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Abstract—Neuromuscular disorders encompass pathological
conditions affecting either the musculoskeletal system, the ner-
vous system, or their interface. The majority of neuromuscular
disorders lack complete curative treatments and thus necessi-
tate efforts focused on improving rehabilitation and quality of
life. Assistive technologies with brain-computer interface (BCI)
control provide a promising solution to main patients’ daily
activities. Central to these technologies is the classification of
electroencephalography (EEG) motor imagery signals, which is
paramount for the operational success of BCIs. The endeavor
to enhance the precision of these classifications has led to the
exploration of various computational techniques, with convo-
lutional neural networks (CNNs) being at the forefront due
to their proficiency in handling spatial hierarchies in data.
Despite the advancements, the quest for improved accuracy
continues, especially in scenarios characterized by raw EEG
data inputs, as opposed to the transformed data inputs (e.g.,
using Fast Fourier Transform (FFT)) commonly reported in
existing literature. This study introduces an integrated CNN
model augmented with a transformer encoder block, aiming to
harness the inherent spatial-temporal features of EEG signals
more effectively. Preliminary evaluations suggest an encouraging
comparable performance with the studies reported in the field,
thereby underscoring its potential utility in enhancing motor
imagery classification for BCI applications.

Index Terms—EEG, motor imagery classification, Convolu-
tional Neural Networks (CNN), transformer encoder, BCI

I. INTRODUCTION

Brain-computer interfaces (BCIs) [1] have emerged as a

key component in the advancement of assistive devices and

rehabilitation approaches [2], which have been inaugurated

by the convergence of neural engineering and healthcare

technology. Among the myriad of signals utilized for BCI,

electroencephalography (EEG) based motor imagery classifi-

cation presents a non-invasive gateway to understanding and

interpreting the intentions of the human brain [3]. Recent

investigations have predominantly leveraged CNNs to decode

these signals, given their adeptness at capturing spatial features

[4], [5]. However, the variability in optimal convolution scales

across individuals and the challenge of limited training data

remain hurdles to achieving high classification accuracy. Ac-

knowledging these challenges, this study proposes an approach

that synergizes the spatial feature extraction capabilities of

CNNs with the encapsulation of the temporal dynamics facil-

itated by transformer encoder blocks. This combination aims

to create a more holistic understanding of EEG data, mainly

when dealing with raw signal inputs, thus steering clear of

the pre-processing steps introduced by methods like FFT. The

results highlight the proposed model’s capability to achieve

notable accuracy in motor imagery classification, suggesting a

promising avenue for future research and application in BCI-

driven healthcare solutions.

II. NETWORK ARCHITECTURE AND METHODOLOGY

In this study, the BCI Competition IV 2a dataset [6] was

used to evaluate the proposed method. This dataset includes

EEG recordings from 9 subjects across four motor imagery

tasks, i.e., the imagination of movement of the left hand, right

hand, both feet, and tongue. This dataset, comprising two

sessions per subject with 288 trials each, was recorded using

twenty-two Ag/AgCl electrodes with a sampling frequency of

250 Hz. In the preprocessing, a bandpass filter from 0.5 to 40

Hz was applied to the data to focus on the frequency ranges

most relevant to motor imagery tasks.

In this study, we proposed an integrated CNN model en-

hanced by a transformer encoder block, designed to better

utilize the intrinsic spatial-temporal characteristics of EEG

signals as shown in Fig. 1. Initially, the convolutional layers

conduct spatial feature extraction, and subsequent to this

phase, the transformer encoder discerns temporal patterns.

This layered approach ensures thorough processing, which is

pivotal for the intricate patterns characteristic of EEG data.

The model’s strategic design is geared towards enhancing

feature representation prior to the classification stage, where

the interpreted features are utilized for predictive analysis.

The model is trained to differentiate between left and right-

hand movement imagery tasks without transforming the data

into the frequency domain. The proposed network combines

CNNs with transformer encoder blocks to classify EEG sig-

nals. This approach leverages the spatial and temporal dynam-

ics of EEG data for robust feature extraction, while directly

using raw signals to avoid preprocessing steps. The network

architecture begins with convolutional layers to extract spatial

features from the EEG signals, followed by a transformer

encoder that captures the temporal dynamics, emphasizing the

direct use of raw EEG signals.
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Fig. 1. Hybrid CNN-transformer network architecture for motor imagery classification.

III. RESULTS AND CONCLUSION

The model’s performance, delineated in Table I, provides a

quantitative insight into its efficacy across various subjects.

The mean accuracy across subjects is 0.753, indicating a

relatively consistent performance with a moderate variance,

reflecting the robustness of the model in dealing with different

EEG patterns. The F1 Score, averaging at 0.837, suggests

a high degree of precision and recall, a crucial factor for

reliable BCI applications. Lastly, the Cohen’s Kappa score of

0.670 further corroborates the model’s validity, signifying a

substantial agreement beyond chance between the predicted

and observed classifications. These metrics collectively affirm

the model’s potential as a reliable tool for EEG motor imagery

classification, setting a groundwork for subsequent advance-

ments in non-invasive BCI healthcare technologies.

The results underscore a notable variation in the model’s

performance across different subjects. While the model

achieved commendable validation accuracy and F1 scores for

certain participants, there is evidence of lower performance

metrics for others. This disparity suggests that while the

model can capture and classify EEG motor imagery signals

effectively for some subjects, it may not generalize equally

well across all individuals. The variance, as evidenced by the

range in Cohen’s Kappa scores, indicates that the algorithm

does not perform uniformly across the dataset.

The need for a tailored approach for each subject is clear,

and this could potentially be addressed by incorporating adap-

tive learning techniques such as reinforcement learning. By

employing a reinforcement learning framework, the model

could dynamically adjust to the unique EEG signal patterns

of each individual, thereby potentially enhancing the classi-

fication accuracy for those subjects where the current model

does not perform as well. This individualized learning strategy

might prove pivotal in advancing the reliability and efficacy

of BCI technologies.
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TABLE I
COMPARATIVE ANALYSIS OF MODEL PERFORMANCE METRICS ACROSS

SUBJECTS, SHOWCASING ACCURACY, F1 SCORE, AND COHEN’S KAPPA.

ID Accuracy (%) F1 Score Cohen’s Kappa

1 74.6 0.815 0.654

2 63.6 0.733 0.470

3 76.9 0.857 0.724

4 72.9 0.786 0.603

5 88.8 0.963 0.931

6 81.1 0.938 0.861

7 71.8 0.786 0.586

8 70.1 0.759 0.522

9 77.6 0.900 0.678

Mean ± Std 75.3 ± 7.1 0.837 ± 0.081 0.670 ± 0.151

support to enable this study.
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