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Abstract— All biological species undergo change over time due to
the evolutionary process. These changes can occur rapidly and
unpredictably. Due to their high potential to spread quickly, it is
critical to be able to monitor changes and detect viral variants.
Phylogenetic trees serve as good methods to study evolutionary
relationships. Complex big data in biomedicine is plentiful in
regards to viral data. In this paper, we analyze phylogenetic trees
with reference to viruses and conduct dynamic programming
using the Smith-Waterman algorithm, followed by hierarchical
clustering. This methodology constitutes an intelligent approach
for data mining, paving the way for examining variations in SARS-
Cov-2, which in turn can help to discover knowledge potentially
useful in biomedicine.
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[. INTRODUCTION

For all of recorded human history, and far predating the time
humans have walked the Earth, viruses have existed. Viruses
vary in certain characteristics such as the degree to which they
are infectious and/or fatal. One underlying tendency shared
among all viruses is that “Viruses may evolve at high, uneven,
and fluctuating rates among genome sites” [1]. Due to this
tendency, viruses that start off as benign may quickly evolve
into a more sinister incarnation. A dangerous virus may cause
untold damage to the health of humans and animals up to and
including death. It is critical to be able to study strains and
variants of a virus in order to facilitate a complete
understanding of their evolutionary history. Arguably, “viruses
are most easily studied using phylogenetic comparison, which
requires tailored questions and research methods [2]”.
Phylogenetics has an extensive history in the study of viruses
such as Hepatitis C [3] and the Zika Virus [4]. In data science
terms, this can provide complex big data, large in volume,
having much variety, and requiring veracity in its analysis.

In this paper, we use intelligent data mining on the RdRp (RNA-
dependent RNA polymerase) gene, a gene omnipresent and
unique to RNA viruses. We institute an approach harnessing the
Smith-Waterman algorithm in dynamic programming, followed
by hierarchical clustering with WPMGA (Weighted Pair Group
Method with Arithmetic-Mean), using a sample real dataset.
Comparisons are made by calculating the edit distance between
each RdRp gene sequence. These comparisons can potentially
reveal which strains are more closely related informing the
structure of the inferred phylogeny. We build on previous
work
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[1-4] in these problem spaces by using a subset of coronavirus
gene sequences. Inferences from this analysis can set the stage
for further biomedical studies to detect variants.

II. MODELS AND METHODS

A. Background on Phylogentic Trees

A phylogenetic tree depicts “the relationship between
biological lineages related by common descent” [1]. Thus, a
phylogeny is a specific type of tree diagram that groups
particular gene sequences according to their evolutionary
history. Fig. 1 is an example phylogenetic tree illustrating the
evolution of a four base pair gene sequence [1]. Note that
A, T,G,C stand for adenine, guanine, thyamine, cytosine
respectively (the four bases that make up DNA). In the topmost
set of branches, initially the gene sequence diverges from the
global MRCA or most recent common ancestor (4444 to
AGAA then to AGGA). There is only one mismatch or mutation
between 4444 and AGAA: at the second position in each
sequence. Additionally, there is only one mutation between
AGAA and AGGA at the third position.

OI1J genome /[ gene / protein sequence
global MRCA (root)
lineage MRCA (internal node)

coee

extant species (leaf)

xky  substitution of X to Y at position k

Fig. 1: An example phylogenetic tree. [1]

However, when comparing A GGA with the global most recent
common ancestor (44A4A4), there are two mutations at the
second and third positions. Actual gene sequencs such as the
RdRp gene are much greater in length and far more complex,
constituting big data in volume and variety. Thse sequences can
be compared in a manner similar to that described above,
catering to veracity. In Fig. 1, the phylogeny is already known,
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but there is a clear evolution marked by incremental changes to
the gene sequence over time, which can be traced via edit
distance. Evolutionarily closer sequences typically have fewer
mismatches than more distantly related ones, as is illustrated by
the gene sequences mentioned above. A phylogenetic tree “may
be characterized by topology, branch lengths, and whether the
tree is rooted or unrooted. Trees that share a common topology
obtained using different data sets are known as congruent [1].

Branch length may be representative of either the amount of
change that has occurred between nodes or the amount of time
that has passed between these nodes. The former is deemed
additive while the latter deemed ultrametric. The shape of the
tree is indicative of the evolutionary process acting on a
particular species or gene sequence. Trees may be either rooted
or unrooted. Rooted trees imply directionality of change and
ancestry while unrooted trees only depict the relatedness.

Phylogenetic analysis can be critically important for never-
before-detected viruses, such as the SARS coronavirus and the
Zika virus: in classifying the virus, determining how the virus
enters the human population, and initiating the search for the
virus’ natural reservoir. This natural reservoir may constitute
all host organisms for a particular virus whether human or
animal as well as the environments in which a virus may live to
later be transmitted to a host organism (this may include: high-
touch surfaces, enclosed, populated spaces, and so forth).

B. Use of Phylogenetic Trees in Coronavirus Studies

In an attempt to understand the evolution of the coronavirus,
researchers can use a phylogenetic network, an example of
which appears in Fig. 2. This network carries information from
mitochondrial and Y chromosomal data to show a myriad of
optimal trees. This information can then be applied in finding
infectious paths that can lead to public health risks.
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Fig. 2: Phylogenetic network of 160 SARS-CoV-2 genomes [5].

For example, the bat coronavirus has 96.2% sequence similarity
to the human virus. This variant is labeled cluster A in the
concerned work [5]. Two other variants are found and labeled
clusters B and C. The A variant is predominant among
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Americans and Australians. The C variant is observed in
significant proportions in Europeans. Interestingly enough, the
B type remains the most prevalent variant in East Asia and does
not seem to have spread. Finding the origination of three
distinct variants and where they are currently located, shows
that the phylogenetic network is effective in tracing the spread
of infections. These findings can be critical when implementing
possible treatments.

C. Other Virus Studies

The Zika virus was first isolated in 1947, and for the next 20
years the isolate was primarily obtained from East and West
Africa. The Zika virus is in the genus Flavivirus and is
transmitted by mosquitoes [4]. During that time, it was thought
that infection by the Zika virus was sporadic at best. Now it is
theorized that epidemics that were attributed to the dengue
viruses might have been incorrect and should have been
attributed to the Zika virus. The confusion may have been
because of the similar clinical symptoms both infections
present. Symptoms of someone infected with the Zika virus
include fever, malaise, headache, maculopapular rash, and
conjunctivitis. In 2007, Zika virus outbreaks began to be
reported. Different genotypes of the Zika virus discovered
include are: West African, East African, and Asian genotypes,
as seen in Fig. 3 here [4]. In 2015, Zika virus outbreaks were
reported in northern Brazil, Rio Grande State, Guatemala and
Puerto Rico. Through sequence analysis and generating
phylogenetic trees, researchers learned that the virus from those
cases are most closely related to the Asian genotype.

1001 Zika Central African Repubiic 1979 (ARB13565) |
100 [Zum Central African Republic 1376 (ARB7701)
10 Zika Cenfral African Republic 1380 (ARB15076)

Zika Central African Republic 1968 (ArB1362)
Zika Senegal 2001 (ArD157385)
Zika Uganda 1947 (MRT66)
Zika Senegal 2001 (ArD158084)

Zika Nigeria 1968 (IbH30636) =1

e Zika Senegal 1997 (AD126000) West
ﬂ_cika Senegal 1988 (ArDT117) Airican
100 Zika Senegal 1984 (AD41518)

Zika Malaysia 1966 (PE-740) =
Zika Yap Jun 2007

Zika Cambodia 2010 (F8513025)

Zika Thailand 2013 (PLCal_ZV)

Zka Fronsh Pobynisia 2013 (HPF01s) | ASEN
Zika Puerto Rico Dec 2015 (PRVABCS9)
Zika Brazil 2015 (SPH2015)

Zika Guatemala Dec 2015 (103344)

100 1Zika Guatemala Nov 2015 (8375)

East
African

—_—
100 -

Fig. 3: Phylogenetic tree with Zika Virus isolates [4].

D. Models in Studying Viral Pathogens

There are other researchers who also use some computational
methods to compare and visualize relationships of coronavirus
to various pathogenic taxa [2]. This can be important when
discussing the threat viral pathogens pose, especially now with
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coronavirus. Researchers often choose one gene from different
viral sequences to build the phylogenetic tree. Sequence data
can be newly generated or downloaded from the National
Center for Biotechnology Information (NCBI database). These
gene sequences are then aligned. With the alignments,
phylogenetic methods such as maximum parsimony and
maximum likelihood are employed to infer phylogenetic
trees. This process is invaluable in understanding origins of
viral outbreaks.

II1. PROPOSED APPROACH: SMITH-WATERMAN AND
HIERARCHICAL CLUSTERING

In this paper, we institute an intelligent data mining approach
that harnesses the Smith-Waterman algorithm followed by
hierarchical clustering for inferring phylogenetic relationships.

The Smith-Waterman algorithm in dynamic programming has
been created with respect to the edit distance problem for the
specific cases of comparing strings of nucleic acid sequences or
protein sequences [6]. It conducts local sequence alignment; i.e.
to find similar regions from two strings of nucleic acid/protein
sequences. Rather than examining full sequences, it compares
smaller segments of all possible lengths, for optimization [6].

In our work, the Smith-Waterman algorithm is adapted for data
mining on a sample of the complex biological data. Nucleic
acid sequences of the RNA-dependent RNA polymerase
(RdRP) gene are used as they are uniquely identifiable for RNA
based viruses such as SARS coronavirus. In our adaptation, this
performs local sequence alignment on the RdRP gene where it
examines segments of every possible length. Its advantage over
global sequence alignment is that genes of varying sizes can be
more seamlessly and efficiently compared. Algorithm 1
presents the pseudocode for the Smith-Waterman algorithm,
adapted for our work from classical sources in Algorithms [7].

Algorithm 1: Adaptation of Smith-Waterman for Phylogeny of SARS-Cov-2
Input: Sequences of length M and N, Initialize the Alignment Score S=0

1. S[0,0]=0

2 fori=1toMdo:
3 S[i,0] =0

4 forj=1toNdo:
5
6

s[o,j1=0
fori=1toMdo:
0
S[i=1,j = 1]+ 8(x¥))
S[i—1,j1+ 6(x;,—)
S[Lj—11+ 6(=yp)

N

S[i,j1 = MAX

8 return S[M,N]
Output: Alignment Score S

This algorithm applies a scoring scheme to find the optimal
matching subsequence. Adding gaps is allowed to maximize the
alignment score. The scoring scheme consists of increasing the
alignment score when there is a match, and decreasing it when
there is a mismatch or a gap. Given this scoring scheme, a score
matrix and a corresponding trace-back matrix is calculated.
Once the tables are completed, the highest alignment score is
recognized, and traced back to its point of origin, providing us
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with the sequence having the maximum alignment score. See
Fig, 4 for a general graphical example of this concept [8].

Reference (R) Reference (R)
[c[c]G]T[Alc]T]A [c[c[G]T[A]C]T]A
olofololelolo]olo
clolz[2]1]olol2]1]o c| [=JxJolo[x]—0
salo[i[1fo[2[1[1]3] sA&] [FERORTFRN
SGlofojol3f2]1[1]of2| TIG| [0]o[x[— T|x o]
E_ﬁ._u_n 0[2]2[4]3]2]2 ’g\ ofo] fIN~[—=n
olciol2[2]1]1]3]e]s]4] Se] [N 1]1] T~
Iclolza3]2]255]4] [e] [Nt TIx]A
Tloli[3]3]slalal7]6 T NN TN <
|Aj0|0|2(2]4]|7]|6]6]9 Al O T [T TINE TN
v C=GTAC=TA
Reference (R): CCGTACTA Alignment: | ]
Query (Q):  CAGACCTA Score=9 CAG=ACCTA

Fig. 4: Tabular representation of adapting Smith-Waterman [8].

Once the maximum alignment score for every combination of
genes is calculated, the scores are used to build a phylogenetic
tree by the Weighted Pair Group Method with Arithmetic-Mean
(WPGMA) hierarchical clustering technique [9]. The WPGMA
technique infers wultrametric trees, which can be plotted as
following a time axis so as to make the tips line up. It builds a
rooted tree having edge lengths such that all leaves are
equidistant from the root [9, 10]. WPGMA’s rooted tree
(dendrogram) corresponds to a pairwise similarity matrix. In
each iteration, the two closest clusters, e.g. C, and C,,, are
united to construct a higher-level cluster, i.e. (C, U Cy). Its
distance to another cluster Cj is the arithmetic mean of the
average distances between members of (Cy, C,) and (Cy, C,)

as stated in Equation 1 where 4 denotes distance.

A(Cklcx) + A(Ck'cy)
2

A((Cx U Cy), (C)) = 6]

This is deployed in our work as follows. Through WPGMA, we
take the maximum alignment score of each combination of
genes to build a similarity matrix. We take the maximum value
within the matrix, and pair up the genes that are associated with
the maximum alignment into a dendrogram. The pair of genes
then undergo clustering in a similarity matrix. The alignment
score between the clustered genes and all other genes is
obtained by taking the arithmetic mean of alignment scores of
clustered genes. This process is then repeated until a full
dendrogram is produced, analogous to other studies in the
literature on clustering [10].

IV. EXPERIMENTS AND OBSERVATIONS

We present a synopsis of our results utilizing 12 representative
DNA sequences that comprise the RNA-dependent RNA
polymerase RIRP gene emanating from different coronavirus
strains. These sample strains are presented in Listing 1.
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Listing 1: Strains Discovered from Phylogeny Analysis

: AY278741.1 SARS-CoV_human_coronavirus SARS
:MT072668.1 SARS-CoV-2_human_coronavirus_COVID
: KM888179.1 hare_coronavirus

: LC469028.1 Mi-CoV-1_bat coronavirus

: HQ728484.1 Miniopterus_bat coronavirus

:AB918718.1 IFB2012-17F bat coronavirus

:NC 014470.1 _BM48-31/BGR/2008_bat coronavirus

: KY417142.1 As6526 bat coronavirus

: MT084071.1_MP789 pangolin_coronavirus
9:KJ713299.1 MERS camel coronavirus KSA-CAMEL-376
10: JX869059.2 MERS human_coronavirus

11: NC_009224.1_Botryotinia_fuckeliana_totivirus

CONDA LR W ~ND

The DNA sequences have been downloaded from the NCBI
data base as fasta files. A snippet of the output comparing the
first two organisms in the fasta file can be seen in in Fig 5. Once
the Smith-Waterman algorithm runs, the maximum alignment
score is produced. The higher the score, the closer the two pairs
of sequences are to one another. Afterwards, the maximum
alignment score is taken and applied with WPGMA hierarchical
clustering to build a phylogenetic tree. Fig. 6 illustrates the
inferred phylogenetic tree from this data sample.

ﬁhe following two sequences will be compared

AY278741.1 SARS-CoV_human_coronavirus_SARS
MT@72668.1_SARS-CoV-2_human_coronavirus_COVID

:0
j:1
The maximum alignment score is: 3557.0
An alignment with the maximum score are:

TTGG_ATTATCCCAAATGTGACAGAGCCATGCCTAACATGCTTAGGATAATGGCCTCTCTTATTC
TTGGGATTATCCTAAATGTGATAGAGCCATGCCTAACATGCTTAGAATTATGGCCTCACTTGTTC

Fig. 5: Snippet of output comparing the first two organisms in the fasta file.

Modest inferences can be drawn from this analysis, and pave
the way for work on a much larger scale (see Fig, 6). The RdRP
gene of coronavirus strain  6: NC _014470.1 BM48-
31/BGR/2008_bat_coronavirus is most similar to the RdRp
gene of the 7:KY417142.1 As6526  bat coronavirus. This
correlates with the relatively high alignment score of 9352.
Likewise, another RdJRP gene of strain 9, ie.
KJ713299.1 MERS camel coronavirus KSA-CAMEL-376 is
most similar to the RdRp gene of coronavirus strain 10:
JX869059.2 MERS human_coronavirus. This correlates with
the relatively high alignment score of 11820. Finally, the most
divergent sequence analyzed is strain 3, LC469028.1 Mi-CoV-
I _bat _coronavirus. Strain 3, LC469028.1 Mi-CoV-
1 bat coronavirus has the lowest alignment scores ranging
from 587 to 1627.

V. COMPLEXITY AND TRACTABILITY

Given that we harness a classical algorithm from dynamic
programming and apply it in the context of big data mining, it
is useful to discuss complexity and tractability, since these are
important aspects of algorithms [7], especially as data gets
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bigger in volume, variety, etc. Since the dynamic programming
algorithm used in this study is configured to address the issue
of edit distance, we can deduce that the problem has an overall
complexity of O(m X n) where m is the number of
characters in the first string (phylogeny sequence) being
compared to the number of characters, n, in the second string.
The algorithm compares every gene sequence to every other,
two gene sequences at a time. This is useful for complex
biological data, especially as much larger datasets are analyzed,
following the same procedure as presented with the sample data
in this paper.

3: LC469028.1_Mi-CaV-1_bat_coronavirus

9: KJ713299.1_MERS_camel_caronavirus_ KSA-CAMEL-376

10: JX869059.2_MERS_human_coronavirus

11: NC_009224.1_Botryotinia_fuckeliana_totivirus

0: AY278741.1_SARS-CoV_human_coronavirus_SARS
2: KM888179.1_hare_coronavirus

5. ABO18718.1_IFB2012-17F_bat_coronaviruss

4: HQ728484 1_Miniopterus_bat_coronavirus

1: MT072668.1_SARS-CoV-2_human_coronavirus_COVID
8: MT084071.1_MP788_pangolin_coronavirus

6: NC_014470.1_BM48-31/BGR/2008_bat_coronavirus

7 KY417142.1_As6526_bat_coronavirus

Fig. 6: Phylogeny tree of 12 sample RdRp genes from different coronaviruses
generated in this study.

While trying to ascertain tractability, we classify this problem
as P and NP, but not NP-Hard or NP-Complete. It is justified as
follows. The problem has a poly-time algorithm, so it can be
classified as P. Since P is a subset of NP, as well known in
algorithmic fundamentals [7], this can also be justifiably
classified as NP. Another manner in which this can be
interpreted is with a poly-time certifier, which in this case is
running our algorithm for a given set of gene sequences. NP-
Hard problems must be intractable to the degree that no
efficient algorithms exist to solve these problems. In this case,
since there exists quite clearly an efficient algorithm to solve
the edit distance problem as per these gene sequences, it is thus
justifiable to not classify this as an NP-Hard problem. Finally,
since NP-Complete problems must be part of both NP as well
as NP-Hard problems, it is justifiable to not classify this
problem as NP-Complete. In summary, it can be logically
justified that this problem is both P and NP, but not NP-Hard or
NP-Complete.

Note that we only address the complexity and tractability with
respect to Smith-Waterman here, as this algorithm constitutes
the crucial step of our problem where data volume matters (with
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other Vs). Once the analysis is completed using Smith-
Waterman, the results are used for hierarchical clustering;
hence the intermediate output passed as the input to the
clustering step would obviously be smaller than the original
data used by Smith-Waterman. Hence, we find it sufficient to
present the complexity and tractability discussion for the
dynamic programming algorithm harnessed in this study.

VI. RELATED WORK

General Coronavirus-Related Studies: A study on chest X-
ray detection with computer vision models and transfer learning
[11], reveals that VGG16 and VGG19 models can detect Covid-
19 vs. pneumonia vs. normal (healthy) with high accuracy, thus
offering decision support in healthcare. Other efforts to combat
Covid-19 in data science include creating dashboards to track
and map the disease [12], and reviewing sterilization methods
for PPE (personal protective equipment) [13] for SARS-Cov-2.
An article on Covid-19 and social media cites numerous works
as per different angles of this pandemic [14], while another one
addresses veracity of postings circulated online [15]. Various
mobile applications (apps) are developed that contribute to
different aspects of combating the pandemic, e.g. food donation
[16], recovery of small businesses [17] etc. More studies in this
area [2, 5] are discussed earlier in this paper. Our work in this
paper fits within the broad spectrum of such research.

Dynamic Programming and Hierarchical Clustering: Many
studies, e.g. cited in [6-10] use dynamic programming or
hierarchical clustering, with different applications. Other work
[18] designs N-level batching with hierarchical clustering as a
nonlinear integer programming method to raise efficiency via
multidimensional dynamic programming, very helpful in an
engineering context. Research on semantics-preserving cluster
representatives is conducted [19] such that input conditions of
scientific experiments constitute the data. Although this is for
partition-based clustering, it can be adapted to hierarchical
clustering. Another piece of work [20] finds pairwise distance
of files using Smith-Waterman, and identifies relative distance
of people copying them. As such duplication often occurs, this
can classify proximity so that people positioned closely can be
grouped by hierarchical clustering. These are examples of work
on both dynamic programming and hierarchical clustering.
While there are many studies in these areas, to the best of our
knowledge, Smith-Waterman in dynamic programming is not
prevalent with WPMGA hierarchical clustering, particularly for
coronavirus studies. Thus our work modestly contributes here.

VII. CONCLUSIONS AND FUTURE WORK

We deploy Smith-Waterman in conjunction with hierarchical
clustering to generate a phylogenetic tree, conducing
executions on real data in virus studies. Our initial work
presented in this paper can potentially gain insights into a few
useful inferences, e.g. the RARP gene of strain 9, the
KJ713299.1 MERS camel coronavirus KSA-CAMEL-376 is
most similar to the RdRp gene of corona virus strain 10, the
JX869059.2 MERS human_coronavirus, and so forth.

Future research could seek to construct phylogenetic trees in a
similar manner and aim to create an improved, more efficient
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method for studying evolutions of viruses. Comparative studies
would be executed with other approaches. On the whole, our
research study makes a modest contribution to computational
biology through intelligent data mining.
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