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Abstract— All biological species undergo change over time due to 

the evolutionary process. These changes can occur rapidly and 

unpredictably. Due to their high potential to spread quickly, it is 

critical to be able to monitor changes and detect viral variants. 

Phylogenetic trees serve as good methods to study evolutionary 

relationships. Complex big data in biomedicine is plentiful in 

regards to viral data. In this paper, we analyze phylogenetic trees 

with reference to viruses and conduct dynamic programming 

using the Smith-Waterman algorithm, followed by hierarchical 

clustering. This methodology constitutes an intelligent approach 

for data mining, paving the way for examining variations in SARS-

Cov-2, which in turn can help to discover knowledge potentially 

useful in biomedicine.   
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I. INTRODUCTION

For all of recorded human history, and far predating the time 

humans have walked the Earth, viruses have existed. Viruses 

vary in certain characteristics such as the degree to which they 

are infectious and/or fatal. One underlying tendency shared 

among all viruses is that “Viruses may evolve at high, uneven, 

and fluctuating rates among genome sites” [1]. Due to this 

tendency, viruses that start off as benign may quickly evolve 

into a more sinister incarnation. A dangerous virus may cause 

untold damage to the health of humans and animals up to and 

including death. It is critical to be able to study strains and 

variants of a virus in order to facilitate a complete 

understanding of their evolutionary history. Arguably, “viruses 

are most easily studied using phylogenetic comparison, which 

requires tailored questions and research methods [2]”. 

Phylogenetics has an extensive history in the study of viruses 

such as Hepatitis C [3] and the Zika Virus [4]. In data science 

terms, this can provide complex big data, large in volume, 

having much variety, and requiring veracity in its analysis.  

In this paper, we use intelligent data mining on the RdRp (RNA-

dependent RNA polymerase) gene, a gene omnipresent and 

unique to RNA viruses. We institute an approach harnessing the 

Smith-Waterman algorithm in dynamic programming, followed 

by hierarchical clustering with WPMGA (Weighted Pair Group 

Method with Arithmetic-Mean), using a sample real dataset. 

Comparisons are made by calculating the edit distance between 

each RdRp gene sequence.  These comparisons can potentially 

reveal which strains are more closely related informing the 

structure of the inferred phylogeny. We build on previous 

work 

[1-4] in these problem spaces by using a subset of coronavirus 

gene sequences. Inferences from this analysis can set the stage 

for further biomedical studies to detect variants.  

II. MODELS AND METHODS

A. Background on Phylogentic Trees

A phylogenetic tree depicts “the relationship between 

biological lineages related by common descent” [1]. Thus, a 

phylogeny is a specific type of tree diagram that groups 

particular gene sequences according to their evolutionary 

history. Fig. 1 is an example phylogenetic tree illustrating the 

evolution of a four base pair  gene sequence [1]. Note that 

A,T,G,C stand for adenine, guanine, thyamine, cytosine 

respectively (the four bases that make up DNA). In the topmost 

set of branches, initially the gene sequence diverges from the 

global MRCA or most recent common ancestor (AAAA to 

AGAA then to AGGA). There is only one mismatch or mutation 

between AAAA and AGAA: at the second position in each 

sequence. Additionally, there is only one mutation between 

AGAA and AGGA at the third position.  

Fig. 1: An example phylogenetic tree. [1] 

However, when comparing AGGA with the global most recent 

common ancestor (AAAA), there are two mutations at the 

second and third positions. Actual gene sequencs such as the 

RdRp gene are much greater in length and far more complex, 

constituting big data in volume and variety. Thse sequences  can 

be compared in a manner similar to that described above, 

catering to veracity. In Fig. 1, the phylogeny is already known, 
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but there is a clear evolution marked by incremental changes to 

the gene sequence over time, which can be traced via edit 

distance. Evolutionarily closer sequences typically have fewer 

mismatches than more distantly related ones, as is illustrated by 

the gene sequences mentioned above. A phylogenetic tree “may 

be characterized by topology, branch lengths, and whether the 

tree is rooted or unrooted. Trees that share a common topology 

obtained using different data sets are known as congruent [1].  
 

Branch length may be representative of either the amount of 

change that has occurred between nodes or the amount of time 

that has passed between these nodes. The former is deemed 

additive while the latter deemed ultrametric. The shape of the 

tree is indicative of the evolutionary process acting on a 

particular species or gene sequence. Trees may be either rooted 

or unrooted. Rooted trees imply directionality of change and 

ancestry while unrooted trees only depict the relatedness. 
 

 

Phylogenetic analysis can be critically important for never-

before-detected viruses, such as the SARS coronavirus and the 

Zika virus: in classifying the virus, determining how the virus 

enters the human population, and initiating the search for the 

virus’ natural reservoir. This natural reservoir may constitute 

all host organisms for a particular virus whether human or 

animal as well as the environments in which a virus may live to 

later be transmitted to a host organism (this may include: high-

touch surfaces, enclosed, populated spaces, and so forth).  

B. Use of Phylogenetic Trees in Coronavirus Studies 

In an attempt to understand the evolution of the coronavirus, 

researchers can use a phylogenetic network, an example of 

which appears in Fig. 2. This network carries information from 

mitochondrial and Y chromosomal data to show a myriad of 

optimal trees. This information can then be applied in finding 

infectious paths that can lead to public health risks.  
 

 

 
Fig. 2: Phylogenetic network of 160 SARS-CoV-2 genomes [5].  
 

For example, the bat coronavirus has 96.2% sequence similarity 

to the human virus. This variant is labeled cluster A in the 

concerned work [5]. Two other variants are found and labeled 

clusters B and C. The A variant is predominant among 

Americans and Australians. The C variant is observed in 

significant proportions in Europeans. Interestingly enough, the 

B type remains the most prevalent variant in East Asia and does 

not seem to have spread. Finding the origination of three 

distinct variants and where they are currently located, shows 

that the phylogenetic network is effective in tracing the spread 

of infections. These findings can be critical when implementing 

possible treatments.  

C. Other Virus Studies 

The Zika virus was first isolated in 1947, and for the next 20 

years the isolate was primarily obtained from East and West 

Africa. The Zika virus is in the genus Flavivirus and is 

transmitted by mosquitoes [4]. During that time, it was thought 

that infection by the Zika virus was sporadic at best. Now it is 

theorized that epidemics that were attributed to the dengue 

viruses might have been incorrect and should have been 

attributed to the Zika virus. The confusion may have been 

because of the similar clinical symptoms both infections 

present. Symptoms of someone infected with the Zika virus 

include fever, malaise, headache, maculopapular rash, and 

conjunctivitis. In 2007, Zika virus outbreaks began to be 

reported. Different genotypes of the Zika virus discovered 

include are: West African, East African, and Asian genotypes, 

as seen in Fig. 3 here [4]. In 2015, Zika virus outbreaks were 

reported in northern Brazil, Rio Grande State, Guatemala and 

Puerto Rico. Through sequence analysis and generating 

phylogenetic trees, researchers learned that the virus from those 

cases are most closely related to the Asian genotype.  
 

 

 
Fig. 3: Phylogenetic tree with Zika Virus isolates [4]. 
 

D. Models in Studying Viral Pathogens 

There are other researchers who also use some computational 

methods to compare and visualize relationships of coronavirus 

to various pathogenic taxa [2].  This can be important when 

discussing the threat viral pathogens pose, especially now with 
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coronavirus. Researchers often choose one gene from different 

viral sequences to build the phylogenetic tree. Sequence data 

can be newly generated or downloaded from the National 

Center for Biotechnology Information (NCBI database).  These 

gene sequences are then aligned. With the alignments, 

phylogenetic methods such as maximum parsimony and 

maximum likelihood are employed to infer phylogenetic 

trees.  This process is invaluable in understanding origins of 

viral outbreaks. 

 

III. PROPOSED APPROACH: SMITH-WATERMAN AND 

HIERARCHICAL CLUSTERING 

In this paper, we institute an intelligent data mining approach 

that harnesses the Smith-Waterman algorithm followed by 

hierarchical clustering for inferring phylogenetic relationships.  
 

The Smith-Waterman algorithm in dynamic programming has 

been created with respect to the edit distance problem for the 

specific cases of comparing strings of nucleic acid sequences or 

protein sequences [6]. It conducts local sequence alignment; i.e. 

to find similar regions from two strings of nucleic acid/protein 

sequences. Rather than examining full sequences, it compares 

smaller segments of all possible lengths, for optimization [6].  
 

In our work, the Smith-Waterman algorithm is adapted for data 

mining on a sample of the complex biological data. Nucleic 

acid sequences of the RNA-dependent RNA polymerase 

(RdRP) gene are used as they are uniquely identifiable for RNA 

based viruses such as SARS coronavirus. In our adaptation, this 

performs local sequence alignment on the RdRP gene where it 

examines segments of every possible length. Its advantage over 

global sequence alignment is that genes of varying sizes can be 

more seamlessly and efficiently compared. Algorithm 1 

presents the pseudocode for the Smith-Waterman algorithm, 

adapted for our work from classical sources in Algorithms [7]. 
 

---------------------------------------------------------------------------
Algorithm 1: Adaptation of Smith-Waterman for Phylogeny of SARS-Cov-2 

Input: Sequences of length M and N, Initialize the Alignment Score S=0  

1.    𝑆[0,0] = 0 

2     𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑀 𝑑𝑜: 
3                𝑆[𝑖, 0] = 0 

4     𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑁 𝑑𝑜: 
5                𝑆[0, 𝑗] = 0 

6                𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑀 𝑑𝑜: 

7                           𝑆[𝑖, 𝑗] = 𝑀𝐴𝑋

{
 

 
0

𝑆[𝑖 − 1, 𝑗 − 1] +  𝛿(𝑥𝑖, 𝑦𝑗)

𝑆[𝑖 − 1, 𝑗] +  𝛿(𝑥𝑖 , −)
𝑆[𝑖, 𝑗 − 1] +  𝛿(−, 𝑦𝑗)

 

8     𝑟𝑒𝑡𝑢𝑟𝑛 𝑆[𝑀,𝑁] 
Output: Alignment Score S 

 

This algorithm applies a scoring scheme to find the optimal 

matching subsequence. Adding gaps is allowed to maximize the 

alignment score. The scoring scheme consists of increasing the 

alignment score when there is a match, and decreasing it when 

there is a mismatch or a gap. Given this scoring scheme, a score 

matrix and a corresponding trace-back matrix is calculated. 

Once the tables are completed, the highest alignment score is 

recognized, and traced back to its point of origin, providing us 

with the sequence having the maximum alignment score. See 

Fig, 4 for a general graphical example of this concept [8]. 
 

 
 

Fig. 4: Tabular representation of adapting Smith-Waterman [8].  

 

Once the maximum alignment score for every combination of 

genes is calculated, the scores are used to build a phylogenetic 

tree by the Weighted Pair Group Method with Arithmetic-Mean 

(WPGMA) hierarchical clustering technique [9]. The WPGMA 

technique infers ultrametric trees, which can be plotted as 

following a time axis so as to make the tips line up. It builds a 

rooted tree having edge lengths such that all leaves are 

equidistant from the root [9, 10]. WPGMA’s rooted tree 

(dendrogram) corresponds to a pairwise similarity matrix. In 

each iteration, the two closest clusters, e.g. 𝐶𝑥  and 𝐶𝑦 , are 

united to construct a higher-level cluster, i.e. (𝐶𝑥 ∪ 𝐶𝑦). Its 

distance to another cluster 𝐶𝑘  is the arithmetic mean of the 

average distances between members of (𝐶𝑘, 𝐶𝑥) and (𝐶𝑘 , 𝐶𝑦) 

as stated in Equation 1 where 𝛥 denotes distance.  
 

𝛥((𝐶𝑥 ∪ 𝐶𝑦), (𝐶𝑘)) =  
∆(𝐶𝑘,𝐶𝑥) + 𝛥(𝐶𝑘,𝐶𝑦)

2
          (1) 

 

This is deployed in our work as follows. Through WPGMA, we 

take the maximum alignment score of each combination of 

genes to build a similarity matrix. We take the maximum value 

within the matrix, and pair up the genes that are associated with 

the maximum alignment into a dendrogram. The pair of genes 

then undergo clustering in a similarity matrix. The alignment 

score between the clustered genes and all other genes is 

obtained by taking the arithmetic mean of alignment scores of 

clustered genes. This process is then repeated until a full 

dendrogram is produced, analogous to other studies in the 

literature on clustering [10]. 

 

IV. EXPERIMENTS AND OBSERVATIONS 

We present a synopsis of our results utilizing 12 representative 

DNA sequences that comprise the RNA-dependent RNA 

polymerase RdRP gene emanating from different coronavirus 

strains. These sample strains are presented in Listing 1.  
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--------------------------------------------------------------------------------------------- 

Listing 1: Strains Discovered from Phylogeny Analysis 
--------------------------------------------------------------------------------------------- 

0: AY278741.1_SARS-CoV_human_coronavirus_SARS 
1: MT072668.1_SARS-CoV-2_human_coronavirus_COVID 

2: KM888179.1_hare_coronavirus 

3: LC469028.1_Mi-CoV-1_bat_coronavirus 
4: HQ728484.1_Miniopterus_bat_coronavirus 

5: AB918718.1_IFB2012-17F_bat_coronavirus 

6: NC_014470.1_BM48-31/BGR/2008_bat_coronavirus 
7: KY417142.1_As6526_bat_coronavirus 

8: MT084071.1_MP789_pangolin_coronavirus 

9:KJ713299.1_MERS_camel_coronavirus_KSA-CAMEL-376 
10: JX869059.2_MERS_human_coronavirus 

11: NC_009224.1_Botryotinia_fuckeliana_totivirus 

---------------------------------------------------------------------------------------------- 
 

The DNA sequences have been downloaded from the NCBI 

data base as fasta files. A snippet of the output comparing the 

first two organisms in the fasta file can be seen in in Fig 5. Once 

the Smith-Waterman algorithm runs, the maximum alignment 

score is produced. The higher the score, the closer the two pairs 

of sequences are to one another. Afterwards, the maximum 

alignment score is taken and applied with WPGMA hierarchical 

clustering to build a phylogenetic tree.  Fig. 6 illustrates the 

inferred phylogenetic tree from this data sample.  
 

 

 
Fig. 5: Snippet of output comparing the first two organisms in the fasta file. 
 

 

Modest inferences can be drawn from this analysis, and pave 

the way for work on a much larger scale (see Fig, 6). The RdRP 

gene of coronavirus strain 6: NC_014470.1_BM48-

31/BGR/2008_bat_coronavirus is most similar to the RdRp 

gene of the 7:KY417142.1_As6526_ bat_coronavirus. This 

correlates with the relatively high alignment score of 9352.  

Likewise, another RdRP gene of strain 9, i.e. 

KJ713299.1_MERS_camel_coronavirus_KSA-CAMEL-376 is 

most similar to the RdRp gene of coronavirus strain 10: 

JX869059.2_MERS_human_coronavirus. This correlates with 

the relatively high alignment score of 11820. Finally, the most 

divergent sequence analyzed is strain 3, LC469028.1_Mi-CoV-

1_bat_coronavirus. Strain 3, LC469028.1_Mi-CoV-

1_bat_coronavirus has the lowest alignment scores ranging 

from 587 to 1627.  

V. COMPLEXITY AND TRACTABILITY 

Given that we harness a classical algorithm from dynamic 

programming and apply it in the context of big data mining, it 

is useful to discuss complexity and tractability, since these are 

important aspects of algorithms [7], especially as data gets 

bigger in volume, variety, etc. Since the dynamic programming 

algorithm used in this study is configured to address the issue 

of edit distance, we can deduce that the problem has an overall 

complexity of 𝑂(𝑚 ×  𝑛)  where 𝑚  is the number of 

characters in the first string (phylogeny sequence) being 

compared to the number of characters, 𝑛, in the second string. 

The algorithm compares every gene sequence to every other, 

two gene sequences at a time. This is useful for complex 

biological data, especially as much larger datasets are analyzed, 

following the same procedure as presented with the sample data 

in this paper.  

 

 

Fig. 6: Phylogeny tree of 12 sample RdRp genes from different coronaviruses 
generated in this study. 

While trying to ascertain tractability, we classify this problem 

as P and NP, but not NP-Hard or NP-Complete. It is justified as 

follows. The problem has a poly-time algorithm, so it can be 

classified as P. Since P is a subset of NP, as well known in 

algorithmic fundamentals [7], this can also be justifiably 

classified as NP. Another manner in which this can be 

interpreted is with a poly-time certifier, which in this case is 

running our algorithm for a given set of gene sequences. NP-

Hard problems must be intractable to the degree that no 

efficient algorithms exist to solve these problems. In this case, 

since there exists quite clearly an efficient algorithm to solve 

the edit distance problem as per these gene sequences, it is thus 

justifiable to not classify this as an NP-Hard problem. Finally, 

since NP-Complete problems must be part of both NP as well 

as NP-Hard problems, it is justifiable to not classify this 

problem as NP-Complete. In summary, it can be logically 

justified that this problem is both P and NP, but not NP-Hard or 

NP-Complete.  
 

Note that we only address the complexity and tractability with 

respect to Smith-Waterman here, as this algorithm constitutes 

the crucial step of our problem where data volume matters (with 
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other Vs). Once the analysis is completed using Smith-

Waterman, the results are used for hierarchical clustering; 

hence the intermediate output passed as the input to the 

clustering step would obviously be smaller than the original 

data used by Smith-Waterman. Hence, we find it sufficient to 

present the complexity and tractability discussion for the 

dynamic programming algorithm harnessed in this study.  

VI. RELATED WORK 

General Coronavirus-Related Studies: A study on chest X-

ray detection with computer vision models and transfer learning 

[11], reveals that VGG16 and VGG19 models can detect Covid-

19 vs. pneumonia vs. normal (healthy) with high accuracy, thus 

offering decision support in healthcare. Other efforts to combat 

Covid-19 in data science include creating dashboards to track 

and map the disease [12], and reviewing sterilization methods 

for PPE (personal protective equipment) [13] for SARS-Cov-2. 

An article on Covid-19 and social media cites numerous works 

as per different angles of this pandemic [14], while another one 

addresses veracity of postings circulated online [15]. Various 

mobile applications (apps) are developed that contribute to 

different aspects of combating the pandemic, e.g. food donation 

[16], recovery of small businesses [17] etc. More studies in this 

area [2, 5] are discussed earlier in this paper. Our work in this 

paper fits within the broad spectrum of such research.  
 

Dynamic Programming and Hierarchical Clustering: Many 

studies, e.g. cited in [6-10] use dynamic programming or 

hierarchical clustering, with different applications. Other work 

[18] designs N-level batching with hierarchical clustering as a 

nonlinear integer programming method to raise efficiency via 

multidimensional dynamic programming, very helpful in an 

engineering context. Research on semantics-preserving cluster 

representatives is conducted [19] such that input conditions of 

scientific experiments constitute the data. Although this is for 

partition-based clustering, it can be adapted to hierarchical 

clustering. Another piece of work [20] finds pairwise distance 

of files using Smith-Waterman, and identifies relative distance 

of people copying them. As such duplication often occurs, this 

can classify proximity so that people positioned closely can be 

grouped by hierarchical clustering. These are examples of work 

on both dynamic programming and hierarchical clustering. 

While there are many studies in these areas, to the best of our 

knowledge, Smith-Waterman in dynamic programming is not 

prevalent with WPMGA hierarchical clustering, particularly for 

coronavirus studies. Thus our work modestly contributes here. 

VII. CONCLUSIONS AND FUTURE WORK 

We deploy Smith-Waterman in conjunction with hierarchical 

clustering to generate a phylogenetic tree, conducing 

executions on real data in virus studies. Our initial work 

presented in this paper can potentially gain insights into a few 

useful inferences, e.g. the RdRP gene of strain 9, the 

KJ713299.1_MERS_camel_coronavirus_KSA-CAMEL-376 is 

most similar to the RdRp gene of corona virus strain 10, the 

JX869059.2_MERS_human_coronavirus, and so forth.  
 

Future research could seek to construct phylogenetic trees in a 

similar manner and aim to create an improved, more efficient 

method for studying evolutions of viruses.  Comparative studies 

would be executed with other approaches. On the whole, our 

research study makes a modest contribution to computational 

biology through intelligent data mining.  
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