposed frame-
works versus other related algorithms.

A. Comparison Plan

To check the efficacy of the multi-head setting in MHDQN,
we compare it with a traditional DQN where there is only one
output layer. We assume that the size of the output layers in
MHDQN is m and the number of the rescue robot is /N,., then
the size of the output layer in this traditional DQN is m x N,..
The initial set of values m corresponds to the output of the
first rescue robot, the subsequent values m pertain to the output
of the second rescue robot, and this pattern continues for the
subsequent rescue robots. To check the performance of our task
allocator using MHDQN, we compare it with the auction-based
and behavior-based task allocation framework, which requires
consistent communication [10], [12]. We evaluate it with the
total travel distance to all Pols. The path we used to calculate
the distance here is derived from our CCQ model. 7o check the
efficacy of the designed mechanism to deal with packet dropout
that might occur during the transmission of the CCQ model. We
compare this with the ideal situation where all CCQ models are
successfully sent to APs without dropout. We also carried out
experiments to assess the influence of residual energy buffer
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byc. Finally, we compare our CCQ path-finding algorithm with
A* with different metrics to prove its feasibility in post-disaster
rescue missions.

B. Training and Testing Setup

Both MHDQN and CCQ employ a fully connected three-
layer neural network with a hidden size of 256. In MHDQN,
the hidden layers are shared by several output layers, and the
number of output layers is equal to the number of rescue
robots. Gives each rescue robot a sequence of tasks. During the
MHDQN and CCQ training, the learning rate is set to 0.0001;
the batch size is 32; the horizon is 1; the loss is calculated with
Mean Squared Error (MSE) loss.

C. Simulation Results

Efficacy of the Multi-Head Design: Fig. 3 illustrates
the average episode rewards against the number of episodes
for scenarios involving 4, 6, and 8 rescue robots after the
pre-training of the task allocator. Analyzing Figs. 3(a), 3(b),
and 3(c), MHDQN demonstrates convergence, stabilizing at
around 30. On the contrary, DQN lacks convergence, maintain-
ing stable rewards at approximately 10. The disparity arises
from a key difference in training. DQN lacks unique output
layers for each robot, hindering the continuity between state
inputs. This leads to suboptimal strategies that consistently
head to charging stations for positive rewards. In contrast,
our MHDQN framework achieves an average reward of 30,
indicating that robots prioritize recharging after rescuing two
victims, considering energy consumption. The results align with
expectations, validating the effectiveness of MHDQN.

Average number of allocated tasks per robot vs. number
of victims: From the result of Fig. 3, we know that after
pre-training of the task allocator, a robot tends to visit the
charging station once after rescuing two victims. To validate,
we plotted Fig. 4(a) to analyze the relationship between the
average number of tasks assigned per rescue robot vs. the

750 1000 1250 1500 1750 2000
Number of Episodes

b

-40
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Fig. 3: Average reward per agent vs. number of training episodes with the number of rescue robots = (a) 4; (b) 6; (c) 8 when the number of victims = 48 and

travel distance of all rescue robots and the number of victims
in a scenario involving six rescue robots. As we mentioned
previously, the auction-based mechanism exhibits two promi-
nent shortcomings. First, when a robot bids for a task, its
primary objective is to maximize its gain, rather than optimize
the entire system. Second, the high degree of randomness
inherent in selecting tasks from the list significantly affects
the results. This randomness is particularly pronounced at the
beginning of task allocation and when the number of victims
is relatively small. The figure reflects this by showing broader
confidence intervals for scenarios with fewer victims. The
behavior-based task allocation framework faces performance
degradation as the number of victims increases, primarily due to
its inability to handle task redundancy. However, such issues are
mitigated within our MHDQN framework, where APs possess
comprehensive information on all victims and charging stations
from the outset. Consequently, the task sequences assigned to
each agent represent optimal solutions.

Efficacy of the mechanism of packet dropout: In Fig. 4(c),
we assess the efficacy of the devised mechanism for addressing
packet dropout occurrences during the transmission of CCQ
models. We compare its performance with a scenario in which
no packet dropout is assumed. Notably, as the number of
victims increases, the system’s performance converges toward
that of the ideal, dropout-free scenario. This phenomenon can
be attributed to the fact that, with a greater number of victims,
each rescue robot can navigate the environment in a more
comprehensive way. Consequently, CCQ models undergo more
robust training, allowing weights retrieved from other CCQ
models to better approximate missing weights. This outcome
underscores the utility of the mechanism, and it is expected
to show even better performance as the number of victims
increases.

TABLE I: The influence of b, evaluated with the success rate of reaching the
Pol and the total steps of visiting all Pols.

number of victims. This result is after the further training of the bre 10% 15% 20% 25%  30% 35%  40%
task allocator. As the number of victims increases, the average Success rate ~ 73%  87%  100%  100% 100% 100%  100%
Steps Fail Fail 247 251 289 316 337

number of tasks assigned per rescue robot should increase
linearly, which is accurate from Fig. 4(a) when the number
of robots is 4, 6, and 8.

Performance of our task allocator using MHDQN vs.
baselines: Fig. 4(b) presents the relationship between the total
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Influence of the residual energy buffer b,.: In the pre-
training phase of the task allocator, Euclidean distance is
employed to compute travel distances. However, the actual path
lengths are greater than those calculated using the Euclidean
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distance. To ensure that rescue robots do not run out of energy,
we enforce that during pre-training of the task allocator, the
residual energy of each rescue robot must be greater than b,..
all the time. Table I shows the influence of b,.. We change b,..
from 10% of the maximum energy to 40% of the maximum
energy. After CCQ training, each rescue robot will use the
trained CCQ model to calculate the cost of traveling to each
assigned Pol. If the rescue robot successfully reaches Pol, the
cost is calculated based on the path generated by the CCQ
model. Conversely, if the rescue robot is unable to reach the
Pol, it is treated as a failure, with the assumption that the robot
reaches the designated Pol with residual energy as determined
by the pre-trained task allocator. Then we record the total steps
to visit all Pols. It should be noted that when b, is set to a
lower value, failures become more prevalent, mainly because
the current task allocation is based on the heuristic Euclidean
distance, which is smaller than the actual path lengths. On the
contrary, when b,.. increases, the total number of steps required
to visit all Pols also increases. This result can be attributed to
the fact that with a higher b,.., each rescue robot has access to
less available energy, requiring more frequent visits to charging
stations. Consequently, the selection of appropriate b,.. values
during the pre-training of the task allocator is crucial, as it
influences the model’s convergence speed in the further training
of the task allocator.

CCQ rewards vs. episode: In Fig. 5(a), we plot the average
reward per robot per step in one episode when the number of
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Fig. 6: The trajectories of robots to travel to allocated tasks. The CCQ model
is trained in various maps. After training, we use the trained CCQ model to
find paths in our post-disaster environment. The red dots are the positions of
the allocated tasks, and the green dots are the beginning positions of the robots.

rescue robots is 4, 6, and 8. According to (6), as [; decreases
from [y to zero, the reward increases from 36.79 to 100, and
the derivative of the reward function increases. If the robot can
travel to the target through a straight line, the average reward
per step should be calculated as r iféo 100e~"e/todl,.
The expected reward is theoretically 63.2. However, in real
environments replete with obstacles, the robot’s path to reach
victims cannot always be a straight line. Consequently, the
converging lines tend to settle at a value slightly lower than
63.2. The figure shows that the CCQ path-finding framework
converges very rapidly, which is crucial as it implies even if
the trained model exhibits sub-optimal performance in a new
environment, it will not take a long time to retrain it to adapt
to the new environment.

CCQ vs. A*: In Figs 5(b) and 5(c), we conduct a compara-
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tive analysis of the performance between CCQ and the classical
path-finding algorithm A*. Applying A*, a robot must explore
at most 8 steps to calculate the value f before deciding its next
action. The major drawbacks of A* algorithm are: (1) A* needs
maps to work. However, with low bandwidth and inconsistent
communication, transmissions of high-resolution maps are not
practical; (2) Although A* can find the shortest path, it has to
explore the surrounding cells at every step. If the current path
is not the shortest, the robot must travel back to one previous
position step by step rather than teleporting, which requires a
large number of explorations and must repeat in each step.

Fig. 5(b) illustrates the ratio of the CCQ path length to the
shortest path length identified by A*. CCQ converges rapidly.
After CCQ converges, the derived paths are only slightly longer
than those produced by A*, typically 5% to 15%. However,
CCQ can converge very rapidly and the actual exploration
distance is much less than A*, as presented in Figs. 5(a) and
5(b), making CCQ more suitable for pathfinding in a post-
disaster rescue mission.

Fig. 6 presents several examples of the robot’s trajectory
towards the designated task. In these illustrations, the red dots
indicate the task’s location, while the green dots mark the
robots’ initial positions. It is evident that, although the paths
generated by CCQ may not be the absolute shortest, they
remain within an acceptable range. Consequently, we assert
that our CCQ algorithm offers greater practicality compared to
A*, particularly in post-disaster environments.

V. CONCLUSION AND FUTURE WORK

We proposed a BJoT-RL framework for rescue missions in
post-disaster scenarios. In the first layer, an MHDQN frame-
work is proposed for task allocation. In the second layer,
a CCQ-based pathfinding framework is designed to allow
each rescue robot to travel to the assigned tasks within an
acceptable path length. MHDQN and CCQ show significant
advantages over related algorithms in this application, where
communication is inconsistent and bandwidth is low.

There are still some limitations in our framework. First, it
cannot deal with new targets during execution. Furthermore, the
level of synchronicity among robots is relatively high. To solve
these problems, in future studies, we plan to (i) assign to each
victim a priority level based on their conditions; (ii) consider
the influence of the condition of the road on the performance
of the robot; (iii) reduce synchronicity among robots to further
reduce the waiting time of each robot after finishing each task.
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