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tea) organic matter (OM) decomposition. Freshwater wetlands and tidal & @ @

marshes had the highest tea mass remaining, indicating a greater potential for
carbon preservation in these ecosystems. Recalcitrant OM decomposition
increased with elevated temperatures throughout the decay period, e.g, increase
from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM

decay rate constant. The effect of elevated temperature on labile OM breakdown
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was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater
wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant
OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming,
but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local
versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.

KEYWORDS: blue carbon, macroclimate, TeaComposition H,0, tea bags, teal carbon

1. INTRODUCTION

Inland and coastal wetland ecosystems, including a range of
freshwater and saline ecosystems with different inundation
regimes,1 have a high capacity for soil carbon storage due to
anaerobic waterlogged soils and the accumulation of internal
and external carbon sources.”® Within these ecosystems, the
vast majority of carbon is stored belowground (e.g., 62—99% in
coastal wetlands and 50—93% in freshwater wetlands).* ® The
development of belowground carbon pools is largely depend-
ent on inputs of carbon into the system and the microbial
processes that moderate the decomposition of carbon-rich
organic matter (OM). In addition to being fundamentally
important for soil fertility and supporting biodiversity,” the
decomposition process in wetland soils is vital for soil carbon
(trans)formation and sequestration in wetlands,® and thus the
global carbon cycle itself.”"’

Identifying the drivers of wetland litter decomposition
processes is essential for predicting feedbacks to environmental
and climate change. Elevated temperature can enhance OM
breakdown through increased microbial metabolism, which in
turn might increase the decay rate for a range of wetland
types.*"'> Changes in soil water content (e.g, through
inundation patterns, wetland drainage, tidal cycles, and
interannual variability in precipitation) can control much of
the decay process in wetland soils, influencing initial mass loss
through leaching and providing access to nutrients that support
microbial metabolism, while also influencing oxygen avail-
ability, potentially limitin% microbial mineralization under
anaerobic conditions.””"*~"° Anaerobic conditions caused by
waterlogging can dampen the enhanced decomposition caused
by elevated temperature during the later stages of decay when
decay processes are dominated by enzymatic breakdown of
plant structural compounds,”'® thereby complicating the
impacts of warming temperatures in the long term. Further,
variability in litter chemical composition (e.g, nitrogen
concentration, tissue type, phylogenetic history) can be a
major influence on the decomposition dynamics in wetlands
and can result in litter-specific responses to external factors like
salinity, inundation, and warming.m’”_22

Although there is greater potential for belowground OM
deposits (e.g., roots, rhizomes) to contribute to wetland soil
carbon, decomposition studies in wetlands often focus on
aboveground litter decomposition,'”**** despite high litter
export rates and potential for herbivory.”>~*" Additionally,
existing global models of long-term decomposition are
primarily based on terrestrial ecosystems and do not represent
belowground wetland decay well due to different decom-
position dynamics (e.g, wet conditions).”® Long-term field
datasets on belowground OM decomposition may help
develop paradigms on the controls of wetland decay, including
sea-level rise,””*® soil water content, climate, and decom-
posers.’** Global wetland decay datasets may also help
parametrize global carbon cycling through earth system
models®** and by means of satellite-based models.*

Since litter chemical composition strongly affects the
decomposition process, it is difficult to draw broader
conclusions when a range of litter types are used over regional
and global scales.*®*” A promising approach to advance our
knowledge of belowground decomposition across ecosystems
and climates is to use standardized substrates in lieu of local
plant litter.”®*” Standardized green tea and rooibos tea “litters”
have water-soluble-dominant (labile, rapid leaching) and
lignin-dominant (recalcitrant, stable) compositions, respec-
tively.””* Tea litter has been valuable at revealing short-term,
3 month drivers of belowground litter decay at regional and
global scales, although a limited collection of studies for
wetland and aquatic ecosystems exists.*""** There are
limitations and challenges in extrapolating the drivers of
short-term incubations to inform longer-term predictions and
processes of decomposition, i.e., linked to carbon storage and
sequestration. Longer standardized tea litter incubations (e.g,
~1 year) show how differences in inundation and oxygen
conditions and temperature may be driving wetland OM
decay, farticularly for the more recalcitrant rooibos tea
litter,*”** suggesting different ecosystem responses to anthro-
pogenic changes in the future.

To improve our understanding of belowground litter
decomposition dynamics in wetlands, we performed a global,
up to four-year decomposition experiment using standardized
tea litter. By burying the litter bags, we are subjecting the proxy
substrates to the conditions and processes that influence
belowground OM turnover processes. Labile and recalcitrant
OM sources, represented by green and rooibos tea litters,
respectively, were incubated in the soils of inland and coastal
wetlands, as well as lotic (e.g., stream) and lentic (e.g, pond/
lake) ecosystems for approximately three years across eight
macroclimates. First, we compared short-term (3 months) and
long-term (>24 months) decomposition across ecosystem
types. Next, we %Pplied asymptotic and single exponential
decay rate models™ to the entire time series at each site to
produce site-level decay parameters that describe an early
leaching-influenced decay rate constant, the proportion of
stable mass remaining at the end of the incubation, and an
overall decay rate constant. We used these parameters to
explore the impacts of climatic and ecosystem properties on
different stages of standardized litter decomposition. We
hypothesize that warmer and higher precipitation climates
will enhance decomposition but have litter-specific impacts.*®
We also expect that ecosystem type, comprised of a range of
varying factors including inundation, would significantly
influence longer-term decay dynamics for both litter
types.*”*" Lastly, we used the decay parameters to project
decay responses under future climatic conditions, expecting
temperature to be a key driver of decomposition.'’ Together,
this study aims to expand our knowledge of wetland OM decay
and soil carbon preservation in global wetlands to improve
global climate and carbon cycle modeling, as well as to provide
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Figure 1. Map of TeaComposition H,O sites across eight macroclimatic zones. Numbers next to ecosystem and macroclimate types indicate the
site number. See Table S1 for more details on the sites. Climatic zones are from Walter and Breckle.”®

a catalyst for future long-term wetland decomposition studies
using both natural and standardized litter.

2. MATERIALS AND METHODS

2.1. TeaComposition H,O Initiative and Decomposi-
tion Experiment. The standardized litters are Lipton®©
(Unilever) green and rooibos teas, packaged in the original
nylon mesh. Green tea represents labile forms of OM (high
water-soluble compound content) and the rooibos tea
represents recalcitrant/stable (high fiber/lignin content)
forms of OM (Camellia sinensis, EAN no.: 8 722700 055525;
Aspalathus linearis, EAN no.: 8 722700 188438).”" Generally,
the definitions of labile and recalcitrant are context dependent
and sit along a spectrum depending on substrate type and
chemical characteristics, spatiotemporal frame of observation,
and microbial characteristics.”” For the purpose of this study in
which initial chemical characteristics are well-known,>*® we
will refer to the tea litter OM in terms of its inherent chemical
characteristics,”® that is, labile and recalcitrant OM for green
and rooibos teas, respectively.

This work was performed within TeaComposition H,O, a
global initiative to collect long-term decomposition data from
wetlands and aquatic ecosystems using standardized litter
methods. We defined wetlands as inclusive of freshwater/
aquatic and coastal/marine marshes, peatlands, and waters that
do not exceed 6 m depth at low tide." We focused on vegetated
sites that did not receive experimental manipulations, resulting
in data from 196 sites (Figure 1). See Supporting Methods for
details on information collected for each site (Figure 1 and
Table S1). The “freshwater wetland” category comprised a
diversity of wetland types, so we further categorized using the
IUCN Ecosystem Typology 2.0 for additional statistical
analysis (Table S1, Supporting Methods).* Monthly mean
temperature and total precipitation from local weather stations
were calculated for each month from deployment to the final
sampling. Monthly mean temperature variation was calculated
as the standard deviations of the monthly temperatures during
the incubation period. Subtidal sites used in the final analyses

represented <10% of the sites, most of which were lagoonal/
estuarine (e.g, near intertidal). Therefore, local air temper-
atures were used for all sites.*

At each site, green and rooibos tea litter bags were buried
10—15 cm deep into the soil by hand in two plots at least 1 m
apart. This depth generally captures the rhizosphere or surficial
OM layers of our inland and coastal wetlands while at a depth
that is easily retrievable. Within each plot, there were two
replicates for each tea type (i.e,, n = 4 for each tea type at each
sampling time and site).”> Deployment occurred in the
summer of 2017 for the northern hemisphere (e.g., ~June to
August) and summer of 2017/2018 for the southern
hemisphere (e.g, ~December to February). Tea bags were
collected 3, 6, 12, 24, and 36 months after deployment. As sites
varied in accessibility and time constraints, some sites ended
the experiment earlier at 12 or 24 months. Further, the 3-year
sampling in 2020 occurred during the global coronavirus
pandemic, resulting in 19 sites with delayed final samplings
between 36 and 48 months. The initial mass was calculated by
weighing the tea in the bag and then subtracting the mean bag
mass of 0.20 g (+0.002 g S.E.M, averaged over 40 empty bags).
Post-incubation samples were cleaned of soil and dried at 60—
70 °C until a constant weight. Contaminating root biomass
(i.e., root in-growth) was removed before weighing the final
dry tea mass without the bag.

2.2. Decay Modeling. As the study focused on quantifying
the long-term tea litter decay, we calculated decay parameters
for sites that had incubations for 1 year or longer. Only sites
with at least two replicates across three sampling times (i.e., six
data points over the first year) were included. After filtering,
181 sites remained for labile green tea, and 184 sites remained
for recalcitrant rooibos tea. See Supporting Methods for details
on data cleaning.

For our decay modeling approach, we fit the site-level data
with single exponential and asymptotic decay functions
following Gill et al.*

Asymptotic exponential decay
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Figure 2. Total proportion of mass remaining of labile (green tea) and recalcitrant (rooibos tea) organic matter (OM) in each ecosystem type at
early (3 months) and later (>24 months) stages of decay. Values are means + standard errors. Ecosystem-level values for each sampling period can

be found in Table S4.

proportion mass remaining = A + (1 — A)e ™ (1)

where A is the asymptote (A), t is the time (days), and k, is the
early decay rate constant (day™'). The asymptotic decay
function uses a negative exponential function approaching a
nonzero horizontal asymptote. This formulation partitions the
tea litter between early- and late-stage decay. The early stage is
characterized by the initial rapid decay (1 — A, as a
proportion) at rate k, (d™"). The later stage is characterized
by very slow or negligible decay after reaching the asymptote,
i.e., the proportion of stable OM (A).
Single exponential decay

. . —tk.
PrOPOl‘thl’l mass remaining = €

: )
The single exponential decay function describes the tea litter as
a single pool that decomposes at a constant rate (k,, d™') over
time (¢, days).

By using the parameters from both the asymptotic and the
single exponential decay models, we were able to describe tea
litter decay in the following ways: (1) the negative exponential
rate before reaching the asymptote quantifies the early decay
rate constant (k,) and is linked to abiotic leaching of water-
soluble compounds (eq 1), (2) the asymptote (A) is the
proportion of stable mass remaining under a long-term decay
constant and has the potential to contribute to soil carbon
stocks (eq 1), and (3) the overall negative exponential decay
rate constant (k,) quantifies the overall decay rate in each time
series (eq 2).* See Supporting Methods for details on model
fits.

2.3. Statistical Analyses and Prediction Modeling.
Using linear models, we tested the effects of ecosystem type
and climate on litter decay parameters (i.e., A, k,, and k) for
each OM type (Table S2, Supporting Methods). Ecosystem
type and climate were important factors in previous shorter-
term tea litter decay studies (3—12 months).*”" Therefore,
the first model included the following terms: precipitation,
temperature, temperature variability (as standard deviation),
ecosystem type, and two-way interactions between ecosystem
type and each of the three local climate terms to compare the
sensitivity of the ecosystem types to the climatic factors. The
macroalgal ecosystems were represented by only two sites
each, so they were removed for this analysis. Model selection
using the Bayesian information criterion (BIC) was performed
for each OM type and decay parameter combination.”” The
second and third models for macroclimate and freshwater
wetland IUCN typologies were analyzed in single-factor
models separately. For all models, significant interactions
between factors were explored with Tukey posthoc pairwise
comparisons using the emmeans package.’® All analyses were
performed using the Im() function in R version 4.1.3.>*

We generated worldwide spatial predictions of decay
parameters (ie., A, k, and k) based on linear models using
only local climate without accounting for ecosystem type due
to incomplete geospatial coverage of each ecosystem type in
this study. We sourced from Copernicus Climate Data Store
spatially explicit climate factors for temperature, precipitation,
and temperature variability using eight IPCC global climate
models from the IPCC’s Fifth Assessment Report (ie.,
Coupled Model Intercomparison Project Phase 5; CMIPS),
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Table 1. Main and Interaction Effects from Linear Models of Decay Parameters and Environmental Variables™”

labile OM (green tea) recalcitrant OM (rooibos tea)
model explanatory variables A k, k, A k, ki

ecosystem & climate ecosystem:precipitation

ecosystem:temperature 8497 8.577%*%

ecosystem:temperature variation

ecosystem 170.99%%% 319.6%%* 2404.6%%% 273.15%%* 449.65%%% 5444.0%%*

precipitation

temperature mean 18.45%%% 18.34%%% 15.84%%% 37.34%%%

temperature variation 0.47 0.908

days of incubation 2.64 7.21%% 7.10%% 12.48%%%
macroclimate macroclimate 6.517%%% 3.21%% 7.30%%% 4.027%%% 1.46 13.03%%*

days of incubation 3.30% 2.51 3.05% 5.25%% 8.32%%% 18.07%%%
freshwater wetland IUCN Typologies 2.0 4.91%%% 0.48 5.067%%%* 2.45% 1.02 8.16%%*

days of incubation 0.291 2.26 131 3.01 2.42 0.77

“Each model is run independently for the six OM type and decay parameter combinations. For the ecosystem and climate model, the starting
model included all eight variables. We used the Bayesian information criterion (BIC) to identify the best-fitting model, for which we report F-values
and significance for each variable. Missing F-values in the table indicate variables selected against by BIC model selection. The macroclimate
categories are presented in Figure 1. The freshwater wetland model uses the IUCN Typologies 2.0 that incorporate climate, inundation, and
vegetation characteristics. Temperature variation represents the mean monthly variation during the timeframe of incubation. Two decay equations
were applied to site-level time series to provide information on different stages of decay. An asymptotic exponential model (eq 1) provides A
(proportion of stable mass remaining) and k, (rate constant of early decay, i.e., leaching). A single exponential decay model (eq 2) provides k,
values that represent the overall decay rate constant. Values represent F-values, and significant p-values are in bold. Precipitation is in mm units. “p-
values: *** < 0.001, ** 0.001 < to < 0.01, * 0.01 < to < 0.0S.
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Figure 3. Ecosystem effects on the decay parameters. Each panel is the result of an independent modelrun on each OM type and decay parameter
combination (Table 1). (a, b) Strength of interactions between ecosystem type and temperature for the labile organic matter (OM) type. Values
represent the slope of the relationship between decomposition parameter and temperature + the 95% confidence intervals (CIs). Asterisks indicate
significant temperature effect on ecosystems (p < 0.05, CIs do not cross zero). (c—f) Significant main effects of the ecosystem type. Different letters
indicate significant differences among the means according to Tukey’s posthoc comparisons (n.s. = not significant, p > 0.05). Decay parameter
definitions: asymptotic A represents the proportion of stable mass remaining (eq 1), k, represents the rate constant of early decay, i.e., leaching (eq
1), and single exponential k, represents the overall decay rate constant (eq 2). Data represent means =+ standard errors.

assuming a Representative Concentration Pathway of 4.5 the open ocean in the scope of the projections to capture
(RCP 4.5). See Supporting Methods and Table S3 for the changes in decomposition parameters for wetlands of small
model details. While we are mostly interested in wetland islands. Each climate model was used to estimate yearly
projections for inland and coastal regions of the globe, we kept averages for present (January 2018 to December 2021) and
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Figure 4. Temperature main effects on recalcitrant OM (rooibos tea) decay parameters. Decay parameter asymptotic A represents the proportion
of stable mass remaining (eq 1) (A) and single exponential k, represents the overall decay rate constant (eq 2) (B; d™'). Raw data are plotted with a

regression line with 95% confidence intervals.

future (January 2048 to December 2051) conditions, allowing
us to take into consideration seasonal and interannual climate
cycles. The best-fitting model was used to generate spatial
predictions on decay parameters for 2020 and 2050 based on
simulated conditions of rainfall and temperature extracted from

each CMIPS.

21594

3. RESULTS

3.1. Total Proportion Mass Remaining Across
Ecosystem and OM Types. As expected, mass loss differed
for labile and recalcitrant OM. The final remaining mass was
on average 15 + 0.6% for labile OM and 47 + 1% for
recalcitrant OM across the sites. The patterns of mass loss
among ecosystem types differed between the early (3 months)
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and late (>24 months) stages of decay (Figure 2). Lotic and
supratidal forest ecosystems had the lowest mass loss, and
seagrass ecosystems had the highest mass loss for both OM
types after three months of decay (Figure 2 and Table S4).
However, as decay progressed, lotic and supratidal forest
ecosystems experienced high mass loss for both OM types,
resulting in the least mass remaining across the ecosystems
(e.g., ~35 to 40% remaining for recalcitrant OM; Figure 2 and
Table S4). By comparison, freshwater wetlands had the highest
proportion of mass remaining for labile OM (19—21%), while
tidal marsh ecosystems had the highest proportion of mass
remaining for recalcitrant OM (~S50 to $5%, empty circles;
Figure 2 and Table S4). After 24 months, decomposition
dynamics differed between OM types and between early (3
month) and late (>24 months) stages of decay (Figure 2).
Decomposition rates of labile and recalcitrant OM were
positively correlated with each other after three months
(Pearson’s, p-value = 0.04, R* = 0.72). This relationship was
not significant after 24+ months of decomposition (p-value =
0.4, R* = 0.32).

3.2. Effect of Ecosystem Type and Local Climate on
Decomposition. Six independent models for each OM type
and decay parameter combination were run for the full-
factorial ecosystem-climate models, and after BIC selection, we
found that ecosystem and temperature best explained OM
decomposition (Table 1 and Figure 3). A statistically
significant ecosystem and temperature interaction was found
for stable mass remaining (asymptotic A) and overall decay
rate constant (k) for labile OM, but not for the early decay
rate constant for labile OM (k,; Table 1). A significant
temperature effect was detected for freshwater wetlands,
mangroves, seagrass, and tidal marsh ecosystems (see
confidence intervals (Cls) not crossing zero in Figure 3a,b).
In freshwater wetlands, increasing temperatures caused lower
stable mass remaining and higher overall decay constant, while
temperature had the opposite effect on these two parameters
within mangrove, tidal marsh, and seagrass ecosystems (Figure
3a,b). Here, mangrove ecosystems had 2-fold and 4-fold
greater effects of temperature on decomposition relative to
seagrass and tidal marsh ecosystems, respectively (Figure 3a,b).

The main effects of the ecosystem type were found for early
decay rate constants (k,) of the labile OM, as well as all decay
parameters for the recalcitrant OM (Figure 3c—f). For labile
OM, early decay rates were significantly higher in seagrass
ecosystems than in lotic and freshwater wetland ecosystems
(Figure 3c). For recalcitrant OM, the remaining stable mass
(A) was significantly lower in lotic ecosystems (Figure 3d).
The overall decay rate of recalcitrant OM was lower in
freshwater wetlands and mangroves than in seagrass and lotic
ecosystems (Figure 3f). Tukey’s posthoc analyses for early
decay rate constants of recalcitrant OM showed only a
nonsignificant effect between lotic and mangrove ecosystems
(p = 0.09), likely due to the conservative nature of the posthoc
test and the high variation in mangrove ecosystems (Figure
3e).

Increasing temperatures were found to enhance decom-
position for recalcitrant OM (main temperature effect; Table
1). Higher temperatures reduced the stable mass remaining
(A) and increased the overall decay constant (k) for
recalcitrant OM (Figure 4) but did not significantly affect
the early decay constant (k,). The temperature effect was linear
for A and indicated a 4% decrease in stable mass remaining for
every S °C increase (e.g., from 52.8% at 10 °C to 44.9% at 20

°C; Figure 4A). The temperature effect on the overall decay
constant (k) of recalcitrant OM was nonlinear. An increase
from 10 to 20 °C corresponded to a 1.46-fold increase in k;
(from 0.00081 d™' at 10 °C to 0.00118 d~" at 20 °C; Figure
4B).

3.3. Effect of Macroclimate on Decomposition.
Macroclimate significantly influenced decay parameters of
both OM (tea) types, except for the early decay rate constant
(k,) for recalcitrant OM (Table 1). Arctic and boreal
macroclimates generally had a higher proportion of stable
mass remaining (A) and slower overall decay rate constant (k,)
than the other macroclimates (Figure Sla). However, arctic
and boreal macroclimates were represented by only three sites,
limiting our ability to make robust interpretations of the
impacts of these cold macroclimates on wetland OM decay.
Therefore, we focus on posthoc comparisons across the
remaining six macroclimates.

The decay parameters of the two OM types generally
showed that the temperate climate experienced a higher stable
mass remaining (A) and slower overall decay rate constant (k,)
compared to warmer macroclimates. For labile OM, the lowest
stable mass remaining values were from warm temperate and
semiarid tropical climates (means 15 and 9%, respectively;
Figure Sla), while the higher stable mass values (mean 21%)
and slower overall decay constant (mean 0.0088 d™') were
from equatorial humid climates (Figure S1a,c). For recalcitrant
OM, the lowest stable mass remaining values were from warm
temperate, subtropical arid, equatorial humid, and semiarid
tropical climates (means 36—45%; Figure S1d). Overall decay
constants of the recalcitrant OM were 2 to 3.5-fold higher (p >
0.05) in the semiarid tropical climate (mean 0.0038 d~')
compared to temperate, warm-temperate, Mediterranean, and
equatorial humid climates (means 0.0011—0.0019 d™'; Figure
Sle).

3.4. Effects of Freshwater Wetland IUCN Typologies
on Decomposition. We used the palustrine wetland IUCN
typology groupings to identify any effect of the ecosystem type
on tea litter decay within the broad freshwater wetland
category. The stable mass remaining of labile OM in tundras
was more than 2-fold higher than that of most typologies, with
the exception of boreal and temperate fens (Figure S2a). This
highly stable mass remaining for the tundra coincided with a
significantly slower overall decay rate constant (Figure S2e),
but there was no significant difference in early decay rate
constant (k,) for the labile OM across typologies (Figure S2c).
For the recalcitrant OM, permanent marshes had 4- to 24-fold
and significantly higher overall decay rate constants than those
of the other ecosystem types (Figure S2f). For recalcitrant
OM, no significant differences across freshwater wetland
typologies were found for early decay constants or the stable
mass remaining (Figure S2b,d).

3.5. Projections of OM Decay Parameters. In our
ecosystem-independent climate predictions, the stable mass
remaining of labile OM decreased with increasing precipitation
and temperature variation, while early and overall decay
constants increased with temperature variation (Table SS). In
contrast for recalcitrant OM, stable mass remaining decreased
with increasing mean temperature and precipitation. Early
decay rate constants for recalcitrant OM increased with
increasing temperature variability, and overall decay rate
constants were found to increase with increases in all three
climatic variables (Table SS). These climatic variables were
used to predict changes in each decay parameter between 2020
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Figure 5. Percentage change of decay parameters across the globe from 2020 to 2050. Colors in the maps indicate the expected relative change in
values from 2020 to 2050, with red indicating decreases, blue increases, and white no change. Model projections include open oceans to capture
inland and coastal wetland habitats on the islands. The histograms show the distributions of the values in the map. The models were based on
IPCC climate models (Coupled Model Intercomparison Project Phase 5, CMIPS) with an assumed representative concentration pathway (RCP)
of 4.5. Decay parameter asymptotic A (a, d) represents the proportion of stable mass remaining (eq 1), k, (b, ) represents the early decay rate
constants (d™'; eq 1), and single exponential k, (c, f) represents the overall decay rate constants (d™'; eq 2).

and 2050 by using eight CMIPS climate models (Figures S and
S4). The uncertainties of the predicted percent change were
relatively low throughout for both OM (tea) types (Figure S4).

Overall for labile OM, the stable mass remaining (A) was
predicted to decrease by 1.7% from 2020 to 2050, while early
(k,) and overall (k,) decay rate constants were predicted to
increase by 1.7 and 1.8%, respectively (Figure S4). Across the
globe, the range of change was highest for labile OM stable
mass remaining A, varying from approximately 4% decreases to
3% increases with extremes to +£10% (Figure 5a). Similarly, the
overall decay constant, k,, for labile OM was also predicted to
vary, with overall changes ranging from 2% decrease to 4%
increase (Figure Sc). In contrast, early decay for labile OM had
generally predicted increases of <5% globally (Figure Sb).
Specifically, for labile OM, hotspots for enhanced decom-
position (i.e., decreased A and increased k, and k,) included
parts of North America (particularly south/southeast), eastern
Europe, and northern South America (Figure Sa—c). In
contrast, parts of SE Asia and arctic regions were predicted to
have an increased stable mass remaining and a decreased
overall decay rate constant.

For recalcitrant OM, future climatic conditions were
predicted to generally increase decomposition globally. The
proportion of stable mass remaining (A) was predicted to
decrease by 1%, with 2.5 and 3.1% increases in early (k,) and
overall (k,) decay rate constants, respectively (Figure S4). For
A, most of the change was predicted to occur in the range of
~0 to —2% (Figure 5d), while early and overall decay rate
constants were predicted to have greater relative increases than
labile OM, in some cases >4% (Figure Se,f). Recalcitrant OM
had hotspots of enhanced decomposition similar to those of
labile OM, although with greater predicted increases in both
decay constant parameters (Figure Sd—f). Small pockets of
reduced decomposition were predicted for SE Asia and Central
America (Figure Sd—f).

4. DISCUSSION

4.1. Impacts of Climate and Ecosystem on Long-Term
OM Decomposition. Our global long-term study comprising
over 180 wetland sites showed that temperature was a key

factor in belowground litter decomposition in wetlands. The
long-term decomposition of recalcitrant OM (rooibos tea) was
enhanced by higher mean annual temperatures and within
warmer macroclimates independent of ecosystem type, similar
to previous tea litter studies (~12-month incubation).*>*’
This temperature effect was found for late-stage stable mass
remaining and overall decay parameters (4, k), but not for
early decay rate constant k, that are often associated with the
passive leaching of OM (Table 1 and Figure 4). A similar
persistent temperature effect has been shown for aboveground
litter and belowground rhizome/root decay in coastal wetlands
across similar temperature ranges as in this study.'”?
Increased aboveground decay rates in coastal wetlands were
found in warmer climates (over ~25 °C),'" although the
positive effect of warmer temperature on recalcitrant OM
decay found here (Figure 4) was not as pronounced in
comparison. A possible explanation is that the belowground
environment considered in this study comprises a different set
of external factors that influence decomposition compared to
above-soil conditions (e.g, slower oxygen diffusion, presence
of microbial activity and root exudates, porewater salinity,
porewater pumping),'”'>** thereby causing a slightly different
realized temperature response.

Ecosystem-dependent effects of temperature were found for
labile OM; here, decay was enhanced with increasing
temperatures in freshwater wetlands, while tidal wetlands
showed the opposite trend. Some ecosystems (e.g., seagrass
meadows) had as low as 5% mass remaining (Table S4), losing
much of its nonhydrolyzable fraction (fresh green tea litter has
~16% lignin and ash).” Perhaps, these labile OM residues are
less susceptible to temperature effects on further decom-
position compared to ecosystems that have relatively more
OM remaining (e.g, freshwater wetlands), due to lack of
accessible OM, insensitivity of microbes to temperature
differences, or physicochemical conditions limiting microbial
attack within tidal wetland soils.>'“**” As such, the remaining
highly decomposed OM from green tea litter in this study may
be less impacted by parameters that typically enhance
microbial metabolism (e.g., temperature, moisture, solubility
of nutrients). Labile OM, such as that represented by green
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tea, may not make substantial contributions to long-term
carbon stocks in wetland soils, but certain hydrologic
conditions may promote the preservation or stabilization of
the remaining OM. We could not resolve if longer incubations
beyond 3 years of the recalcitrant rooibos tea litter would also
show an inundation-inhibited temperature effect observed for
labile OM.

Ecosystem-type differences across decomposition parame-
ters indicate that the driving forces of ecosystem characteristics
on decay, such as moisture and inundation, change throughout
the decomposition process. For both OM types, early decay
rate constant (k,) and mass loss at three months were generally
higher for tidally influenced ecosystem types (Figure 3). This is
consistent with soil moisture and inundation enhancing
abiotic, leaching-driven mass loss of tea litter in short-term
cross- and within-ecosystem studies for aquatic and wetland
ecosystems.*”*»** In contrast, the ecosystem differences were
variable across the parameters that represented longer-term
decay (asymptotic A, overall decay constant k,, and mass loss
at 24+ months; Figures 2 and 3). Freshwater wetlands had
double the proportion of mass remaining for labile OM
compared to lentic, lotic, and seagrass ecosystems. Such
ecosystem differences were less pronounced for recalcitrant
OM, but tidal marshes and freshwater wetlands had 3—10%
more mass remaining compared to the other ecosystem types
at the end of the incubation (Figure 3 and Table S4).
Additionally, within the freshwater wetland typologies,
permanently inundated marshes had enhanced decomposition
compared to that in other freshwater wetland typologies
(Figure S2). We suspect that inundation or flow rates are
influencing a range of conditions that moderate biotic
microbial processes at multiple scales that can increase or
decrease recalcitrant OM breakdown, including soil temper-
ature, nutrient availability, salinity, and oxygen.””~®*

4.2. OM Decomposition under Future Climate
Scenarios. Our model based on RCP 4.5 predicts that
decomposition will increase under future climate scenarios for
both labile and recalcitrant OM. Labile OM (e.g., green tea
litter) will have a higher percent change for loss of stable OM
(parameter A) under future conditions compared to
recalcitrant OM (e.g., rooibos tea litter). However, since the
labile OM type is relatively low in mass and largely represented
by OM residues at this stage of decay, the net change in labile
OM will likely be small. By comparison, decomposition of
recalcitrant OM occurs over a longer period and will likely be
more susceptible to increasing temperatures in global wetlands,
which is important for future predictions of soil carbon stocks
and flux (i.e., blue and teal carbon). Overall, our results for
recalcitrant OM are consistent with the trends of climate
change-induced warming increasing plant decomposition in
terrestrial (14—27% by 2070s)°* and coastal ecosystems (2—3-
fold increase in carbon loss between 2050 and 2100)."°
Ouyang and colleagues'’ also found that the potential for plant
biomass production of carbon in the future to out-pace carbon
remineralization (i.e., net carbon gains), in addition to
ecosystem-specific differences for predicted enhancement of
decomposition (mangrove > tidal marsh > seagrass). Warmin
can also impact wetland plant diversity and composition,®
which could in turn influence the production of recalcitrant
OM, e.g, lignocellulose, in a wetland.®® While ecosystem type
was not included in the model in our study, studies on natural
litter and the ecosystem-climate model responses of the
different OM types from this study using standardized litter

highlight the importance of resolving ecosystem-specific
climate responses of standardized OM, to better predict the
effects of climate change on wetlands at regional or global
scales.

There are uncertainties and gaps in our approach and data
set that can be addressed in future studies to increase the
breadth and scope of long-term tea decay datasets for
improved prediction and interpretation, including a greater
sampling of poorly studied ecosystems (macroalgal, brackish
ecosystem) and macroclimate types (Arctic, boreal, and arid
temperate). There are uncertainties associated with modeling
based on future air temperatures instead of future soil
temperatures, which may impact the variability of temperature
change the litter would experience.”” Additionally, our study
was designed to explore the global-scale drivers of decay.
Measuring additional environmental metrics at the site level,
such as salinity, inundation/flooding period and groundwater
metrics, vegetation, nutrient concentrations, and soil mineral
composition, will provide further insight into local-scale drivers
of belowground litter decay in wetlands in the context of
regional- and global-scale drivers (e.g., micro- vs macroclimate
controls),”*** as well as vulnerability to droughts and sea-
level rise.”"”"

4.3. Environmental Implications. This study provides
the first empirical comparison of multiyear wetland decom-
position using standardized OM, providing new insight on the
benefits and limitations of using tea litter to resolve longer-
term controls on belowground litter turnover. By deriving
multiple decay parameters that describe different stages of
decomposition, we show that few climatic- or ecosystem-type
variables influenced early leaching-dominated decay (k,) for
either OM (tea) type. We also observed relative changes in
mass loss among ecosystem types between 3 and >24 months
time points (Figure 2). These results highlight that short-term
decomposition incubations capture less of the processes
occurring during OM turnover and are likely not suitable for
making inferences about soil carbon preservation and long-
term storage (blue carbon and teal carbon). Rather, the stable
portion of mass (A) and overall decay rate constant (k)
derived from multiyear time series datasets reveal that
increased temperatures and ecosystem traits, aggregated at a
global scale, can significantly increase belowground litter
remineralization.

Additionally, our study reveals a significant positive
relationship between modeled stable mass remaining (4, eq
1) and raw final proportion mass remaining values at the end
of the incubation for both OM types, as well as a consistent
inverse relationship between A and k, across all our statistical
models (Figure SS). Only in a few sites was the asymptote not
reached, resulting in negative A values (Figure SS). While
model-fitting of time-series datasets is recommended for short-
term 3 months incubations,” these correlative relationships in
this study suggest that the final mass remaining data from
longer-term incubations (e.g,, >1 year) are representative of
wetland long-term decomposition processes. As longer-term
tea litter studies become more common,**”* these findings
highlight how the final mass remaining data of standardized
OM may be useful as a simple metric for long-term ecosystem
decomposition modeling without the need for gathering time-
and cost-intensive time-series datasets.

We propose that standardized tea litter decay data could
contribute to addressing the limited long-term decay datasets
for wetlands, which represents a current barrier in predicting
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wetland carbon-cycling at the scale and biogeographic levels
available for terrestrial ecosystems. Multiyear and cross-
ecosystem decay time series data (e.g,, LIDET) and modeling
frameworks, such as WARMER-2, have an immense value for
evaluating the drivers of decomposition from local and regional
to global scales now and in the future.”**”*””* Since we have
shown that the final mass remaining can be used as a predictor
of longer-term decay rates, standardized litter datasets can
contribute to existing efforts to fill this gap in wetland
ecosystems, including their value as translatable datasets across
existing networks and databases.”® A key limitation of tea litter
studies is their limited chemical diversity compared to natural
litter, and this may limit our interpretation of OM turnover.”’
Transplant and long-term studies that directly compare local
wetland OM and tea litters”® would help reveal if any and what
uncertainties exist and the ecosystems where tea litters are less
representative in characterizing natural OM turnover (e.g,
homefield advantage),”””” as well as allowing for the
quantification of such uncertainties in predictive analyses.
Future studies measuring carbon fluxes (e.g, respiration, loss
of carbon with decay) to estimate potential changes in
greenhouse case emissions, as well as microbial community
and function, can complement standardized decay metrics to
predict net change in carbon and parametrize system models
under future climate change.'”*****® Together, addressing
these unknowns concerning OM preservation in wetlands,
using multiple approaches including both standardized and
natural litters, will advance our knowledge on potential threats
to soil carbon sequestration capacity of wetlands now and in
the future.
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