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SUMMARY
Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a

computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts,

based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different

sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner.

Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic

CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from

over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination

of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and

inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary

liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols

relative to our database of reference engineered samples, and as open-source, extensible code.
INTRODUCTION

Key milestones in advancing the field of cell fate engineer-

ing (CFE) include the discovery of direct conversion (Davis

et al., 1987), the derivation of mouse and human embry-

onic stem cells (ESCs) (Evans and Kaufman, 1981; Martin,

1981; Thomson et al., 1998), the directed differentiation

of ESCs to motor neurons (Wichterle et al., 2002), and

the induction of pluripotent stem cells (induced pluripo-

tent stem cells [iPSCs]) (Takahashi and Yamanaka, 2006;

Takahashi et al., 2007). Collectively, these and many other

advancements have enabled the development of protocols

to derive numerous cell and tissue (CT) types. CFE is used in

a range of applications, from regenerative medicine to

disease modeling, drug discovery, and drug screening

(Robinton and Daley, 2012). Because of the potential

importance of these applications, the number of investiga-

tors and studies generating, optimizing, and applying CFE

methods has multiplied rapidly.

Optimizing CFEmethods requires evaluation of protocol

performance. This is often done empirically by verifying

expression of canonical markers at the protein and RNA

level (for instance, SERPINA1 and HNFs in hepatocytes

[Ma et al., 2013] and TNNT2 in cardiomyocytes [Ieda

et al., 2010]) or through in vitro functional assays (for
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example, glycogen storage and albumin secretion in hepa-

tocytes, calcium flux and spontaneous beating in cardio-

myocytes, sodium currents and spontaneous postsynaptic

currents in neurons [Kang et al., 2017], and teratoma for-

mation to assess pluripotency [Brivanlou et al., 2003;

Thomson et al., 1998]). Themost stringent assays of CFE fi-

delity entail assessing the extent to which transplanted

cells rescue an absent or disrupted in vivo function, as exem-

plified by complementation of tetraploid blastocysts with

PSCs (Nagy et al., 1990).

Genome-wide measurements of molecular state, such

as transcriptional profiling, are valuable supplements to

functional assays of cell identity for two major reasons.

First, they are less time consuming and less experimentally

challenging to perform. Second, when coupled with

appropriate analysis methods, they can reveal molecular

programs that have not been reprogrammed appropri-

ately. This feature is especially valuable in cases where

engineered cells fail in functional assays. Several computa-

tional methods have been devised to take advantage of

genome-wide molecular data to evaluate the fidelity of

CFE protocols. For example TeratoScore, PluriTest, and

ScoreCard assess pluripotency (Avior et al., 2015a; Interna-

tional Stem Cell Initiative, 2018; Müller et al., 2011; Tsan-

kov et al., 2015), and KeyGenes assesses developmental
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stage using a fetal tissue atlas (Roost et al., 2015). We

previously developed CellNet (Cahan et al., 2014; Lo and

Cahan, 2019; Radley et al., 2017), which estimates the de-

gree to which CT-specific gene-regulatory networks

(GRNs) have been established in engineered cells. A limita-

tion shared by all of the methods mentioned above is that

the query data (i.e., the expression profiles from the engi-

neered cells) and the training data (i.e., the profiles of the

primary, in vivo populations) must be produced using

the same technologies and downstream computational

processing methodologies. Another commonality is that

they are typically optimized for and deployed in a study-

specific manner. These issues make it challenging to fairly

compare CFE products across protocols and studies, which

would be necessary to determine the extent to which new

CFE protocols improve fidelity compared with standard

methods in the field and to investigate intra-protocol

variability. To our knowledge, an extensive cross-study

comparison of CFE protocols from bulk-derived data for

multiple lineages has not yet been performed, and no

easy-to-use computational tool with appropriate bench-

mark data of CFE protocols exists.

To address this deficiency, we leveraged our recent work

using the top-scoring pair (TSP) transformation (Peng

et al., 2021; Tan and Cahan, 2019) to make a computa-

tional tool that assesses the transcriptional fidelity of CFE

products in a platform-agnostic manner. Like CellNet, the

tool uses nodes in CT GRNs as predictor variables to train

amulti-class random forest (RF) classifier. However, distinct

from the original versions of CellNet, whichwere limited to

identically preprocessed microarray or bulk RNA

sequencing (RNA-seq) data, we leveraged the TSP transform

to allow analysis of data derived fromdistinct genome-wide

expression assays (including microarray and Illumina- and

ION torrent-based RNA-seq) as well as data derived from

distinct methods of preprocessing raw sequencing data

into gene expression estimates. Therefore, we named the

tool platform-agnostic CellNet (PACNet).

We compiled a database of publicly available bulk hu-

man gene expression data from 101 CFE experiments,

totaling more than 2,100 samples across seven CT types.

Using PACNet, we quantitatively evaluated the most com-

mon, most consistent, and best-performing protocols for

two of the most commonly engineered tissue types: heart

and liver. We identified common off-target signatures

across heart and liver engineering protocols and revealed

an unexpected neural and neuroendocrine signature

in primary liver-derived organoids. Finally, we created

a user-friendly web application (http://cahanlab.org/

resources/agnosticCellNet_web/) through which investi-

gators can upload gene expression data to evaluate the

transcriptional fidelity of their engineered cells to their

natural counterparts and can compare their engineered
1722 Stem Cell Reports j Vol. 18 j 1721–1742 j August 8, 2023
cells with our database of engineered reference samples

from state-of-the-art CFE protocols. Visitors to the site

can readily explore the pre-computed PACNet analysis

of all 101 CFE datasets, and users can download our data-

base of reference samples and run PACNet locally (https://

github.com/pcahan1/PACNet). Optionally, users can also

leverage their own reference data, for example, to add

additional CT types to the platform. We think that

PACNet’s ease of use will make it especially valuable as a

resource for investigators to rapidly evaluate the efficacy

and performance of CFE protocols in a standardized

fashion.

RESULTS

PACNet classification is precise and sensitive

To train PACNet, we first mined NCBI GEO for bulk RNA-

seq profiles of primary, healthy human CT samples from

14 CT types: B cells, endothelial cells, ESCs, fibroblasts,

heart, hematopoietic stem and progenitor cells (HSPCs),

intestine/colon, kidney, liver, lung, monocytes/macro-

phages, brain, skeletal muscle, and T cells. This process

resulted inmore than 1,400 samples across the 14 CT types

(Table S1). To enable cross-platform compatibility, PACNet

borrows from the previously described TSP algorithm to

transform data prior to training and RF classification (Ge-

man et al., 2004; Peng et al., 2021; Tan and Cahan,

2019). We note that the PACNet classification score for a

specific CT type is the fraction of decision trees in the RF

classifier in which the sample is predicted to be the speci-

fied CT. This is distinct from a global measure of similarity,

such as the Pearson or Spearman correlation coefficient.

Consistent with our prior work, where we used TSP-RF to

perform cell typing of single cell atlases (Tan and Cahan,

2019) and to evaluate cancer models from bulk RNA-seq

data (Peng et al., 2021), PACNet performed well when

applied to held-out samples, with an average classification

score (corresponding to the labeled cell type) of 0.965

among all held-out samples, with cell type-specific averages

ranging from 0.872 (kidney) to 0.996 (neuron) (Figure 1A).

We also evaluated classifier performance via precision-

recall (PR) curves, summarized as area under the PR curve

(AUPR). The AUPR among non-random cell types averaged

0.9981 and ranged from 0.9962 (kidney) to 0.9996 (mono-

cyte/macrophage) (Figures S1A and S1B). To validate the

platform agnosticism of PACNet, we next queried the

bulk RNA-seq-trained classifier with a database of primary

human microarray data (Cahan et al., 2014). PACNet suc-

cessfully classified the vast majority of samples (Figure 1B),

with a mean AUPR across all cell types of 0.987 and a min-

imum AUPR of 0.936 for HSPCs, demonstrating that the

classifier maintained high performance across expression

profiling platforms.

http://cahanlab.org/resources/agnosticCellNet_web/
http://cahanlab.org/resources/agnosticCellNet_web/
https://github.com/pcahan1/PACNet
https://github.com/pcahan1/PACNet
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Figure 1. PACNet classifier and preprocessing performance
(A) Heatmap of classification scores of held-out samples for classifier validation. Each column represents a held-out bulk RNA-seq sample.
(B) Heatmap of classification scores for primary tissue microarray query data. Each column represents a microarray sample.
(A and B) Each row represents a cell/tissue type, and the colors correspond to the classification score, which is the proportion of decicision
trees in the Random Forest classifier in which the given sample is classified as the row’s CT. Rand: random.
(C)Difference in classification scores basedon in-house vs. author-performedRNA-seq alignment andquantification pipelines for CFE studies.
Only in vivo positive controls from iPSC, heart, liver, and lung CFE studieswere analyzed.Method legend: tools used for author-performedRNA-
seq alignment and quantification. Mean difference of 0.0495 across all comparisons; no difference in scores was greater than 0.14.
See also Figure S1.
To create a reference database of major CFE protocols, we

again mined GEO for publicly available bulk gene expres-

sion data of engineered human cells. We aimed to identify

a variety of protocol types for each CT type, including

directed differentiation, transdifferentiation, and organoid

derivation protocols. We also sought to compile studies us-

ing different expression profiling platforms, including mi-

croarray (one study), Illumina-based RNA-seq (vast majority

of studies), ION torrent-based RNA-seq (four studies), and

GRO-seq (one study). Altogether we gathered 101 CFE ex-

periments for heart (24 studies), HSPCs (5), intestine/colon

(12), liver (25), lung (5), neuron (21), and skeletalmuscle (9),

totaling more than 2,100 samples (Table S2). Because our

goalwas also tomake ametric ofCFE thatwould bewell cali-

brated across studies that use different computational pre-
processing methods, we verified that PACNet performance

was not affected by variations in alignment and quantifica-

tion tools or by variations in available genes (Figures 1C and

S1B; Table S3; Note S1). We attribute the robustness of

PACNet cell fate assessment—against variations in profiling

platform, alignment and quantification pipeline, and even

counts vs. per-million quantification—to the TSP-RF algo-

rithm because it compares the relative expression of gene

pairs within samples rather than absolute or normalized

expression among samples.

Cardiomyocytes and hepatocytes are frequently the

target of CFE efforts because of their potential applications

in toxicity screening and regenerative medicine (Buikema

et al., 2013; Jin et al., 2021; Karakikes et al., 2015; Schwartz

et al., 2014). In the following sections, we used PACNet to
Stem Cell Reports j Vol. 18 j 1721–1742 j August 8, 2023 1723



quantify the transcriptional fidelity of common cardio-

myocyte and hepatocyte CFE methods, to quantify the

extent and frequency of off-target effects, and to explore

the biological pathways that distinguish CFE protocols.
Metabolic selection enhances the transcriptional

fidelity of engineered cardiomyocytes

We first identified common derivation protocols among

cardiomyocyte (CM) CFE studies (Figure 2A). Two

commonly used CM directed differentiation monolayer

protocols, which we hereafter denote by the first authors,

are the Burridge (Burridge et al., 2014, 2015) and Lian

(Lian et al., 2012, 2013) protocols, which comprise the

following stages.

(1) GSK3 inhibition in PSCs with CHIR99021 for 48–

72 h to induce mesoderm development.

(2) Wnt inhibition for 48 h using small-molecule

PORCN inhibitors: Wnt-C59 (Burridge) or IWP-2

(Lian) to generate cardiac mesoderm.

(3) Medium changes with RPMI, L-ascorbic acid

2-phosphate, and albumin (Burridge) or RPMI and

B-27 (Lian). Beating or contractile cells are observed

on day 7.

(4) In the Burridge protocol only, on day 10: metabolic

selection via glucose deprivation and/or sodiumDL-

lactate supplementation, based on a finding by To-

hyama et al. (2013), which purifies up to 95%

TNNT2+ cells.

(5) Differentiated, contractile CMs generated from both

protocols can be maintained in culture for more

than 6 months.

Several studies append the metabolic selection step from

Burridge to the Lian protocol (Note S2); we designate these

as ‘‘Combined.’’ Another monolayer protocol is simple,

comprising a one-step, 24-h treatment with activin, fol-

lowed by at least 8 days of culture in only RPMI and B-27

(Estarás et al., 2017; Hsu et al., 2018). We denote these

studies as ‘‘Activin-based.’’ Alternative protocols by Yang

et al. (2008) and Lee et al. (2017), which we denote as

‘‘embryoid body’’ (EB) protocols, use recombinant growth

factors in lieu of small molecule inhibitors for differentia-

tion. The EB protocol stages are as follows:

(1) Formation of EBs from PSCs using BMP4.

(2) Primitive streak induction using BMP4, bFGF, and

activin A.

(3) Cardiac mesoderm induction using VEGF and Wnt-

inhibiting factor DKK1.

(4) CM specification using VEGF, DKK1, and bFGF.

Finally, we denote commercially purchased CMs as

‘‘iCell’’ CMs.
1724 Stem Cell Reports j Vol. 18 j 1721–1742 j August 8, 2023
To assess to what extent these protocols achieved an

identity comparable with in vivoCMs, we acquired publicly

available bulk expression data as follows: eight studies

following the Burridge protocol, four exclusively following

the Lian protocol, six combining the Lian protocol with

the added metabolic selection step, two following one-

step Activin-based protocols, three following EB protocols,

and three studies using purchased iCell CMs, for a total of

23 studies and 809 samples across a range of stages of differ-

entiation (Note S2; Table S4). We queried each of these

studies with the PACNet classifier (Figure S1C). Comparing

among developmental stages, PACNet analysis showed

thatmostCMprotocols demonstrated a gradual, consistent

increase in heart classification score and decrease in ESC

classification score over their differentiation time courses

(Figure S1D). Although increased time in culture was gener-

ally associated with a higher PACNet heart classification

score, shorter protocols were still able to achieve near-

maximal classification (Figure S1E and S2A; Note S3).

Because expression of marker genes has been used as a sur-

rogate for overall transcriptional fidelity, we explored the

extent to which PACNet classification score was predicted

by expression of individualmarkers of CM fate. Across sam-

ples, we computed the correlation between heart classifica-

tion scores and the expression of key CM marker genes,

including TNNT2, TBX5, and MYL2 (Figure S2B). PACNet

heart classification scores correlated substantially with

marker expression (R2 ranging from 0.35–0.73). However,

this correlation was imperfect such that the samples with

the highest classification scores (primary heart, as ex-

pected) did not have maximal expression of TNNT2 and

TBX5. Conversely, samples with maximal marker gene

expression (some engineered CMs) did not have the high-

est classification scores. Therefore, for these samples and

marker genes, classification scores better reflect cell identity

than the expression of any single marker gene.

We noticed that, even within the same protocol, study,

and time point, classification scores of replicates could

vary greatly. Intra-lab and inter-lab reproducibility and

consistency are important characteristics to consider in

CFE; thus, we asked to what extent CMs engineered using

the same protocol vary within and across studies. To do

so, we computed the PACNet heart classification score for

individual studies within and across protocols for ‘‘puri-

fied’’ CMs (metabolically selected CMs not yet designated

as ‘‘mature’’) from Burridge and combined and all mature

CMs (Figure 2B). To facilitate a fair comparison for this

and subsequent analyses, we excluded any CMs with dis-

ease phenotypes, drug exposure, or genetic perturbations

thatmight obscure accurate assessment of protocol fidelity.

In cases where a study hadmultiple protocol variations, we

selected the variant that yielded samples with the highest

mean classification score for the target CT. In one notable
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case, a large study that generated almost 300 samples across

19 independent rounds of differentiation (Strober et al.,

2019) produced purified CMs with heart classification

scores ranging from 0.016–0.611 (Figures 2B, S1C, and

S1D). Other studies with higher variability in classification

score includedWard and Pavlovich (Burridge protocol), Ba-

novich (Combined), and Zhao2 (EB) (Figure 2C). The

source of this intra-study variation is unclear; however,

one likely contributor is PSC line-specific differentiation

bias. For example, it is known that independently derived

ESC lines can generate unique differentiation biases

(Abeyta et al., 2004; Osafune et al., 2008) and that iPSCs

can retain epigenetic memory of their initial cell type

(Kim et al., 2010). The studies that achieved the highest

mean score within their respective protocols often

achieved the most consistent scores as well, as in the cases

of Tian and Lam (Burridge), Ang (Combined), Estarás (Acti-

vin-based), and Shafaattalab (EB) (Figures 2B and 2C).

These all generated CMs from an intra-study-consistent

starting cell type: Tian and Hookway from fibroblast-

derived iPSCs, Lam from PBMC-derived iPSCs, and Estarás

and Shafaattalab from ESCs. Whereas the highest mean

score often achieved the most consistent scores for intra-

study comparisons, inter-study classification scores varied

more greatly for all protocols, with a standard deviation

(SD) in heart classification score of 0.153 (Burridge) and

0.152 (Combined) for purified CMs and ranging from

0.115 (Lian) to 0.198 (Activin-based) for mature CMs (Fig-

ure S2C). The ability of a protocol to produce the most

highly classifyingCMs did not relate to protocol variability,

with comparable top-scoring samples observed in the Lian,

Burridge, EB, and Combined protocols irrespective of pro-

tocol SD (Figure S2D).

To investigate how differences in protocols contributed

to differences in heart classification, we next examined dif-

ferential expression (DE) among purified and mature CM

samples derived via the best-performing study per proto-

col. We were particularly interested in the effects of meta-

bolic selection on heart classification score because this
Figure 2. Cross-study meta-analysis of CM engineering protocols
(A) Schematic of representative protocols in DD of CMs. Protocols ar
induced pluripotent stem cell; EB, embryoid body.
(B) Heart classification scores by study/first author and protocol for h
performing protocol variant, if relevant) per study. Within each facet
(C) SD in heart classification scores by study/first author and protoco
(D) Summary plot for GSEA performed on DE genes comparing profile
(Tian, Lam, Cyganek, and Hookway, which include a metabolic selectio
Stoehr, which do not include a metabolic selection step). The top 2
because they were purified using a study-specific method of sorting f
(E) Summary plot for GSEA performed in DE genes between two Activi
selection) to Hsu (who did not). NES, normalized enrichment score; P
See also Figures S1 and S2.
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step was performed in 15 of 25 studies that produced puri-

fied or mature CMs. Thus, we selected the top-classifying

Burridge and Combined studies (Tian, Lam, and Cyganek)

to compare against the top-classifying Lian studies (Zhang

and Mills). We limited the Zhang samples to the two that

had not undergone additional study-specific purification

via sorting for MYL2 positivity. Gene set enrichment anal-

ysis (GSEA) of the DE genes revealed an enrichment in gene

sets related to cardiac morphogenesis and action potential

in Burridge and Combined samples (Figure 2D), corrobo-

rating an increased CM fate in response to metabolic selec-

tion. We also examined another relevant comparison

within the Activin-based protocol, in which Estarás per-

formedmetabolic selection but Hsu did not. GSEA revealed

an enrichment of cellular respiration and inner mitochon-

drial membrane function (oxidative phosphorylation) in

the metabolically selected Estarás samples (Figure 2E).

This is consistent with the known transition from more

glucose- and glycolysis-dependent metabolism during em-

bryonic heart development to more mitochondrion- and

fatty acid oxidation-dependent metabolism after birth

(Chung et al., 2007; Lopaschuk and Jaswal, 2010). The

higher classification scores of metabolically selected

mature CMs may reflect this transition away from glycol-

ysis and toward oxidative phosphorylation. Interestingly,

we noticed that the two Zhang samples that underwent

sorting for MYL2 positivity achieved heart classification

scores comparable with the top-classifying Burridge and

Combined studies. Thus, we asked whether this sorting-

based increase in heart classification scores reflected a com-

mon underlying metabolic phenotype. GSEA comparing

the Zhang MYL2-sorted samples with top-classifying,

non-sorted Lian samples demonstrated an enrichment in

cardiac muscle function but surprisingly also in glucose

catabolism (Figure S2E). In fact, when comparing against

Burridge and Combined samples, we observed the same

enrichment in glucose catabolism in the MYL2-sorted

Zhang samples (Figure S2F). This suggests that Burridge

and Combined samples achieve a strong CM identity
e aligned by developmental stage. ESC, embryonic stem cell; iPSC,

ealthy/unperturbed purified and mature CM samples (from the top-
, studies are ordered by decreasing mean heart classification score.
l for the same purified and mature CM samples as in (B).
s of top-classifying CMs from the Burridge and Combined protocols
n step) versus top-classifying CMs from the Lian protocol (Mills and
classifying samples by Zhang were excluded from this comparison
or MYL2 positivity.
n-based protocol studies: Estarás et al. (who did perform metabolic
adj, adjusted p value based on Benjamini-Hochberg correction.
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through a different mechanism compared with MYL2-

sorted Zhang samples, which implies a potential for a com-

pounded increase in CM identity whenmetabolic selection

is combined with sorting for MYL2.

It has been observed that directed differentiation and

direct conversion can activate transcriptional programs

of unintended cell types (Cahan et al., 2014; Kong et al.,

2022; Morris et al., 2014). Therefore, we assessed whether

there were any off-target lineages detectable in engineered

CMs. Although off-target effects were not prominent,

we found three minor off-target signatures among CM

studies. Two studies showed an aberrant fibroblast signa-

ture, although the mature CM samples predominantly

still classified as heart (Figure 3A). We corroborated the

fibroblast signature with keymarkers of fibroblast identity,

including COL1A1 and THY1 (Figure 3B). The latter of the

two studies, Hsu et al. (2018), also showed a noticeable in-

testinal signature (Figure 3A), which we corroborated with

expression of key intestinal genes, including SLC10A2 and

MUC2 (Figure S2G). Interestingly, the metabolically

selected counterparts (Estarás) to the Hsu CMs lacked

both of these off-target signatures (Figure S2H), suggesting

that metabolic selection may act to remove off-target cells

as well as other cardiac-lineage cells (Andersen et al., 2018;

Zhang et al., 2019). A subset of samples from two studies

(from the same publication; Zhao et al., 2019) demon-

strated an off-target liver signature (Figure 3C), which we

corroborated with expression of key liver markers,

including ALB, SERPINA1, and CEBPA (Figure 3D). These

two studies followed EB protocol variations for CM differ-

entiation (Zhao et al., 2019). It is worth noting that early

activation of activin/Wnt signaling also specifies the

definitive endoderm adjacent to precardiac mesoderm

(Kubo et al., 2004; Toivonen et al., 2013) and endodermal

derivatives are often present in cardiac organoids (Drakh-

lis et al., 2021; Rossi et al., 2021). Thus, these protocols

may be permissive to hepatic differentiation as well.

To identify transcription factors (TFs) whose modula-

tion might improve CFE protocol performance, we used

the network influence score (Cahan et al., 2014) (NIS)

with the minor modification of using rank-transformed
Figure 3. Off-target signatures in CM engineering
(A) Heatmap of classification scores for Ward et al. (left) and Hsu et a
signature.
(B) Heatmap of gene expression for canonical CM and fibroblast marke
et al.) compared with the Ward et al. and Hsu et al. studies.
(C) Heatmap of classification scores for two separate GEO accession st
an off-target liver signature. Heatmap color scale: Z score of log-tran
(D) Heatmap of gene expression for canonical CM and liver marker gene
compared with Zhao et al. studies.
(B and D) Heatmap color scale: per-gene Z score of log-transformed T
See also Figure S2.
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expression estimates instead of quantile-normalized

expression estimates. The NIS evaluates the need for

up- or down-regulation of cell type-specific TFs

based on the expression of those TFs and their target

genes. Across engineered mature CMs, NKX2-5 (NK2 ho-

meobox 5) was most strikingly assigned the lowest mean

score, indicating a predicted need for upregulation. This

is consistent with the role of NKX2-5 as a master regu-

lator of CM fate, controlling a subnetwork of CM TFs,

including TBX5, TBX20, HAND1, and HAND2 (Akazawa

and Komuro, 2005), which also had moderately strong

negative scores (Figure S2I). The NIS successfully priori-

tized the upregulation of NKX2-5 in CM samples with

more prominent off-target signatures (Figure S2I),

including Ward (with off-target fibroblasts; Figure 3A).

It also recognized the already prominent NKX2-5 activity

in highly classifying CM samples, including Cyganek and

Zhang (Figures 2B and S2J). Taken together, these results

demonstrate the utility of PACNet in assessing cross-

study performance and identifying actionable points for

protocol improvement.
Hepatocyte engineering studies have diverse

performance outcomes

We next identified common hepatocyte (HC) derivation

protocols in the field. With less consensus in specific deri-

vation protocols than in CM CFE, we divided hepatic pro-

tocols into four general categories: directed differentiation

(DD), ESC/iPSC-derived hepatic organoid differentiation

(PSC-O), transdifferentiation (TD; i.e., direct conversion),

and primary HC-derived or primary liver-derived organoid

(P-O) culture. We analyzed 24 studies, divided as follows:

12 DD studies, 6 PSC-O studies, 4 TD studies, and 8 P-O

studies (Table S4; Note S4). We summarize each of these

derivation strategies below (and illustrate a representative

protocol for each in Figure 4A).

(1) DDprotocols followed an overall consistent pattern:
l. (righ

r genes

udies fr
sforme
s for th

PM.
(a) Unanimous induction of definitive endoderm

from PSCs with activin A, with some adding

Wnt3a or BMP4.
t) studies, which produced CMs with an off-target fibroblast

for the study with the most highly classifying CMs (Cyganek
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(b) Inducing the transitions from definitive endo-

derm to foregut or hepatic endoderm followed

two major strategies: application of BMP4 and

FGF2 (Boon et al., 2020; Deaton et al., 2018; Qin

et al., 2016) or of 2-mercaptoethanol and DMSO

(Carpentier et al., 2020; Ehrlich et al.; Sagi et al.,

2019). Other strategies included BMP4 combined

with transforming growth factor b (TGF-b) inhibi-

tion and Wnt inhibition (Touboul et al., 2016).

(c) Differentiation to hepatoblasts and HCs or HC-

like cells was, with large consensus, induced

with some combination of oncostatin M, dexa-

methasone, and HC growth factor (HGF).

(2) PSC-O protocols followed global strategies similar to

DD, but with the addition of various common orga-

noid-promoting factors, including R-spondin1,

epidermal growth factor (EGF), Noggin, FGF10, and

gastrin (Huch et al., 2013; Pleguezuelos-Manzano

et al., 2020) at various stages. Two studies incorpo-

rated theTGF-b inhibitor SB431542and the adenylyl

cyclase activator forskolin (Akbari et al., 2019;Wang

et al., 2019) during specification to mature hepatic

organoids, with one distinct study also adding

BMP7 and the Notch signaling inhibitor DAPT dur-

ing this final stage (Akbari et al., 2019). A unique or-

ganoid protocol achieved differentiation through

transduction of the transcriptional regulators (TFs)

GATA6, PROX1, and ATF5 as well as CRISPR-medi-

ated activation of endogenous CYP3A4 (Velazquez

et al., 2021).

(3) Direct conversion or TD of fibroblasts into HCs

involved transduction of specified hepatic TFs,

most commonly a combination of HNF family and

FOXA family TFs, followed by culture in HC induc-

tion medium (Du et al., 2014; Gao et al., 2017; Xie

et al., 2019). One unique TDmethod reverted gastric

epithelial cells to an endodermal progenitor state us-

ing a cocktail of small-molecule inhibitors, followed

by a standard HC differentiation procedure (Wang

et al., 2016).

(4) In P-Os, two major protocols, which we hereafter

denote by first author, were used: Huch (Huch
ure 4. Cross-study meta-analysis of HC engineering protocols
Schematic of representative protocols from each HC derivation str
for endogenous CYP3A4 activation.
Classification heatmap for the study that produced the most high
blasts to HCs).
Liver classification scores by study/first author and protocol for h
anoid samples (from the top-performing protocol variant, if releva
an liver classification score.
SD in liver classification scores by study/first author and protoco
also Figures S3 and S4.
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et al., 2015) and Hu (Hu et al., 2018). Huch estab-

lished a system to expand adult bile duct-derived bi-

potent liver progenitor organoids, which, upon sup-

plementation with additional factors, can give rise

to HCs. Hu then elaborated on this system to estab-

lish long-term expansion conditions specifically for

HC-derived organoids.

We first assessed to what extent these protocols achieved

an identity comparable with in vivo HCs using the PACNet

classifier (Figure S3A).Whereas engineeredCMshad shown

a consistent gradual increase in heart classification score

over the course of differentiation, engineered HCs gener-

ally experienced a late, sharp increase in liver classification

score in the transition from hepatic progenitor to mature

HCs (Figures S3B and S3C). Studies demonstrated a concur-

rent decrease in ESC classification score (or fibroblast classi-

fication score for relevant TD studies), although most sam-

ples retained a detectable ESC signature (Figures S3B and

S3C). Like with CM studies, the correlation between

expression of HC markers and liver classification score

was again imperfect such that many engineered samples

with maximal marker gene expression had only low or

moderate classification scores, again suggesting that the

classification score better reflects identity than does the

expression of select marker genes (Figure S3D).

Next, we asked which protocols produced populations

with the highest PACNet classification score. The highest-

classifying mature HCs were produced by Xie (Figures 4B

and 4C), who used a two-step, 37- to 47-day TD protocol.

This protocol first converts embryonic fibroblasts into he-

patic progenitor cells through transduction of HNF4A,

HNF6A,GATA4, FOXA2, andHHEX, followed by differenti-

ation into functionally competent mature HCs using for-

skolin and the ALK5 inhibitor SB431542. Almost equally

well classifying were two DD studies performed by Tilson

and Deaton (Figures 4C, S4A, and S4B), which followed ad-

aptations of a protocol by Hannan et al. (2013) for HC-like

cell derivation. While Tilson followed the Hannanmethod

of including the phosphatidylinositol 3-kinase (PI3K) in-

hibitor LY294002 during definitive endoderm induction,

Deaton used a commercially available definitive endoderm
ategy. HEF, human embryonic fibroblast; SynTF(CYP3A4), synthetic

ly classifying HC samples (Xie et al.; TD from human embryonic fi-

ealthy/unperturbed, fully mature, or differentiated HC and hepatic
nt) per study. Within each facet, studies are ordered by decreasing

l for the same HC or hepatic organoid samples as in (C).



kit. Deaton also uniquely included the myosin II inhibitor

blebbistatin during induction of hepatic endoderm from

definitive endoderm. Finally, a DD protocol performed by

Qin that included supplementation of vitamin K2, known

to contribute to HCmaturation (Avior et al., 2015b) and to

increase expression of mature HC gap junction protein

GJB1 (Qin et al., 2016), also had one of the highest mean

classification scores (Figures 4C and S4C).

We next examined intra- and inter-study variability in

classification score and their relationship to study perfor-

mance. To facilitate a fair comparison, we again excluded

engineered samples with conditions or perturbations that

were unrelated to protocol improvement, and when a

study had multiple protocol variations, we again selected

the variation producing the more highly classifying sam-

ples. In CMs, we had observed that intra-study consistency

increased with higher mean heart classification score. In

contrast, for HC derivation overall, SD was not associated

with mean PACNet classification, and low SD did not

reflect high protocol performance (Figures 4C, 4D, and

S4D). Only the Tilson DD study had a mean classification

of over 0.5 while maintaining an SD under 0.05. The Xie

study, which did have a mean classification score of over

0.5, had a higher SD of 0.089. Of the PSC-O and P-O

studies, Velazquez and Giobbe, respectively, had the high-

est mean classification scores while maintaining SDs under

0.05 (Figures 4C and 4D). At the inter-study level, while DD

andTDprotocols hadhigher SDs of 0.259 and 0.190 respec-

tively, DD and TD samples significantly outperformed P-O

and PSC-O samples on average (Figure S4E). The extent to

which inter-study and inter-protocol variability in

PACNet score reflect functional variability in engineered

populations is unknown. Nonetheless, having a quantita-

tive metric of population quality will be useful because

the field places more emphasis on reducing variability

within protocols.

We next wanted to investigate to what extent DD and TD

protocols might each have independent qualities that

could help improve the other. To this end, we performed

DE analysis and GSEA on mature samples from the most

highly classifying DD study (Tilson) and the most highly

classifying TD study (Xie). GSEA revealed, in Xie-derived

HCs, a slight enrichment of genes involved in liver-related

functions, including fatty acid metabolism (CYP4A11 and

EHHADH) and bile acid metabolism (NR1I2, NR1H4, and

SLC27A5). On the other hand, the Tilson-derived HCs

demonstrated a slight enrichment of genes (including

PROS1, FGG, FGA, and F9) related to the blood coagulation

system, in which HCs are known to play a role (Kopec and

Luyendyk, 2014; Figure S4F). Therefore, approaches that

leverage aspects of both protocols could lead to additive in-

creases in HC identity. We also again investigated liver-spe-

cific TFs whose modulation might improve classification
performance using the NIS, which successfully prioritized

upregulation of the key liver TF NR1H4 in engineered sam-

ples with modest liver classification scores and prominent

off-target scores (Figures S4G, S4H, and S5A–S5C; Note S5).

We finally explored off-target signatures in engineered

HCs, which were more prevalent than in CM CFE studies

(Figures S1C and S3A). PACNet was able to identify the sig-

natures of supporting cell types included during co-culture

in two HC derivation studies (Figures S5B and S5D; Note

S6). PACNet also detected a consistent aberrant intestine/

colon classification score in several PSC-O and P-O studies

(Figure 5A). This was unsurprising given the shared endo-

dermal lineage of intestine and liver and because of shared

culture medium components with intestinal organoid cul-

ture protocols, including R-spondin1 and EGF (Pleguezue-

los-Manzano et al., 2020). Expression of intestinal marker

genes, including CDX1, CDX2, and SI, confirmed the off-

target classification (Figure 5B). Interestingly, the samples

derived from different studies seemed to express some

mutually exclusive intestinal markers, suggesting further

specification into intestinal cell subtypes. Upon examina-

tion of specific subtype markers, most studies showed

some enterocyte and goblet cell lineage enrichment, with

McCarron samples being most consistently enriched in

these markers. Ouchi samples had a slight tuft cell enrich-

ment based on expression of markers DCLK1 and NREP,

while Akbari and Ye samples had increased expression of

enteroendocrine (CHGA, NEUROD1, and NKX2�2) and

tuft cell markers (Figure 5B). This intriguingly suggests po-

tential avenues for intestinal subtype-specific cell deriva-

tion protocols.

Primary liver-derived organoids exhibit consistent off-

target neural signatures

Surprisingly, we observed that several studies of P-Os and

one PSC-O study (Hu, Giobbe, Artegiani, and Akbari)

showed an unexpected aberrant neuronal classification

(Figure 6A) that is absent in samples from healthy human

liver (Figures 1A and 5A). Thus, we more closely examined

what might contribute to this off-target signal. We

confirmed expression of canonical neural marker genes,

including PAX6, SOX1, NEUROD1, NEUROD4, and ASCL1

(Figure 6B), and of key neuronal genes from the PACNet

classifier (Figure S6A; Table S5) in samples that had

neuronal classification. To further investigate this observa-

tion and avoid potential batch effects that might arise

when integrating gene expression estimates from multiple

studies, we analyzed data from the Giobbe study alone. In

this study, PACNet analysis indicated that HC organoids

cultured in ‘‘standard hydrogel’’ had a stronger liver signa-

ture and weaker neural score, while organoids cultured in

‘‘ECM hydrogel’’ had a stronger neural score and a negli-

gible liver score (Figure S6B). GSEA on DE genes between
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Figure 5. Off-target intestinal signatures in stem cell-derived hepatic organoids
(A) Classification heatmaps for highest-classifying HC derivation study (Xie et al.) vs. Broutier et al., Schneeberger et al., Wang S et al.,
Ouchi et al., McCarron et al., Akbari et al., and Ye et al.
(B) Heatmap of HC and intestinal (split into subcategories) marker gene expression for the same studies as in (A). Heatmap color scale:
per-gene Z score of log-transformed TPM.
See also Figure S5.
HC organoids cultured in ECM vs. standard hydrogel iden-

tified an enrichment of neocortex genes in the former,

including ASCL1, NEUROD4, and SLC17A6, and an enrich-

ment of liver-specific genes in the latter, including ALB,

SERPINA1, and HNF4A (Figure S6C). The independent

detection of brain-related genes sets by GSEA in samples

that had a neuronal PACNet classification further corrobo-

rates our observation of aberrant neural transcriptional

programs in some HC organoids. We noted that the pri-
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mary adult and fetal HC positive control samples provided

in the Hu study also showed aberrant neuronal classifica-

tion and expression of neural marker genes (Figures 6A

and 6B), potentially suggesting a technical issue with the

classifier. However, PACNet successfully classified primary

fetal liver, adult liver, fetal HC, and adult HC samples

from many other studies (Asai, Boon, Du, Gao, Qin,

Schneeberger, Touboul, Viiri, WangS, and Xie) as liver

and not neural (Figures S3B and S6D). Therefore, the
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Figure 6. Off-target neuronal signatures in primary HC-derived organoids
(A) Classification heatmaps for the highest-classifying HC derivation study (Xie et al.) vs. Hu et al., Giobbe et al., Artegiani et al., and
Akbari et al.

(legend continued on next page)
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aberrant neural signature seen in primary samples from the

Hu study are unlikely to be due to classifier performance

but, rather, potentially arose from inadvertent misannota-

tion of some organoid samples as ‘‘primary’’. Finally, we

note that not all P-O samples had this aberrant neural

signature; P-O samples generated by Schneeberger, Ouchi,

McCarron, Broutier, Ye, and WangS also lacked neuronal

classification (Figure 5A). This prompted us to look for dif-

ferences in derivation strategies that might explain the

origin of the neural signature.

P-Os fell into two broad protocols: (1) derivation of

bipotent progenitor organoids from EPCAM+ cholangio-

cytes (WangS, Giobbe subset), followed by an HC specifi-

cation step (Huch, Schneeberger) and (2) direct deriva-

tion of organoids from HCs (Hu, Giobbe subset). The

former category also included a variation where bipotent

progenitor organoids were initially supplemented with

Wnt-conditioned medium and Noggin (Artegiani), fol-

lowed by the same HC specification step (Broutier). We

summarized these protocol differences in Figure S6E.

The presence of a neural signature in only Artegiani,

Hu, and the Giobbe direct HC subset potentially impli-

cates two mechanisms of origin: (1) culture conditions

specific to the Wnt-conditioned medium- and noggin-

supplemented bipotent progenitor organoid stage or (2)

culture conditions specific to the Hu protocol. Further

studies will be necessary to identify the exact determi-

nants of this signature.

We next investigated whether the observed neural

signature was connected to related lineages with known

liver roles. Neuroendocrine (NE) factors are known to be

expressed during ductular reaction (DR) in cholangiopa-

thies (Alvaro et al., 2007; Banales et al., 2019; Ehrlich

et al., 2018; Munshi et al., 2011). We hypothesized that

NE gene expression might contribute to the neural signa-

ture and indeed observed that the aberrant samples also

consistently expressed high levels of several NE genes

and neuropeptides, including CHGA, CHRM3, and

PTH1R, relative to the most highly classifying HC samples

generated by Xie (Figure 6B). Liver ductal organoids

derived by Giobbe and PSC-Os derived by Akbari also ex-

pressed high levels of cholangiocyte (CL) marker genes,

including KRT19, EPCAM, PROM1, and TACSTD2.

Furthermore, the CL marker SOX9 was also moderately

expressed across most aberrant neural samples, although

SOX9 is also a broad marker of neural stem cells (Scott

et al., 2010), astrocytes (Sun et al., 2017), and intestinal
(B) Heatmap of HC and neuronal marker gene expression for the sam
transformed TPM.
(C–E) IF staining for (C) the NE marker NCAM1 (green) and the HC mark
HC marker SERPINA1 (red), and (E) the neuronal marker NEUROD1 (gr
See also Figure S6.
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cells (Blache et al., 2004). Interestingly, although they

had the least expression of neural/NE marker genes, Xie

engineered HCs had the highest expression of CL

markers, including KRT18 and KRT7. We also examined

inflammatory markers indicative of DR, including

TGFB2 and IL6 (Ehrlich et al., 2018), and found that their

expression was indeed generally associated with neural

and NE gene expression, particularly in Giobbe ductal or-

ganoids and standard hydrogel HC organoids. The fact

that many neurally classifying organoid samples did not

express CL markers (and that many Xie non-neurally clas-

sifying samples expressed CL markers) suggests that DR

may be insufficient to fully explain the observed neural/

NE signatures. Nonetheless, DR may contribute to these

signatures given that, within the organoid samples,

many with the highest neural/NE expression (Giobbe

ductal organoids and Akbari PSC-derived HC organoids)

also had the highest CL marker expression.

To test whether the aberrant neural/NE signature in

cultured P-Os could be recapitulated, we generated organo-

ids from primary human liver using established protocols

(Broutier et al., 2016; Huch et al., 2015). We performed

immunofluorescence (IF) staining for the HCmarkers albu-

min (ALB) and SERPINA1, the CL marker KRT7, the NE

marker NCAM1, and the neural markers SOX1 and

NEUROD1. We observed very little ALB expression

(Figures 6C and S6F), consistent with a lack of mature HC

identity, while the early HC marker SERPINA1 was more

abundant (Figures 6D and S6F). KRT7 was detectable

(Figures 6E and S6F), consistent with a ductal-like biliary

phenotype (Huch et al., 2015). Positive staining of

NCAM1, SOX1, and NEUROD1 corroborated the compiled

RNA-seq data from P-Os (Figures 6C–6E and S6F) and

confirmed the presence of a neural/NE signature. Although

NEUROD1 expression was primarily localized to the cyto-

plasm, import of NEUROD1 to the nucleus has known reg-

ulatory dependencies, including dimerization with partner

proteins (Mehmood et al., 2009) or glucose-dependent

phosphorylation (Andrali et al., 2007). Taken together,

these data support a prominent off-target neural and NE

signature in P-Os.
DISCUSSION

Our comprehensive analysis ofmajor protocols for CM and

HC engineering resulted in several key observations that
e studies as in (A). Heatmap color scale: per-gene Z score of log-

er albumin (ALB; red), (D) the neuronal marker SOX1 (green) and the
een) and the CL marker KRT7 (red). Blue, DAPI. Scale bars, 100 mm.



are relevant to the CFE field. For CM engineering, we found

that twomethods of purification at the later stages of differ-

entiation proved especially effective: (1) metabolic selec-

tion via glucose deprivation and sodiumDL-lactate supple-

mentation and (2) cell sorting for myosin light chain 2

positivity. These purification methods were non-redun-

dant because differentiated MLC2v+ CMs retained a

glucose catabolism signature more similar to the metabolic

profile of CMs that did not undergo metabolic selection,

suggesting that a combination of the two techniques could

achieve even higher classification scores.

In examining variability within and across CM deriva-

tion studies, we observed that studies with higher mean

classification scores generally achieved a higher consis-

tency (via lower intra-study SD). At the inter-study level,

the ability of a protocol to produce the most highly clas-

sifying CMs did not relate to protocol variability, with

comparable top-scoring samples observed across protocols

irrespective of SD. In contrast, across HC and hepatic or-

ganoid engineering studies, at the intra-lab and inter-lab

levels, low variability was not associated with high

PACNet scores. Our broad assessment of transcriptional fi-

delity of CFE protocols was not designed to determine the

contributors to intra- and inter-study variability. However,

on the CM side, protocols with high intra-study vari-

ability tended to use PSCs originating from a range of

sources, including dermal fibroblasts, mesenchymal stem

cells, and peripheral blood mononuclear cells. Further

investigation of cell of origin and other potential contrib-

utors to protocol variability will facilitate greater consis-

tency in CFE protocols.

Our analysis also identified several recurring off-target

signatures in CM and HC engineering studies. Most

notably, we observed joint neural and NE signatures in

primary liver- and primary HC-derived organoids. We

confirmed that this signature was not idiosyncratic to our

analytical method because we validated the expression of

key liver, neural, and NE marker genes via analysis of

expression profiles provided in the original studies and by

IF staining of liver organoids that we generated following

the same protocol. We postulate that CL-related DR may

contribute to the neural/NE transcriptional programs that

are detected in these organoids. Enrichment of neuron

development gene sets has also been observed in primary

murine liver organoids (Aloia et al., 2019), consistent

with a CL-neural signature relationship. Off-target cell

fate signatures could also potentially be explained by line-

age biases induced by the unanticipated impact of added

growth factors and small-molecule inhibitors. Ectopic orga-

noid culture-specific signatures have precedents in other

in vitro contexts as well. For example, endoplasmic reticu-

lum stress and glycolytic stress signatures are known to

appear in brain organoids which are not reflected in pri-
mary fetal tissue signatures (Bhaduri et al., 2020; Vértesy

et al., 2022). Human kidney organoid culture protocols

are also known to exhibit unexpected neural signatures

(Howden et al., 2019; Liu et al., 2020; Wu et al., 2018),

potentially supporting an organoid culture-specific artifac-

tual neural signature. Further work will be necessary to

determine specific mechanisms that induce off-target

gene expression signatures in organoids and to characterize

shared aberrant patterns of intestinal, neural, and other sig-

natures across organoid derivation protocols, which could

have broad implications for organoid derivation andmain-

tenance and their applications.

We note several caveats in this study and areas

for improving the PACNet platform. First, because

PACNet takes as input bulk RNA-seq data for training

and query, it is unable to distinguish hybrid signatures

from population heterogeneity in query engineered sam-

ples. Moreover, we have not demonstrated that PACNet

trained on bulk data is able to discern differences be-

tween cell subtypes. Computational methods tailored

for the analysis of single-cell RNA-seq (scRNA-seq) data,

such as Capybara (Kong et al., 2022), should be able to

address these issues with adequate training data. As

more single-cell RNA-seq studies are performed across

diverse CFE protocols and diverse reference cell types

(Tabula Muris Consortium, 2020; Tabula Muris Con-

sortium et al., 2018), we can extend PACNet to provide

comparisons of single-cell transcriptional studies in

CFE. Nonetheless, our bulk analysis still accurately evalu-

ates cross-sample and cross-study performance and de-

tects off-target signatures, whether they arise from hybrid

states or population heterogeneity.

Second, PACNet analysis is limited to transcriptional

data and does not consider epigenetic, proteomic, post-

translational, or functional characteristics. Transcriptional

profiles have been reported to have modest correlation

with proteomic (de Sousa Abreu et al., 2009) and epigenetic

(Jjingo et al., 2012; Starks et al., 2019) profiles. Transcrip-

tional profiling also cannot explicitlymeasure post-transla-

tional events, including ligand-receptor interactions,

signal transduction events, and protein-protein interac-

tions, which play crucial roles in regulating cell type iden-

tity. Future efforts will be necessary to see how integration

of proteomic and epigenetic data types can further improve

cell type classification algorithms.

Finally, PACNet was trained using samples from adults;

thus, this platform is likely to be less sensitive to engineered

populations that are equivalent to embryonic or fetal stages

of development. Currently, primary postnatal or fetal sam-

ples can be included in analysis to detect on- and off-target

signatures relative to the primary adult samples on which

PACNet is trained. As more transcriptomic data accrue of

developmental stages, especially using scRNA-seq and
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single-nucleus RNA-seq, we expect that computational

methods that predict the developmental stage of specific

tissues and lineages will be readily trained and applied to

cell engineering.

We provide PACNet as a web platform (http://cahanlab.

org/resources/agnosticCellNet_web/) through which users

can browse engineered reference panels or perform analysis

and as code that can be downloaded, modified, and

executed locally (https://github.com/pcahan1/PACNet).

PACNet provides precise and sensitive classification to

detect on- and off-target transcriptional signatures and

makes predictions for improved expression of CT type-spe-

cific TFs. Importantly, PACNet also provides cross-study

comparisons among current state-of-the-field CFE proto-

cols for seven major CT types: liver, heart, neuron, skeletal

muscle, lung, intestine/colon, and HSPCs. Thus, PACNet

will be a valuable resource to the cell engineering commu-

nity as a tool that allows standard comparison of engi-

neered populations of cells and as a broad database of

CFE protocols.
EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

The corresponding author is Patrick Cahan (patrick.cahan@jhmi.

edu).

Materials availability
Primary liver-derived organoids are available upon request to the

corresponding author.

Data and code availability

The PACNet web application is available at http://cahanlab.org/

resources/agnosticCellNet_web/. Open-source, extensible code

for running PACNet is available at https://github.com/pcahan1/

PACNet.
RNA-seq preprocessing and adapting author-provided

expression data
Publicly available RNA-seq and expression microarray datasets for

query and trainingwere curated from theNCBIGEO (Table S1). For

studies that did not provide preprocessed gene-by-sample expres-

sion matrices, we used the following pipeline. First, adapters and

low-quality bases were trimmed from FASTQ files using cutadapt.

Trimmed FASTQs were mapped and quantified using Salmon in

mapping-based mode to generate a gene-by-sample expression

matrix.
Cell/tissue-specific classifier training and validation
Primary human bulk RNA-seq training data were acquired from

NCBI GEO (Table S1). FASTQ files were preprocessed into gene-

by-sample expression matrices as described in the above pipeline.

For each query CT type, an RF classifier was trained on 2/3 of the

training samples from each CT type using the TSP algorithm as

described previously (Peng et al., 2021; Tan and Cahan, 2019).
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Briefly, template matching was used to identify the top 100 genes

highly correlating with each CT type. These genes were used as

input to a gene pair transformation, and each gene pair was ranked

by its ability to discriminate between CT types. Using the top 100

discriminative gene pairs, a gene pair-by-sample binarymatrix was

constructed. A ‘‘random’’ cell type was generated by shuffling

values in the binary matrix, randomly sampling 70 profiles, and

appending these to the binarymatrix. Thismatrixwas used to train

an RF classifier of 2,000 trees, with stratified sampling of 25 sam-

ples from each cell type to ensure balanced training among CT

types. Validation of the classifier was performed on the remaining

1/3 of the training samples for each CT type and on 60 randomly

shuffled expression profiles. Classifier performance was assessed

using AUPR.

DE and GSEA
DE analysis for RNA-seq data was performed with DESeq2 (Love

et al., 2014). GSEA was performed with the R package Fast GSEA

(fGSEA) (Korotkevich et al., 2016), using the C2 and C5 gene sets

from theMolecular SignaturesDatabase (Liberzon et al., 2011; Sub-

ramanian et al., 2005).

Transcriptional regulator scoring
GRN construction was performed as described previously (Peng

et al., 2021), and for each CT type, the GRN was subset based on

genes present in all corresponding query samples. For each sample,

candidate TFs for improving the classification of its target CT type

were scored using the previously described NIS (Cahan et al., 2014;

Radley et al., 2017) applied to rank-transformed expression esti-

mates. In brief, the NIS of a TF is defined as follows:

NISTF = n 3 ZscoreðTFÞ 3 weightTF +
Xn

n = 1

ZscoreðtargetiÞ � weighti

where

n = number of genes directly regulated by TF

The NIS function includes an optional parameter weight, whereby

the TF and target gene terms will be weighted according to their

expression in the target cell type.

Derivation of primary liver organoids
Primary liver organoids were derived as described previously

(Broutier et al., 2016; Huch et al., 2015). Donor liver tissue was

received submerged in PBS �/� in a 50-mL tube on ice directly

after the surgical procedure. Tissue was immediately transferred

to a 10-cm Petri dish in cold basal medium (Advanced DMEM/

F-12 with 100 U/mL penicillin, 100 mg/mL streptomycin, 2 mM

Glutamax, and 10 mM HEPES). A sterile scalpel was used to finely

mince tissue to make cells accessible for digestion. Tissue pieces

were transferred to a 15-mL tube and washed twice with wash

medium (DMEM with 1% fetal bovine serum (FBS), 100 U/mL

penicillin, 100 mg/mL streptomycin, 2 mM Glutamax), with su-

pernatant manually aspirated with a serological pipette after al-

lowing the minced tissue to settle. Tissue was digested with addi-

tion of 4 mL digestion solution (Hank’s balanced salt solution

[HBSS]+/+, 1.25 mg/mL collagenase IV, 0.1 mg/mL DNaseI) on a

rotor at 37�C for 30 min. The digested cell suspension was brough
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to 15 mL with cold wash medium and passed through a 70-mm

mesh into a 50-mL tube. Cells were pelleted at 300 3 g for

5 min at 8�C, and the supernatant was gently aspirated. Cells

were washed an additional three times in cold wash medium

and a third time in cold basal medium. Medium was aspirated

gently with a serological pipette, and a fraction of the cells was

transferred to cold Matrigel GFR at a volume ratio of 1:3 to reach

a final �40,000 cells/mL. 25-mL droplets of Matrigel suspension

were distributed into the centers of 48-well-plate wells. Plates

were incubated upside down in a tissue culture incubator

(37�C, 5% CO2) for 10–20 min until the Matrigel completely

solidified. Cultures were overlaid with isolation medium (basal

medium with 13 B27 supplement without vitamin A, 13 N2

supplement, 1.25 mM N-acetylcysteine, 10% (v/v) RSPO1-condi-

tioned medium, 10 mM nicotinamide, 10 nM recombinant

human [Leu]-gastrin I, 50 ng/mL recombinant human EGF,

100 ng/mL recombinant human FGF10, 25 ng/mL recombinant

human HGF, 10 mM forskolin, 5 mM A83-01, 25 ng/mL recombi-

nant human Noggin, 30% (v/v) Wnt3a-conditioned medium,

and 10 mM Y-27632) for 4 days before switching to expansion me-

dium (isolation medium without Noggin, Wnt3A-conditioned

medium, or Y-27632), and changing the medium every 3–

4 days. Cultures were passaged on day 13 after isolation. The

use of primary human hepatocytes for research was approved

by ethical committees and informed consent was obtained from

donors when appropriate. No personally identifying information

has been released.
Passaging of human liver organoids
Organoids were passaged 13 days after the original isolation and

every 5–7 days afterward. Organoid cultures were disrupted with

a P1000 micropipette and the wells rinsed twice with 500 mL of

cold basal medium to dissolve the Matrigel droplet and transfer

the cells to a 15-mL centrifuge tube. Tubes were topped off to

13 mL with cold basal medium and agitated 5 times with a micro-

pipette to completely dissolve the Matrigel. Organoids were spun

at 200 3 g for 5 min at 8�C and aspirated with 1 mL remaining,

then agitated using a micropipette until sufficiently dissociated.

Tubes were again topped to 13 mL with basal medium, spun at

200 3 g for 5 min at 8�C, and aspirated. Cells were mixed with

cold Matrigel to reach a passage ratio of 1:6, and droplets were

formed and overlaid as in the isolation procedure but with

expansion medium instead of isolation medium.
IF staining and imaging
Whole-mount staining of primary human liver organoids was

performed as follows. Glass-bottom plates (Ibidi) containing

Matrigel droplet organoid suspensions were rinsed twice with

cold PBS �/� (Quality Biological), then fixed in 4% paraformal-

dehyde (PFA) (Electron Microscopy Sciences) for 30 min at room

temperature (RT); the remaining incubations and washes were

performed at RT unless otherwise specified. Wells were rinsed

three times with PBS�/� and then permeabilized with 0.3%

Triton X-100 for 25 min. Wells were again rinsed three times

in PBS�/� and blocked with 5% normal donkey serum (Jackson

ImmunoResearch Laboratories) for 45 min, rinsed once in

PBS�/�, and incubated overnight at 4�C with primary anti-
bodies in 5% donkey serum in 0.05% Tween 20 in PBS�/�
(PBST). A negative control was incubated under the same condi-

tions but with no primary antibodies. Cells were washed with

PBST three times for 10 min per wash and then incubated

with secondary antibody in PBST for 90 min. Wells were rinsed

twice with PBS and then incubated with a 1:1,500 dilution

of Hoechst (Invitrogen) in PBST for 10 min before a final 3

washes of 10 min each. The stained cultures were then imaged

on a Nikon A1 spectral confocal microscope using z stack scans,

which were processed in ImageJ to generate the z projections

shown in the figures. The negative control that was incubated

with secondary but not primary antibodies was used to set the

parameters to determine the background threshold for each

channel. Antibody catalog numbers and dilutions are shown

in Table S6.
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