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Figure 1: A system overview of CFlow. (a) Upon collecting student code submissions, (b) CFlow extracts and semantically labels
the code statements. (c left) These labels are then clustered and represented in a Semantic Aggregation View (SAV). (c right)
Statement correctness is color coded and visualized using a stacked bar histogram, forming the Semantic Histogram View
(SHV). (d) Users can filter the views by clicking on labels in the SAV or bars in the SHV. The Code Detailed View (CDV) enables
for an in-depth inspection of specific code branches.

ABSTRACT
Introductory programming courses have been growing rapidly, now
enrolling hundreds or thousands of students. In such large courses,
it can be overwhelmingly difficult for instructors to understand
class-wide problem-solving patterns or issues, which is crucial for
improving instruction and addressing important pedagogical chal-
lenges. In this paper, we propose a technique and system, CFlow,
for creating understandable and navigable representations of code
at scale. CFlow is able to represent thousands of code samples in a
visualization that resembles a single code sample. CFlow creates
scalable code representations by (1) clustering individual state-
ments with similar semantic purposes, (2) presenting clustered
statements in a way that maintains semantic relationships between
statements, (3) representing the correctness of different variations
as a histogram, and (4) allowing users to navigate through solutions
interactively using semantic filters. With a multi-level view design,
users can navigate high-level patterns, and low-level implementa-
tions. This is in contrast to prior tools that either limit their focus
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on isolated statements (and thus discard the surrounding context
of those statements) or cluster entire code samples (which can lead
to large numbers of clusters—for example, if there are 𝑛 code fea-
tures and 𝑚 implementations of each, there can be 𝑚𝑛 clusters).
We evaluated the effectiveness of CFlow with a comparison study,
found participants using CFlow spent only half the time identifying
mistakes and recalled twice as many desired patterns from over
6,000 submissions.
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1 INTRODUCTION
Understanding student code is crucial for instructors to provide per-
sonalized feedback and enhance student learning outcomes. When
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performing these tasks, instructors often need to: 1) identify issue-
relevant code, and 2) understand the underlying reasons for students’
struggles. However, with increasing enrollments in CS courses and
the diversity of student codes, these tasks become challenging for
two reasons. First, students’ errors could span multiple lines in
code and be correlated. A code submission consists of a sequence of
code statements (code lines), where each line and the flow from one
line to another reflect the student’s thoughts on problem solving.
An issue might be as simple as a one-line error, such as incorrect
dictionary usage, or as complex as a mistake spanning multiple
lines, such as improper initialization and modification of variable
values. Switching between code syntax and semantics on a large
scale is a cognitively demanding task. Second, even with identical
syntax structure, two submissions could yield different outputs,
and vice versa. For example, students might arrange their if-else
statements differently yet produce the same output. This nuanced
difference makes it difficult to aggregate a large number of code
issues at both the syntax and semantic levels.

Past research has explored this challenge of identifying issues
using a variety of methods. For example, OverCode addressed scal-
ability concerns by clustering and visualizing student code sub-
missions [16]. However, they concentrated primarily on specific
challenges such as different variable names and statement orders,
and focused on the computations of programs, overlooking issues
related to high-level misconceptions that might be latent between
lines of code. To aid in the discovery of diverse high-level patterns,
RunEx enabled instructors to construct runtime and syntax-based
search queries with high expressiveness and apply combined filters
to code examples [54]. However, RunEx depended on instructors to
generate these search queries, which demanded prior knowledge.
Additionally, it did not provide guidance on pattern discoverability,
leaving users to identify differences between patterns. Other auto-
feedback generation approaches have been shown to be promis-
ing [53]. However, by excluding instructors from the feedback loop,
instructors were uninformed about student challenges. Such de-
tachment could result in instructors not adapting their teaching
strategies based on prior student performance.

In this paper, we introduce a novel method that visualizes the
flow of code statements to facilitate analyzing students’ submis-
sions. Our intuition is that, similar to the narrative flow in an essay,
the sequencing of code statements dictates not only the execution
order within a program but also its runtime complexity [1]. Within
the context of student submissions, this flow sheds light on a stu-
dent’s grasp of the problem, their approach to problem-solving,
thought processes, and potential areas of misunderstanding. Thus,
effectively visualizing this code flow can uncover dimensions of
students’ understandings that previous research has not addressed.

However, visualizing code flow presents challenges for two rea-
sons: First, student code submissions often vary significantly, not
just in their solutions but also in their structure and semantic mean-
ing. The difficulty lies in aggregating and aligning these diverse
submissions. Second, designing a visualization that maintains the
code’s inherent structure while facilitating flow analysis is difficult,
as the same code semantic flow might have different implementa-
tions across submissions. Additionally, aggregating code structures
on a large scale could make it more cognitively overwhelming for
instructors. For instance, by showing the variation within steps

across submissions, it could introduce much more complexity at
each step of the approaches than simply reading a single code
sample. Therefore, visualizations must present flow information in
a way that effectively combines code samples and maintains the
readability of the original code samples.

To tackle these challenges, we designed CFlow, a system com-
prising three distinct views (Figure 1d): the Semantic Aggregation
View (SAV), the Semantic Histogram View (SHV), and the Code De-
tailed View (CDV). In essence, CFlow aims to represent semantic
flows between distinct value sets and showcases categorical vari-
ances. Specifically, CFlow employs a multi-step algorithm where
each code line is subjected to a detailed semantic analysis and er-
ror check using Large Language Model (LLM). These lines are then
vectorized using CodeBert to group them based on similarity. A
“common progression” of steps from correct solutions provides a ref-
erence structure for mapping all solutions. The resultant structured
data is then visualized in a color-coded format, enabling educators
to quickly pinpoint student challenges and misconceptions. This
method 1) highlights semantic patterns by frequency and accu-
racy, and 2) simplifies the navigation and comparison of code flows.
The core insight of CFlow is to align instructors’ analysis of code
submissions with the intrinsic characteristics of student code.

To assess the efficacy of CFlow in aiding instructors in iden-
tifying issues with student code, we conducted a within-subject
experiment involving 16 participants and over 6,000 student code
submissions for two programming exercises. To ensure a fair com-
parison, we designed the baseline system to be the combination of
two state-of-the-art systems, OverCode and RunEx [16, 54]. Our
findings indicated that, in comparison to the baseline system, CFlow
enabled participants to 1) identify targeted misconceptions in half
the time used for the baseline, and 2) achieve greater accuracy in
their results. CFlow is the first system that bridges the high-level
flow among thousands of submissions with specific student errors.
By overlaying aggregated semantic data on submissions while re-
taining their inherent structure, CFlow enhances exploration and
navigation capabilities.

Our research underscores the continued need to assist instructors
in analyzing large-scale, structurally intricate student data. This
research thus contributes:

• A novel visualization approach, and implementation of the
approach, that aggregate semantic patterns and code struc-
tures, to unearth complex in large-scale, multifaceted code
submissions.

• Evidence from an evaluation of CFlow that suggests that
CFlow can assist users in identifying a variety of patterns
and misconceptions in students’ code.

2 RELATEDWORK
Our work builds on prior work on programming education at scale,
code flow analysis, and LLM for programming education.

2.1 Mistakes in Introductory Programming
There are primarily three categories of programming knowledge
in introductory courses: 1) syntactic knowledge, such as language
features and rules, 2) conceptual knowledge, such how program-
ming constructs and concepts work 3) strategic knowledge, which
refers to how to apply prior knowledge to solve programming
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problems [4, 35, 43]. Syntactic mistakes are frequent, but are usu-
ally superficial and easy to fix [2, 23]. Conceptual mistakes could
lead to significant misconceptions and are relevant to students’
thought process [3, 6, 31, 43, 50]. For instance, errors on variable
initialization and modification relate to misconceptions on variable
scopes [14]. Errors on concepts like conditionals and looping con-
structs can lead tomisconceptions on program execution [17, 48, 49].
Students that lack syntactic and conceptual knowledge could make
more strategic mistakes [10, 11], reflecting difficulties in decompos-
ing the programming problem [38, 45]. To identify different types of
misconceptions, tools should reveal the various dimensions of stu-
dents’ code. Therefore, our first design goal (DG1) is to easily
understand the semantic flow within students’ code.

2.2 Programming Education at Scale
Large courses, such as Massive Open Online Courses (MOOCs),
face challenges of maintaining quality and offering personal atten-
tion to learners [21]. In the context of programming education, the
challenge lies in analyzing students’ coding submissions to under-
stand their learning needs and provide tailored feedback. However,
the expansive course size and the wide variation among students’
coding solutions make it submissions time-consuming and labori-
ous [8, 9, 16, 18, 19, 36, 52].

To address these challenges, various tools have been crafted to
provide instructors with an overview of students’ code [15, 16, 18,
22, 55]. However, these tools take code submission as single piece
and ignore the multifaceted aspect of the program flow, hindering
instructors’ ability to analyze the flow within thousands of code
samples simultaneously. Code search tools could help instructors
identify specific coding patterns [33, 34, 39, 42, 54]. Codewebs was
a code search engine in educational settings that employed Abstract
Syntax Trees (ASTs) and unit test outcomes to match code sam-
ples, enabling instructors to index a million code submissions [39].
Codewebs’ was limited to filtering by post-execution runtime values.
RunEx allowed instructors to construct queries based on runtime
and syntax with high expressiveness and to search by combined
filters [54]. The downside of code search tool is that instructors
need to create queries manually, requiring knowledge of student
approaches and challenges. In contrast, CFlow reduces the effort
needed for query formulation by analyzing and summarizing code
flows across submissions and offering an “available” vocabulary.

2.3 Code Flow Analysis in CS Education
Control flow, or the interrelation of statements in a program, is cru-
cial to programming comprehension [1], providing a lens into the
programmer’s logic, strategy, and misconceptions. Understanding
code flow becomes paramount at scale due to the variety of coding
solutions from students with diverse backgrounds and thought pro-
cesses, posing challenges in assessing the correctness of a solution,
discerning approaches, identifying misconceptions, and offering
tailored feedback [24, 25, 47].

Current educational methods emphasize the process of coding
over product, focusing on student crafting their solution as seen in
their code flow [51]. Tools like Theseus [29] visualize code segment
interactions to spot logical errors. However, their designs struggle
with numerous varied solutions in large CS courses.

CFlow overcame this challenge by offering multi-level views of
students’ solutions with semantic labeling and interactive filter-
ing. CFlow combined elements from Sankey diagrams, adapted for
mapping code structures and logic pathways, and histograms for
highlighting data distribution and identifying patterns in student
code [44, 46]. The combined utility of these visualization techniques
in a cohesive system remains largely unexplored in programming
education. CFlow’s multi-faceted visualization bridges this gap
by integrating the flow-centric insights of Sankey diagrams with
the succinct data representation of histograms. CFlow simplifies
Sankey diagrams to align with how people comprehend code, while
preserving interactive flow relationships. CFlow offers a scalable
and intuitive method for instructors to navigate numerous student
submissions and discern patterns in large CS courses.

2.4 LLMs for Programming Education
Large language models (LLMs) [37] have been widely used in pro-
gramming education for code generation [12, 26], program com-
prehension [40], language learning [5], and teaching material de-
sign [30]. Prior work has designed systems using LLMs to help in-
structors comprehend students’ code more effectively than student-
generated explanations [20, 27, 27, 55]. However, LLMs face chal-
lenges in conveying complex relationships and structures in code at
scale due to their text-based nature. [7]. To tackle the issue, VizProg
visualizes students’ coding progress as dynamic dots on a 2Dmap in
real time, through clustering vector embeddings of students’ solu-
tions using pre-trained language model CodeBERT [55]. VizProg’s
downside is that it only one level of abstraction, losing structural
cues in syntax and semantic meanings. To enhance understanding,
a progressive disclosure approach is suggested to gradually pro-
vide pieces of information about code that contribute to the overall
understanding [41]. Therefore, our second design goal (DG2)
is to seamlessly navigate students’ code between high level
abstraction and detailed information. CFlow builds on this by
using LLM-created content to aid instructors in processing students’
code at scale, employing a hierarchical and “focus + context” design
to visualize numerous text information.

3 CFLOW
3.1 System Design Goals
Derived from the prior literature, we developed three design goals
(DG1–DG2) to guide the development of CFlow to help instruc-
tors understand and explore student solutions to a programming
exercise.

• DG1: Easily understand the semantic flow within stu-
dents’ code. Comprehending the semantic flow is essential
for grasping code’s structure and design. The system should
provide an intuitive, concise view that simplifies the semantic
flow analysis of students’ solutions, thus enhancing over-
all code comprehension. Visualization of code flow at large
scale could be difficult to digest, thus the visualization should
align with how human read and comprehend code.

• DG2: Seamlessly navigate students’ code between high
level abstraction and detailed information. When re-
viewing students’ code on a large scale, it’s crucial for instruc-
tors to constantly dive into specific submissions to ground
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their understanding. This allows instructors to identify con-
crete examples and form contextualized feedback. To support
this behavior, the system should offer easy navigation on
students’ code, thus enabling instructors to switch between
“diving in” and “floating up” different samples.

Following the design goals, CFlow’s visualization integrates the
flow-centric insights of Sankey diagrams with the data distribution
conciseness of histograms to present students’ code flow. This de-
sign can effectively illustrate how data or control moves through
different parts of the program. Combined with histograms, the vi-
sualization could provide instructors with an overview and reveal
bottlenecks in the flow. Furthermore, CFlow provides instructors
with a multi-level view of students’ code, enhancing their ability
to navigate and explore code at scale. It empowers them to discern
patterns and identify mistakes, all within the contextual framework
of semantic flow analysis. We implemented CFlow as a prototype.
In the following sections, we describe CFlow’s user interface and
the algorithms that were developed to support its features.

3.2 CFlow’s User Interface
CFlow’s user interface is organized into three primary panels: a
Semantic Aggregation View (SAV; Figure 2a), a Semantic Histogram
View (SHV; Figure 2b), and a Code Detailed View (CDV; Figure 2e).
Upon loading student code submissions, CFlow’s algorithm (de-
scribed in detail in Section 3.3) determines the semantic meaning
and error information of each code line across all submissions,
cluster code lines by their vector similarity, and determined the
correctness of the implemented solutions. The SAV displayed code
syntax that align with a common semantic flow among all submis-
sions, with color-coding to represent the correctness of each step
in the semantic flow. In contrast, the SHV offered a historical view
of all code implementations that were clustered as the same step in
the SAV, again using color to denote correctness. When a user clicks
any of these code lines, the CDV updated its view, showcasing a
curated list of code submissions that contained the selected line.
Concurrently, both the SAV and SHV updated to reflect this user
interaction. In the following sections, we illustrate the details of
the system’s design.

3.2.1 The SAV: Semantic Reference Code. To ease pattern identifica-
tion (DG1), CFlow presents code in a visualization that is resembles
a single code sample (Figure 2a). Nevertheless, this visualization
did not originate from a single submission; instead, each line sym-
bolizes a group of similar code lines, like a label or category, drawn
from different student submissions. These lines are arranged in
the identical sequence as they were found in the students’ work.
For instance, there was a coherent progression from initializing
variables, iterating over variables, to employing conditional state-
ments, mirroring the typical structural approach employed by most
students in their code.

Different from conventional views where correctness is about
the whole solution, here we display correctness at code line level.
Each line’s color-coded representation denotes the correctness of
the associated group of code lines. The colors were mapped on a
scale from [0, 1] to [Red, Green]. In this scale, Red signified that
none of the code lines within the groupwere correct, whereas Green
indicated that all the code lines within the group were correct.

To facilitate exploration of the semantic flow (DG2), CFlow imple-
ments clickable elements for all components within the SAV. Users
could click on the expand button located to the left of each code line
(Figure 2c), revealing similar labels (Figure 2c) that correspond to
the same position in the reference code framework. Alternatively,
users can directly click on the code line itself (Figure 2f). This action
simultaneously updates all system views from the initial visualiza-
tion of the entire solution set (Figure 2.1) to the filtered view of the
subset selected (Figure 2.2). To enhance navigation, users have the
option to click the ‘Go Back’ button to return to a broader view
(Figure 2j). The ‘Clear’ button, on the other hand, allows users to
instantly revert to the most expansive view level.

3.2.2 The SHV: Semantic Code Histogram & Line Correctness. To
assist users in identifying multiple patterns within the data (DG1),
CFlow plots a histogram based on the semantic labels detailed in
the previous section. The color-coding in this view is an indicator
of a collection of code line’s correctness. Each stacked bar view is
flanked by two numbers representing the count of code lines that are
correct and incorrect, respectively. We incorporated the correctness
metrics to cater to the needs of users who might be interested in
submissions that had an error due to a particular line or chunk of
code. An animation (Figure 2d) emphasized the proportion of the
current highlighted labels within the overall dataset, thus enhancing
navigational ease. Interacting with the SHV was designed to be
consistent with the SAV, so clicking on any bar within the SHV
triggered a system response just like selecting a label did in the SAV
(Figure 2f). Consequently, the SHV (Figure 2i) retained only the
clicked bar, while the rest of the histograms adjusted based on their
correctness metrics. This interaction paradigm facilitated a nested
querying approach. By using a label as a filter, users can delve deeper
into specific data subsets, mirroring the nested query functionality
in database searches. Here, sequential queries systematically refined
the search path, guiding users toward their desired data branch.

3.2.3 The CDV: Code Search with Error Filters & Semantic Labels.
To assist users in quickly navigating and filtering through students’
code by different categories such as error types or specific seman-
tics (DG2), CFlow contains a code search engine equipped with
features such as filters (Figure 2g) and context-aware code syntax
highlighting (Figure 2h). What sets this design apart from other
code search utilities, such as RunEx, is the intricate data-binding
that existed across the three primary views of CFlow. As previously
discussed, users can initiate a search by clicking on a label or a
histogram bar, with the clicked label serving as the search query.
This interaction enabled users to continually refine their search
with additional click-based queries and layer multiple filters, thus
progressively narrowing the list of relevant code submissions.

After uploading code submissions, error type filters were auto-
generated using an LLM that was not trained on our dataset (Sec-
tion 3.3 explains in further detail). The accompanying numbers
(Figure 2k) represents the count of submissions that had the corre-
sponding error type at the selected code line. For example, in the
scenario depicted in Figure 2e, out of the 623 submissions containing
the past_tense.append(word + “d”) line, over 200 submissions
were identified as having an error at this specific line by the LLM,
while the remainder were correct at that line. Users can seamlessly
navigate this list to inspect relevant submissions in detail.
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Figure 2: CFlow allows users to explore the semantic flows of student code submissions at a high level through semantic
aggregation. First, users are presented with an overview of the entire set of solutions (1), including the SAV (a) and the SHV
(b). They can then click on individual code lines (f) to progressively explore the details of specific implementations. The
visualization will update to focus on a smaller subset of solutions, displaying the aggregated flow and distributions of the
selected set only (2). Users can inspect details of the flow at individual code level in the CDV (e). CFlow offers a breakdown of
types of errors within that group (k), and detailed solutions with context-aware highlighting (h).
3.3 CFlow’s Algorithm
To generate the aforementioned visualization, CFlow requires de-
tailed information about correctness of students’ code at the line
level. To effectively visualize the information, CFlow segments the
code into various components based on the semantic flow and then
group these segments according to similarity. Specifically, CFlow
produces its visualization using four primary stages (Figure 3):

• Stage 1: Identifying and tagging the steps required to solve
a problem

• Stage 2: Grouping and aligning code lines across code sam-
ples

• Stage 3: Identifying semantic, syntactic, and runtime errors
• Stage 4: Clustering the grouped results

We will describe each stage in the sub-subsections below.

3.3.1 Stage 1: Identifying and tagging the steps required to solve
a problem. First, CFlow identifies the common steps across the
code samples (Figure 3.1). Doing this requires understanding the
semantic meaning of these code samples. For example, “if x != 5:”
is functionally identical to “if not (2+3 == i):” if x and i serve
the same purpose in code. Further, many code samples contain
minor syntax errors (like omitting a parentheses in “if not 2+3
== i):”) that should be classified as semantically similar.

Thus, for each code sample (which we will denote as 𝑐𝑖 to rep-
resent code sample 𝑖) CFlow first ‘normalizes’ the code using text-
based normalization techniques. This includes removing extrawhite-
space, stripping code comments, identifying variable names and
remapping them to be consistent across code samples, and remov-
ing print() function calls. We will refer to the ‘normalized’ version
of code sample 𝑐𝑖 as “norm (𝑐𝑖 )”. CFlow then divides the normalized
code sample into lines; wewill denote the first line of 𝑐𝑖 as 𝑐1𝑖 , the sec-
ond line as 𝑐2

𝑖
, etc. CFlow then uses CodeBERT [13] to vectorize of

norm (𝑐𝑖 ), which we will denote as vec(norm(𝑐𝑖 ) 𝑗 ) ∈ R768 for line
𝑗 of code sample 𝑖 . We will use 𝑣 𝑗

𝑖
as shorthand for vec(norm(𝑐𝑖 ) 𝑗 ).

This vectorized representation (𝑣 𝑗
𝑖
) captures the semantic meaning

of the code line and is resilient to small variations and errors. It
is also contextualized in the larger code sample to capture what
norm(𝑐𝑖 ) 𝑗 means in context.

Next, CFlow uses agglomerative clustering1 to cluster all code
lines across samples {𝑣11, 𝑣

2
1, ..., 𝑣

1
2, 𝑣

2
2, ...} to group similar lines of

code. Each line of code is placed into one cluster. We will use 𝜏 𝑗
𝑖

to represent the ID of the cluster that line 𝑣
𝑗
𝑖
is placed in. The

cluster ID 𝜏
𝑗
𝑖
is then used as a tag for each line. At the conclusion of

stage 1, each line in each code sample has a tag (𝜏 𝑗
𝑖
) that represents

its semantic meaning. Every line of code with the same tag 𝜏 is
semantically similar.

3.3.2 Stage 2: Grouping and aligning code lines across code samples.
In stage 1, CFlow created semantically meaningful labels (𝜏 𝑗

𝑖
is the

label for line 𝑗 of code sample 𝑖). Although these labels capture
the semantic meaning of every given code line, they were created
independent of each line’s location in the larger code sample, a
necessary component for CFlow’s visualization to represent many
code samples coherently. To do this CFlow then aligns lines of code
across samples (Figure 3.2).

As a first step for alignment, CFlow identifies a “canonical pro-
gression” —a set of steps that represents the “average” correct so-
lution. To identify these steps, CFlow first identifies which code
samples are correct, using unit tests. Across each correct solution
norm(𝑐𝑖 ), CFlow identifies the most common tag for each indi-
vidual line across code samples. We denote this progression as
T = (T1,T2, ...). This means, T1 is the most common value of the
tag for the first line (𝜏1

𝑖
) among correct solutions, T2 is the most

common value for 𝜏2
𝑖
, etc. The length of the canonical progression

T depends on a pre-set parameter that determines the minimum

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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Figure 3: CFlow’s algorithm. To generate the results required in CFlow’s user interface, CFlow’s algorithm include four primary
stages: (1) identifying and tagging the steps required to solve a problem, (2) grouping and aligning lines of code across code
samples, (3) identifying semantic, syntactic, and runtime errors, and (4) clustering the grouped results.
agreement across solutions, stopping once it reaches a line number
where tags are not sufficiently consistent. Finally, CFlow computes
the longest common subsequence (LCS) between each code sam-
ple’s tags (𝜏1

𝑖
, 𝜏2

𝑖
, ...) and (T1,T2, ...).

One assumption made by this approach is that there is one rep-
resentative “average” progression T—most correct solutions use a
similar set of steps. We adopt this approach since submissions for
introductory programming problems are short and follow a few
dominant progressions. Future iterations of this algorithm could
address this limitation by producing a value of T for each approach.

3.3.3 Stage 3: Identifying semantic, syntactic, and runtime errors.
An important aspect of CFlow’s visualization is that it helps users
understand common problems and errors that learners face. Testing
code samples against unit tests can identify which code samples
contain errors but does not help identify which specific parts of
the code samples are problematic. Further, even identifying lines
that result in runtime or syntax errors might not help identify the
true actual source of a given error. For example, a runtime error
might occur on a correct line if it references a variable that was
incorrectly set on a line before it.

Thus, to identify lines of code with errors more accurately, CFlow
passes each code sample 𝑐𝑖 through an LLM (ChatGPT-3.5) that is
prompted to identify problems in the code (Figure 3.3). For each line,
this LLM identifies whether the line is (1) correct or contains (2) a
semantic error, (3) a syntax error, or (4) a runtime error. We denote
this information for line 𝑗 of code sample 𝑖 as 𝐸 𝑗

𝑖
. The correctness

at the code line level was determined by GPT3.5-turbo.

3.3.4 Stage 4: Clustering the Grouped Results. After CFlow iden-
tifies a canonical progression (T) and maps each line across code
samples to that progression (stage 2), it then uses agglomerative
clustering to cluster every lines of code within each tag 𝜏 (Figure
3.4). Recall that the tag for line 𝑗 of code sample 𝑖 (𝜏 𝑗

𝑖
) was computed

by clustering vectorized code lines (𝑣 𝑗
𝑖
). As a result, code lines that

are functionally identical (such as “if x != 5:” and “if not 2+3
== i):”) should end up with the same tag 𝜏 . Finally, for every
line, CFlow then performs another round of clustering of code line
vectors 𝑣 within grouped lines with the same tag 𝜏 , with a smaller

maximum distance metric. These clusters are then used to group
solutions within the CFlow UI and are combined with the error
information generated in step 3.

3.4 Evaluation of CFlow’s Algorithm
Using LLM-powered approaches could raise certain concerns, in-
cluding low transparency, lack of control, and issues of trust [28]. To
determine if the performance of the LLM impacts CFlow’s effective-
ness, we conducted a comparative study assessing the accuracy and
reliability of our approach, against human judgment. Specifically,
we analyzed how well the LLM (GPT-3.5-turbo2) used in CFlow
identifies issues within code samples (details in Section 3.3.3). We
did not evaluate the other LLM-powered component in CFlow,
CodeBERT, as its efficacy has been extensively studied and vali-
dated in previous research[13, 32, 56], including tasks on automated
program repair, program clustering, and software defect prediction.

CFlow used LLM to label each line of a code sample as either (1)
correct, (2) having semantic error(s), (3) having syntax error(s), or
(4) having runtime error(s). We evaluated the LLM’s performance
in identifying the semantic errors, by comparing that of expert
human labeler. However, expert human labeler could have different
opinions on which lines are incorrect in a submission. Some people
would only take lines that need edits as incorrect, while other people
would take the whole program construct involving the erroneous
lines as incorrect. Instead of designing a rubric of a single standard
and label ground truth, we recruited two experienced Python pro-
grammer to label 50 solutions to 5 programming exercises, selected
code lines that are incorrect, and compared the results to LLM’s
outputs. All the solutions in the dataset had semantic errors.

In the study, the first participant (L1) annotated the dataset by
marking the code lines with issues. L1 was then asked to review the
LLM’s annotations and update their original labels if necessary. The
second participant (L2) received both L1’s revised annotations and
the LLM’s annotations, but was not informed about the source of
each label set. L2’s task involved comparing these two annotation
sets and choosing one of four options: (1) version 1 is correct, (2)
version 2 is correct, (3) both versions are correct, or (4) both versions

2https://platform.openai.com/docs/models/gpt-3-5
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are incorrect. Beyond evaluating LLM’s performance, this study
design accounts for potential biases in human labeling (e.g., level
of specificity) and enables us to evaluate the representativeness of
the LLM’s labels (e.g., whether the incorrect labels are made up).

To evaluate the level of agreement, we considered labels marking
specific lines with issues and labels applied to the entire code block
containing that line as equivalent. This approach is justified as
human labelers might annotate lines with issues at varying levels
of specificity, yet still indicate the same error. For instance, in a
solution with an incorrect combination of condition and content
in an if-else statement, labeling just the condition and labeling on
the entire if-else statement were considered the same. Our analysis
of the labeling results showed that the two participants agreed on
96% of the lines. L1 incorrectly labeled two solutions, which L2
subsequently corrected. LLM’s outputs agreed with L1 and L2 on
80% and 90% of the lines, respectively. However, upon closer exami-
nation of the specific solutions and error messages generated by the
LLM, we discovered that LLM actually achieved 96% and complete
agreement with L1 and L2, respectively. For example, when incor-
rect solutions missed variables that are required by the exercise,
L1 labeled the lines where the variables were initialized, whereas
LLM labeled the lines where the variables were used. Therefore, we
believe that CFlow’s algorithm is reliable for educational settings.
We will discuss this with more details in Section 5.3.

4 USER STUDY
A within-subject study was conducted to evaluate CFlow’s efficacy
in supporting instructors to understand student code submissions
at scale. The baseline tool, combined the core functionalities of two
state-of-the-art research tools, RunEx and OverCode, that were
designed with a similar goal to CFlow [16, 54]. In the study, par-
ticipants used either the baseline system or CFlow to answer quiz
questions on students’ errors on patterns and logic consistency.
The Institutional Review Board (IRB) approved the study, ensuring
adherence to ethical standards and participant safety.

4.1 Method
4.1.1 Participants. Because CFlow’s end users would be program-
ming instructors, we reached out to senior students from the Uni-
versity of Michigan who had experience teaching Python program-
ming courses. During a screening session, participants indicated
their prior experience teaching and using Python. Teaching assis-
tants and senior students with at least 3 years of experience were
invited to participate in the study. Given that participants with
teaching experience might anticipate certain student mistakes, we
also included non-teaching participants that are senior students
and experienced in Python. In total 16 participants were recruited
(i.e., 4 self-identified as male, 12 as female) and their experience
with Python programming ranged from 2 years to 8 years, with
14 participants having previously taught programming courses in
Python and the other 2 being senior students that are experienced
in Python.

4.1.2 Study Systems. Since there is no widely used commercial
tools that identify students’ mistakes and approaches in code to
compare with, we designed the baseline system as a combination
of RunEx [54] and OverCode [16]. Both RunEx and OverCode are

the-state-of-art systems for viewing students’ solutions. Their user
studies showed benefits from various aspects - RunEx helps users
identify specific code patterns with higher accuracy and expres-
siveness [54], while OverCode allows teachers to quickly develop a
high-level view of students’ approaches and misconceptions, and to
provide feedback to a group of students [16]. However, OverCode’s
limitation was analyzing mistakes of students’ code, as it required
solutions to be free of syntax errors, and categorized solutions that
were syntax-error-free but failed the unit tests in their own dis-
tinct cluster. To fill this missing part of OverCode and ensure a fair
comparison, we complemented OverCode’s clustering results with
RunEx [54], a code search tool designed for programming educa-
tion. RunEx enables users to explore class-wide patterns within a
large volume of student code by augmenting regular expressions
with runtime values for enhanced functionality. During the user
study, we used the user interface of RunEx and display OverCode’s
clustering results in it. Both CFlow and the baseline systems were
implemented as standalone websites. Details of RunEx’s user inter-
face can be found in the prior work by Zhang et al. [54].

To ensure participants fully understand the systems, we spent 20
minutes training participants on using it and participants tried out
the systemwith test tasks before the formal tasks. It should be noted
that while CFlow offers line correctness, which the baseline system
lacks, this is a unique component of our paper. Apart from this, both
systems provide similar information. The primary distinction is the
methods of information presentation. Consequently, we consider
our study design to be a fair basis for comparison.

4.1.3 Programming Problems and Students’ Solutions. To ensure
the authenticity of the data used in the study, we collected data
from a large introductory programming course at the University
of Michigan. This data consisted of students’ solutions to two dis-
tinct programming problems assigned in the course, completed on
their own time. The data were collected from an interactive Python
textbook used by the course. The data contain genuine examples
of mistakes and common patterns students when approaching the
problems. To maintain comparability across the systems, we se-
lected one programming exercise from the dataset for each system
that had a comparable level of complexity. Specifically, to complete
these two exercises, students need to iterate through the provided
list, perform string comparison, and then modify the value in other
list or dictionary variables.

Exercise 1 (E1): For each word in words, add ‘d’ to the end of the
word if it ends in ‘e’ to make it past tense. Otherwise, add ‘ed’ to
make it past tense. Save these past tense words to a list past_tense.

Exercise 2 (E2): Given a string, return a variable counts, where
the keys are letters in the string, the values are how many times
each letter appears in the string.

E1 and E2 each had 3496 and 3249 Python code examples. The so-
lutions varied from 3 lines to 15 lines of code. We checked each sub-
mission to ensure that it did not contain any identifying information
or present any privacy concerns and anonymized appropriately.

4.1.4 Study Setup. The study was conducted remotely using Zoom.
Participants joined two sessions, one that used the baseline system
and one that used CFlow. In the first session, participants all worked
on quiz questions about E1 and in the second session, participants
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all worked on quiz questions about E2. System order was counter-
balanced and we provided 20 minutes of training on how to use the
system in each session. After training, participants had 20 minutes
to answer quiz questions about students’ mistakes and approaches
using the assigned system. After finishing the quiz questions, par-
ticipants were asked to complete a survey about their experience
using the system. After the second session (with the same procedure
but using the other system), we conducted a reflective interview to
compare the two systems. Each participant was compensated with
a $25 USD Amazon Gift Card for the completion of each session.

4.1.5 Question Design. To ensure a fair comparison betweenCFlow
and the baseline system, we carefully designed our quiz questions
to include both multiple-choice and open-ended types. For the
multiple-choice questions, we framed them in ways like "Find how
many students made this mistake or pattern in their code. Select
the closest number from the options below." This approach helped
maintain fairness for both systems. On the other hand, the open-
ended questions asked participants to identify as many common
mistakes as they could find in students’ code using each system.
To establish correct answers for the quiz questions, one of our
team members compiled a list of accurate responses. Importantly,
we didn’t rely directly on the numbers generated by LLMs when
creating the answer options. To ensure objectivity, a team member
used both CFlow and the baseline system to perform the tasks and
designed the correct options to closely match both conditions. This
approach was crucial for maintaining impartiality in our evaluation.

4.1.6 Data Collection and Metrics. During the study, we recorded
participants’ screens as they performed the tasks, as well as their
responses to the quiz questions, their audio think-aloud processes,
and their answers to the post-study survey and follow-up interview.
For each session, one member of the research team was present.

We used two metrics to evaluate participants’ answers to the
quiz questions. For the multiple-choice questions, we calculated

# matched answers
𝑚𝑎𝑥 (total # correct answers, total # selected answers)

(1)

to work out their accuracy for the questions. For a quiz questions
that have four options A, B, C, and D, where A and B are correct,
if a participant selected A, C, and D, the accuracy is 1 / max(2, 3),
which is 0.33. For the open-ended questions, we coded the valid
mistakes participants found during the study based on a list of
existing mistakes generated by the researcher.

We created a list of code scheme of behaviors observed within
the screen recordings. We also coded the screen recordings to an-
alyze the time spent on the multiple-choice questions in the quiz.
For the open-ended questions in the quiz, we analyzed the screen
recordings to understand how participants interacted with the tool
to perform the tasks. For the post-study survey and the follow-up
interview data, one member of the research team used a thematic
analysis to identify recurring themes and insights in the data. We
used a paired t-test for the statistical analysis.

4.2 Results
We present results of the user study below. We mainly focused on
participants’ performance in the quiz questions.

4.2.1 Accuracy of Multiple-Choice Questions in the Quiz. As men-
tioned in Section 4.1.6, we calculated Equation 1 to work out their
accuracy for the multiple-choice questions in the quiz. We found
that participants using CFlow (𝜇 = 93.02, 𝜎 = 0.06) had accuracy
significantly higher than using the baseline system (𝜇 = 52.40, 𝜎 =
0.18, 𝑝 < 0.0001).

4.2.2 Time to Identify Patterns andMistakes in Code. To understand
the influence of the systems on the duration of time participants
spent to answer the multiple choice questions, we computed how
long it took to answer those questions that related to student mis-
takes and patterns. Participants using CFlow (𝜇 = 499.06 seconds, 𝜎
= 201.47) completed the questions significantly faster then using
the baseline system (𝜇 = 817.50 seconds, 𝜎 = 264.85, 𝑝 < 0.001). One
participant mentioned that code clustering at line level visualized
the errors clearly in CFlow (P15).

4.2.3 Number of Valid Mistakes. As mentioned in Section 4.1.6,
we coded the valid mistakes participants found in the open-ended
questions in the quiz. The results showed that participants found
significantly more valid mistakes using CFlow (𝜇 = 4.81, 𝜎 = 1.91
than the baseline system (𝜇 = 2.375, 𝜎 = 1.58, 𝑝 < 0.001). When using
the baseline system, 5 participants only identified syntax errors
and described them in a general way, such as “Type Error” and
“Name Error”, and 3 participants did not list any mistakes due to
time constraints that prevented them from thoroughly reviewing
the majority of the solutions. Conversely, when using CFlow, all 16
participants were able to comprehensively explore the entire solu-
tion set and provide detailed descriptions of the identified mistakes
by pointing out the areas that made the solution incorrect.

4.3 Findings
We analyzed participants’ answers to the post-study survey and
their interview responses. To understand CFlow’s usability benefits
or issues, we also analyzed participants’ interaction and behavior
patterns from the video.

4.3.1 Participants found CFlow helpful in understanding students’
code. On a scale of 7 where 1 is completely disagree and 7 is com-
pletely agree, participants disagreed that CFlow is less helpful in
understanding students’ approaches than the baseline system (𝜇 =
3.38, 𝜎 = 1.80). 9 participants (P1-4, P7-10, P13) expressed that CFlow
was more helpful in understanding students’ approaches than the
baseline system because of the color-coded histogram (P13) and the
overall semantic flow (P8, P13). CFlow highlighted the majority of
students and allowed users to layer the filters on code submissions
(P13). 1 participant thought CFlow and the baseline system were
comparable in understanding approaches (P14).

Participants also found CFlow more helpful in understanding
the code structure than the baseline system. On a scale of 7 where
1 is completely disagree and 7 is completely agree, participants
disagreed that CFlow is less helpful in understanding the code
structure information than the baseline system (𝜇 = 2.94, 𝜎 = 1.48).
In the interview responses, 11 participants expressed that they
preferred CFlow in understanding the code structure (P1-5, P7-
10, P13, P16). CFlow presented a concise view that elucidates the
primary steps students take in their code, thereby showing how
most students structure their code to solve a programming exercise
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(P1-2, P5, P7-8). In contrast, the baseline system required users to
read every individual code solution and search for a specific pattern
of a few lines of code, taking more effort (P2-3, P7, P10-11).

However, some participants also mentioned that the grid view
in the baseline system is simple and straightforward, and had lower
learning curve for them (P5-6, P11-12, P15-16)

4.3.2 CFlow fostered an exploratory and brainstorming approach to
understand students’ code. To better understand how participants
use both systems to comprehend students’ code, we analyzed their
interaction with the systems. We found that participants had very
different strategies in answering questions across the two system.

In the baseline system, participants had two strategies, 1) ran-
dom browsing and 2) active searching without guidance. Since the
baseline system directly displayed clusters derived from OverCode,
each incorrect solution was categorized into its own cluster. With-
out categorized information of mistakes, some participants tried to
look through all the incorrect solutions and reported mistakes they
encountered during the process (P1-4, P7, P9, P15). Other partici-
pants would first come up with some coding patterns and search
for them, and then look for other unseen patterns by filtering out
what has been seen (P10, P13). Usually what they come up with
is a correct pattern instead of incorrect patterns. Due to the lack
of guidance, browsing mistakes using the baseline system largely
depended on what users had in mind and required users to have an
expectation about potential mistakes students would have.

In contrast, when using CFlow, all participants first looked at the
semantic-label abstractions and the color-coded histogram to locate
where most mistakes were and what the common mistakes were.
With the guidance provided in CFlow, they then selectively dug
deeper into the details to reason about students’ misconceptions.

The difference indicated that CFlow and the baseline system each
better fits different settings. participants expressed a preference for
using CFlow when identifying common mistakes and exploring stu-
dents’ code on a larger scale, particularly in extensive programming
classes with hundreds or thousands of students (P2, P7-8, P10-11,
P13). The efficient navigation capabilities in CFlow enables swift
exploration of students’ code (P2, P5-7), while the baseline system
required participants to read each code solution individually (P1,
P3, P5, P7, P9-10, P13, P15). Some participants expressed a prefer-
ence for the baseline system during smaller sessions when seeking
specific patterns (P1, P8, P10, P13).

Furthermore, we found that the ability to explore and brainstorm
students’ code might be beneficial to people with little teaching
experience. We analyzed the mistakes listed by two participants
who did not have teaching experience. P10 did not have any time
to list common mistakes when using the baseline system and listed
4 mistakes with details when using CFlow. P6 listed only 4 general
types of syntax errors when using the baseline system, while in
CFlow listed 7 mistakes with details including semantic errors.
This being said, with CFlow’s guidance in browsing mistakes, even
participants with limited teaching experience and few expectations
of students’ code could effectively identify common mistakes.

4.3.3 CFlow help participants navigate students’ solutions with less
context switching. Based on our observation, we found that CFlow
takes participants less context switch to understandmistakes within

thousands of code solutions. In CFlow, participants can quickly un-
derstand errors of the whole classroom by looking at the dominant
patterns in SAV and SHV, and inspecting on individual solutions by
clicking to view CDV. Participants noted that they could effortlessly
locate the information they desired and seamlessly switch between
abstraction and finer details (P1-3, P5, P9-10, P12-13, P15).

Participants were asked to identify common implementations
used by students. When using the baseline system, 4 out of 8 par-
ticipants generated search queries, filtered out relevant portions
of the dataset, and repeated this process until they no longer ob-
served common implementations. On the other hand, 4 participants
listed a single implementation and moved on to other questions.
However, when utilizing CFlow, all participants initially located a
specific step within the semantic flow, expanded the step to view
all implementations, and identified common implementations by
referring to the numerical counts alongside them in the histogram.

When locating the steps that have the most mistakes in CFlow,
all participants directly used the color-code histogram. They looked
at both the dominant color of the histogram and the point where
it transitioned from green to red. They then inferred that the step
where the majority of it was light green should have had more
mistakes than those where the majority of it was dark green.

5 DISCUSSION
In this section, we (1) discuss how CFlow contributes to the body
of work in visualizing students’ code at scale, (2) discuss the role of
LLM in CFlow, and (3) discuss CFlow’s limitation.

5.1 Connecting Individual Code Solutions with
the Broad Context of the Whole Dataset

Our findings highlight the transformative impact of CFlow. By
compacting thousands of student solutions into a singular, coher-
ent view that traces a shared semantic trajectory, CFlow unlocked
how participants interpreted and interacted with the data from two
perspectives: they could immerse themselves in the specifics of
individual solutions, yet never lose sight of the grand tapestry of
submissions. The color-coded error information on CFlow’s seman-
tic code view enriched this experience, illuminating subtle line-level
differences and fostering a more nuanced understanding.

In contrast, the baseline system required participants to inspect
each incorrect solution individually to identify errors and search
for specific patterns. This approach was less integrated than the
aggregated view offered by CFlow, which naturally linked indi-
vidual solutions to the broader dataset (as noted by P1-4, P7, P9,
P15). While tools like OverCode reduced the number of solutions
instructors had to review, their grid layouts often isolated solutions.
In comparison, CFlow effectively demonstrated the connections
between individual solutions.

5.2 Bridging Abstraction and Code Details
When viewing code solutions at scale, users often toggle between
two distinct levels of abstraction: the high-level overview of the
entire solution set and the low-level details of individual solutions.
Our user study revealed that CFlow introduces an additional inter-
mediate level of information, effectively bridging the gap between
the high-level abstractions and the details of code. For instance,
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Figure 4: An example of how CFlow looks like without LLM
determining line correctness. (a) is a collection of code lines
that check the end of a word, and (b) is the correctness his-
togram. Upon selecting the prominent red block (c), users
can view an example that incorrectly check the end of a word
(d). By clicking on “LogicalError” (e), users are then able to
explore detailed solutions (f).

by looking at the initial visualization without interaction, one par-
ticipant noticed a reduction in the histogram’s size after variable
initialization and for loops. This indicated that students might en-
counter more challenges when writing conditional statements, as
many submissions ended at the content inside the for loops. Fur-
thermore, we found that participants could identify common ap-
proaches through the preview of the code lines associated with the
visualization, without delving into the exact code content.

CFlow offers a novel approach for effectively viewing extensive
code data. While many existing tools have introduced innovative
presentations, such as VizProg’s dynamic dots on a 2D map [55],
they often fall short in conveying semantic meaning through their
visual positioning. This absence forces instructors to manually
select specific areas and delve into the raw code to understand the
content. CFlow pioneers a design that seamlessly integrates code
lines into a semantic view, replete with visual cues. This approach
underscores the advantages of presenting multiple levels of code
representation, effectively bridging the gap seen in previous tools.

5.3 LLM’s Role in CFlow
CFlow uses LLM to generate line-level error information for student
code. We discuss LLM’s role in CFlow from two angles: 1) the
accuracy of LLM, and 2) CFlow’s dependency on LLMs.

CFlow is primarily designed to provide instructors with an over-
arching view of the entire solution set to facilitate exploration and
analysis. Therefore, the LLM does not need to produce perfectly ac-
curate error information for each code line. Our user study revealed
that participants primarily use the color distribution in the his-
togram view to pinpoint steps where most students have mistakes,
and then examine the specific code lines for a deeper understanding

of these errors. Even if disregarding thel ine correctness informa-
tion from LLM and labeling all lines from an incorrect solution as
erroneous, CFlow’s visual design could provide valuable insights
into students’ mistakes. For instance, Figure 4 is an example with-
out LLM’s outputs, where instructors can still observe code lines
grouped by semantic meanings (Figure 4a) and color-coded for
correctness (Figure 4b). After clicking a prominent red block (Fig-
ure 4c), instructors can see that the cluster represents the code line
“if "e" in word:” (Figure 4d), which incorrectly check the end of a
word. Upon clicking “LogicalError” (Figure 4e), instructors can then
explore detailed solutions (Figure 4f). Despite the less pronounced
color difference compared to the original design, instructors are
still able to get useful information and navigate students’ solutions.

While CFlow relies on LLM for locating semantic errors, we
argue that LLM can be replaced in CFlow. Any tool capable of
pinpointing semantic errors could potentially replace LLM in CFlow.
Alternatives might include a smaller language model or an earlier
version of ChatGPT. Moreover, implementing more targeted test
cases could help in detecting the precise lines with errors. We chose
ChatGPT-3.5 for its widespread accessibility and ease of use. For real
classroom deployment, instructors have the flexibility to substitute
LLM with any other tool that effectively locates semantic errors.

5.4 Limitations and Future Work
One challenge is the cost of using LLMs and their applicability in
real-time settings. CFlow used an LLM for post-hoc code analysis,
but applying this approach in real time demands both financial
and time resources heavily. Future work should seek alternatives
that balance computational cost with real-time needs. Another
limitation is that the user study tested only two programming
problems, which may not reflect the model’s performance across
different topics and languages. Future studies should investigate a
wider variety of problems.

6 CONCLUSION
In this research, we addressed the challenges faced by instructors
when analyzing large numbers of varied code submissions from
students. We introduced CFlow, a novel system that uses semantic
labeling and code structure to visualize the semantic flow of stu-
dents’ submissions. By abstracting code statements based on their
meaning while maintaining structure, CFlow offers a comprehen-
sive view that simplifies navigation and comparison of code flows.
Our evaluation showed that CFlow allows educators to analyze
these submissions more effectively than traditional methods. Par-
ticipants found it easier to explore patterns and understand code
structure with CFlow. This work highlights the potential for improv-
ing teaching methods by better understanding student submissions
and delivering targeted feedback at scale.
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