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Physics-Guided Deep Learning Enabled Surrogate
Modeling for Pneumatic Soft Robots

Sameh 1. Beaber

Abstract—Soft robots, formulated by soft and compliant ma-
terials, have grown significantly in recent years toward safe and
adaptable operations and interactions with dynamic environments.
Modeling the complex, nonlinear behaviors and controlling the
deformable structures of soft robots present challenges. This study
aims to establish a physics-guided deep learning (PGDL) computa-
tional framework that integrates physical models into deep learning
framework as surrogate models for soft robots. Once trained, these
models can replace computationally expensive numerical simula-
tions to shorten the computation time and enable real-time control.
This PGDL framework is among the first to integrate first principle
physics of soft robots into deep learning toward highly accurate
yet computationally affordable models for soft robot modeling
and control. The proposed framework has been implemented and
validated using three different pneumatic soft fingers with different
behaviors and geometries, along with two training and testing
approaches, to demonstrate its effectiveness and generalizability.
The results showed that the mean square error (MSE) of predicted
deformed curvature and the maximum and minimum deformation
at various loading conditions were as low as 10~* mm?. The
proposed PGDL framework is constructed from first principle
physics and intrinsically can be applicable to various conditions by
carefully considering the governing equations, auxiliary equations,
and the corresponding boundary and initial conditions.

Index Terms—Soft robot applications, soft actuators, modeling
and control, Physics-Informed Neural Networks (PINNs).

1. INTRODUCTION

OFT robots are constructed from soft and compliant mate-
S rials and structures. This unique nature endows soft robots
with competitive advantages such as intrinsic adaptability to
diverse environments, enhanced safety and dexterity during
services, and flexibility for various applications. Soft robots
exhibit a theoretically infinite number of degrees of freedom
(DOFs) and thus can generate highly nonlinear behaviors, which
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leads to challenges in accurately modeling and controlling their
deformation, compliance, and behaviors [1]. As a result, soft
robotics theoretical models are normally much more compli-
cated than those for traditional rigid robots. To tackle this major
problem, remarkable studies have been performed, ranging from
physics/geometry-based models and their approximation and
discretization [2], numerical methods such as finite element
methods (FEMs) [3], sensing enabled morphological and reser-
voir computing [4], to pure data-driven methods using machine
learning techniques [5].

Consequently, several theoretical models have been devel-
oped considering the dynamics principles such as continuum
mechanics models, geometrical models, discrete material mod-
els, and surrogate models [1]. Continuum mechanics models
consider soft bodies as a set of continuum particles; thus, the
main idea is to equivalently simplify the representative numbers
of DOFs for control inputs for driving the motion [6]. Geo-
metrical models are usually constructed from the soft robots’
geometrical shapes after applying specific loads [7], hence can
describe the deformed body as a space curve defined by math-
ematical functions or divide the soft body into a set of circular
arc shapes. Discrete element models define the soft continuum
body as discrete material elements such as springs, dampers,
and masses [8]. Physics-based models can provide accurate
descriptions of soft robots’ nonlinear behaviors; however, they
may struggle to integrate seamlessly with real-time sensing and
control. Approximation and discretization can reduce the DOFs
of such models but may need assumption and simplification and
thus may sacrifice accuracy.

Machine learning/deep learning (ML/DL) techniques can
enrich soft robotics with models that are able to deal with
highly nonlinear problems while maintaining the necessary ac-
curacy [9]. Such data-driven models are suitable for real-time
control; however, they rely on extensive and high-quality train-
ing data, which can be costly to collect. In addition, applying ML
to soft robot models while considering the underlying physics is
still one of the major challenges [10]. This is because extracting
all the features from only the given data without considering the
underlying physical principles may yield unrealistic predictions,
especially for those out of the training range.

Physics-guided deep learning (PGDL) offers a compelling
approach to overcome the limitations of using either ML or
physical models in complex engineering problems. Unlike tra-
ditional ML models, PGDL embeds governing physical laws
directly into the learning process, ensuring that the predictions
align with fundamental physics. Generally speaking, PGDL
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can address four main problems, solving differential equations,
learning dynamics residuals, discovering governing equations,
and forecasting dynamic systems [11]. The main idea is to solve
partial differential equations (PDEs) that describe the physics of
the system using data from analytical and/or numerical solutions
and thus have the uniqueness to integrate the strengths of ML
with the robustness and interpretability of physics-based models.
By utilizing numerical results obtained from physical models
such as FEM for learning, this approach substantially lowers
the computational effort required for network training, as it
is consistent with the underlying physical laws that govern
the dataset. This method enhances the prediction accuracy and
reduces the reliance on large datasets by embedding physical
constraints directly into the learning process. However, coupling
physics into deep learning is not yet well studied for soft robot
modeling and control.

This study aims to develop a new PGDL-based computa-
tional framework that integrates first principle physics and deep
learning as surrogate models for soft robotics. We leveraged
physics-informed neural network (PINN) [12] that can solve
PDEs using spatial coordinates to model intricate soft robotics
and established the physical model using the Navier-Cauchy
equation to construct the framework. We constructed three soft
finger models with different geometries and behaviors as three
testbeds. These three chosen soft fingers have been experi-
mentally validated in previously published work. The results
demonstrated high accuracy and efficiency in all three cases,
which showed that our model can be generalized over a wide
range of soft pneumatic systems. In addition, two training and
testing approaches were employed using 5% of the total data for
training and both covered and uncovered scenarios for testing.
Using both approaches, our proposed PGDL model accurately
predicted the base curvature and the deformation, demonstrating
its robustness and generalization capabilities across different
loading conditions. This study is among the first to integrate first
principle physics as the governing equation into deep learning
for soft robot modeling.

The remainder of this letter is organized as follows: Section II
presents the proposed computational framework. Section III
covers the FEA implementation for data generation, and Sec-
tion IV provides the experimental setup and the results for two
different training models followed by discussion and conclusion
in Section V.

II. PGDL FOR SOFT ROBOTICS FRAMEWORK

The proposed PGDL aims to fundamentally employ PDE
solving in the learning process to capture soft robots’ complex
behaviors. Once trained, these surrogate models can replace
computationally expensive numerical simulations, significantly
reducing computation time and enabling real-time control. This
section presents the proposed framework in detail.

A. Related Work

Traditional applications of PGDL use PINNSs to solve PDEs
that describe physical models in terms of spatial and temporal
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variables as long as these physical models can be intrinsically
represented by the corresponding governing equations, auxiliary
equations, boundary conditions, and initial conditions. Mod-
ified PINNs have been attempted in modeling soft robotics,
and some researchers have adapted the PINN framework to
address the unique challenges of soft robotics. Notably, Sun
et al. [13] proposed the Physics-Informed Recurrent Neural
Networks (PIRNN) that used a first-order linear system with a
rate-independent hysteresis as the physical model and integrated
it with a Recurrent Neural Network (RNN) and used the explicit
Euler method to predict the output of this physical model. Then
this prediction was used as additional input and output to guide
the RNN learning. Liu et al. [14] employed Lagrangian and
Hamiltonian formulations for modeling soft robot dynamics
into NN, which allows for non-collocated control using the
generalized coordinates, momenta, and the control input as the
input layer.

To generalize the applications of coupling physics and ML/DL
for soft robotics, a clear description of the underlying physics
with the temporal and spatial coordinates that align the control
(or prediction) points with the physical model’s behavior is still
desired to be well integrated with the learning process, which is
not yet well studied.

B. Pneumatic Soft Finger

Pneumatic soft fingers constructed by pneumatic networks
(PneuNets) are flexible and compliant actuators made from elas-
tic or hyperelastic materials with integrated inflatable chambers
and channels in certain sequences. These soft fingers are often
designed and controlled to produce desired motions that can
mimic human fingers for grasping and manipulation when well
pressurized. Other designs such as bending joints and bellow
structures have also been attempted.

This study used pneumatic soft fingers as testbeds to imple-
ment and validate the proposed PGDL framework. Three soft
finger models with different geometries, materials, and behav-
iors were constructed as three testbeds, which were tested and
validated by other studies [15], [16], [17]. FEA simulations were
also performed in these three studies. The first is a silicon-based
PneuNets made by [15]; the second is a 3D-printed soft finger
with local bending joints [16]; and the third is a bellow-type
soft actuator [17]. Fig. 1 shows the detailed design of the first
case with the structure of its PneuNets as an example, and the
dimensions of this design are detailed in Table I.
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TABLE I
PARAMETRIC GEOMETRY OF THE PNEUNET

PneuNets  Channel Ga ‘Wall PneuNets ~ PneuNets
height height P thickness length Number
h d s t ! m
14 mm 2 mm 1 mm 3 mm 10.5 mm 10

C. Physical Model

Soft robots’ behaviors can be complex due to their highly
flexible and deformable nature. The physics underlying such
mechanical behaviors of these soft structures made from elastic
or hyperelastic materials can be described using the Navier-
Cauchy equation [18]. For fully compliant soft robots such as
PneuNets, considering an arbitrary volume, the differential form
of the equilibrium equation can be given by:

V.o+F=0 (D

where V- is the divergence operator; o is the Cauchy stress
tensor; F is the body force per unit volume caused by gravity.

The Navier-Cauchy equation in equilibrium can illustrate that
the internal forces within the body and the external forces must
balance out to maintain the state of equilibrium. The divergence
of the stress tensor, V - o, represents the internal forces within
a material that result from stress, including the nine components
of the normal and shear stresses; the stress tensor, o, describes
how internal forces are distributed within the body, and the body
force vector, F, represented the external forces.

The Navier-Cauchy equation can be expressed in terms of the
three-dimensional components, the indices i, j take the values
1, 2, 3 for three-dimensional z, y, z, using Einstein summation
convention as:

3

‘2?7 ‘F=05,+F =0 i,j=1,23 (2
j=1
where o;; ; and I represent the index notation of the stress
tensor and the body force density, respectively; and x ; represents
the three spatial coordinates.

When relating stress to displacement as a dependent variable
in the defined domain, Navier-Cauchy equation formulation
is achieved using the stress-strain-displacement relationship.
The constitutive equation that relates the stress with the strain
(Hooke’s law) in index notation is:

Oij = Aekklij + 21E45 3)

where A and y are Lame’s constants; €;; is the strain tensor in
index notation; and ¢;; is the Kronecker delta:

0, ifisj

0ij =
/ 1, i=j.

Then, the strain-displacement relation can be given as:
Ou, 1
! ) =5y tu) @

1 8’ul
i = =
*J 2 3xj al’i 2
where u is the displacement components in the three spatial
coordinates and also ¢, j take the values 1, 2, 3.
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Since both the stress-strain and strain-displacement relations
are obtained, the stress can be represented in terms of displace-
ment:

Oij = Mijerk + p (wij 4 uj)
= Mjjup,k + o (wij + uj,) (5)
Then, the obtained stress can be written as:
Oijj = Mk ki + p (Ui g5 + ujig)
= Mg ji + 1 (ui gy + ujij)
= (A + w)uy ji + pui j; (©)

The general formulation for describing deformations of elastic
bodies in differential form can be given by substituting (6) into
(2). The Navier-Cauchy equation is then obtained as a function
of the displacement vector u and the body force vector F as:

A+ WV(V-u)+pViu+F =0 (7

where Lame’s constants, A and p, are A = 10.78 MPa and . =
0.22 MPa. These values were obtained using the Yeoh model,
where p= 2010 with C1o=0.11 MPa, and A = 22 with an
approximation value for Poisson’s ratio v = 0.49 [19].

In this form, the Navier-Cauchy equation contains two main
terms. The first term, (A 4+ 1)V (V - u), represents the volumet-
ric response of the material, modeling the changes in bulk de-
formation and understanding how the body expands or contracts
under an applied force. The second term, V2u, captures the
internal shear deformations that explain how the body bends,
twists, or experiences other complex deformations, which can
be used along with the first term to describe the soft robots’
elastic properties and deformation behaviors. By solving this
equation within a physics-guided neural network, the model
ensures adherence to physical laws, leading to more accurate
and reliable predictions of the robot’s behavior under various
loading conditions.

In the proposed soft finger manipulations as described in
Section II-B, the deformations can be considered in two dimen-
sions (2D), x-z plane. Then the governing equation can be given
explicitly by:

0 uy  0Puy
()‘—’_:u‘)ax(uz'f'uz)"rﬂ(axg—’_w) +fa: =0 (83)
0 Pu,  *u, B
()‘+U)az(ux+uz)+ﬂ<ax2 + 822>+fz—0 (8b)

where u, and u, are the deformations in x and z directions,
respectively; and f, and f. are the body forces per unit volume
caused by gravity in = and z directions, respectively.

This physical model starts from the first principle and provides
a general physical model for fully soft and compliant robotics
systems. This study focuses on studying the deformation in
equilibrium aiming to provide a foundational understanding
of how these structures balance internal stresses and external
forces. This will offer critical insights into their stability and
performance for future more complex transient behaviors.
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D. PGDL Framework

Coupling the physical model described in Section II-C into the
deep learning process can be illustrated in our proposed PGDL
framework as in Fig. 2. Through this framework, surrogate mod-
els are built via deep learning that incorporates and integrates the
above physics by providing two main parts, the ML part through
feedforward neural network (FNN) which is designed for static
and kinematic modeling, and the physics-guided part through
the physical model described using the Navier-Cauchy equation
as the loss function, which enforces and constrains the output
deformation from the FNN to satisfy and learn from PDEs in (8)
that contain the underlying physics.

Regarding the ML part, an FNN was defined by fully con-
nected layers including the input layer, hidden layers, and output
layer to provide a complex multi-dimensional group of nested
functions, which perform a linear transformation followed by a
nonlinear activation function to capture the non-linearity rela-
tionship from the training data:

h: R]w (WM,RQ (WQ,Rl (W1A+b1)) +bM) (9)

where h is the NN output layer, which contains the deformations
U, in x direction and u, in z direction; A is the NN input layer,
which includes the pressure p and the soft finger geometry x
and z; R; are the activation functions, where ¢+ = 1,2,..., M;
and M is the number of transformational layers where
weights and activation functions are applied including hidden
and output layers; and W, and b; are the edges’ weights and
biases, respectively.

The physics-guided part includes two residual functions to be
minimized as f(z, z) and g(z, 2):

o u,  O%ug
f~()‘+ﬂ)8x(ux+uz)+/u<8x2 + >+ff6

0z2
(10a)
0 0%u, 0%u,
g = ()"+N)az(u:c+uz)+ﬂ'<ax2 + 922 ) J"fz
(10b)

| 9 *u, Al
|\H—(/1+u)az(ux+uz)+#(ax2+azz +£=0,
J

O s e A e i e S

Then, it proceeds by approximating u, and u, utilizing a
single NN with two outputs. Incorporating this prior assumption
along with (10), it leads to a physics-guided deep learning
model [f(z, 2)|p, g(x, 2)|p], where f and g are functions of
the geometry, conditioned on the specific pressure p that caused
the deformation of the selected geometry node = and z. The goal
of the training process is to train the NN parameters (u, u; )|,
and (f(x, 2)|p, g(z, z)|p), for each corresponding pressure p by
minimizing the summation of the MSE of the total loss function

L:

L= L + Ly (1n)
Lo, = MSE,, .
13N, S,
;:NZ(a;qu +lal —ul| )|p7¢ (12)
i=1

Lsg=DMSEf,

1 N o 2
= (’f(x’,zl) ) (13)
=1

where L, .. and Ly 4 are the loss terms for the deformations
and the residual functions; {p*, x%, 2%, u, u’ }¥ | represent the
overall training (actual) data as vectors with a size of N =20,000,
including the pressure p that caused the deformation of the
selected soft finger geometry (z and z); exact deformation in
x direction (u) and z direction (u'); and 4’ and @’ are the
predicted deformations in the = and z direction, respectively.

2 . .
+ ‘g(xz, ")

pi

pi

E. PGDL Framework Setup

The leading architecture of the PGDL framework was built
using an FNN. In this static equilibrium problem, the PGDL
consists of one input layer, eight hidden layers, and one output
layer. The input layer contains the geometry of the soft finger
in the z and 2 planes (x and z) and the applied pressure (p).
The hidden layers were tested with different sizes and ended
by using eight layers with 100 neurons. The output layer is
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Fig. 3. FEA simulation results after applying air pressure and gravitational
force on the soft finger. Left: Total deformation at 45 kPa pressure (with the unit
of mm). Right: Equivalent (von-Mises) stress (with the unit of MPa).

designed to predict the deformation in the x direction (u,) and
the deformation in the z direction (u,). Rectified Linear Unit
(ReLU) was used as an activation function due to its ability to
handle the non-linearity behavior in the data, thus effectively
capturing the nonlinear behavior of the soft finger with the
Navier-Cauchy equation.

The overall amount of data obtained for the finger face from
FEM after applying the pressure in 100 sub-steps was 443,900.
A total of 20,000 data points, corresponding to a mere 5%, were
randomly selected to cover the overall data, forming the size of
the inputs z, z, applied pressure p, and the corresponding output
U, and u,. The training started by flattening all the input and
output data into a vector of size (20,000, 1), then normalized
in a range of [0, 1] to ensure stable training. After prediction,
the network’s outputs (i, and u,) are reshaped back to their
original ranges before computing the derivatives required for
the derivatives layer and the physics-based loss functions. This
step is essential for accurately applying the neural network’s pre-
dictions to the PDEs that govern the system and the optimization
functions.

Adam optimizer was used to train the network and update
the weights with a learning rate of 0.001, which was selected
through preliminary experiments to balance convergence speed
and stability. A batch size of 512 was implemented through-
out the training process, and the training was conducted over
100,000 epochs, with the loss functions guiding the optimization
process.

III. FINITE ELEMENT ANALYSIS

The FEA of the three pneumatic soft fingers described in Sec-
tion II-B was achieved by numerical simulation using ANSYS,
in which the fingers are considered as a uniform continuum body.
The silicon-based PneuNets model [15] was chosen to explain
the FEA and the initial position was defined perpendicular to
the gravity as a horizontal fixation by setting the boundary
condition using a fixed support to the left side of the actuator,
as shown in Fig. 3. An air pressure was then applied normal to
all the internal walls. Contact among surfaces can be expected
due to the material’s nonlinear deformation and hyperelastic
characteristics, so self-contact interactions between the outer
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walls were defined as frictionless surface-to-surface contact. The
material was selected as a second-order hyperelastic Yeoh model
with coefficients Cy =0.11 MPa and Cs = 0.02 MPa with amesh
size of 3 mm, to describe the hyperelastic materials.

The simulation results of the curvature shape and the total
deformation under the actuated pressure are shown in Fig. 3.
Using FEA method, we created a high-resolution dataset for
the training process. By applying air pressure and gravitational
force at 100 sub-steps, we obtained deformation data under
various loading conditions, resulting in 100 snapshots for the
deformation in x and z coordinates. The amount of the face
nodes after meshing was 4,439 nodes as (z, z) points for 100
pressure snaps (steps) formulated the 443,900 overall training
data (4,439 x100) for all the inputs and outputs.

IV. EXPERIMENTS AND RESULTS
A. Training and Testing Approches

Using the generated dataset from FEA, two different training
and testing approaches were considered to check the efficiency
of the PGDL framework. The first approach was comprehensive
as the training data set was created by randomly selecting 20,000
points, a mere 5% of the total available data, to describe the entire
domain of the exact solution domain after applying different
pressures for each of the three soft pneumatic actuators (0-50 kPa
for the first, 0-45 kPa for the second, and 0-120 kPa for the
third) and testing with the remaining data. The second approach,
which was more challenging, the first actuator was chosen as a
case study to be able to further explore the performance of our
framework by training the model at 0-44 kPa, using the same
amount of data of 5%, and tested up to 50 kPa to be able to
judge the ability of the framework to predict uncovered loading
conditions and situations. The uncovered loading conditions
were chosen to be 45 kPa, 47 kPa, and 50 kPa. Testing for
both approaches was achieved by reshaping the overall data to
its original 100 pressure snaps as (4,439, 100) and testing the
prediction at different snapshots.

B. PGDL Framework Testing

A detailed comparison between the FEA results and the PGDL
framework is presented under different loading conditions for
the three different actuators, seen and uncovered, to highlight
the ability of this computational framework to address the limi-
tations of the FEA. The results show that the PDGL framework
can provide an accurate prediction and can also work in real-time
control applications.

1) First Approach: The main idea of the first approach was
to train the model till the maximum applied pressure using a
small amount of the available data leveraging the power of
the physical model in the learning process. Fig. 4 shows the
deformation results in the z direction with different loading
conditions for the three different soft fingers the silicon-based
PneuNets, the finger with local bending joint, and bellows-type
actuator, respectively. The FEA results of the three conditions are
presented in Fig. 4(a)—(c), and the PGDL predictions are shown
in Fig. 4(d)—(f). The maximum and minimum deformation
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values of FEA results and PGDL predictions were compared.
Take Fig. 4(a) and (d) of the silicon-based PneuNets case for
example, the maximum and minimum deformations in FEA
are 11.234 mm and —63.426 mm, respectively; whereas those
for PGDL prediction are 11.26 mm and —63.43 mm. In the
bellows-type actuator case, as shown in Fig. 4(c) and (f), the
maximum and minimum deformations in FEA are 5.015 mm
and —150.38 mm, respectively; whereas those for PGDL pre-
diction are 5.00 mm and —150.63 mm. The MSE for all three
representative conditions were between 1073 and 10~* mm?,
showing the prediction accuracy.

Likewise, Fig. 5 illustrates the deformation results in z di-
rection for the same three soft fingers. Similar to the x di-
rection results, the PGDL predictions are compared with the
FEA results, and the maximum and minimum deformations
are calculated and compared. As shown in Fig. 5(a) and (d)
that are for the silicon-based PneuNets case, the maximum and
minimum deformations in FEA are 0.25 mm and —105.24 mm,
respectively whereas those for PGDL prediction are 0.23 mm
and —105.16 mm. In Fig. 5(b) and (e) of the finger with local
bending joint case, the maximum and minimum deformations
in FEA are 0.21 mm and —69.94 mm, respectively; whereas
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Fig.7. MSE between the exact and actual deformation under different loading

conditions (MSE unit: mm?).

those for PGDL prediction are 0.21 mm and —70.10 mm. The
MSE for the entire body is still within 1072 and 10~ mm? .
In the experiments, we selected three soft actuators with dif-
ferent geometries and behaviors aiming to estimate the model’s
capability of predicting the deformation in different conditions
without losing its accuracy.

In addition to the maximum and minimum deformation, we
also used the curvature of the silicon-based PneuNets baseline
to compare the results from FEA and from the PGDL prediction.
The comparison under different applied air pressure conditions
is shown in Fig. 6 with the air pressure of 10-50 kPa. The solid
blue line is the curvature of the finger baseline in FEA whereas
the red dash line is the PGDL-predicted finger baseline. The
results show that the predicted baseline from the PGDL aligns
with the FEA data. As depicted in Fig. 6, the actual and predicted
curves overlap precisely for all tested pressures, demonstrating
the model’s exceptional predictive accuracy.

To quantitatively estimate the prediction accuracy, the MSE
between the exact deformation from FEA and the predicted out-
put from our framework was calculated. Fig. 7 lists the MSE for
five conditions of the applied pressures of 10kPa, 20 kPa, 30 kPa,
40 kPa, and 50 kPa, corresponding to the given cases in Fig. 6.
The training was performed with less than 5% well distributed
points over the whole body, and the MSE varied between 103
and 10~* mm? for x and z directions. The beginning and ending
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Fig. 8. Base curvatures for the uncovered loading conditions.

TABLE I
MSE OF THE UNCOVERED CONDITIONS (UNIT: MM2)

45 kPa 47 kPa 50 kPa
MSE for x direction 0.004 0.008 0.017
MSE for z direction 0.002 0.004 0.007

cases (i.e., 10 kPa and 50 kPa) had relatively higher MSE but
still in the range of 10~2 mm?2. The cases in between had lower
MSE. The results from the first approach show that using the
Navier-Cauchy equation as the physical model to capture the
deformation of the soft robotic system and coupling it into
the learning process enhanced the model’s performance to a
large extent for all the loading conditions within the training
data range.

2) Second Approach: The second approach was performed
using the silicon-based PneuNets soft actuator to perform train-
ing with a limited range of loading conditions and predict
uncovered air pressure conditions to be able to further explore the
full capability, robustness and generalizability of our framework.
Specifically, the training was covered up to 44 kPa whereas the
PGDL prediction was achieved up to 50 kPa. By training the
model with a subset of the data and testing it on higher, uncovered
pressures of 45 kPa, 47 kPa, and 50 kPa, we hoped to test the
boundaries of the model’s predictive capabilities. The results
showed that this model was able to predict these uncovered
conditions from limited training with low MSE. The experiment
and results are detailed below.

The training for the second approach was performed up to
44 kPa and the performance at the three uncovered loading
conditions (45 kPa, 47 kPa, and 50 kPa) was tested. The predic-
tion performance was evaluated in terms of the base curvature
as shown in Fig. 8. Despite not encountering these specific
pressures during training, the model could still achieve high
accuracy with the low MSE in the order of 10~2 mm?2. Table II
lists the MSE values between the exact and predicted defor-
mations for these three uncovered conditions. With such low
MSE, the base curvatures for these three pressure conditions

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on February 07,2025 at 23:18:52 UTC from IEEE Xplore. Restrictions apply.



11448
20 0
% 0 =20 S
C =3
£ 2 40 ©
g 40 g
8 -40 —60 .%
N ? [a}
~601[Max dy: 10.53 < -80
Min Gy: -62.38|
—80 i -100
=25 0 25 50 75 100 125
X Coordinate
(a) Predicted deformation in z direction.
20 0
% 0 2 g
C -
£ 5 _40 ©
-g 40 g
8 -40 —60 .g
N 6o o0 °
—-80 -100
-25 0 25 50 75 100 125
X Coordinate
(b) Predicted deformation in z direction.
Fig. 9. Predicted deformation in both directions at 50 kPa (unit: mm).

were nearly identical to the actual data. Fig. 9 presents the
predicted deformation results and the maximum and minimum
deformation values at 50 kPa in both = and z directions. The x
direction prediction had the MSE of 0.017 mm? whereas the z
direction prediction had the MSE of 0.007 mm?. Compared with
the FEA results and PGDL predictions from the first approach
(Figs. 4(a) and (d) and 5(a) and (d)), the second approach can
achieve comparable predicting performance using the proposed
PGDL, which underscores the model’s capability of predicting
previously unencountered loading scenarios. The consistently
low MSE values across these conditions demonstrate the model’s
robustness and capacity to maintain accuracy even when extrap-
olating beyond the training data.

V. DISCUSSION AND CONCLUSION

This study proposed a physics-guided deep learning frame-
work for soft robot modeling that integrates first principle
physics into neural network, which offers a new approach for
modeling soft robots” complex, nonlinear behaviors. This study
demonstrated the effectiveness of the PGDL framework in ac-
curately predicting the deformation and the base curvature of
a pneumatic soft finger across various loading conditions. An
FEA model was created to generate a high-resolution dataset by
capturing the deformations under different loading scenarios.
Two training and testing approaches were utilized the MSE of
both approaches were between 10~% and 10~* mm?. This study
is among the first to couple first principle physics into deep
learning for soft robot modeling, also there is still future work
to further improve the PGDL framework.

This study starts with the formulation of equilibrium for
predictions and therefore can be used for the prediction of
equilibrium conditions at this stage. As a starting step, it provides
insights into how soft structures balance internal stresses and
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external forces and is fundamental to the next-step complex tran-
sient behavior modeling using PGDL. This method intrinsically
considers physics and has the capability of considering more
complex situations by coupling the corresponding governing
equations, auxiliary equations, initial, and boundary conditions
into deep learning. Therefore, the framework’s structure needs
to be adaptive to consider these equations and still provide
high accuracy. For future work, we will improve this proposed
PGDL framework by using the transient model and including
the temporal coordinates to capture the behavior over the time
domain. This proposed PGDL has a high potential to be appli-
cable and extended to different types of soft robots for soft robot
modeling.
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