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Abstract—Neuromuscular disorders encompass pathological
conditions affecting either the musculoskeletal system, the ner-
vous system, or their interface. The majority of neuromuscular
disorders lack complete curative treatments and thus necessi-
tate efforts focused on improving rehabilitation and quality of
life. Assistive technologies with brain-computer interface (BCI)
control provide a promising solution to main patients’ daily
activities. Central to these technologies is the classification of
electroencephalography (EEG) motor imagery signals, which is
paramount for the operational success of BCIs. The endeavor
to enhance the precision of these classifications has led to the
exploration of various computational techniques, with convo-
lutional neural networks (CNNs) being at the forefront due
to their proficiency in handling spatial hierarchies in data.
Despite the advancements, the quest for improved accuracy
continues, especially in scenarios characterized by raw EEG
data inputs, as opposed to the transformed data inputs (e.g.,
using Fast Fourier Transform (FFT)) commonly reported in
existing literature. This study introduces an integrated CNN
model augmented with a transformer encoder block, aiming to
harness the inherent spatial-temporal features of EEG signals
more effectively. Preliminary evaluations suggest an encouraging
comparable performance with the studies reported in the field,
thereby underscoring its potential utility in enhancing motor
imagery classification for BCI applications.

Index Terms—EEG, motor imagery classification, Convolu-
tional Neural Networks (CNN), transformer encoder, BCI

I. INTRODUCTION

Brain-computer interfaces (BCIs) [1] have emerged as a
key component in the advancement of assistive devices and
rehabilitation approaches [2], which have been inaugurated
by the convergence of neural engineering and healthcare
technology. Among the myriad of signals utilized for BCI,
electroencephalography (EEG) based motor imagery classifi-
cation presents a non-invasive gateway to understanding and
interpreting the intentions of the human brain [3]. Recent
investigations have predominantly leveraged CNNs to decode
these signals, given their adeptness at capturing spatial features
[4], [5]. However, the variability in optimal convolution scales
across individuals and the challenge of limited training data
remain hurdles to achieving high classification accuracy. Ac-
knowledging these challenges, this study proposes an approach
that synergizes the spatial feature extraction capabilities of
CNNs with the encapsulation of the temporal dynamics facil-
itated by transformer encoder blocks. This combination aims
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to create a more holistic understanding of EEG data, mainly
when dealing with raw signal inputs, thus steering clear of
the pre-processing steps introduced by methods like FFT. The
results highlight the proposed model’s capability to achieve
notable accuracy in motor imagery classification, suggesting a
promising avenue for future research and application in BCI-
driven healthcare solutions.

II. NETWORK ARCHITECTURE AND METHODOLOGY

In this study, the BCI Competition IV 2a dataset [6] was
used to evaluate the proposed method. This dataset includes
EEG recordings from 9 subjects across four motor imagery
tasks, i.e., the imagination of movement of the left hand, right
hand, both feet, and tongue. This dataset, comprising two
sessions per subject with 288 trials each, was recorded using
twenty-two Ag/AgCl electrodes with a sampling frequency of
250 Hz. In the preprocessing, a bandpass filter from 0.5 to 40
Hz was applied to the data to focus on the frequency ranges
most relevant to motor imagery tasks.

In this study, we proposed an integrated CNN model en-
hanced by a transformer encoder block, designed to better
utilize the intrinsic spatial-temporal characteristics of EEG
signals as shown in Fig. 1. Initially, the convolutional layers
conduct spatial feature extraction, and subsequent to this
phase, the transformer encoder discerns temporal patterns.
This layered approach ensures thorough processing, which is
pivotal for the intricate patterns characteristic of EEG data.
The model’s strategic design is geared towards enhancing
feature representation prior to the classification stage, where
the interpreted features are utilized for predictive analysis.

The model is trained to differentiate between left and right-
hand movement imagery tasks without transforming the data
into the frequency domain. The proposed network combines
CNNs with transformer encoder blocks to classify EEG sig-
nals. This approach leverages the spatial and temporal dynam-
ics of EEG data for robust feature extraction, while directly
using raw signals to avoid preprocessing steps. The network
architecture begins with convolutional layers to extract spatial
features from the EEG signals, followed by a transformer
encoder that captures the temporal dynamics, emphasizing the
direct use of raw EEG signals.
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Fig. 1. Hybrid CNN-transformer network architecture for motor imagery classification.

III. RESULTS AND CONCLUSION

The model’s performance, delineated in Table I, provides a
quantitative insight into its efficacy across various subjects.
The mean accuracy across subjects is 0.753, indicating a
relatively consistent performance with a moderate variance,
reflecting the robustness of the model in dealing with different
EEG patterns. The F1 Score, averaging at 0.837, suggests
a high degree of precision and recall, a crucial factor for
reliable BCI applications. Lastly, the Cohen’s Kappa score of
0.670 further corroborates the model’s validity, signifying a
substantial agreement beyond chance between the predicted
and observed classifications. These metrics collectively affirm
the model’s potential as a reliable tool for EEG motor imagery
classification, setting a groundwork for subsequent advance-
ments in non-invasive BCI healthcare technologies.

The results underscore a notable variation in the model’s
performance across different subjects. While the model
achieved commendable validation accuracy and F1 scores for
certain participants, there is evidence of lower performance
metrics for others. This disparity suggests that while the
model can capture and classify EEG motor imagery signals
effectively for some subjects, it may not generalize equally
well across all individuals. The variance, as evidenced by the
range in Cohen’s Kappa scores, indicates that the algorithm
does not perform uniformly across the dataset.

The need for a tailored approach for each subject is clear,
and this could potentially be addressed by incorporating adap-
tive learning techniques such as reinforcement learning. By
employing a reinforcement learning framework, the model
could dynamically adjust to the unique EEG signal patterns
of each individual, thereby potentially enhancing the classi-
fication accuracy for those subjects where the current model
does not perform as well. This individualized learning strategy
might prove pivotal in advancing the reliability and efficacy
of BCI technologies.
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TABLE 1
COMPARATIVE ANALYSIS OF MODEL PERFORMANCE METRICS ACROSS
SUBJECTS, SHOWCASING ACCURACY, F1 SCORE, AND COHEN’S KAPPA.

ID Accuracy (%) F1 Score Cohen’s Kappa
1 74.6 0.815 0.654
2 63.6 0.733 0.470
3 76.9 0.857 0.724
4 72.9 0.786 0.603
5 88.8 0.963 0.931
6 81.1 0.938 0.861
7 71.8 0.786 0.586
8 70.1 0.759 0.522
9 77.6 0.900 0.678
Mean + Std 753 +7.1 0.837 £ 0.081 0.670 £ 0.151
support to enable this study.
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