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Physics-Guided Deep Learning Enabled Surrogate

Modeling for Pneumatic Soft Robots
Sameh I. Beaber , Graduate Student Member, IEEE, Zhen Liu, Member, IEEE, and Ye Sun , Member, IEEE

Abstract—Soft robots, formulated by soft and compliant ma-
terials, have grown significantly in recent years toward safe and
adaptable operations and interactions with dynamic environments.
Modeling the complex, nonlinear behaviors and controlling the
deformable structures of soft robots present challenges. This study
aims to establish a physics-guided deep learning (PGDL) computa-
tional framework that integrates physical models into deep learning
framework as surrogate models for soft robots. Once trained, these
models can replace computationally expensive numerical simula-
tions to shorten the computation time and enable real-time control.
This PGDL framework is among the first to integrate first principle
physics of soft robots into deep learning toward highly accurate
yet computationally affordable models for soft robot modeling
and control. The proposed framework has been implemented and
validated using three different pneumatic soft fingers with different
behaviors and geometries, along with two training and testing
approaches, to demonstrate its effectiveness and generalizability.
The results showed that the mean square error (MSE) of predicted
deformed curvature and the maximum and minimum deformation
at various loading conditions were as low as 10

−4 mm2. The
proposed PGDL framework is constructed from first principle
physics and intrinsically can be applicable to various conditions by
carefully considering the governing equations, auxiliary equations,
and the corresponding boundary and initial conditions.

Index Terms—Soft robot applications, soft actuators, modeling
and control, Physics-Informed Neural Networks (PINNs).

I. INTRODUCTION

S
OFT robots are constructed from soft and compliant mate-

rials and structures. This unique nature endows soft robots

with competitive advantages such as intrinsic adaptability to

diverse environments, enhanced safety and dexterity during

services, and flexibility for various applications. Soft robots

exhibit a theoretically infinite number of degrees of freedom

(DOFs) and thus can generate highly nonlinear behaviors, which
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leads to challenges in accurately modeling and controlling their

deformation, compliance, and behaviors [1]. As a result, soft

robotics theoretical models are normally much more compli-

cated than those for traditional rigid robots. To tackle this major

problem, remarkable studies have been performed, ranging from

physics/geometry-based models and their approximation and

discretization [2], numerical methods such as finite element

methods (FEMs) [3], sensing enabled morphological and reser-

voir computing [4], to pure data-driven methods using machine

learning techniques [5].

Consequently, several theoretical models have been devel-

oped considering the dynamics principles such as continuum

mechanics models, geometrical models, discrete material mod-

els, and surrogate models [1]. Continuum mechanics models

consider soft bodies as a set of continuum particles; thus, the

main idea is to equivalently simplify the representative numbers

of DOFs for control inputs for driving the motion [6]. Geo-

metrical models are usually constructed from the soft robots’

geometrical shapes after applying specific loads [7], hence can

describe the deformed body as a space curve defined by math-

ematical functions or divide the soft body into a set of circular

arc shapes. Discrete element models define the soft continuum

body as discrete material elements such as springs, dampers,

and masses [8]. Physics-based models can provide accurate

descriptions of soft robots’ nonlinear behaviors; however, they

may struggle to integrate seamlessly with real-time sensing and

control. Approximation and discretization can reduce the DOFs

of such models but may need assumption and simplification and

thus may sacrifice accuracy.

Machine learning/deep learning (ML/DL) techniques can

enrich soft robotics with models that are able to deal with

highly nonlinear problems while maintaining the necessary ac-

curacy [9]. Such data-driven models are suitable for real-time

control; however, they rely on extensive and high-quality train-

ing data, which can be costly to collect. In addition, applying ML

to soft robot models while considering the underlying physics is

still one of the major challenges [10]. This is because extracting

all the features from only the given data without considering the

underlying physical principles may yield unrealistic predictions,

especially for those out of the training range.

Physics-guided deep learning (PGDL) offers a compelling

approach to overcome the limitations of using either ML or

physical models in complex engineering problems. Unlike tra-

ditional ML models, PGDL embeds governing physical laws

directly into the learning process, ensuring that the predictions

align with fundamental physics. Generally speaking, PGDL
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can address four main problems, solving differential equations,

learning dynamics residuals, discovering governing equations,

and forecasting dynamic systems [11]. The main idea is to solve

partial differential equations (PDEs) that describe the physics of

the system using data from analytical and/or numerical solutions

and thus have the uniqueness to integrate the strengths of ML

with the robustness and interpretability of physics-based models.

By utilizing numerical results obtained from physical models

such as FEM for learning, this approach substantially lowers

the computational effort required for network training, as it

is consistent with the underlying physical laws that govern

the dataset. This method enhances the prediction accuracy and

reduces the reliance on large datasets by embedding physical

constraints directly into the learning process. However, coupling

physics into deep learning is not yet well studied for soft robot

modeling and control.

This study aims to develop a new PGDL-based computa-

tional framework that integrates first principle physics and deep

learning as surrogate models for soft robotics. We leveraged

physics-informed neural network (PINN) [12] that can solve

PDEs using spatial coordinates to model intricate soft robotics

and established the physical model using the Navier-Cauchy

equation to construct the framework. We constructed three soft

finger models with different geometries and behaviors as three

testbeds. These three chosen soft fingers have been experi-

mentally validated in previously published work. The results

demonstrated high accuracy and efficiency in all three cases,

which showed that our model can be generalized over a wide

range of soft pneumatic systems. In addition, two training and

testing approaches were employed using 5% of the total data for

training and both covered and uncovered scenarios for testing.

Using both approaches, our proposed PGDL model accurately

predicted the base curvature and the deformation, demonstrating

its robustness and generalization capabilities across different

loading conditions. This study is among the first to integrate first

principle physics as the governing equation into deep learning

for soft robot modeling.

The remainder of this letter is organized as follows: Section II

presents the proposed computational framework. Section III

covers the FEA implementation for data generation, and Sec-

tion IV provides the experimental setup and the results for two

different training models followed by discussion and conclusion

in Section V.

II. PGDL FOR SOFT ROBOTICS FRAMEWORK

The proposed PGDL aims to fundamentally employ PDE

solving in the learning process to capture soft robots’ complex

behaviors. Once trained, these surrogate models can replace

computationally expensive numerical simulations, significantly

reducing computation time and enabling real-time control. This

section presents the proposed framework in detail.

A. Related Work

Traditional applications of PGDL use PINNs to solve PDEs

that describe physical models in terms of spatial and temporal

Fig. 1. Pneumatic soft finger design with PneuNets.

variables as long as these physical models can be intrinsically

represented by the corresponding governing equations, auxiliary

equations, boundary conditions, and initial conditions. Mod-

ified PINNs have been attempted in modeling soft robotics,

and some researchers have adapted the PINN framework to

address the unique challenges of soft robotics. Notably, Sun

et al. [13] proposed the Physics-Informed Recurrent Neural

Networks (PIRNN) that used a first-order linear system with a

rate-independent hysteresis as the physical model and integrated

it with a Recurrent Neural Network (RNN) and used the explicit

Euler method to predict the output of this physical model. Then

this prediction was used as additional input and output to guide

the RNN learning. Liu et al. [14] employed Lagrangian and

Hamiltonian formulations for modeling soft robot dynamics

into NN, which allows for non-collocated control using the

generalized coordinates, momenta, and the control input as the

input layer.

To generalize the applications of coupling physics and ML/DL

for soft robotics, a clear description of the underlying physics

with the temporal and spatial coordinates that align the control

(or prediction) points with the physical model’s behavior is still

desired to be well integrated with the learning process, which is

not yet well studied.

B. Pneumatic Soft Finger

Pneumatic soft fingers constructed by pneumatic networks

(PneuNets) are flexible and compliant actuators made from elas-

tic or hyperelastic materials with integrated inflatable chambers

and channels in certain sequences. These soft fingers are often

designed and controlled to produce desired motions that can

mimic human fingers for grasping and manipulation when well

pressurized. Other designs such as bending joints and bellow

structures have also been attempted.

This study used pneumatic soft fingers as testbeds to imple-

ment and validate the proposed PGDL framework. Three soft

finger models with different geometries, materials, and behav-

iors were constructed as three testbeds, which were tested and

validated by other studies [15], [16], [17]. FEA simulations were

also performed in these three studies. The first is a silicon-based

PneuNets made by [15]; the second is a 3D-printed soft finger

with local bending joints [16]; and the third is a bellow-type

soft actuator [17]. Fig. 1 shows the detailed design of the first

case with the structure of its PneuNets as an example, and the

dimensions of this design are detailed in Table I.
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TABLE I
PARAMETRIC GEOMETRY OF THE PNEUNET

C. Physical Model

Soft robots’ behaviors can be complex due to their highly

flexible and deformable nature. The physics underlying such

mechanical behaviors of these soft structures made from elastic

or hyperelastic materials can be described using the Navier-

Cauchy equation [18]. For fully compliant soft robots such as

PneuNets, considering an arbitrary volume, the differential form

of the equilibrium equation can be given by:

∇ · σ + F = 0 (1)

where ∇· is the divergence operator; σ is the Cauchy stress

tensor; F is the body force per unit volume caused by gravity.

The Navier-Cauchy equation in equilibrium can illustrate that

the internal forces within the body and the external forces must

balance out to maintain the state of equilibrium. The divergence

of the stress tensor, ∇ · σ, represents the internal forces within

a material that result from stress, including the nine components

of the normal and shear stresses; the stress tensor, σ, describes

how internal forces are distributed within the body, and the body

force vector, F, represented the external forces.

The Navier-Cauchy equation can be expressed in terms of the

three-dimensional components, the indices i, j take the values

1, 2, 3 for three-dimensional x, y, z, using Einstein summation

convention as:

3
∑

j=1

∂σij

∂xj

+ Fi = σij,j + Fi = 0, i, j = 1, 2, 3 (2)

where σij,j and Fi represent the index notation of the stress

tensor and the body force density, respectively; andxj represents

the three spatial coordinates.

When relating stress to displacement as a dependent variable

in the defined domain, Navier-Cauchy equation formulation

is achieved using the stress-strain-displacement relationship.

The constitutive equation that relates the stress with the strain

(Hooke’s law) in index notation is:

σij = λεkkδij + 2µεij (3)

where λ and µ are Lame’s constants; εij is the strain tensor in

index notation; and δij is the Kronecker delta:

δij =

{

0, if i �= j

1, i=j.

Then, the strain-displacement relation can be given as:

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

=
1

2
(ui,j + uj,i) (4)

where u is the displacement components in the three spatial

coordinates and also i, j take the values 1, 2, 3.

Since both the stress-strain and strain-displacement relations

are obtained, the stress can be represented in terms of displace-

ment:

σij = λδijεk,k + µ (ui,j + uj,i)

= λδijuk,k + µ (ui,j + uj,i) (5)

Then, the obtained stress can be written as:

σij,j = λuk,ki + µ (ui,jj + uj,ij)

= λuj,ji + µ (ui,jj + uj,ij)

= (λ + µ)uj,ji + µui,jj (6)

The general formulation for describing deformations of elastic

bodies in differential form can be given by substituting (6) into

(2). The Navier-Cauchy equation is then obtained as a function

of the displacement vector u and the body force vector F as:

(λ + µ)∇(∇ · u) + µ∇2
u+ F = 0 (7)

where Lame’s constants, λ and µ, are λ = 10.78 MPa and µ =
0.22 MPa. These values were obtained using the Yeoh model,

where µ= 2C10 with C10= 0.11 MPa, and λ = 2µν
1−2ν

, with an

approximation value for Poisson’s ratio ν = 0.49 [19].

In this form, the Navier-Cauchy equation contains two main

terms. The first term, (λ + µ)∇(∇ · u), represents the volumet-

ric response of the material, modeling the changes in bulk de-

formation and understanding how the body expands or contracts

under an applied force. The second term, µ∇2
u, captures the

internal shear deformations that explain how the body bends,

twists, or experiences other complex deformations, which can

be used along with the first term to describe the soft robots’

elastic properties and deformation behaviors. By solving this

equation within a physics-guided neural network, the model

ensures adherence to physical laws, leading to more accurate

and reliable predictions of the robot’s behavior under various

loading conditions.

In the proposed soft finger manipulations as described in

Section II-B, the deformations can be considered in two dimen-

sions (2D), x-z plane. Then the governing equation can be given

explicitly by:

(λ + µ)
∂

∂x
(ux + uz) + µ

(

∂2ux

∂x2
+

∂2ux

∂z2

)

+ fx = 0 (8a)

(λ + µ)
∂

∂z
(ux + uz) + µ

(

∂2uz

∂x2
+

∂2uz

∂z2

)

+ fz = 0 (8b)

where ux and uz are the deformations in x and z directions,

respectively; and fx and fz are the body forces per unit volume

caused by gravity in x and z directions, respectively.

This physical model starts from the first principle and provides

a general physical model for fully soft and compliant robotics

systems. This study focuses on studying the deformation in

equilibrium aiming to provide a foundational understanding

of how these structures balance internal stresses and external

forces. This will offer critical insights into their stability and

performance for future more complex transient behaviors.
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Fig. 2. The proposed PGDL framework.

D. PGDL Framework

Coupling the physical model described in Section II-C into the

deep learning process can be illustrated in our proposed PGDL

framework as in Fig. 2. Through this framework, surrogate mod-

els are built via deep learning that incorporates and integrates the

above physics by providing two main parts, the ML part through

feedforward neural network (FNN) which is designed for static

and kinematic modeling, and the physics-guided part through

the physical model described using the Navier-Cauchy equation

as the loss function, which enforces and constrains the output

deformation from the FNN to satisfy and learn from PDEs in (8)

that contain the underlying physics.

Regarding the ML part, an FNN was defined by fully con-

nected layers including the input layer, hidden layers, and output

layer to provide a complex multi-dimensional group of nested

functions, which perform a linear transformation followed by a

nonlinear activation function to capture the non-linearity rela-

tionship from the training data:

h = RM (WM , . . . R2 (W2, R1 (W1A+ b1)) . . .+ bM ) (9)

where h is the NN output layer, which contains the deformations

ux in x direction and uz in z direction; A is the NN input layer,

which includes the pressure p and the soft finger geometry x

and z; Ri are the activation functions, where i = 1, 2, . . .,M ;

and M is the number of transformational layers where

weights and activation functions are applied including hidden

and output layers; and Wi and bi are the edges’ weights and

biases, respectively.

The physics-guided part includes two residual functions to be

minimized as f(x, z) and g(x, z):

f := (λ + µ)
∂

∂x
(ux + uz) + µ

(

∂2ux

∂x2
+

∂2ux

∂z2

)

+ fx

(10a)

g := (λ + µ)
∂

∂z
(ux + uz) + µ

(

∂2uz

∂x2
+

∂2uz

∂z2

)

+ fz

(10b)

Then, it proceeds by approximating ux and uz utilizing a

single NN with two outputs. Incorporating this prior assumption

along with (10), it leads to a physics-guided deep learning

model [f(x, z)|p, g(x, z)|p], where f and g are functions of

the geometry, conditioned on the specific pressure p that caused

the deformation of the selected geometry node x and z. The goal

of the training process is to train the NN parameters (ux, uz)|p
and (f(x, z)|p, g(x, z)|p), for each corresponding pressure p by

minimizing the summation of the MSE of the total loss function

L:

L = Lux,uz
+ Lf,g (11)

Lux,uz
= MSEux,uz

:=
1

N

N
∑

i=1

(

∣

∣ûi
x − ui

x

∣

∣

2
+
∣

∣ûi
z − ui

z

∣

∣

2
)

|pi (12)

Lf,g = MSEf,g

:=
1

N

N
∑

i=1

(

∣

∣

∣
f(xi, zi)

∣

∣

pi

∣

∣

∣

2

+
∣

∣

∣
g(xi, zi)

∣

∣

pi

∣

∣

∣

2
)

(13)

where Lux,uz
and Lf,g are the loss terms for the deformations

and the residual functions; {pi, xi, zi, ui
x, u

i
z}

N
i=1

represent the

overall training (actual) data as vectors with a size ofN=20,000,

including the pressure p that caused the deformation of the

selected soft finger geometry (x and z); exact deformation in

x direction (ui
x) and z direction (ui

z); and ûi
x and ûi

z are the

predicted deformations in the x and z direction, respectively.

E. PGDL Framework Setup

The leading architecture of the PGDL framework was built

using an FNN. In this static equilibrium problem, the PGDL

consists of one input layer, eight hidden layers, and one output

layer. The input layer contains the geometry of the soft finger

in the x and z planes (x and z) and the applied pressure (p).

The hidden layers were tested with different sizes and ended

by using eight layers with 100 neurons. The output layer is
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Fig. 3. FEA simulation results after applying air pressure and gravitational
force on the soft finger. Left: Total deformation at 45 kPa pressure (with the unit
of mm). Right: Equivalent (von-Mises) stress (with the unit of MPa).

designed to predict the deformation in the x direction (ux) and

the deformation in the z direction (uz). Rectified Linear Unit

(ReLU) was used as an activation function due to its ability to

handle the non-linearity behavior in the data, thus effectively

capturing the nonlinear behavior of the soft finger with the

Navier-Cauchy equation.

The overall amount of data obtained for the finger face from

FEM after applying the pressure in 100 sub-steps was 443,900.

A total of 20,000 data points, corresponding to a mere 5%, were

randomly selected to cover the overall data, forming the size of

the inputs x, z, applied pressure p, and the corresponding output

ûx and ûz . The training started by flattening all the input and

output data into a vector of size (20,000, 1), then normalized

in a range of [0, 1] to ensure stable training. After prediction,

the network’s outputs (ûx and ûz) are reshaped back to their

original ranges before computing the derivatives required for

the derivatives layer and the physics-based loss functions. This

step is essential for accurately applying the neural network’s pre-

dictions to the PDEs that govern the system and the optimization

functions.

Adam optimizer was used to train the network and update

the weights with a learning rate of 0.001, which was selected

through preliminary experiments to balance convergence speed

and stability. A batch size of 512 was implemented through-

out the training process, and the training was conducted over

100,000 epochs, with the loss functions guiding the optimization

process.

III. FINITE ELEMENT ANALYSIS

The FEA of the three pneumatic soft fingers described in Sec-

tion II-B was achieved by numerical simulation using ANSYS,

in which the fingers are considered as a uniform continuum body.

The silicon-based PneuNets model [15] was chosen to explain

the FEA and the initial position was defined perpendicular to

the gravity as a horizontal fixation by setting the boundary

condition using a fixed support to the left side of the actuator,

as shown in Fig. 3. An air pressure was then applied normal to

all the internal walls. Contact among surfaces can be expected

due to the material’s nonlinear deformation and hyperelastic

characteristics, so self-contact interactions between the outer

walls were defined as frictionless surface-to-surface contact. The

material was selected as a second-order hyperelastic Yeoh model

with coefficientsC1=0.11 MPa andC2=0.02 MPa with a mesh

size of 3 mm, to describe the hyperelastic materials.

The simulation results of the curvature shape and the total

deformation under the actuated pressure are shown in Fig. 3.

Using FEA method, we created a high-resolution dataset for

the training process. By applying air pressure and gravitational

force at 100 sub-steps, we obtained deformation data under

various loading conditions, resulting in 100 snapshots for the

deformation in x and z coordinates. The amount of the face

nodes after meshing was 4,439 nodes as (x, z) points for 100

pressure snaps (steps) formulated the 443,900 overall training

data (4,439×100) for all the inputs and outputs.

IV. EXPERIMENTS AND RESULTS

A. Training and Testing Approches

Using the generated dataset from FEA, two different training

and testing approaches were considered to check the efficiency

of the PGDL framework. The first approach was comprehensive

as the training data set was created by randomly selecting 20,000

points, a mere 5% of the total available data, to describe the entire

domain of the exact solution domain after applying different

pressures for each of the three soft pneumatic actuators (0-50 kPa

for the first, 0-45 kPa for the second, and 0-120 kPa for the

third) and testing with the remaining data. The second approach,

which was more challenging, the first actuator was chosen as a

case study to be able to further explore the performance of our

framework by training the model at 0-44 kPa, using the same

amount of data of 5%, and tested up to 50 kPa to be able to

judge the ability of the framework to predict uncovered loading

conditions and situations. The uncovered loading conditions

were chosen to be 45 kPa, 47 kPa, and 50 kPa. Testing for

both approaches was achieved by reshaping the overall data to

its original 100 pressure snaps as (4,439, 100) and testing the

prediction at different snapshots.

B. PGDL Framework Testing

A detailed comparison between the FEA results and the PGDL

framework is presented under different loading conditions for

the three different actuators, seen and uncovered, to highlight

the ability of this computational framework to address the limi-

tations of the FEA. The results show that the PDGL framework

can provide an accurate prediction and can also work in real-time

control applications.

1) First Approach: The main idea of the first approach was

to train the model till the maximum applied pressure using a

small amount of the available data leveraging the power of

the physical model in the learning process. Fig. 4 shows the

deformation results in the x direction with different loading

conditions for the three different soft fingers the silicon-based

PneuNets, the finger with local bending joint, and bellows-type

actuator, respectively. The FEA results of the three conditions are

presented in Fig. 4(a)–(c), and the PGDL predictions are shown

in Fig. 4(d)–(f). The maximum and minimum deformation
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Fig. 4. Comparison of the predicted deformations from the PGDL framework and those of the FEA results for the three soft robot testbeds in x direction. (a) and
(d) are results for the first case; (b) and (e) are for the second case; (c) and (f) are for the third case (unit: mm).

Fig. 5. Comparison of the predicted deformations from the PGDL framework and those of the FEA results for the three soft robot testbeds in z direction. (a) and
(d) are results for the first case; (b) and (e) are for the second case; (c) and (f) are for the third case (unit: mm).

values of FEA results and PGDL predictions were compared.

Take Fig. 4(a) and (d) of the silicon-based PneuNets case for

example, the maximum and minimum deformations in FEA

are 11.234 mm and −63.426 mm, respectively; whereas those

for PGDL prediction are 11.26 mm and −63.43 mm. In the

bellows-type actuator case, as shown in Fig. 4(c) and (f), the

maximum and minimum deformations in FEA are 5.015 mm

and −150.38 mm, respectively; whereas those for PGDL pre-

diction are 5.00 mm and −150.63 mm. The MSE for all three

representative conditions were between 10−3 and 10−4 mm2,

showing the prediction accuracy.

Likewise, Fig. 5 illustrates the deformation results in z di-

rection for the same three soft fingers. Similar to the x di-

rection results, the PGDL predictions are compared with the

FEA results, and the maximum and minimum deformations

are calculated and compared. As shown in Fig. 5(a) and (d)

that are for the silicon-based PneuNets case, the maximum and

minimum deformations in FEA are 0.25 mm and −105.24 mm,

respectively whereas those for PGDL prediction are 0.23 mm

and −105.16 mm. In Fig. 5(b) and (e) of the finger with local

bending joint case, the maximum and minimum deformations

in FEA are 0.21 mm and −69.94 mm, respectively; whereas
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Fig. 6. Base curvatures of the soft robot at different loading conditions.

Fig. 7. MSE between the exact and actual deformation under different loading
conditions (MSE unit: mm2).

those for PGDL prediction are 0.21 mm and −70.10 mm. The

MSE for the entire body is still within 10−3 and 10−4 mm2 .

In the experiments, we selected three soft actuators with dif-

ferent geometries and behaviors aiming to estimate the model’s

capability of predicting the deformation in different conditions

without losing its accuracy.

In addition to the maximum and minimum deformation, we

also used the curvature of the silicon-based PneuNets baseline

to compare the results from FEA and from the PGDL prediction.

The comparison under different applied air pressure conditions

is shown in Fig. 6 with the air pressure of 10-50 kPa. The solid

blue line is the curvature of the finger baseline in FEA whereas

the red dash line is the PGDL-predicted finger baseline. The

results show that the predicted baseline from the PGDL aligns

with the FEA data. As depicted in Fig. 6, the actual and predicted

curves overlap precisely for all tested pressures, demonstrating

the model’s exceptional predictive accuracy.

To quantitatively estimate the prediction accuracy, the MSE

between the exact deformation from FEA and the predicted out-

put from our framework was calculated. Fig. 7 lists the MSE for

five conditions of the applied pressures of 10 kPa, 20 kPa, 30 kPa,

40 kPa, and 50 kPa, corresponding to the given cases in Fig. 6.

The training was performed with less than 5% well distributed

points over the whole body, and the MSE varied between 10−3

and 10−4 mm2 for x and z directions. The beginning and ending

Fig. 8. Base curvatures for the uncovered loading conditions.

TABLE II
MSE OF THE UNCOVERED CONDITIONS (UNIT: MM

2)

cases (i.e., 10 kPa and 50 kPa) had relatively higher MSE but

still in the range of 10−3 mm2. The cases in between had lower

MSE. The results from the first approach show that using the

Navier-Cauchy equation as the physical model to capture the

deformation of the soft robotic system and coupling it into

the learning process enhanced the model’s performance to a

large extent for all the loading conditions within the training

data range.

2) Second Approach: The second approach was performed

using the silicon-based PneuNets soft actuator to perform train-

ing with a limited range of loading conditions and predict

uncovered air pressure conditions to be able to further explore the

full capability, robustness and generalizability of our framework.

Specifically, the training was covered up to 44 kPa whereas the

PGDL prediction was achieved up to 50 kPa. By training the

model with a subset of the data and testing it on higher, uncovered

pressures of 45 kPa, 47 kPa, and 50 kPa, we hoped to test the

boundaries of the model’s predictive capabilities. The results

showed that this model was able to predict these uncovered

conditions from limited training with low MSE. The experiment

and results are detailed below.

The training for the second approach was performed up to

44 kPa and the performance at the three uncovered loading

conditions (45 kPa, 47 kPa, and 50 kPa) was tested. The predic-

tion performance was evaluated in terms of the base curvature

as shown in Fig. 8. Despite not encountering these specific

pressures during training, the model could still achieve high

accuracy with the low MSE in the order of 10−3 mm2. Table II

lists the MSE values between the exact and predicted defor-

mations for these three uncovered conditions. With such low

MSE, the base curvatures for these three pressure conditions
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Fig. 9. Predicted deformation in both directions at 50 kPa (unit: mm).

were nearly identical to the actual data. Fig. 9 presents the

predicted deformation results and the maximum and minimum

deformation values at 50 kPa in both x and z directions. The x

direction prediction had the MSE of 0.017 mm2 whereas the z

direction prediction had the MSE of 0.007 mm2. Compared with

the FEA results and PGDL predictions from the first approach

(Figs. 4(a) and (d) and 5(a) and (d)), the second approach can

achieve comparable predicting performance using the proposed

PGDL, which underscores the model’s capability of predicting

previously unencountered loading scenarios. The consistently

low MSE values across these conditions demonstrate the model’s

robustness and capacity to maintain accuracy even when extrap-

olating beyond the training data.

V. DISCUSSION AND CONCLUSION

This study proposed a physics-guided deep learning frame-

work for soft robot modeling that integrates first principle

physics into neural network, which offers a new approach for

modeling soft robots’ complex, nonlinear behaviors. This study

demonstrated the effectiveness of the PGDL framework in ac-

curately predicting the deformation and the base curvature of

a pneumatic soft finger across various loading conditions. An

FEA model was created to generate a high-resolution dataset by

capturing the deformations under different loading scenarios.

Two training and testing approaches were utilized the MSE of

both approaches were between 10−3 and 10−4 mm2. This study

is among the first to couple first principle physics into deep

learning for soft robot modeling, also there is still future work

to further improve the PGDL framework.

This study starts with the formulation of equilibrium for

predictions and therefore can be used for the prediction of

equilibrium conditions at this stage. As a starting step, it provides

insights into how soft structures balance internal stresses and

external forces and is fundamental to the next-step complex tran-

sient behavior modeling using PGDL. This method intrinsically

considers physics and has the capability of considering more

complex situations by coupling the corresponding governing

equations, auxiliary equations, initial, and boundary conditions

into deep learning. Therefore, the framework’s structure needs

to be adaptive to consider these equations and still provide

high accuracy. For future work, we will improve this proposed

PGDL framework by using the transient model and including

the temporal coordinates to capture the behavior over the time

domain. This proposed PGDL has a high potential to be appli-

cable and extended to different types of soft robots for soft robot

modeling.
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