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A B S T R A C T

The structural, thermodynamic and transport properties of the CaF2-MgF2 molten salt system were investigated 
with ab initio molecular dynamics (AIMD), system-specific neural network interatomic potentials (NNIPs) and 
universal PreFerred Potentials (PFP). We trained an NNIP model using AIMD data as input and used this potential 
to efficiently simulate the interactions within a large supercell in a temperature range of 1273–1773 K. The 
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code was employed to validate our 
trained NNIP model. The Matlantis software with universal PFP is also presented to prove its feasibility for MD 
calculations and can be considered as a useful alternative simulation tool for higher-order systems where existing 
potentials are not readily available. We calculated structural and thermodynamic properties including radial 
distribution function (RDF), angular distribution function (ADF), specific heat capacity, ionic self-diffusivity, and 
viscosity. Our results indicate that the system exhibited a high degree of structural disorder, with the Ca, Mg, and 
F ions forming a liquid solution. Using PFP, the positions of the first peak in RDFs for Ca-F and Mg-F pairs are 
only slightly left-shifted (<0.05 Å), and the estimated viscosity of the melt decreases from 4.613 mPa⋅s to 1.846 
mPa⋅s with an increase in temperature from 1273 K to 1773 K, in agreement with the NNIP trained specifically 
for CaF2-MgF2. Our results provide valuable insights into the properties of the CaF2-MgF2 system at high tem-
peratures and serve as predictive models for the development of new electrolytes that could be used for silicon 
epitaxy by adding silica.

1. Introduction

In recent years, the study of chloride and fluoride molten salt systems 
has gained notable attention due to their promising various industrial 
applications, including fuel solvent as well as coolant in the molten salt 
reactor (MSR), energy storage, and the electrolyte in solid oxide mem-
brane (SOM) electrolysis for metal extraction processes, etc. Neverthe-
less, the high operation temperature and possible exposure of toxic gases 
to experimental personnel and corrosive damage to equipment have 
greatly hindered the study and development of molten salts [1].

Therefore, compared to the trial and error method of experimental 
testing, introducing the computational simulations not only saves time 
and costs but also efficiently carries out high-throughput calculations 

under a variety of representative conditions [2]. Computational 
methods such as molecular dynamics (MD) have been widely used to 
study the behavior of molten salt at elevated temperatures and to un-
derstand the interactions between ions or complex ion clusters in sys-
tems [3–5]. The classical MD or interatomic potential MD (IPMD) has 
the ability to simulate timescale in the range of hundreds of picoseconds 
(ps) or nanoseconds (ns) and thousands of atoms in a massive supercell 
at the same time to represent the bulk material. However, the accuracy 
of IPMD simulations depends on the choice of interatomic potentials, 
which describe the interactions between different ion pairs. Also, IPMD 
is limited to specific potential models for the pre-defined system. 
Therefore, researchers have come up with two approaches to overcome 
the above-mentioned problems: one is ab initio molecular dynamics 
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(AIMD), which can be used to study the molten salt by solving the 
Schrodinger equation but requires significant computational resources 
and has limitations of simulation time and system size [6–8]; another, 
more recently, is machine-learning generated potentials called neural 
network interatomic potentials (NNIPs) that have emerged as a new 
promising class of machine learning potential model [9–12]. NNIPs are 
trained by large datasets of quantum mechanics calculations such as 
AIMD, which provide a high level of accurate information about energy 
and forces. After the training, it can be used to quickly predict these 
quantities without the need for additional AIMD simulations and shows 
higher flexibility over traditional interatomic potentials. However, such 
efforts are limited by the time required to generate new training data 
and re-train models for new systems, which can become quickly un-
tenable for molten salt systems in which numerous corrosion products, 
fission species, and atmospheric impurities may exist. A recent effort 
that seeks to overcome this limitation is the development of a universal 
interatomic potential provided by Matlantis [13]. This application of 
Mantlantis has been introduced here, and the results between these 
three methods (AIMD, trained NNIP, and Mantlantis) have been 
compared. Matlantis is a versatile atomistic simulator that employs the 
potential of NNIPs and seamlessly integrates a deep learning model into 
a conventional atomic simulation framework. It facilitates extensive 
materials exploration through its capability to simulate the atomic-level 
characteristics of a wide range of materials. Also, it should be noted that 
Matlantis is a universally generalized predictor for all combinations of 
trained pseudopotentials, which is different from conventional NNIPs 
that have all been trained on a specific system.

For molten salts, both IPMD and AIMD simulations have been used 
extensively to study the behavior of chloride systems such as LiCl-KCl 
molten salt systems for decades and to better understand their basic 
thermodynamic properties and ion interactions under specific condi-
tions [14–21]. In addition, LiF-NaF-KF (FLiNaK), LiF-BeF (FLiBe), and 
other fluoride systems have been studied because they are suitable for 
the coolant and solvent salt for the MSR [6,21–33]. KF-NaF-AlF3 and 
LiF-NaF-AlF3 systems have also been studied through MD for the large- 
scale production of aluminum [34–37]. Besides the above-mentioned 
chloride and fluoride systems, CaF2-MgF2 flux has attracted significant 
interest in the SOM electrolysis process with the yttria-stabilized zirco-
nia (YSZ) membrane for magnesium, silicon and aluminum production 
[38–43]. Compared with the previous attempt of using mixing flux 
including barium fluoride, magnesium fluoride, and yttrium fluoride as 
the electrolyte to extract silicon crystals from silica [44,45], the CaF2- 
MgF2 system has many more advantages such as relatively low melting 
point, low toxic volatility, less corrosive to YSZ membrane, high silica 
solubility, and high ionic conductivity. However, understanding the 
structure and transport properties of CaF2-MgF2 and their temperature 
and composition dependence is challenging due to the scarcity of 
existing literature about experimental measurements and suitable 
interatomic potentials.

The goal of this study is to use the structural and dynamical prop-
erties investigation of the liquid CaF2-MgF2 binary system with its 
temperature dependence as the simplest case to test the capabilities, 
limitations, differences, and reliabilities between IPMD-NNIPs, AIMD, 
and Matlantis; then further high-ordered systems such as CaF2-MgF2- 
SiO2 and their classical potential problems will be investigated in the 
future. We aim to probe the degree of structural disorder, thermody-
namics properties, and ionic self-diffusivity in this system at tempera-
tures above its melting point and to compare our results with existing 
experimental data. Additionally, we assessed and compared the 
strengths and limitations of three distinct simulation methods by 
analyzing selected results. In this paper, we will describe the methods 
used to generate the NNIPs, the simulation protocol and conditions, and 
the data analysis techniques. We will present and discuss the results of 
our simulations and relate them to the development of new applications 
for this system.

The present study offers a pioneering approach in the field of 

multiscale simulations by integrating Density Functional Theory (DFT)- 
based NNIPs with large-scale MD simulations using both the Matlantis 
framework using PreFerred Potentials (PFP) [63] and the Large-scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [46]. This 
combination enables accurate and systematic analysis of the structural 
and dynamical properties of the CaF2-MgF2 binary fluoride system, 
which is crucial for high-temperature applications in the molten salt 
industry. The novelty of this work lies in its ability to bridge disparate 
time scales and atomistic details, providing a comprehensive under-
standing of structural, thermodynamic, and transport properties across a 
wide range of temperatures and compositions. By meticulously vali-
dating and cross-verifying the results obtained from IPMD-NNIPs and 
Matlantis with AIMD data, this study ensures the reliability and 
robustness of the simulations. The significance of this research extends 
beyond the CaF2-MgF2 system, demonstrating a scalable and transfer-
able methodology that can be applied to other complex materials sys-
tems, thereby advancing the capabilities of multiscale modeling in 
materials science.

2. Methods

2.1. AIMD

A supercell containing 96 atoms (16 Ca, 16 Mg, and 64F) was 
considered to represent the 50–50 mol% MgF2-CaF2 composition. AIMD 
simulations for this fluoride system were performed by the Vienna Ab- 
Initio Simulation Package (VASP) [47–49]. The Generalized Gradient 
Approximation (GGA) with the Perdew Burke Ernzerhof (PBE) was 
employed for the exchange–correlation energy [50]. Also, the Projector 
Augmented Wave (PAW) pseudopotentials were chosen for Ca 
(3s23p64s2), Mg (3s2), and F (2s22p5) [51,52]. The global energy cut-off 
for the plane wave was set to 600 eV, and 10−4 eV was used as the 
convergence criteria for the electronic self-consistent loops. Calculations 
were performed using a 1 × 1 × 1 k-point and a time step of 2 femto-
seconds (fs), which results in the convergence within 2 meV/atom. The 
methodology employed in this study involved utilizing the density 
functional theory (DFT-D3) formulation introduced by Grimme [53] to 
incorporate dispersion interactions. The canonical ensemble (NVT) was 
adopted, employing a Nosé-Hoover thermostat [54] to regulate tem-
perature at 1400 K, while periodic boundary conditions were main-
tained throughout the simulations. With the aim of obtaining the relaxed 
density, 6 volumes were considered to fit the equation of state at 1400 K. 
For all volumes, in order to avoid atomic overlap in initial configura-
tions, we used the Packmol package to generate random atomic posi-
tions in the supercell [55]. The initial volumes containing random 
configurations were equilibrated for at least 20 ps before obtaining 
average values of pressures to fit the equation of state. During the 
simulation, the total pressure of the system was averaged from nearly 50 
ps trajectory at different volumes to fit the Birch-Murnaghan equation of 
state (EOS) [56]. According to our previous work, an equilibrated 
simulation trajectory of 50 ps should be sufficient to obtain converged 
molten-salt structure and properties [57]. Based on the resulting pres-
sures and volumes at a given temperature, the fitted P-V curves were 
used to determine the equilibrium volume.

2.2. Training of NNIPs and IPMD

To train the NNIPs, the study utilized the DeePMD-kit (DP-kit) 
package version 1.3.3 [58]. Within the DP-kit, the Deep-Pot-Smooth 
Edition (DeepPot-SE) potential was selected for its ability to produce 
smooth and continuously differentiable surfaces of potential energy 
[59]. The DeepPot-SE model establishes a relationship between the local 
environment surrounding each atom within an 8 Å cut-off and the per- 
atom energy. This ensures that the collective sum of atomic energies 
aligns with the reference DFT energy. The gradients derived from NNIP- 
predicted energies are subsequently employed to compute atomic forces. 
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During the training of a DeepPot-SE model, the loss function is evaluated 
and minimized by incorporating both reference energies and forces, 
following the procedures of our previous study [11].

The training dataset comprised 17,500 relaxed configurations at 
1400 K by using AIMD data with 96 atoms. In addition to these, 5473 
with 15.76 % expanded and 6438 with 5 % compressed configurations 
at 1400 K were also included in the NNIP training. All training dataset 
configurations were obtained from AIMD calculations discussed in 
Section 2.1. Our previous work shows that a small percentage of 
expanded and compressed configurations were necessary to get stable 
densities using the trained NNIP [11,12]. The datasets were randomly 
divided into two parts: 80 % for training and 20 % for validation during 
the training procedure. The size of the embedding network is (25, 50, 
100) where the fitting network is (240, 240, 240). And 2 Å and 8 Å were 
selected for the smooth and hard cut-off radius, respectively. During the 
training, the prefactors pestart, pfstart, pelimit, and pflimit were pre-set to 0.002, 
1000, 1, and 1 in the loss function. The above parameter settings have 
been verified to obtain the well-adjusted potential energy surface by our 
previous study for high-order molten salt system [11]. Only energies and 
forces from AIMD were used for training, and their errors for our trained 
potentials are 1.01 meV/atom and 36.6 meV/Å, which fall within the 
precision range of DFT and indicate the high accuracy of energy pre-
dictions during our testing.

The structural and dynamical properties of CaF2-MgF2 molten salt 
were investigated using IPMD simulations performed using the LAMMPS 
code [46]. Trained NNIPs were used to describe the interactions be-
tween different ion pairs. The simulations were performed in the 
isothermal-isobaric (NPT) ensemble [60–62] at temperatures of 
1273–1773 K, and the time step was set to 0.001 ps. The initial con-
figurations were obtained by first raising the temperature of the super-
cells to 5000 K and equilibrating the system for 100 ps, then gradually 
cooling to the desired temperature for a total of another 100 ps. Finally, 
the production runs were performed for the last 100 ps, and thermo-
dynamic output data were collected every 0.1 ps. The supercell size was 
set to a total of 768 atoms (for eutectic composition: 128 Ca, 128 Mg, 
and 512 F), and periodic boundary conditions were applied.

2.3. Matlantis with PFP

Matlantis is powered by a universal neural network potential called 
PFP [63], which is trained from DFT calculations. It currently accom-
modates combinations involving 72 different elements, with plans to 
incorporate additional elements in the future. The speed of Matlantis can 
exceed 10,000 times faster than conventional DFT calculations with 
their pre-trained model and physical property library. No hardware or 
software dependencies and training data are needed from users. We 
performed MD simulations for the CaF2-MgF2 fluoride system in Mat-
lantis from 1273 K to 1773 K at 50 mol% MgF2 content. The initial 
configurations are the same as that in the IPMD part of Section 2.2, 
which contains a total of 768 atoms. We have collected thermodynamics 
data and trajectories during the 50 ps NVT production running for re-
sults analysis and comparison. The used force field, model version of 
estimator, and calculation model are PFP, v5.0.0, and Estima-
torCalcMode.CRYSTAL_U0_PLUS_D3, respectively.

3. Results and discussion

In this part, we have presented the performance and implications of 
our trained potentials, the density profiles, and the derived structural 
information. Also, the physio-chemical properties, as well as an in-depth 
examination of diffusivities and viscosity in the context of our research 
objectives, are revealed through our analysis.

3.1. Density

The temperature dependence of density can be expressed as: 

ρ = A+BT (1) 

ρ is g/cm3, T is Kevin and A, B are fitting parameters. Detailed numbers 
are shown in Table 1. Fig. 1 shows the temperature dependence of 
calculated densities of the system from both IPMD-NNIPs, AIMD, and 
Matlantis for the eutectic composition of the CaF2-MgF2 system. 
Calculated densities are analyzed using averaged equilibrium volume 
through the NPT ensemble for all three methods and are plotted as solid 
lines, and found experimental values are shown as dashed lines. We also 
estimate the densities through the additive molar volume method, 
which assumes the system is totally ideal mixing [64]: 

ρideal mix(T) =
∑XiMi

∑XiVi(T) (2) 

Where Xi and Mi are the mole fraction and molar mass of component i, 
and Vi(T) is the molar volume of component i at temperature T. The 
empirical molar volumes for CaF2 and MgF2 salts are derived from the 
measurements of the pure components [65,66] and are given in Table 2. 
Considering the melting points of the pure CaF2 and MgF2 salts and their 
eutectic mixing are 1683 K, 1525 K and 1253 K [67], respectively, it can 
be assumed that the given empirical molar volumes of the pure com-
ponents at 873 K and 1073 K can be used to estimate their mixed solid 
densities below the eutectic temperature.

Compared with the AIMD simulations without dispersion correction, 
the absolute values of calculated densities from simulations by using the 
DFT-D3 dispersion method have a much better agreement with the ad-
ditive molar volume method and the existing experimental results. 
However, the results from IPMD with NNIPs (trained on DFT-D3 AIMD 
data) show a 5–10 % error, the same as those without dispersion, and the 
equilibrium volumes from Matlantis are much larger than others. One 
possible reason is that Matlantis is a generalized potential that has not 
previously been trained on our system; also, since the dispersion 
correction on DFT is semi-empirical and typically needs to be tested 
depending on the system, the same corrections are likely not represented 
in the Matlantis training set. Another reason for the general under-
prediction of the NNIP is the loss of information beyond the finite-range 
cutoff (here, 8 Å), which could result in error in representing long-range 
electrostatic interactions that are present in molten salt [11,68]. Even 
though there are some discrepancies between the absolute values, the 
fitted slopes of temperature dependencies are very close to each other 
and the experimental values. Considering the equilibrium volumes are 
critical and will have a large effect on subsequent property estimations 
during the NVT calculations, the resulting volumes and structures from 
IPMD-NNIPs and Matlantis have been re-sized to the fitted configura-
tions from the AIMD EOS process for further production runs.

Table 1 
Fitted parameters of A and B.

Methods A 
(g • cm3)

B (£10−4 

g • cm3 • K−1)
Temperature 
range (K)

PFP_NPT 2.8995 −4.6970 1273–1773
AIMD_NPT (No dispersion) 3.0657 −4.5205 1273–1573
AIMD_NPT (DFT-D3 

dispersion)
3.1441 −4.2767 1273–1673

AIMD_EOS (DFT-D3 
dispersion)

3.1855 −4.5124 1273–1773

IPMD-NNIPs_NPT 3.1325 −4.7915 1273–1773
Additive Molar Volume 

Method (Ideal mixing) 
[65,66]

3.2112 −4.5611 873–2100

1989, Shigeta HARA et al.
[69]

3.3120 −4.8300 1670–1854

2018, Michal Korenko 
et al.[70]

3.2907 −4.7480 1273–1353
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3.2. Structural information

Here, the results at 1773 K are demonstrated as an example; the 
results for other temperatures (1273 K–1773 K) can be found in the 
Supplemental Materials.

3.21. Radial distribution function (RDF)

The partial RDFs of different ion pairs gij(r) at 1773 K with eutectic 
composition from IPMD-NNIPs (DeepMD-LAMMPS), AIMD (VASP), and 
PFP (Matlantis) are all calculated using in-house Python code with a 
third-party library named vasppy [71] and shown in Fig. 2 for com-
parison. The y-axis of gij(r) presents the probability of finding a particle 
at a distance r from the particle at the origin and is given by: 

gij(r) = V
NjNj

∑

j
〈nij(r,Δr)〉

4πr2 (3) 

The V represents the total volume of the simulated supercell, while N 
denotes the quantity of particles present. nij(r,Δr) stands for the mean 
count of atom j that encircles a central atom i within a specified prox-
imity range of Δr.

Therefore, the corresponding radius of the first peak indicates the 
average bond length between a pair of two kinds of ions. Table 3 gives 
the averaged bond lengths for the Ca-F and Mg-F pairs at 1773 K by 
using the above three methods. It is easy to find that the estimated 
average bond lengths are almost the same from three different simula-
tion methods for each pair, and the heights are also very close except for 
the cation-cation pairs, which have some slight differences.

3.22. Temperature dependency of RDF

We also studied the temperature dependency of RDF for counter-ion 
pairs. As we can see in the zoom-in figures of the first peak from PFP 
(Matlantis) results in Fig. 3, the first peak height gradually decreases 
from 3.843 to 3.556 and from 5.772 to 5.309 with temperature 
increasing for both Ca-F and Mg-F pairs, respectively, which indicates 
the system is becoming more disordered as the temperature rises. This is 
attributed to the higher kinetic energy of ions at elevated temperatures, 

Fig. 1. Density comparison between AIMD, IPMD-NNIPs, and PFP for the eutectic composition of the CaF2-MgF2 system.

Table 2 
The empirical molar volumes for the pure CaF2 and MgF2 salts [65,66].

Standard Empirical Molar Volume  

(cm3 •mol−1)

873 K 1073 K 1700 K 1800 K 1900 K 2000 K 2100 K

Pure CaF2 salt 27.5 28.3 31.06 31.55 32.06 32.58 33.12
Pure MgF2 salt 22.4 23.3 26.58 27.19 27.82 28.49 29.19

Fig. 2. Partial RDFs of different ionic pairs of eutectic CaF2-MgF2 system at 
1773 K by AIMD, NNIPs, and PFP in this work.

Table 3 
Calculated averaged bond length of cation–anion pairs at 1773 K.

Pair Ca-F Mg-F
Method AIMD NNIPs PFP AIMD NNIPs PFP
Averaged bond length 

(Å)
2.205 2.235 2.235 1.935 1.935 1.935
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which weakens the bond strength. In addition, the position of the peak, 
or estimated average bond length, is also subtly left-shifted from 2.265 Å 
to 2.235 Å for Ca-F pairs. For Mg-F bond length, even though our raw 
data shows a constant value of 1.935 Å for all temperatures due to the 
large interval of 0.03 Å of distance r, it is easy to find that the peak is also 
left-shifted in the figure.

This phenomenon is evident across all three different methods and 
detailed comparisons of partial RDFs and average bond lengths at 
various temperatures obtained from AIMD, NNIPs, and PFP are provided 
in Supplemental Materials Figure S1 and Table S1.

3.23. Coordination number (CN)

The coordination number (CN) of different ion pairs can be estimated 
from the integral of partial RDFs, and the first shell CN is analyzed by 
integrating the area from the origin to the first minimum of the curve 
[72]. The CN results at 1773 K are shown in Fig. 4 and Table 4. Given the 
cutoff at the first minimum in partial RDFs, the CN for Ca-F and Mg-F 
pairs are around 7 and 5.5, respectively. Additionally, as temperature 
increases, the CN tends to decrease slightly, as shown in Supplemental 

Materials Figure S2 and Table S2. This is due to the same reason dis-
cussed in the RDF part that higher temperatures will weaken the bond 
strength. Consequently, the central cations are less able to attract and 
hold anions.

In Fig. 5, the polyhedron analysis was conducted for the final step at 
1773 K in the IPMD-NNIPs simulation. Most of the polyhedra with Ca as 
the center atom are connected to 7 F ions, and for the Mg-centered 
polyhedron, we also found that there is not much difference between 
the probability for Mg to connect to 5 and 6 F ions, which is consistent 
with the CN results we obtained.

3.24. Angular distribution functions (ADF)

The angular distribution functions (ADF) have also been analyzed at 
1773 K and shown in Fig. 6. The ADF describes the probability distri-
bution of bond angles or dihedral angles within a molecular system. It 
helps us to understand the geometry and predict the coordination 
numbers, as well as the potential clusters and their connectivity. The 2D 
density plots between the θCation−F−Cation and the distance of Cation- 
Cation are present in Fig. 7.

Based on the resulting ADF Figs. 6 and 7:

1. The results from three different methods are consistent with each 
other, especially for the position of peaks. However, for the angle of 
the Mg-F-Mg pair, the result from NNIPs shows a sharper peak and 
lower frequency in the small angle range than the other two 
methods. This is probably caused by different cutoff selections of 
bond length. Fortunately, the frequency of ADF just indicates the 
probability of finding a specific angle and what we care more about is 
the angle or position of the peak.
2. Both Ca-centered and Mg-centered angles (F-Ca-F and F-Mg-F) 
have a significant peak at a lower angle and a secondary peak at a 

Fig. 3. The temperature dependency of the height and position of the first 
peaks from PFP (Matlantis) results for (a) Ca-F and (b) Mg-F in this work.

Fig. 4. The calculated coordination number of different ionic pairs of eutectic 
CaF2-MgF2 system at 1773 K from AIMD, NNIPs, and PFP.

Table 4 
The first shell CN of cation–anion pairs at 1773 K from AIMD, NNIPs, and PFP.

Ca-F Mg-F
cut-off CN cut-off CN

AIMD_VASP 3.255 6.675 2.985 5.594
NNIPs_LAMMPS 3.375 7.085 2.865 5.387
PFP_Matlantis 3.345 7.022 2.955 5.559

Fig. 5. The polyhedron analysis for the final step at 1773 K from IPMD-NNIPs; 
Ca, Mg and F ions are colored blue, orange, and gray, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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higher angle. The lower angle and higher angle represent two adja-
cent and two opposite F ions within the cation-centered polyhedron.
3. As for the F-centered angle, the lower the angle, the higher the 
probability for linked cations re-connected by another F ion, thus 
making two neighboring cation-centered polyhedrons share two or 
even three F ions, as known as edge-sharing and face-sharing. 
Similarly, the high F-centered angle implies two adjoining cation- 
centered clusters connect with only one F ion, which is corner- 
sharing. Since the repulsive force between the F ions, the F- 
centered angle starts from around 70 degrees. From Fig. 6, we found 
the peak of F-centered pairs located at 103 degrees and 100 degrees 
for Ca-F-Ca and Mg-F-Mg pairs. Also, these two F-centered pairs have 
lower frequency with increasing angle, which means most adjacent 
polyhedrons are more likely to be connected with edge-sharing or 
face-sharing rather than corner-sharing.
4. In Fig. 7, the single high-density region indicates the edge-sharing 
complexes are dominant for both of Ca and Mg cations. The Mg re-
gion is located at relatively lower cation-cation distances compared 
to the Ca region; this is also consistent with the smaller average 
calculated bond length of Mg-F in Section 3.21.

The comparison of analyzed ADF for the counter-ion pairs at various 
temperatures between AIMD, NNIPs, and PFP can be found in Supple-
mental Materials Figure S3.

3.3. Heat capacity

The heat capacity is the ability to absorb heat as temperature in-
creases and can be calculated at constant volume conditions by: 

CV =

(dU
dT

)

V
≈

(

ΔE
ΔT

)

V
(4) 

U is the internal energy, and E is the total system energy. Since the 
methods of evaluating system energy are different between the methods 
(AIMD, NNIPs, and PFP), the direct comparison of total system energy 
values is meaningless and unnecessary. However, the heat capacity is 
only related to the slope of enthalpy that follows temperature changes, 
which makes it comparable.

The calculated average Cv are 0.907 J⋅K−1
⋅g−1, 0.947 J⋅K−1

⋅g−1, 
1.121 J⋅K−1

⋅g−1 for AIMD, NNIPs, and PFP, respectively. The results 
from all three methods are very close and consistent with each other.

3.4. Ionic self-diffusivity

The mean square displacement (MSD) can be extracted and calcu-
lated from the trajectory files during the MD simulations. It is given by: 

MSD(t) = 〈Δr2(t)〉 = 1
N

∑

N

i=1
[ri(t) − ri(0)]2 (5) 

Where N is the total number of atoms, ri(t) is the position of the particle i 
at time t, ri(0) is the initial position of the particle i. The MSDs of the 
individual elements (Ca, Mg, and F) of the eutectic CaF2-MgF2 system at 
1773 K are shown in Fig. 8 for comparison. Note that the MSD results 
from AIMD end at 20 ps. All MSD curves increase linearly with time, 
indicating that the ions are diffusing in the liquid. Fig. 8 shows that the 
ions of both Ca and Mg have a similar degree of mobility with no sig-
nificant differences, but F ions have a greater slope that indicates larger 
diffusivities.

The ionic self-diffusivities were able to be calculated using the Ein-
stein equation for Ca, Mg, and F ions at the above condition: 

D =
1
3 limt→∞

d
dt (MSD) (6) 

The Einstein equation suggests the diffusivity can be estimated by the 
slope of MSD versus time, then divided by 3 due to the ion diffusing 
along the x, y, and z three directions. The results at 1773 K are shown in 
Fig. 9.

Fig. 6. The analyzed angle distribution function of the counter-ion pairs at 
1773 K from AIMD, NNIPs, and PFP.

Fig. 7. Cation-F-Cation bond angle distributions from PFP at 1773 K.

Fig. 8. The MSDs comparison for Ca, Mg, and F ions at 1773 K between AIMD, 
NNIPs, and PFP (AIMD results end at 20 ps).
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The error bars presented in Fig. 9 represent the statistical un-
certainties in the diffusivity calculations. These uncertainties arise from 
several factors during the simulation and data analysis process. First, 
diffusivity calculations are based on averaging the MSDs over multiple 
time intervals and ion trajectories; the inherent fluctuations in these 
measurements contribute to the overall uncertainty. Second, longer 
simulations generally provide more accurate results but are computa-
tionally expensive; shorter simulations can introduce higher uncertainty 
due to limited sampling, especially for the AIMD_VASP results. Last, we 
have conducted multiple independent simulation runs to obtain a sta-
tistically significant estimate of diffusivity; the error bars reflect the 
standard deviation of diffusivity values obtained from these indepen-
dent runs.

Compared to the NNIPs and PFP methods, AIMD results exhibit 
significant uncertainty and longer error bars. This is because, consid-
ering the time and computational cost efficiency, there are only one- 
eighth the number of atoms in AIMD supercells compared to the 
supercells in NNIPs and PFP. Fewer atoms result in high discrepancies 
during the time average process for calculating MSDs, thus affecting the 
diffusivities. However, overall, for each element, all three methods 
provided similar predictions. As we discussed in the MSDs part, the 
diffusivities of Ca and Mg ions are very close to each other, and the F ions 
have the highest self-diffusivity. In addition, the diffusivity of F ions is 
only around twice that of cations. The possible reason that F ions didn’t 
diffuse much faster is the ionic radius of Fluorine is almost the same as 
Calcium and even bigger than Magnesium, which makes it harder for 
some F ions with relatively low kinetic energy to cross the energy barrier 
and diffuse freely, thus lower the total average self-diffusivity of F ions. 
The differences between temperatures and among the three methods are 
shown in Supplemental Materials Figure S4.

The Arrhenius diagram is also investigated and plotted in Fig. 10 to 
obtain the temperature relationships and the activation energies. Based 
on the calculated diffusivities, activation energies of diffusion can be 
derived by taking the natural logarithm of both sides of the Arrhenius 
equation: 

lnD = −
Qdif
R

(1
T
)

+ lnD0 (7) 

R is gas constant, Qdif is the activation energy of diffusion, T is tem-
perature, and D is the self-diffusivity. The similar activation energy of 
cations and anions, as listed in Table 5, indicates they experience 
comparable barriers to movement within the salt at high temperatures.

3.5. Viscosity

Viscosity is a fundamental property of fluids that characterizes their 
resistance to flow. Since the AIMD is not able to get long enough tra-

jectories to use the Green-Kubo taking autocorrelation of the stress 
tensor, another feasible method to estimate the approximate viscosity 
from MD simulations is using the Stokes-Einstein equation, and is given 
by: 

η =
kBT

2πDd (8) 

Where kB is the Boltzmann constant, and T is the temperature. D is 
calculated by the arithmetic mean of self-diffusion coefficients of Ca2+, 
Mg2+, and F− ions. And d is the radius of the spherical particle, which is 
approximately considered as the averaged bond length of all ionic pairs 
in molten salt CaF2-MgF2: 

d =
dCa−Ca + dMg−Mg + dF−F + 2dCa−F + 2dMg−F + 2dCa−Mg

9 (9) 

There is another method called reverse non-equilibrium MD 
(rNEMD) [73]. It can also predict viscosity and can be easily conducted 
through the Matlantis feature package. During the rNEMD, an artificial 
velocity gradient is generated between the bottom and middle (along the 
z direction) in the simulation box. Then, the exchanged momentum can 
be defined as the momentum difference along the x direction between 
the bottom and middle: 
Pexchanged = Px,bottom −Px,middle (10) 

The momentum flux is proportional to the product of viscosity and ve-
locity gradient: 
∑Pexchanged

2tSxy
= η

∂vx
∂z (11) 

t is time, Sxy is the area of the x-y plane of the simulation box, vx is the 
partial velocity along the x direction, and η is the viscosity.

As shown in Fig. 11, with the temperature rising from 1273 K to 
1773 K, the calculated viscosity η of eutectic CaF2-MgF2 molten salt 
drops from 4.836 mPa⋅s to 1.872 mPa⋅s, 4.088 mPa⋅s to 1.764 mPa⋅s, 
and 3.877 mPa⋅s to 1.792 mPa⋅s estimated by the Stokes-Einstein 
equation from AIMD, IPMD-NNIPs, and PFP, respectively. In addition, 
the viscosity predicted by the rNEMD method also drops from 4.613 
mPa⋅s to 1.846 mPa⋅s, which is consistent with the above results. 
However, Michal Korenko et al. [70] have reported that their measured 
averaged viscosity for the 49.6 % CaF2 – 50.4 % MgF2 system dropped 
from 7.822 mPa⋅s to 5.730 mPa⋅s and the experimental condition is from 
1000 ◦C to 1080 ◦C, which is around 1.5 times higher than our predic-
tion in the same temperature range but within reasonable approxima-
tion. Besides, our simulations are much closer to their additive model 
results.

The deviation can be attributed to several factors inherent to the 
Fig. 9. Comparison of calculated diffusivities for Ca, Mg, and F ions with 
eutectic CaF2-MgF2 system at 1773 K from AIMD, NNIPs, and PFP.

Fig. 10. Comparison between AIMD, NNIPs, and PFP for Arrhenius diagram of 
diffusivity.
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nature of MD simulations. On one hand, the accuracy of the interatomic 
potentials used plays a crucial role in determining the viscosity. While 
these potentials are trained and validated, slight inaccuracies or limi-
tations in capturing long-range interactions or complex atomic behav-
iors can result in deviations. On the other hand, the finite size of the 
simulated system and the boundary conditions applied can also affect 
the viscosity measurements. In smaller systems, boundary effects and 
finite-size effects are more pronounced, leading to deviations in the 
calculated viscosity.

4. Discussion

By comparing the density results between IPMD-NNIPs, AIMD, and 
Matlantis, a significant difference is that the equilibrium volumes are 
overestimated from Matlantis. One possible reason for this is that the 
PFP potentials are trained from ab initio calculations, most of which are 
conducted at much lower temperatures or at 0 K. As such, configurations 
sampled at higher temperatures are likely to deviate more from the 
training set, resulting in a larger difference in equilibrated volumes 
under the NPT ensemble. Furthermore, training data used for PFP likely 
includes different approximations for dispersion interactions in order to 
fit a wide range of chemical systems. Here, the density is sensitive to 
small deviations in predicted energy and dispersion interactions. As a 
result, the Matlantis overestimated lattice volume by at least 14 % 
compared to existing values in literature, and 5–10 % error for that of 
IPMD-NNIPs results. This proved our trained in-house potential is more 
accurate than the universal PFP potentials in Matlantis during averaging 
equilibrium volumes in the NPT ensemble for this specific CaF2-MgF2 
molten system. The overestimated lattice volume will have large effects 
on subsequent properties determination, such as causing longer average 
bond lengths between ions, thus right-shifting peaks in the RDF results 
and decreasing the energy barrier of diffusion because of more inter-
stitial spaces. Therefore, we have re-sized all NPT resulting supercells in 
AIMD, IPMD-NNIPs, and Matlantis to the equilibrium volumes obtained 
from the EOS procedure in AIMD to have a fair comparison of accuracy 
before the NVT production run.

From the comparison of lattice and structure analysis, all three 

methods showed almost the same outputs, especially for the RDF and CN 
analysis. Even though there are some discrepancies in the frequency of 
the Mg-F-Mg pair in ADF evaluation, the positions of major peaks are 
consistent with each other. This kind of difference won’t affect the 
conclusion that neighboring polyhedrons prefer to be linked through 
more than one F ion. After the transport properties study of ionic self- 
diffusivity, closed values of activation energies are obtained from 
three different methods. However, AIMD gives larger error bars in 
diffusivity investigations because of the limitation of low efficiency of 
time and computational cost. As for the viscosity, our simulation results 
show a negative deviation from the experiments but relatively close to 
the prediction from the additive model [70]. These discrepancies can 
also be explained by the volume difference in our density comparison. 
The equilibrium volumes we used for final production runs were only 
0.73 % larger than that of the additive model but 2.68 % and 3.15 % 
larger than that of two experimental data from the literature [69,70]. 
This is consistent with previous work in predicting the viscosity of LiF- 
BeF2 mixtures, in which a similar deviation was found with different cell 
sizes [12]. The discrepancy in results exists since we didn’t directly use 
the volumes in experiments, and herein, we want to find a simulation 
method that can give the most accurate predictions of equilibrated 
volumes. Although earlier studies have reported simple eutectic sys-
tems, it is quite challenging to conduct the proper experiments for 
higher-order systems, e.g., systems containing CaO/MgO and SiO2 [70].

Based on the comparison of the above results, and considering the 
capability to handle the massive number of atoms and requires less 
computational resources, the calculated properties from IPMD-NNIPs 
and Matlantis with PFP are reasonably acceptable and would be able 
to represent the bulk materials comparable to the first-principal pre-
dictions and experiments, as long as given the determined equilibrium 
volumes. However, IPMD-NNIPs also have their limitations, such as 
system dependence and still requiring ab initio calculation inputs as the 
training data. On the other hand, the Matlantis platform provides an 
alternative solution for the high-order system with pre-trained and 
universal potentials. It will greatly reduce the difficulty of investigating 
much more complex systems with the capability of longer-time MD 
simulations. Another application of Mantlantis could be used for rapid 
sampling configurations to accelerate the development of NNIPs. Due to 
the speed (several orders of magnitude faster) and scalability (linear 
with system size) of Matlantis relative to AIMD, a more diverse set of 
configurations can be generated, subsampled and labeled, maximizing 
the representativeness of training set and robustness of NNIP models. 
This would address a key bottleneck of trained NNIPs in which training 
sets are developed with AIMD simulations that generate large amounts 
of correlated data. Conversely, transfer learning could be employed to 
update the Matlantis model using system-specific data to fine-tune the 
model, which would allow a more accurate model with minimal addi-
tional DFT data. However, such functionality is not yet available in the 
current Matlantis software.

In summary, Matlantis has the ability to conduct high-speed simu-
lations, but it is critical to obtain accurate thermodynamic values from 
the appropriate volume and structure. If proper relaxation lattice is 
given through experiments or EOS procedures, IPMD-NNIPs and Mat-
lantis will have enough accuracy comparable to the density function 
theory calculations with the advantage of time and cost.

Table 5 
The predicted diffusion pre-factor D0 and activation energy Qdif of self-diffusivity of Ca, Mg, and F ions.

Species Ca Mg F
Methods AIMD NNIPs PFP AIMD NNIPs PFP AIMD NNIPs PFP
D0 (×10−5 cm2/s) 250.19 169.83 69.24 152.51 157.01 167.16 149.03 150.01 168.75
Qdif (kJ/mol) 54.13 48.86 38.26 47.99 46.79 46.97 40.19 39.79 41.25

Fig. 11. Calculated viscosity and its temperature dependence of eutectic 
CaF2-MgF2.
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5. Conclusions

This study used a combination of IPMD-NNIPs and AIMD simulations 
to investigate the properties of the CaF2-MgF2 fluoride system at high 
temperatures, and the Matlantis with universal PreFerred Potentials was 
introduced to evaluate its capability and accuracy for molecular dy-
namics simulations and calculated physio-chemical properties. The use 
of NNIPs in this study has allowed us to perform large-scale MD simu-
lations on a system that would be computationally expensive to simulate 
using ab initio methods. The structural properties of the system were 
analyzed using the radial distribution function (RDF), which showed 
that the two components are well mixed, with no signs of short-range 
order or complex ion cluster formation. Additionally, we calculated 
the specific heat capacity through the above three methods. The MSDs 
and ionic self-diffusivities were analyzed and compared using the Ein-
stein relation and rNEMD method. The Arrhenius diagrams are plotted 
to compare the activation energy of Ca, Mg, and F ions. Based on the 
comparison of viscosity results between our simulations, experiments 
and additive model, the equilibrium volumes estimated by the EOS 
procedure can be accepted with less than 4 % error and used for higher 
order and more complex systems which may not have enough infor-
mation from existing literature and hard to scale because of severe 
experimental conditions.

Despite the robustness and innovative aspects of our methodology, 
several limitations and potential sources of error should be acknowl-
edged. The accuracy of NNIPs and Matlantis potentials is crucial for 
reliable simulations. While these potentials are trained on extensive 
datasets, they may still have limitations in capturing all possible atomic 
interactions, especially under varying temperature and pressure condi-
tions. Any discrepancies in the potential can directly impact the accu-
racy of the simulation results. Maintaining precise control over 
temperature and pressure in MD simulations is challenging. Small 
fluctuations can lead to significant deviations in computed properties 
like diffusivity and viscosity. These fluctuations are a source of error that 
can affect the reliability of the results. The simulations were performed 
for finite time periods and system sizes due to computational resource 
constraints. Longer simulations and larger system sizes could potentially 
provide more accurate results by reducing statistical errors and better 
representing macroscopic properties. However, they are often limited by 
available computational power, especially for AIMD.

Overall, the results of this study provide new insights into the 
behavior of the CaF2-MgF2 molten salt system at high temperatures and 
support the potential of this material for use in high-temperature ap-
plications such as electrodeposition. The good agreement between the 
IPMD-NNIPs results, AIMD calculations, and the Matlantis outputs in-
dicates that the Matlantis with PFP model used in this study is an ac-
curate and reliable method for studying the properties of this system. 
The Matlantis could be considered as an alternative and useful MD 
simulation tool, especially for the higher-order complex system that 
requires fully developed interatomic potentials for IPMD or extreme 
time and computational resource costs for AIMD.
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