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ABSTRACT: Samples of Brown carbon (BrC) material were collected from smoke emissions
originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass
burning emissions. The acquired samples, referred to as “pyrolysis oil (PO1),” underwent
subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of
three additional samples with the volume reduction factors of 1.25, 2, and 3, denoted as PO .25,
POz, and POs3. The chemical composition of these POx samples and their BrC chromophore
features were analyzed using a high performance liquid chromatography instrument coupled with
a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a
noteworthy twofold enhancement of BrC light absorption observed for the progression of PO; to
PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the
absorption Angstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral
dependence. The relative enhancement of BrC absorption at longer wavelengths was more
significant, as exemplified by the increased mass absorption coefficients (MAC) measured at 405
nm from 0.1 to 0.5 m?/g. Molecular characterization further supports this darkening trend,
manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the
retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the
PO to PO3 mixtures included a reduction of the saturation vapor pressure of their components and
an increase in viscosity. These changes were quantified by mean values shifting from
approximately 1.8x10° ug/m?® to 2.3 pg/m® and from ~10° Pa-s to ~10° Pa-s, respectively. These
results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric
aging through non-reactive evaporation. This newfound understanding will inform the refinement

of atmospheric and chemical transport models.



SYNOPSIS

Non-reactive evaporation of BrC compounds facilitates degassing of weakly-absorbing small
monoaromatic species and an enrichment of strongly-absorbing larger lignin decomposition

products and substituted polycyclic aromatic hydrocarbons (PAHs).

1. INTRODUCTION

Accurate prediction of the atmospheric environment and radiative forcing of the climate requires
an improved understanding of the composition and optical properties of biomass burning aerosols,
which contain a significant amount of light-absorbing organic components termed brown carbon
(BrC)."™ As the frequency and intensity of wildfires increase as a result of a warmer and drier
climate, BrC becomes a profound contributor to the overall radiative forcing.>”” This is attributed
to its capacity to absorb solar radiation within the UV and visible wavelengths.>*"1> Additionally,
the widespread use of biomass fuels and practices of agricultural burning in developing countries
amplifies BrC emissions and its significance.'®!® The upsurge in BrC aerosols from biomass
burning (BB) disturbs various climate and atmospheric processes, including long range transport
of atmospheric pollutants, cloud condensation and ice nucleation, alterations in snow and ice
albedo, and reduced photodegradation rates.?’2° The extent to which BB-BrC aerosols influence
these processes remains uncertain, which makes it challenging for atmospheric models to
accurately project their global impact, both presently and in the future.

BrC exhibits a broad range of optical properties due to its diverse sources and dynamic
transformations during atmospheric aging.’’?> Recent studies have begun revealing the
relationship between BrC’s optical properties and its chemical composition.** ¥ Accordingly, BrC

is classified into four optically-based groups: very-weakly (VW), weakly (W), moderately (M), or



strongly (S) — absorbing BrC.> The VW group portrays BrC formed in secondary organic aerosol,
while the W and M groups represent BrC originating from primary BB emissions.®*** The S group
delineates highly viscous particles that have undergone significant transformations, such as
refractory carbonaceous spheres (tar balls).®>®® Chemical analysis of BrC materials representing
these groups has revealed distinct physicochemical properties, including unique wavelength
absorption spectra, molecular weight, elemental and structural composition, oxidation state,
volatility, aqueous solubility, and more.**”%67%% These characteristics serve as metrics for
comparing and apportioning BrC observed in real-world studies within the proposed optically-
based classification framework. For example, high molecular weight BrC compounds have been
observed to be less susceptible to photodegradation than lower molecular weight compounds.®®®
Another study discovered that photolyzed BrC species featured higher oxidation state values and
lower molecular weights, demonstrating photooxidation aging mechanisms during long-range
transport.”’ Recent laboratory studies have also reported changes in the composition and reactivity
of BrC mixtures resulting from the evaporation of their components.”'”’3 However, establishing a
predictive understanding of BrC’s molecular composition and light absorption properties is yet
incomplete, necessitating additional comprehensive studies. Notably, even trace amounts of
strongly absorbing chromophores can contribute significantly to the overall optical properties of
bulk BrC material *3336377475 Therefore, elucidating this intricate relationship requires the
application of complementary multi-modal analytical techniques that can measure both
component-specific and bulk BrC properties.

A hyphenated analytical platform that combines high performance liquid chromatography
(HPLC), photodiode array (PDA) detector, and high-resolution mass spectrometer (HRMS) has

emerged as the preferred method for molecular-level and chromophore-specific characterization



of BrC.233:4045.60-6276-82 However, this approach relies on the extraction efficiency of BrC in
solvents, which is often incomplete. Moreover, even assuming complete extraction of BrC
materials, the optical properties of bulk BrC do not fully replicate aerosolized BrC, as light
extinction by airborne particles is influenced by the size distribution and micro-physical properties
of particles.®® To develop a comprehensive and atmospherically relevant understanding of BrC’s
optical characteristics, it is imperative to investigate aerosols generated from the same BrC source
material using broadband optical measurements of size-resolved airborne particles.**-*¢%¢-88 Qur
new approach of modifying bulk phase BrC constituents with thermal evaporation experiments
enables us to better mimic BrC chemical and optical properties in the aerosol phase and take
advantage of the optical measurements and accurate molecular characterization offered by the
HPLC-PDA-HRMS technique. This incorporation of HPLC-HRMS measurements is a
comprehensive approach that enhances our understanding of BrC’s evolution in the atmosphere.
2. EXPERIMENTAL

2.1. Generation of BrC tar condensates. Smoke emissions from pyrolysis of hardwood pellets
(Hallingdal Trepellets, water content 7-8%, 2-3 cm length, 8 mm diameter) were flown through a
20 °C water-circulating condenser and were collected into a glass impinger. This experimental
setup is described in Supplemental Note 1, Figure S1. This pyrolysis process, which occurs deep
in the pores of burning plants where oxygen concentration is low and temperatures are highly
elevated, was conducted using dry N2 gas blown through a 1 L Pyrex round-bottom flask residing
in an electric heater set to ~550 °C for the experiment.**%%*° Smoke fumes comprising condensable
species at room temperature and water-soluble gases were captured in the impinger, resulting in
the formation of a liquid condensate. However, certain gas-phase species with low water solubility

might have escaped through the impinger’s exhaust. The composition and optical properties of the



collected condensate resemble BrC constituents from biomass burning.*®*! The collected liquid
condensate was transferred to a separatory funnel, where the condensate self-separated into
immiscible “aqueous” and “oily” fractions. Chemical characterization of both fractions indicated
that constituents of the aqueous fraction were a subset of the more complex oily fraction.®? Hence,
the oily fraction of the condensate was isolated and used in this study, referenced here as a primary
wood Pyrolysis Oil (PO1). Three aliquots of PO1 (each of 10 mL volume) were placed in individual
20 mL amber vials (I.D.: 27.5 mm, Height: 57 mm) heated to ~350 °C with a flow of N2 gas
passing over the heated mixtures to facilitate evaporation of their volatile components. Each of the
aliquots was heated for different periods of time. Corresponding volume reduction factors of 1.25
(75% volume remaining, 20 min heating), 2 (50% volume remaining, 40 min heating), and 3 (33%
volume remaining, 80 min heating) were calculated by measuring each aliquot’s decrease in height
in the vials with a caliper. These reduction factors were used to index the new evaporated samples
as POi.2s, PO2, and POs. All POx samples were kept in individual vials, sealed with parafilm,
wrapped in aluminum foil, and stored in the dark at —20 °C in a freezer until further analysis.

2.2. Measurement of bulk and aerosolized sample optical properties. Solutions of POx
samples in acetonitrile (Optima LC-MS grade, Fisher Chemical) were prepared with individual
concentrations in a range of 30-60 pg/mL and their UV-Vis absorption spectra were measured
using a spectrophotometer (Ocean Optics Model DH-2000). To ensure consistent comparison
across POx samples, we selected acetonitrile (polarity index of 5.8) as the extraction solvent. This

selection was made based on its proven efficiency in extracting a wide range of PO components,

37,40,62 92,93

inertness with our analytes, and its compatibility with the LC separation method
used.*>%2 These factors collectively enhance the comparability with previously reported

findings.’74%62%4 The absorption spectrum of each bulk POx solution is reported in terms of the



wavelength-dependent mass absorption coefficient (MAC(A)buik),”> which is calculated from the
logio-base absorbance (Abs(L)*"), optical path length (/= 0.01 m), and concentration of organic

mass (Com(g/m?)).

__ Abs()S°(AU)xIn(10)
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This calculation assumes that the entire POx sample consists of organic mass (Com) and the
evaporation step does not generate solvent-insoluble colloids.

The POx solutions in acetonitrile at higher concentrations of ~3 g/L were used to aerosolize BrC
particles using a constant output TSI atomizer (Model 3070). To facilitate removal of the
acetonitrile solvent, the generated aerosol was directed through a quartz furnace (I.D.: 7.5 mm,
Length: 20 cm, Temperature settings: 250 °C) followed by a series of charcoal denuders. The
extinction of light by solvent-free BrC aerosols was measured using a custom-built broadband
cavity-enhanced spectrometer (BBCES), described in detail elsewhere.*¢ Briefly, the BrC particles
were initially size-selected with an Aerodynamic Aerosol classifier (AAC) (Cambustion, UK).
Subsequently, the flow of monodispersed particles was equally distributed to a condensation
particle counter (CPC) (model 3775, TSI), a scanning mobility particle spectrometer (SMPS)
(classifier 3080, DMA 3081, CPC 3775low, TSI), and the BBCES. The CPC quantified particle
number concentration, SMPS captured mobility size distribution, and the BBCES monitored
particle wavelength-resolved light extinction in a range of 315-650 nm (315-350 nm and 365-650
nm with a resolution of 0.5 nm). Aerosol samples were collected on preweighed Teflon filters
(PM2.5s PTFE membrane, 46.2 mm diameter, Whatman Inc.). Captured POx aerosols were extracted
from the filters using acetonitrile (at concentrations of 25-40 pg/mL) and remeasured with a UV-
Vis spectrophotometer to determine MAC(A)aerosol. Based on the Mie theory and size-wavelength-

resolved particle extinction coefficients, the intrinsic refractive index (RI=n+ik, where n represents



the real part for scattering and k denotes the imaginary part for absorption) was retrieved. The
density of 1.25+0.03 g/mL for these aerosols was measured directly by the AAC-SMPS, assuming
spherical, homogenous particles (see Figure S2 in Supplemental Note 2 for more details).

MACA) ger XPaer XA
k(l) — ae os:;[ Paerosol (2)

The absorption Angstrom exponent (AAE) was calculated to reflect the wavelength dependence
of MAC(A)bulk.

MAC (D) e = k x A744F 3)

The AAE values were calculated by measuring the slope of the log-log plot of MAC(A)buik vs
wavelength across 300-500 nm.5?

2.3. HPLC-PDA-HRMS Analysis. PO, POi.2s, POz, and PO3 samples were dissolved in
acetonitrile to obtain similar 5 mL stock solutions at ~2000 pg/mL concentration. 500 pL aliquots
were filtered through prewetted 0.2 pm sieve, 17 mm diameter PTFE (hydrophobic) filter syringes
(ThermoFisher Scientific). Additionally, a vacuum-evaporated POz sample was prepared by
storing a PO sample in a vacuum oven for 3 days at 25 °C under high vacuum to evaporate volatile
PO constituent molecules (refer to Supplemental Note 2, Figure S3 for additional details). This
experiment was conducted to validate that the optical and chemical properties of the heated
samples were attributed to the removal of volatile constituents rather than chemical reactions
facilitated by increased temperature. All five POx samples (PO1, PO1.25, PO2, PO3, and vacuum-
evaporated PO2) were analyzed using a Vanquish HPLC system connected to a LightPipe flow
cell and high-resolution Orbitrap mass spectrometer Q Exactive HF-X (all from Thermofisher
Scientific). The HPLC separation was performed using a reversed-phase Luna C18 column
(Phenomenex, 00F-4252-B0) and a SecurityGuard C18 Guard Cartridge (Phenomenex, AJO-

4286).%> An injection volume of 5 uL was used for all ~2000 ng/mL samples, and the column was



maintained at 25 °C. We employed a previously established elution protocol using a mobile phase
mixture of water with 0.1% v/v formic acid (A) and acetonitrile with 0.1% v/v formic acid (B) at
a flow rate of 0.2 mL/min.%? The following gradient was applied: 0-3 min at 90% of A, 3-90 min
a linear gradient to 0% of A, 90-100 min maintained at 0% A, and 101-120 min held at 90% of A
to re-equilibrate the column for the next analysis run.%® The eluent first flowed through the PDA
detector, followed by the HRMS detector. The PDA detector contained a 1.0 cm fused-silica
LightPipe flow cell, a deuterium lamp light source, and recorded an absorbance between 200-680
nm at a scan rate of 20 Hz and a spectral resolution of 2 nm. Measurements using an acetonitrile
blank were acquired to remove optical and chemical background interferences associated with the
mobile phase itself. Electrospray (ESI) and dopant-assisted atmospheric pressure photoionization
(APPI) sources in both positive and negative modes were used to detect polar and nonpolar
chromophores.**%%2 The following ESI settings were employed: 250 °C capillary temperature,
200 °C probe temperature, 3.5 kV spray voltage, 35 units of sheath gas, 10 units of auxiliary gas,
and 1 unit of sweep gas. For APPI, the ion source was equipped with a krypton lamp (Syagen
Photomate), the vaporizer temperature was set at 400 °C and the spray voltage was increased up
to 5.0 kV. The dopant consisted of 3-trifluoromethylanisole (TFMA; 98% purity, Alfa-Aesar) and
chlorobenzene (anhydrous, 99.8% purity, Sigma-Aldrich) at a 1:99 v/v ratio and the dopant flow
(0.02 mL/min) was added to the HPLC outflow upstream of the ionization zone.’®"’ Calibration
of the MS detector was performed using commercial solutions (Thermo Scientific, PI-88323 and
PI1-88324) ionized in ESI mode in both polarities.

2.4. Calculation of MAC and AAE from PDA records. MAC() values corresponding to the
total light absorption for each of the individual POx samples were calculated from their

corresponding HPLC-PDA measurements using the following equation.*®
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Where: Abs(L)EPA (LAU) represents the absorbance recorded at wavelength A integrated over
the entire elution time, At reflects the elution time range (0-100 min), F represents the LC flow
rate (0.2 mL/min), b is the pathlength of the Lightpipe flow cell (1.0 cm), and minj corresponds to
the injected mass (9800 ng) of the POx samples. The unit conversions from pAU to AU, cm? to
m?, cm to m, and ng to g units are accomplished by applying the coefficient 10.6>%% BrC
chromophores were distinguished between three broad fractions based on elution time ranges,
informed by the PO1 molecular characterization reported in our previous study.® Fraction A (3-40
min) comprised the most polar analytes including single-ring species, like methoxyphenols and
furans; Fraction B (40-65 min) included medium-polarity compounds, broadly termed as lignin
decomposition products; and Fraction C (65-100 min) featured the least polar constituents, such
as heteroatom-containing polycyclic aromatic hydrocarbons (PAHs) with three or more rings.®?
Supplemental Note 2, Figures S4-S5 provide detailed descriptions of absorbance contributions for
these three fractions of BrC chromophores and how they contribute specifically to absorbance in

the UV and visible regions. The relative contributions of MAC(L)FPA attributable to each of these

three fractions were computed using equation 5.

)

PDA
MAC(M)FPA(m? g=1) = MAC(1)5P4 x [AbS(/l)i xAtl]

Abs(V)EPAx Aty

Here, the MAC(L)FP? represents the integrated UV-Vis absorbance of the specific fraction i and
Ati is its elution time period. The wavelengths of interest ranged from 300-500 nm, which is
primarily UV-A up to the visible light wavelength range. The relative contributions of unretained
species, eluting over 0-3 min of the separation runs, were also quantified in a similar manner.

2.5. Chemical compositional analysis. Background-subtracted HPLC-HRMS datasets

acquired for the POx samples were evaluated using MZMine 2.53, an open source software for

10



LC-MS processing (https://mzmine.github.i0).!® HRMS data was acquired across a mass range of

80-1200 m/z with a mass resolution of 240,000 at 200 m/z. Supplemental Note 3 provides a
detailed explanation on how extracted ion chromatograms (EICs) were generated to identify
masses in the POx samples.

Elemental formulas corresponding to the individual peaks detected in each of the POx samples
were first grouped into homologous series using custom-built macro Excel files'°! and then
assigned using the MIDAS molecular formula calculator (v. 1.2.3; National High Magnetic Field
Laboratory, USA). Formula assignments permitted unrestricted counts of C and H atoms, up to 50
O atoms, and up to 3 N atoms. The assignments were limited to single-charged ions. Initial
assignments were deemed erroneous based on one or all of the following factors: a double bond
equivalency (DBE) value above the 0.9xC limit, a completely aliphatic compound with a DBE
value = 0, or the assigned compound lied outside the error clustering trend. For ions detected in
ESI(+) mode, one Na atom was permitted for assignments of MS features detected. All other
ionization modes permitted up to 1 S atom. Assignments in APPI(+) and APPI(—) modes permitted
radical cations and radical anions, respectively. Once assignments are made for the ions, they are
classified into five different groups: CH, CHO, CHNO, CHN, and S-containing. Figures S6-S7 in
Supplemental Note 3 display the fractional mass spectra of the POx samples and UpSet graphs
summarizing the ions detected and assigned for each of the POx samples (excluding the vacuum-
evaporated POz sample) in both positive and negative ionization modes. The chemical composition
of the additional POz sample created through vacuum evaporation at room temperature was
compared to the one generated via thermal evaporation. The results of this comparative chemical
characterization are shown in Figure S8. Supplemental Note 4, Figures S9-S10 describe the DBE

trends of assigned molecules in the POx samples and the quantity of potential detected BrC
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chromophores present in the samples.*>!%? Supplemental Note 5, Figures S11-S13 describe the
abundance of oxygen-containing moieties and extent of oxidized CHO compounds through the
application of maximum carbonyl ratio - van Krevelen (MCR-VK) diagrams.'%*!%* In addition,
Figure S14 and Table S1 describe the extent of CHO and CHNO species through the use of
nominal oxidation state of carbon (NOSc) metric.!%

The estimated volatilities of the CHO and CHNO compounds according to their logarithmic
values of saturation vapor pressure mass concentrations (logio(Co, pg/m?)) are calculated with the

following equation.

ncno

log10(Co) = (ng —n¢)bec —ngbg — 2 bco —nyby (6)

nc+nop

The reference carbon numbers (n) and b coefficients for CHO and CHNO species are reported
in Table 1 in Li et al. 2016.1%

The viscosities of the CHO and CH species (logio(n, Pa‘s)) are estimated using the Vogel-

Tammann-Fulcher equation.'?’

ToD

1N = Nee™ o (7)

Where: 7o, (Pa-s) represents the low limit viscosity value (10~ Pa-s) at very high temperatures;
T is the ambient temperature (298 K); To is the Vogel temperature calculated as To =
39.17xTg/(D+39.17). Here, D is the fragility parameter, which describes the rate at which the
dynamics of the compound slows down as T approaches the material’s glass transition Tg
temperature.'%’"'% The T values of individual species are estimated from their elemental formulas
using the parameterization approach summarized in Supplemental Note 7. Equations 6 and 7 are
used together to identify volatility and viscosity trends in detected compounds as the PO sample

progressively evaporates into POs.
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3. RESULTS AND DISCUSSION

Figure 1 illustrates HPLC-PDA heatmaps chromatograms for each of the POx samples shown in
the left-hand side panels, while the right-hand panels illustrate how MAC(L)FP of each fraction
contribute to the total MAC(A)¥PA values. BrC chromophores identified in our previous work are
highlighted, with plausible structures provided by cross-referencing molecular formulas with their

corresponding UV-Vis spectra and relevant literature (for the component-specific references see

Hettiyadura et al. 2021 and references therein).®> As more volatile constituents evaporate from

PO: upon its conversion to POs, the total MAC(L)EPA values shift towards a stronger light-

)FDA

absorbing carbon sample. This shift is explained by an accumulation of MAC(A in Fractions

B and C, coupled with a reduction of MAC (k)iPDA in Fraction A.
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Figure 1. HPLC-PDA chromatograms of POx samples (left panels) and their corresponding
integrated total MAC (L)EPA spectra (right panels) showing relative contributions of A, B, and C
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fractions of BrC chromophores. Fraction A describes very polar monoaromatic chromophores,
Fraction B contains semi-polar 2-3 ring fragments of lignin decomposition, and Fraction C exhibits
low-polarity, multi-ring polyaromatic species. The unretained species contribute negligibly to the
total MAC(L)EPA spectra. Structures and numeric IDs are reproduced from Hettiyadura et al.
2021.%

Figure 2 exhibits the total MAC plots of the POx samples as measured by the UV-Vis
spectrophotometer (solution phase), PDA detector (solution phase), and the BBCES instrument
(aerosol phase). As volatile constituents degas from PO1 and the bulk material transitions to POs3,
the mixture’s MAC(L)bu and MAC(L)EPA values are enhanced in the solution phase. Conversely,
all aerosolized POx samples exhibit very similar MAC(A) values according to the BBCES
instrument, indicating that aerosolization led to the evaporation of volatile constituents, enhancing
the absorbance of the particle-phase BrC materials. Notably, the evaporation process was further
augmented by conditioning the POx aerosol flow through a heated inlet connected to a charcoal
denuder positioned before the BBCES. This setup effectively removed additional organic
compounds that might have otherwise remained in the aerosol phase under ambient conditions.
Additionally, the filtration of insoluble BrC components by the LC guard cartridge may alter the
differences between PDA and BBCES records.

Bulk PO: and POi.25 samples, which experienced only a marginal loss of volatile compounds,
display solution-phase MAC(LA) values that are significantly lower than the aerosolized MAC(L)
values measured by the BBCES instrument. Conversely, the bulk PO2 and PO3 samples, which
experienced significant evaporation of more volatile species, exhibit solution-phase MAC(L)
values that approach their corresponding aerosolized MAC()A) values. These findings agree with
our previous report, indicating that aerosolized BrC materials pose higher MAC(A) values than
their solution-phase counterparts.®® These findings agree with other studies that have also reported

that lab-generated BrC constituents undergo darkening and a decrease in single-scattering albedo
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upon aerosolization.®!'% This convergence of the MAC()) values measured for aerosolized PO
samples and their corresponding heated bulk samples underscores that darkening of BrC aerosols
through volatilization can be achieved by heating the oily phase of the BrC condensate before
conducting optical measurements.®? Preparing and measuring the oily phase fraction of BrC
condensate in this manner may facilitate more accurate measurements of BrC aerosol optical

properties, informing atmospheric models.

5+ I::'()1 1 P()1.25

500 300 400 ' 500
Wavelength (nm)

Figure 2. Comparison of MAC(A) values between solution-phase and aerosol-phase POx samples.
PO and PO1.25s samples exhibit a significant disparity in MAC(A) values between aerosol and bulk
solution. POz and PO3 demonstrate closely matched MAC(A) values in both phases, indicating that
the optical properties of the oily phase fraction of BrC condensate can emulate those of BrC aerosol
through the “darkening-by-volatilization” process.?
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To visualize the BrC transformations in these samples, the optical properties of the POx samples
were evaluated using the AAE versus logio(MAC405 nm) optical classification framework,’” shown
in Figure 3, where AAE values were obtained from the slopes of the In(MAC) vs In(A) plots across
the 300-500 nm wavelength range. This figure effectively illustrates the shift towards stronger
absorbing BrC materials from PO: to POs. As our measurements transition from solution-phase
PO to aerosol-phase PO3, AAE and logio(MACa0s nm) values shift from approximately 11 to 7 and
from -1 to 0.3, respectively. Figure 3 indicates that AAE and MACaos nm values of the evaporated
POx samples exhibit transformation of their BrC classification from the VW-BrC to a stronger
absorbing W-BrC optical bin, demonstrating the “darkening-by-volatilization” process. The
evaporation of small constituent molecules corresponds to an enrichment of strongly absorbing

BrC materials in the PO3 sample. This darkening phenomenon has been reported in other literature

as wel] 6061111
12 -
o PO,, PO, ,;, PO,, PO,
i VO (O UV-Vis
v v PDA
9 @b Il BBCES
7] ]

VW-BrC

S-BrC

10919(MAC 405 )

Figure 3. Classification of POx samples according to the optical framework of Saleh 2020.%° The
PO1 sample is allocated to the VW-BrC optical bin, considering its MACao0s nm values, while those
values of the PO3 sample are shifted into the W-BrC optical bin.
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We conducted estimates of individual volatility and viscosity values for assigned compounds,
summarized for each of the A, B, and C fractions in the POx samples, and correlated them with the
corresponding fractional MAC() plots, as shown in Figure 4. Volatilities (expressed as saturation
vapor pressures at room temperature, Co, in units of pg/m?) were estimated using molecular
corridor calculations for all individual CHO and CHNO species detected in the POx samples.!%
The extended plots summarizing these calculated component-specific records are included in
Supplemental Note 6, Figures S15-S16 and Tables S2-S3. Results of these calculations were used
to categorize organic compounds into five common volatility bins based on their logio(Co) values:
volatile organic compounds (VOC, logio(Co) > 6.48), intermediate volatility organic compounds
(IVOC, 6.48 > logio(Co) > 2.48), semi volatile organic compounds (SVOC, 2.48 > logio(Co) > -
0.52), low-volatility organic compounds (LVOC, -0.52 > logio(Co) > -3.52), and extremely low-
volatility organic compounds (ELVOC, -3.52 > logi0(Co)).!% The volatility distributions and their
mean values shown in Figure 4b demonstrate systematic changes across the POx samples,
indicating a shift from the mostly IVOC compounds in PO1 to the much less volatile SVOC and
even LVOC species in POs3, aligning with the removal of small volatile constituents in the PO
sample. Accumulation of low volatility species in the progression of PO: to PO3 samples aligns
with the enhanced absorbance of these samples, as evidenced from Figure 4a, supporting the
darkening through volatilization mechanism suggested in our previous study®* and corroborated
by field observations.'!>-116

The glass transition temperatures of individual species were calculated and used to estimate the
viscosity ranges of the POx samples. Viscosity is an important physicochemical property of
aerosols, which affects rates of heterogeneous chemistry, uptake of gas-phase species, and

108,109

photodegradation.'!’"1?2 Details of these calculations and the extended plots summarizing the
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component-specific viscosity values are included in Supplemental Note 7, Figure S17 and Table
S4. Based on these calculations, BrC constituents were categorized as solid (>10'? Pa-s), semi-
solid (10'2-10? Pa‘s), or liquid (<10? Pa‘s).!” The most viscous components are the lignin
fragments (Fraction B), as evidenced by their mean values and distributions displayed in Figure
4c. The smaller, least viscous constituents of Fraction A evaporate from the PO1 sample causing
progressively higher viscosities estimated for the PO1.2s, POz, and PO3 samples. Notably, the more
viscous constituents of Fraction B collectively contribute to stronger light absorption, as measured
by the PDA detector (Figure 1). The widths of the boxes in the volatility (Figure 4b) and viscosity
(Figure 4c¢) plots are scaled based on the intensity of species detected in the corresponding fractions
(A, B, and C), illustrating that volatile, liquid-like constituents of Fraction A evaporate from the
PO sample, while less volatile, semi-solid-like components of Fraction B and C accumulate in the

PO1.2s5, PO2, and PO3 samples.
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Figure 4. Panel a: Fractional MAC(A) plots for POx samples. Panel b: Saturation vapor pressure
box-and-whisker plots featuring whiskers with lengths equal to 1.5 x interquartile range. Volatility
plots represent all CHO and CHNO compounds detected by the HRMS. Panel c¢: Viscosity box-
and-whisker plots featuring whisker lengths equal to 1.5 x interquartile range, mean values are
shown, and outliers are not displayed. Viscosity distributions exhibit CHO and CH species. In
panels b and c, box widths are scaled based on the intensity-weighted ratios of compounds detected
in each fraction (A, B, and C). As the absorbance increases across the progression of PO1 to PO3
samples, the volatility box-and-whisker distributions shift from IVOC/SVOC bins towards lower
volatility SVOC/LVOC categories. Simultaneously, the viscosity distributions shift from the
liquid/semi-solid range towards the semi-solid viscosity range. The box widths of Fraction A
species shrink (they become less abundant) while the box widths of Fractions B and C species
increase (they become more abundant species).

ATMOSPHERIC IMPLICATIONS
One of the primary findings of this study is that subjecting the POx material to evaporation

increased the light absorption properties of the remaining condensed-phase fractions progressively
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becoming similar to their aerosolized counterparts. This observation underlines the significance of
the gas-particle partitioning dynamics in accurately characterizing the optical properties of BrC
aerosols. Furthermore, the high surface-to-volume ratio and small sizes of atmospheric
accumulation mode particles suggest that evaporation of IVOC components can occur very
rapidly. For instance, the equilibrium e-folding times of 200 nm particles, assuming a range of
~10% Pa-s to ~10° Pa-s viscosities reported here (Figure 4c), are on the time scale of seconds and
minutes, respectively.!?* Therefore, for these particles, gas-particle partitioning is not limited by
slow diffusion even in the viscous (~10? Pa-s) particles. It follows that darkening of BrC aerosol
by evaporation takes place at a timescale shorter than the aerosol lifetime and its atmospheric
multiphase reaction chemistry. Various field studies report that viscous and highly absorbing tar
ball particles are commonly found in BB smoke plumes after prolonged atmospheric aging.''*16
Our findings suggest that future observations of tar balls and their buildup in BB smoke plumes
need to consider the combined effects of evaporation and reaction chemistry. In this context, it is
important to note that the very high absorption coefficients reported for tar balls and other
refractory particles, based on electron energy-loss spectra acquired under high vacuum conditions

in electron microscopy studies,*!-66:116:125.126

are likely considerable overestimates with limited
relevance to particles in real atmospheric conditions.

Optical measurements and chemical characterization results presented in this study reveal that
the loss of small monoaromatic compounds leads to the accumulation of larger lignin
decomposition fragments and substituted PAHs, enhancing the overall absorbance of BrC
mixtures. At the same time, volatility and viscosity of these mixtures also evolve, preserving less

volatile and more viscous constituents, consequently augmenting overall absorbance of the BrC

mixtures. It is important to note that the curved surfaces of aerosol particles and possible phase
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separations within individual particles could influence the evaporation dynamics of different BrC
components. This may potentially enhance the actual MAC() values of aged aerosols, which may
not have been fully captured in our evaporation experiments conducted on isolated oily flat
surfaces. Regardless, the darkening trend observed in our experiments, is in alignment with the
phenomenon of darkening through volatilization observed in both laboratory experiments®? and
field studies,!'?"!'® consolidating the validity of our results. Furthermore, aged BrC aerosols

characterized by accumulated viscous, stronger absorbing less polar components,33-34

present a
challenge for chemical analysis using dissolution in common organic solvents. An advanced
chemical analysis of these mixtures will necessitate systematic sequential dissolution

experiments,'?’

using a variety of solvents with different polarities and their combinations. Such
an approach would enable a more comprehensive and detailed understanding of these compounds.

The implications of our study extend to various atmospheric processes. BrC aerosols that
undergo darkening and become more viscous play a significant role in atmospheric processes
including radiative forcing, hygroscopicity, and heterogeneous chemistry. For instance, viscous,
solid-like particles have been observed to be effective carriers of absorbed harmful compounds
and shielding them from oxidants and degradation processes.?**** Additionally, solid particles
can influence nucleation mechanisms in processes of mixed-phase cloud formation, favoring

heterogeneous ice nucleation over homogeneous ice nucleation,?!??

which has implications for
cloud formation and precipitation. Moreover, the expected increase in mixing timescales of
organic compounds in solid-like particles due to hindered bulk diffusion coefficients affect
atmospheric multi-phase reaction chemistry.'?® More rigid, viscous aerosols undergo slower

26,73

photochemical transformations and ozonolysis, contributing to their chemical inertness as they

disperse away from the emission source. This inertness can further amplify their absorbance
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contribution in radiative forcing processes, making them a crucial factor in understanding and

modelling Earth’s climate system.

ASSOCIATED CONTENT

Supplemental Note 1 and Figure S1 describe the wood pyrolysis experiment and preparation of
POx samples. Supplemental Note 2 and Figures S2-S5 describe the optical measurements of the
aerosolized POx samples in the BBCES instrument, the HPLC-PDA separation and fractional
MAC() plots of the vacuum-evaporated PO2 sample, the HPLC-PDA chromatograms visualizing
the presence of strong and weak absorbers in each of the POx samples, and the absorbance
contributions of each BrC fraction in the UV and visible region for all POx samples. Supplemental
Note 3 describes the employed methodology to analyze HPLC-HRMS datasets using EICs. The
obtained fractional mass spectra of the POx samples are summarized in Figure S6. The UpSet
graphs that illustrate the abundance of compounds detected in singular ionization modes and those
detected across multiple ionization modes are presented in Figure S7. The high-resolution mass
spectra comparing composition of two PO2 samples obtained in thermal and vacuum evaporation
experiments are displayed in Figure S8. Supplemental Note 4 and Figures S9-S10 provide
information on the fractional DBE plots developed for the POx samples and the abundance of
potential BrC chromophores and aliphatic species present in Fractions A, B, and C for all POx
samples. Supplemental Note 5 and Figures S11-S13 display the MCR-VK plots for the POx
samples and the abundances of CHO compounds that belong to each of the five degree of oxidation
bins and the four MCR bins for all samples. In addition, Figure S14 displays the NOSc calculated
metrics and distribution of these values, while Table S1 reports the intensity-weighted averages of

C number and NOSc for Fractions A, B, and C for all four POx samples. Supplemental Note 6,
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Figures S15-S16, and Tables S2-S3 display the molecular corridor diagrams developed for all POx
samples; intensity-weighted averages of volatility and molar mass of compounds in Fractions A,
B, and C; abundances of compounds belonging to each of the five volatility bins; and important
metrics regarding the volatility distributions. Supplemental Note 7, Figure S17, and Table S4
provide detailed information on the viscosity calculations and the distribution of viscosities in A,

B, and C fractions for all four POx samples.
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