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Abstract 

Evading programmed cell death is a hallmark of cancer that allows tumor cells to survive and 
proliferate unchecked. Endocytosis, the process by which cells internalize extracellular materials, 
has emerged as a key regulator of cell death pathways in cancer. Many tumor types exhibit 
dysregulated endocytic dynamics that fuel their metabolic demands, promote resistance to 
cytotoxic therapies, and facilitate immune evasion. This review examines the roles of endocytosis 
in apoptotic resistance and immune escape mechanisms utilized by cancer cells. We highlight 
how inhibiting endocytosis can sensitize malignant cells to therapeutic agents and restore 
susceptibility to programmed cell death. Strategies to modulate endocytosis for enhanced cancer 
treatment are discussed, including targeting endocytic regulatory proteins, altering membrane 
biophysical properties, and inhibiting Rho-associated kinases. While promising, challenges 
remain regarding the specificity and selectivity of endocytosis-targeting agents. Nonetheless, 
harnessing endocytic pathways represents an attractive approach to overcome apoptotic 
resistance and could yield more effective therapies by rendering cancer cells vulnerable to 
programmed cell death. Understanding the interplay between endocytosis and programmed cell 
death regulation is crucial for developing novel anticancer strategies that selectively induce tumor 
cell death. 
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Introduction 

Cancer remains a leading cause of mortality worldwide, with many tumor types exhibiting 
resistance to standard chemotherapies and radiation treatments that aim to induce cancer cell 
death [1,2]. Overcoming this therapeutic challenge requires developing novel strategies that not 
only induce or enhance cancer cell death but also circumvent mechanisms of resistance inherent 
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in conventional treatments [3–5]. Unlike traditional approaches that broadly target cellular 
proliferation, these new strategies focus on selectively exploiting vulnerabilities within cancer cells 
to initiate programmed cell death, while preserving healthy tissues. 
 
Endocytosis, the mechanism by which cells internalize extracellular materials and molecules, has 
emerged as an attractive target for cancer therapy [6–9]. Cancer cells often exhibit dysregulated 
endocytic pathways that support their increased metabolic demands and rapid division [6,10]. For 
example, many cancer cells overexpress receptors like the transferrin receptor or growth factor 
receptors, which are internalized via clathrin-mediated endocytosis to fuel tumor growth [7,9,11]. 
Disrupting endocytosis in these malignant cells can deprive them of essential nutrients and 
signaling factors, thereby sensitizing them to programmed cell death [12]. Furthermore, inhibiting 
endocytosis can prevent the internalization and trafficking of therapeutic agents, rendering cancer 
cells more susceptible to cytotoxic drugs and other anti-cancer modalities [9,13]. 
 
In this review, we first define programmed cell death and the mechanisms of how cancer cells 
evade this process. We will then examine the current understanding of how endocytic pathways 
are altered in cancer and discuss strategies to target these processes as a means to enhance 
cancer cell susceptibility to programmed cell death. We highlight recent studies demonstrating 
the therapeutic potential of modulating endocytosis in various tumor types. Finally, we consider 
the challenges and future directions in translating approaches targeted at endocytic pathways into 
effective cancer treatments that selectively trigger cell death in tumors. 
 
Programmed cell death in cancer 

Cancer is a complex and heterogeneous disease that is characterized by uncontrolled cell 
proliferation and evasion of cell death mechanisms [14–17]. Programmed cell death (PCD), 
composed of apoptosis, autophagy, and programmed necrosis, is essential for maintaining tissue 
homeostasis and eliminating aberrant cells [5,17]. However, in cancer, the balance between cell 
survival and death is disrupted, leading to tumor progression and treatment resistance [3,16,17]. 
 
Apoptosis, the most extensively studied form of PCD, serves as a critical mechanism for 
eliminating damaged or unwanted cells. The process of apoptosis is orchestrated by two primary 
pathways: the extrinsic pathway and the intrinsic pathway [18–20]. In the extrinsic pathway, 
external death signals activate death receptors on the cell surface, such as Fas (CD95) and tumor 
necrosis factor receptor 1 (TNFR1), leading to the formation of the death-inducing signaling 
complex (DISC) [21–23]. The DISC recruits and activates procaspase-8, initiating a cascade of 
caspase activation and ultimately resulting in cell death. Conversely, the intrinsic pathway is 
initiated by intracellular stress signals, such as DNA damage or metabolic imbalance, leading to 
mitochondrial outer membrane permeabilization (MOMP) [20,24]. This process releases 
cytochrome c into the cytosol, activating the apoptosome and triggering caspase activation. 
Dysregulation of apoptotic pathways in cancer often occurs through genetic mutations, epigenetic 
alterations, or dysregulated expression of apoptosis-related proteins, allowing cancer cells to 
evade apoptotic signals and promote tumor survival [16,17]. 
 



Autophagy is a conserved catabolic process and plays a dual role in cancer biology. Under 
physiological conditions, autophagy maintains cellular homeostasis by degrading dysfunctional 
organelles and proteins [4,17,25]. However, in cancer, autophagy can act as either a pro-survival 
mechanism or a pro-death pathway, depending on the cellular context and environmental 
conditions. In nutrient-poor or hypoxic environments, autophagy promotes cancer cell survival by 
providing essential nutrients and energy substrates. This adaptive response enables cancer cells 
to withstand metabolic stress and resist apoptosis induced by therapeutic agents [3,17,26]. 
Alternatively, autophagy can induce a form of non-apoptotic cell death known as autophagic cell 
death [26]. This process involves excessive or prolonged autophagy leading to cellular self-
digestion and eventual cell demise, independent of apoptosis. The dual nature of autophagy in 
cancer underscores its complexity and context-dependent effects, influencing tumor progression, 
therapeutic responses, and overall cellular fate modulation [27,28].  
 
Programmed necrosis, once considered a chaotic and unregulated form of cell death [29], has 
recently emerged as a regulated process with distinct mechanisms, including necroptosis, 
ferroptosis, and pyroptosis [3,30,31]. Necroptosis, mediated by receptor-interacting protein 
kinases (RIPKs), occurs when apoptosis is inhibited or compromised, leading to necrotic cell 
death with inflammatory consequences [32]. Ferroptosis, characterized by iron-dependent lipid 
peroxidation and membrane damage, represents a novel form of regulated cell death implicated 
in cancer progression and therapy resistance [33]. Pyroptosis, triggered by inflammasome 
activation and caspase-1 cleavage, results in inflammatory cell death and immune responses 
[5,30]. The regulation of programmed necrosis in cancer is complex and context-dependent, 
involving crosstalk with other cell death pathways and interactions with the tumor 
microenvironment [30,31,34]. 
 
The interplay between different forms of PCD—apoptosis, autophagy, and programmed 
necrosis—is intricate and multifaceted. Crosstalk between these pathways can either promote or 
inhibit cell death, depending on the cellular context and environmental conditions. For example, 
apoptosis and autophagy can synergize to eliminate cancer cells under certain conditions [25], 
whereas in other scenarios, autophagy may promote cancer cell survival and therapy resistance 
in the absence of apoptosis [24,27,28]. Additionally, programmed necrosis can serve as a backup 
mechanism for apoptosis when caspase activation is impaired [32], contributing to the resilience 
of cancer cells against cell death signals. 
 
Although numerous mechanisms drive the initiation of PCD, cancer cells have evolved a diverse 
repertoire of strategies to evade these processes. Having established an understanding of the 
various modalities of cell death, our focus will now shift towards exploring how cancer cells 
modulate these PCD pathways. Specifically, we will delve into the mechanisms through which 
cancer cells resist apoptotic signals, with a particular emphasis on extrinsic apoptosis. 
 
Extrinsic mechanisms of apoptotic resistance in cancer 

Cancer cells are under constant stress, facing oncogenic stress, genomic instability, cellular 
hypoxia, and extracellular apoptotic signals [3,5,16]. Typically, cells undergo PCD in response to 
stress, but cancer cells often evade this response by disabling apoptotic pathways, which is a 



hallmark of cancer [16]. They achieve this by down-regulating pro-apoptotic factors like caspases 
or up-regulating apoptosis inhibitors such as Inhibitor of Apoptosis Proteins (IAPs) [25]. 
Additionally, cancer cells can desensitize themselves to extrinsic apoptotic signals by modulating 
death receptors [5,23]. In this context, we will explore two critical extrinsic mechanisms of 
immune-mediated cell death evasion by cancer cells: granule-mediated cytotoxicity and receptor-
mediated cytotoxicity. 
 
Granule-mediated cytotoxicity, employed by cytotoxic T lymphocytes (CTLs) and natural killer 
(NK) cells, releases cytotoxic molecules like perforin and granzyme B toward target cells, inducing 
intrinsic apoptosis [35–37]. Cancer cells counteract this process by degrading granzyme B or 
inhibiting cytotoxicity via hypoxia-induced autophagy [38,39]. Interestingly, alterations in 
mechanical properties on the cell membrane, such as lipid order, has been shown to impact 
perforin binding and cytotoxicity, with low-order lipids favored for perforin-mediated apoptosis 
[40,41]. For example, breast cancer cells resistant to lymphocyte cytotoxicity exhibit elevated lipid 
order, rendering them less susceptible to perforin-induced lysis [40,42]. Other mechanical 
features such as cell stiffness have been shown to influence susceptibility to perforin, with softer 
cancer cells evading T cell cytotoxicity [43]. 
 
Granule-mediated cytotoxicity serves as the primary mechanism for eliminating target cells in the 
presence of a large number of T cells. However, this process relies on CTLs to initiate target 
recognition, leading to the expansion of specific T cell populations capable of identifying target 
cells through specific peptides presented with the major histocompatibility complex class I (MHC-
I) [44]. This presentation of peptides by MHC-I is indispensable for the binding of death receptors 
to ligands, initiating extrinsic apoptosis. 
 
Cancer cells paradoxically express both the Fas (CD95) death receptor and Fas ligand (FasL), 
yet often exhibit  resistance to Fas-mediated apoptosis [23,45,46]. Fas, a surface receptor from 
the tumor necrosis factor (TNF) receptor superfamily, is primarily recognized for initiating cell 
death upon binding to its ligand, FasL. Despite abundant Fas expression on cancer cells, they 
often resist this apoptotic pathway, enabling them to evade cell death mechanisms [45,47]. 
Common evasion strategies involve the downregulation of key components of the Fas signaling 
cascade, such as caspase-8 or FADD (Fas-associated death domain), which are essential for 
transmitting apoptotic signals initiated by Fas activation. Additionally, cancer cells often 
upregulate cellular FLICE inhibitory protein (cFLIP), a potent inhibitor at the death-inducing 
signaling complex (DISC), thereby preventing caspase-8 activation and subsequent apoptosis 
despite Fas receptor engagement  [48]. Deregulation of B-cell lymphoma 2 (Bcl-2) family proteins 
or inhibitors of apoptotic proteins contributes to the loss of apoptosis signaling through Fas, 
promoting tumor survival [49]. Cancer cells also use FasL expression to indirectly target immune 
cells, inducing apoptosis in Fas-expressing CD8+ T cells and evading immune surveillance 
[50,51]. Remarkably, Fas activation can even boost cancer cell survival by enhancing their motility 
and invasiveness [45]. 
 
Similar to granule-mediated killing, receptor-mediated killing by CTLs or NK cells relies on the 
mechanical features of the cell membrane. The interaction between T-cell receptors (TCRs) of 



CD8+ T cells and MHC-I peptides is crucial for initiating apoptosis [44]. Soft membranes prevent 
effective TCR-MHC-I-peptide interactions, leading to insufficient downstream apoptotic signaling 
[52,53]. Moreover, MHC-I molecules are localized to higher order lipid regions, and depletion of 
cholesterol disrupts CTL recognition of MHC-I peptide complexes [36]. 
 
These findings suggest that cancer cells evade apoptosis not only through the regulation of 
biochemical players but also by modulating mechanical features, such as membrane stiffness. In 
the following section, we will examine the roles of receptor-mediated cytotoxicity, with a particular 
focus on how endocytosis contributes to cancer cell death. Finally, we will discuss strategies 
designed to enhance apoptotic sensitivity in these cells through targeting endocytosis. 
 
Roles of endocytosis in apoptotic evasion 

Endocytosis plays a crucial role in various cellular processes, including nutrient uptake, receptor 
internalization, and signal transduction [54,55]. Defined as the process by which cells engulf 
extracellular molecules and particles by forming vesicles derived from the plasma membrane, 
endocytosis serves as a fundamental mechanism for maintaining cellular homeostasis and 
regulating cell signaling pathways [8,56,57].  
 
Endocytosis is tightly regulated by various cellular factors, including membrane composition, 
cytoskeletal dynamics, and signaling pathways [56,58,59]. Membrane lipid composition, 
particularly the presence of cholesterol and sphingolipids, influences the formation and stability 
of endocytic vesicles [60]. Moreover, cytoskeletal elements such as actin filaments and 
microtubules provide the structural framework necessary for vesicle formation and intracellular 
trafficking [56,58]. Signaling molecules such as small GTPases, including dynamin and Rab 
proteins, regulate the budding and fusion of endocytic vesicles with target membranes [54]. 
 
There are several types of endocytosis, each serving distinct functions in cellular physiology [61]. 
Clathrin-mediated endocytosis is the most well-characterized form, involving the formation of 
clathrin-coated vesicles that transport cargo molecules into the cell [54,58,59]. Caveolae-
mediated endocytosis occurs through invaginations of lipid raft domains enriched in caveolin 
proteins, facilitating the internalization of specific membrane components [62]. Additionally, 
macropinocytosis involves the nonspecific uptake of extracellular fluid and solutes through large, 
actin-driven membrane protrusions called macropinosomes [61]. 
 
Clathrin-mediated endocytosis (CME), in particular, plays a significant role in oncogenesis and 
cancer cell proliferation [7,63]. Genetic mutations affecting endocytic proteins have been 
implicated in leukemia, underscoring the importance of endocytosis in cancer pathogenesis [64]. 
Moreover, posttranslational ubiquitination of endocytic proteins and receptors serves as a sorting 
signal in this pathway, influencing cellular processes crucial for cancer progression [64,65]. For 
example, ubiquitination regulates the internalization and trafficking of receptors such as epidermal 
growth factor (EGFR), impacting downstream signaling pathways that promote tumor growth and 
metastasis [66,67]. Additionally, ubiquitination of the E3 ubiquitin ligase Nedd4 can modulate the 
stability and function of CME machinery, affecting the turnover of membrane proteins involved in 
cancer cell signaling and survival, including EGFR [65,68]. Active Src kinase has been shown to 



promote degradation of Cbl, an important regulator of CME, resulting in elevated EGFR 
expression and signaling in tumors  [66,67]. 
 
Tumor cells significantly diverge from normal cells in their cell membrane's structure and 
composition, resulting in the development of distinct signaling pathways that provide them with a 
survival edge [9]. Endocytosis plays a pivotal role in this process, as it can selectively engage in 
the uptake of extracellular molecules, thereby influencing apoptotic pathways and directly 
affecting cancer cell survival. By internalizing death receptors such as Fas/CD95 and tumor 
necrosis factor receptors (TNFR), cancer cells can sequester these receptors away from the cell 
surface, preventing their engagement with extracellular ligands and subsequent initiation of 
apoptotic signaling cascades [69,70]. Further, endocytosis facilitates the internalization of anti-
apoptotic proteins, such as Bcl-2 family members and IAPs, which inhibit pro-apoptotic signaling 
pathways and promote cell survival [25,71]. Endocytosis also influences cancer immunity by 
modulating the presentation of tumor-associated antigens. Downregulation of surface display of 
MHC-I, facilitated by endocytosis, can impede T-cell-mediated cytotoxicity and promote immune 
evasion by tumors [72]. 
 
Concurrently, cancer cells evade immune surveillance by decreasing “eat me” signals that 
promote their engulfment, such as exposure of phosphatidylserine on the outer membrane, 
modifying surface glycosylation patterns and epitopes of intercellular adhesion molecules, while 
increasing signals that inhibit phagocytosis (such as CD47, PD-L1, and beta-2 microglobulin) [73]. 
Alternatively, cancer cells release "find me" signals that recruit monocyte or macrophage 
recruitment toward apoptotic cells, including lipid lysophosphatidylcholine, sphingosine 1-
phosphate, fractalkine CX3CL1, and nucleotides ATP and UTP [73]. Although these signals can 
facilitate the efficient removal of these dying cells before they undergo secondary necrosis, which 
can trigger inflammation and tissue damage, cancer cells can evade detection and clearance due 
to their lack of expression of "eat me" signals [73,74].  
 
Dysregulating endocytic pathways has been linked to the altered expression and activity of key 
oncogenes and tumor suppressor genes, further influencing cancer cell fate [6]. In colon cancer, 
inhibiting CME has been found to impede tumor growth and enhance the therapeutic efficacy of 
immune checkpoint blockade, indicating that selective targeting of endocytic pathways could be 
a viable strategy in cancer treatment [72]. In addition, inhibiting endocytosis, particularly of death-
inducing proteins [12], could enhance antitumor efficacy by preventing immune evasion 
mechanisms employed by cancer cells. Understanding the intricate mechanisms underlying 
endocytic regulation and its impact on apoptotic signaling pathways is essential for developing 
targeted therapeutic strategies aimed at overcoming cancer resistance to PCD. 
 
Inhibiting endocytosis sensitizes cancer cells to programmed cell death 

Endocytic dynamics are increasingly recognized as a valuable target in anticancer strategies, 
mainly because of their role in facilitating targeted and efficient drug delivery [13] (Figure 1). 
Targeted drug delivery systems aim to minimize off-target effects, overcome multidrug resistance, 
ensure specific distribution to cancerous tissues, and improve the permeability of anticancer 
agents across cell membranes, ultimately enhancing the vulnerability of cancer cells to treatment 



[75]. Endocytosis plays a vital role in the uptake of drug-delivery vehicles, allowing therapeutics 
such as antibody-drug conjugates (ADCs) and radioligands to be efficiently transported into tumor 
cells [76]. 
 

 
Figure 1. Schematic representation illustrating the potential therapeutic strategy of 
inhibiting endocytosis in cancer cells. Inhibiting endocytosis can block the internalization of 
death receptors, restore immune surveillance, and improve the delivery of therapeutics to 
sensitize cancer cells to programmed cell death. Figure created by Biorender.com. 
 
One promising approach to target endocytosis in cancer is to inhibit the GTPase dynamin, a 
central regulator of multiple endocytic pathways [77]. In particular, dynamin-1, typically neuron-
specific, has been shown to be activated in nonneuronal cells via cancer-relevant signaling 
pathways, establishing a feedback loop between CME and signaling to enhance cancer cell 
survival, migration, and proliferation [78,79]. Chemical inhibitors of dynamin, such as Dyngo [80], 
Dynasore [81], and phenothiazine [82] block the cell’s GTPase activity, disrupting a wide range 
of dynamin-dependent endocytic processes. This inhibition of endocytosis has shown remarkable 
efficacy in suppressing proliferation and inducing apoptotic cell death across various cancer cell 
lines, including leukemia and lymphoma [83,84]. Notably, the disruption of endocytosis through 
dynamin inhibition has also been observed to overcome chemoresistance in leukemia stem cells, 
highlighting its potential to sensitize even the most recalcitrant tumor cells to cell death [85].  
 
Beyond dynamin, other endocytic targets have been explored as a means to sensitize cancer 
cells. Compounds like Pitstop, which interfere with the clathrin-mediated endocytic machinery 
[86,87], have demonstrated the ability to enhance cancer cell susceptibility to cell death [88]. 
However, despite mutations in clathrin heavy chain that would theoretically block its supposed 
binding site, Pitstop 2 inhibits endocytosis indiscriminately [87,89–91]. This non-specific action 
indicates that Pitstop 2 may not be suitable for clinical use. Although Filipin III, which blocks 
caveolae/raft-mediated endocytosis [92], has been shown to overcome EGFR inhibitor resistance 
in lung cancer cells [93], it would not be effective on cells such as PC3 cells that lack cavin-1, a 



protein essential for caveolae formation [94]. These findings underscore the importance of various 
modes of endocytic regulation and combination therapies in modulating the response of cancer 
cells to targeted therapies. 
 
The modulation of endocytosis can also be achieved through indirect approaches that alter the 
biophysical properties of the cell membrane [95–97]. Cancer cells often exhibit distinct membrane 
characteristics, such as altered cholesterol content and fluidity [98,99], which can significantly 
impact endocytic dynamics and the associated signaling cascades crucial for their survival. 
Agents such as statins, which target membrane cholesterol, have demonstrated anticancer 
effects in both preclinical and clinical studies. Lovastatin, simvastatin, and rosuvastatin, have 
shown promise in preclinical studies by temporarily enhancing tumor cell surface receptor density, 
thereby increasing the accumulation of monoclonal antibodies used in cancer therapies [94]. 
Lovastatin has also been reported to decrease markers associated with metastasis in breast 
cancer cells [100]. Further, lovastatin has been shown to enhance apoptosis in brain cancer cells 
by increasing the activity of doublecortin (DCX), a brain-specific gene [101]. In some clinical 
studies, simvastatin, either used alone or in combination with other chemotherapeutic agents, has 
been demonstrated to significantly improve treatment outcomes and reduce mortality rates in 
patients with certain types of cancer [102–104].  
 
Cancer cells are notably softer compared to healthy cells, facilitating rapid membrane remodeling 
during cancer progression [105–107]. This reduced stiffness is crucial to explain the observed 
increase in endocytosis in many cancer cells, particularly in a localized manner, which may be 
attributed to variations in local membrane composition, tension, and cooperative processes like 
actin remodeling [59]. These attributes play a vital role not only in facilitating cancer cell survival, 
invasion, and metastasis but also significantly impact the interactions between cancer cells and 
immune cells. For instance, T cells demonstrate diminished cytoskeletal forces and produce fewer 
effector cytokines when interacting with softer surfaces [53]. Thus, beyond biochemical immune 
checkpoints, mechanical checkpoints play a vital role in T cell-mediated cytotoxicity against 
cancer cells.  
 
There has been growing interest in investigating Rho-associated kinases (ROCK) inhibitors as 
potential therapies for cancer. Rho-associated kinases play a pivotal role in regulating the 
actomyosin cytoskeleton and contractile force generation [108]. This ROCK-driven contractility 
governs various cellular processes, including cell morphology, migration, invasion, proliferation, 
immune responses, and apoptosis resistance [109–111]. Inhibiting ROCK leads to increased 
membrane tension, which subsequently reduces endocytic dynamics [12]. Currently, several 
ROCK inhibitors such as Fasudil, Netarsudil, Belumosudil, and Ripasudil are approved for clinical 
use, primarily for treating hypertension [112,113]. While clinical trials using these inhibitors for 
cancer treatment have not yet been successful, numerous preclinical studies suggest that ROCK 
inhibition, when combined with chemotherapies, targeted therapies, and immunotherapies, leads 
to enhanced responses [113,114]. The promise of ROCK inhibitors lies in their ability to modulate 
the tumor microenvironment, improve drug delivery, and sensitize cancer cells to apoptosis, which 
preclinical models have shown to be effective in overcoming resistance mechanisms [113]. We 
have recently demonstrated that ROCK inhibition with Fasudil increases membrane tension in 



cancer cells and facilitates apoptosis by promoting the retention of Fas receptors on the cell 
surface [12]. This reduction in endocytosis has been observed to retain Fas receptors across 
multiple cancer cell lines without altering normal cells, enhancing sensitivity to the soluble Fas 
ligand and inducing cell death in two-dimensional culture, organoids, and in vivo models [12]. 
 
A word of caution is warranted when using endocytosis disruptors, whether genetic or 
pharmaceutical, to study endocytic regulators in cancer. Many small-molecule inhibitors lack 
specificity, disrupting multiple endocytic pathways [115]. Common strategies like altering 
membrane lipid composition or receptor distribution impact all endocytic pathways and essential 
signaling [94,116]. Inhibiting one pathway may upregulate alternative routes, such as dynamin-
independent endocytosis when dynamin is inhibited [117]. Broad dynamin targeting results in poor 
selectivity and off-target effects [118]. For instance, Dyngo has been shown to inhibit Trop2 
endocytosis in prostate cancer cells, which can potentially reduce the effectiveness of Trop2-
targeting ADCs [76,119]. Agents targeting membrane cholesterol like statins, while promising in 
cancer treatment, may interfere with uptake mechanisms and signaling due to altered fluidity, and 
affect cytoskeleton organization [120]. Methyl-β-cyclodextrin targeting cholesterol-rich lipid rafts 
is limited by cytotoxicity [121]. Manipulating intracellular cholesterol trafficking has shown efficacy 
in slowing melanoma growth, but strategies must carefully balance specificity and safety 
considerations [122]. 
 
Nevertheless, despite these challenges, targeting endocytosis to sensitize cancer cells to PCD 
remains a worthwhile endeavor in cancer therapy. Combining endocytic inhibitors with therapies 
such as ADCs and monoclonal antibodies holds promise for enhancing treatment efficacy while 
reducing off-target toxicity [85,94,123]. Temporary inhibition of CME can prevent the 
internalization of ADCs, increasing their retention on the cell surface, which in turn enhances 
antibody-dependent cellular cytotoxicity [90]. When this endocytosis inhibition is lifted, it has been 
shown that the ADC payload is then delivered to the endosomes in ex vivo tumor samples, 
enhancing its effectiveness while minimizing adverse effects on normal tissues [124]. By using 
endocytic inhibitors that offer transient and reversible inhibition, such as the dopamine receptor 
inhibitor prochloroperazine [82,123], systemic effects can be mitigated, ensuring the inhibition is 
cell-specific and temporary.        
 
Disrupting dysregulated endocytic pathways that support tumor growth and survival holds promise 
for improving treatment outcomes across various cancer types. Endocytic inhibitors, whether 
administered alone, in combination with ADCs or radioligands, represent a critical strategy in 
cancer therapy. However, the journey to identifying optimal candidates for clinical use will require 
extensive research into their effects on the entire metastatic process. Addressing concerns of 
specificity, dosage, timing, safety, and the relevance of in vivo models is paramount to study and 
treat dysregulated endocytosis within the tumor microenvironment. As our understanding of the 
intricate relationship between endocytosis and cancer cell biology continues to evolve, the 
development of more selective and potent agents targeting these pathways  holds the potential 
to significantly improve cancer treatment outcomes in the future. 
 



Perspectives 

● Cancer cells evade programmed cell death through various mechanisms, enabling 
unchecked survival and proliferation. Endocytosis plays a key role in regulating 
programmed cell death pathways, providing opportunities to target this process and 
sensitize cancer cells to cytotoxic agents. 

● Inhibiting endocytosis can prevent internalization of death receptors, restore immune 
surveillance, and enhance delivery of therapeutic payloads, rendering cancer cells more 
susceptible to programmed cell death. 

● Investigating the intricate relationship between endocytic trafficking and apoptotic 
signaling pathways is crucial for identifying new targets in cancer therapy. There is a 
growing demand to explore combined approaches that merge endocytic modulation with 
chemotherapies, targeted therapies, and immunotherapies to improve anticancer 
effectiveness. 
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