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SUMMARY

Optimization of cell engineering protocols requires standard, comprehensive quality metrics. We previously developed CellNet, a
computational tool to quantitatively assess the transcriptional fidelity of engineered cells compared with their natural counterparts,
based on bulk-derived expression profiles. However, this platform and others were limited in their ability to compare data from different
sources, and no current tool makes it easy to compare new protocols with existing state-of-the-art protocols in a standardized manner.
Here, we utilized our prior application of the top-scoring pair transformation to build a computational platform, platform-agnostic
CellNet (PACNet), to address both shortcomings. To demonstrate the utility of PACNet, we applied it to thousands of samples from
over 100 studies that describe dozens of protocols designed to produce seven distinct cell types. We performed an in-depth examination
of hepatocyte and cardiomyocyte protocols to identify the best-performing methods, characterize the extent of intra-protocol and
inter-lab variation, and identify common off-target signatures, including a surprising neural/neuroendocrine signature in primary
liver-derived organoids. We have made PACNet available as an easy-to-use web application, allowing users to assess their protocols
relative to our database of reference engineered samples, and as open-source, extensible code.

INTRODUCTION

Key milestones in advancing the field of cell fate engineer-
ing (CFE) include the discovery of direct conversion (Davis
et al., 1987), the derivation of mouse and human embry-
onic stem cells (ESCs) (Evans and Kaufman, 1981; Martin,
1981; Thomson et al., 1998), the directed differentiation
of ESCs to motor neurons (Wichterle et al., 2002), and
the induction of pluripotent stem cells (induced pluripo-
tent stem cells [iPSCs]) (Takahashi and Yamanaka, 2006;
Takahashi et al., 2007). Collectively, these and many other
advancements have enabled the development of protocols
to derive numerous cell and tissue (CT) types. CFE is used in
a range of applications, from regenerative medicine to
disease modeling, drug discovery, and drug screening
(Robinton and Daley, 2012). Because of the potential
importance of these applications, the number of investiga-
tors and studies generating, optimizing, and applying CFE
methods has multiplied rapidly.

Optimizing CFE methods requires evaluation of protocol
performance. This is often done empirically by verifying
expression of canonical markers at the protein and RNA
level (for instance, SERPINA1 and HNFs in hepatocytes
[Ma et al.,, 2013] and TNNT2 in cardiomyocytes [leda
et al., 2010]) or through in vitro functional assays (for
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example, glycogen storage and albumin secretion in hepa-
tocytes, calcium flux and spontaneous beating in cardio-
myocytes, sodium currents and spontaneous postsynaptic
currents in neurons [Kang et al., 2017], and teratoma for-
mation to assess pluripotency [Brivanlou et al., 2003;
Thomson et al., 1998]). The most stringent assays of CFE fi-
delity entail assessing the extent to which transplanted
cells rescue an absent or disrupted in vivo function, as exem-
plified by complementation of tetraploid blastocysts with
PSCs (Nagy et al., 1990).

Genome-wide measurements of molecular state, such
as transcriptional profiling, are valuable supplements to
functional assays of cell identity for two major reasons.
First, they are less time consuming and less experimentally
challenging to perform. Second, when coupled with
appropriate analysis methods, they can reveal molecular
programs that have not been reprogrammed appropri-
ately. This feature is especially valuable in cases where
engineered cells fail in functional assays. Several computa-
tional methods have been devised to take advantage of
genome-wide molecular data to evaluate the fidelity of
CFE protocols. For example TeratoScore, PluriTest, and
ScoreCard assess pluripotency (Avior et al., 2015a; Interna-
tional Stem Cell Initiative, 2018; Miiller et al., 2011; Tsan-
kov et al., 2015), and KeyGenes assesses developmental

1721

ISSCR

OPEN ACCESS


mailto:patrick.cahan@jhmi.edu
https://doi.org/10.1016/j.stemcr.2023.06.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stemcr.2023.06.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

'O‘
&

stage using a fetal tissue atlas (Roost et al., 2015). We
previously developed CellNet (Cahan et al., 2014; Lo and
Cahan, 2019; Radley et al., 2017), which estimates the de-
gree to which CT-specific gene-regulatory networks
(GRNs) have been established in engineered cells. A limita-
tion shared by all of the methods mentioned above is that
the query data (i.e., the expression profiles from the engi-
neered cells) and the training data (i.e., the profiles of the
primary, in vivo populations) must be produced using
the same technologies and downstream computational
processing methodologies. Another commonality is that
they are typically optimized for and deployed in a study-
specific manner. These issues make it challenging to fairly
compare CFE products across protocols and studies, which
would be necessary to determine the extent to which new
CFE protocols improve fidelity compared with standard
methods in the field and to investigate intra-protocol
variability. To our knowledge, an extensive cross-study
comparison of CFE protocols from bulk-derived data for
multiple lineages has not yet been performed, and no
easy-to-use computational tool with appropriate bench-
mark data of CFE protocols exists.

To address this deficiency, we leveraged our recent work
using the top-scoring pair (TSP) transformation (Peng
et al.,, 2021; Tan and Cahan, 2019) to make a computa-
tional tool that assesses the transcriptional fidelity of CFE
products in a platform-agnostic manner. Like CellNet, the
tool uses nodes in CT GRNs as predictor variables to train
amulti-class random forest (RF) classifier. However, distinct
from the original versions of CellNet, which were limited to
identically preprocessed microarray or bulk RNA
sequencing (RNA-seq) data, we leveraged the TSP transform
to allow analysis of data derived from distinct genome-wide
expression assays (including microarray and Illumina- and
ION torrent-based RNA-seq) as well as data derived from
distinct methods of preprocessing raw sequencing data
into gene expression estimates. Therefore, we named the
tool platform-agnostic CellNet (PACNet).

We compiled a database of publicly available bulk hu-
man gene expression data from 101 CFE experiments,
totaling more than 2,100 samples across seven CT types.
Using PACNet, we quantitatively evaluated the most com-
mon, most consistent, and best-performing protocols for
two of the most commonly engineered tissue types: heart
and liver. We identified common off-target signatures
across heart and liver engineering protocols and revealed
an unexpected neural and neuroendocrine signature
in primary liver-derived organoids. Finally, we created
a user-friendly web application (http://cahanlab.org/
resources/agnosticCellNet_web/) through which investi-
gators can upload gene expression data to evaluate the
transcriptional fidelity of their engineered cells to their
natural counterparts and can compare their engineered
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cells with our database of engineered reference samples
from state-of-the-art CFE protocols. Visitors to the site
can readily explore the pre-computed PACNet analysis
of all 101 CFE datasets, and users can download our data-
base of reference samples and run PACNet locally (https://
github.com/pcahan1/PACNet). Optionally, users can also
leverage their own reference data, for example, to add
additional CT types to the platform. We think that
PACNet’s ease of use will make it especially valuable as a
resource for investigators to rapidly evaluate the efficacy
and performance of CFE protocols in a standardized
fashion.

RESULTS

PACNet classification is precise and sensitive

To train PACNet, we first mined NCBI GEO for bulk RNA-
seq profiles of primary, healthy human CT samples from
14 CT types: B cells, endothelial cells, ESCs, fibroblasts,
heart, hematopoietic stem and progenitor cells (HSPCs),
intestine/colon, kidney, liver, lung, monocytes/macro-
phages, brain, skeletal muscle, and T cells. This process
resulted in more than 1,400 samples across the 14 CT types
(Table S1). To enable cross-platform compatibility, PACNet
borrows from the previously described TSP algorithm to
transform data prior to training and RF classification (Ge-
man et al., 2004; Peng et al., 2021; Tan and Cahan,
2019). We note that the PACNet classification score for a
specific CT type is the fraction of decision trees in the RF
classifier in which the sample is predicted to be the speci-
fied CT. This is distinct from a global measure of similarity,
such as the Pearson or Spearman correlation coefficient.
Consistent with our prior work, where we used TSP-RF to
perform cell typing of single cell atlases (Tan and Cahan,
2019) and to evaluate cancer models from bulk RNA-seq
data (Peng et al., 2021), PACNet performed well when
applied to held-out samples, with an average classification
score (corresponding to the labeled cell type) of 0.965
among all held-out samples, with cell type-specific averages
ranging from 0.872 (kidney) to 0.996 (neuron) (Figure 1A).
We also evaluated classifier performance via precision-
recall (PR) curves, summarized as area under the PR curve
(AUPR). The AUPR among non-random cell types averaged
0.9981 and ranged from 0.9962 (kidney) to 0.9996 (mono-
cyte/macrophage) (Figures S1A and S1B). To validate the
platform agnosticism of PACNet, we next queried the
bulk RNA-seq-trained classifier with a database of primary
human microarray data (Cahan et al., 2014). PACNet suc-
cessfully classified the vast majority of samples (Figure 1B),
with a mean AUPR across all cell types of 0.987 and a min-
imum AUPR of 0.936 for HSPCs, demonstrating that the
classifier maintained high performance across expression
profiling platforms.


http://cahanlab.org/resources/agnosticCellNet_web/
http://cahanlab.org/resources/agnosticCellNet_web/
https://github.com/pcahan1/PACNet
https://github.com/pcahan1/PACNet
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Figure 1. PACNet classifier and preprocessing performance
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(A) Heatmap of classification scores of held-out samples for classifier validation. Each column represents a held-out bulk RNA-seq sample.
(B) Heatmap of classification scores for primary tissue microarray query data. Each column represents a microarray sample.

(A and B) Each row represents a cell/tissue type, and the colors correspond to the classification score, which is the proportion of decicision
trees in the Random Forest classifier in which the given sample is classified as the row’s CT. Rand: random.

(C) Difference in classification scores based on in-house vs. author-performed RNA-seq alignment and quantification pipelines for CFE studies.
Only in vivo positive controls from iPSC, heart, liver, and lung CFE studies were analyzed. Method legend: tools used for author-performed RNA-
seq alignment and quantification. Mean difference of 0.0495 across all comparisons; no difference in scores was greater than 0.14.

See also Figure S1.

To create a reference database of major CFE protocols, we
again mined GEO for publicly available bulk gene expres-
sion data of engineered human cells. We aimed to identify
a variety of protocol types for each CT type, including
directed differentiation, transdifferentiation, and organoid
derivation protocols. We also sought to compile studies us-
ing different expression profiling platforms, including mi-
croarray (one study), [llumina-based RNA-seq (vast majority
of studies), ION torrent-based RNA-seq (four studies), and
GRO-seq (one study). Altogether we gathered 101 CFE ex-
periments for heart (24 studies), HSPCs (5), intestine/colon
(12), liver (25), lung (5), neuron (21), and skeletal muscle (9),
totaling more than 2,100 samples (Table S2). Because our
goal was also to make a metric of CFE that would be well cali-
brated across studies that use different computational pre-

processing methods, we verified that PACNet performance
was not affected by variations in alignment and quantifica-
tion tools or by variations in available genes (Figures 1C and
S1B; Table S3; Note S1). We attribute the robustness of
PACNet cell fate assessment—against variations in profiling
platform, alignment and quantification pipeline, and even
counts vs. per-million quantification—to the TSP-RF algo-
rithm because it compares the relative expression of gene
pairs within samples rather than absolute or normalized
expression among samples.

Cardiomyocytes and hepatocytes are frequently the
target of CFE efforts because of their potential applications
in toxicity screening and regenerative medicine (Buikema
etal., 2013; Jin et al., 2021; Karakikes et al., 2015; Schwartz
et al., 2014). In the following sections, we used PACNet to

Stem Cell Reports | Vol. 18 | 1721-1742 | August 8, 2023 1723

&



'O‘
&

quantify the transcriptional fidelity of common cardio-
myocyte and hepatocyte CFE methods, to quantify the
extent and frequency of off-target effects, and to explore
the biological pathways that distinguish CFE protocols.

Metabolic selection enhances the transcriptional
fidelity of engineered cardiomyocytes

We first identified common derivation protocols among
cardiomyocyte (CM) CFE studies (Figure 2A). Two
commonly used CM directed differentiation monolayer
protocols, which we hereafter denote by the first authors,
are the Burridge (Burridge et al., 2014, 2015) and Lian
(Lian et al.,, 2012, 2013) protocols, which comprise the
following stages.

(1) GSK3 inhibition in PSCs with CHIR99021 for 48-
72 h to induce mesoderm development.

(2) Wnt inhibition for 48 h using small-molecule
PORCN inhibitors: Wnt-C59 (Burridge) or IWP-2
(Lian) to generate cardiac mesoderm.

(3) Medium changes with RPMI, L-ascorbic acid
2-phosphate, and albumin (Burridge) or RPMI and
B-27 (Lian). Beating or contractile cells are observed
on day 7.

(4) In the Burridge protocol only, on day 10: metabolic
selection via glucose deprivation and/or sodium DL-
lactate supplementation, based on a finding by To-
hyama et al. (2013), which purifies up to 95%
TNNT2* cells.

(5) Differentiated, contractile CMs generated from both
protocols can be maintained in culture for more
than 6 months.

Several studies append the metabolic selection step from
Burridge to the Lian protocol (Note S2); we designate these
as “Combined.” Another monolayer protocol is simple,
comprising a one-step, 24-h treatment with activin, fol-
lowed by at least 8 days of culture in only RPMI and B-27
(Estaras et al., 2017; Hsu et al., 2018). We denote these
studies as “Activin-based.” Alternative protocols by Yang
et al. (2008) and Lee et al. (2017), which we denote as
“embryoid body” (EB) protocols, use recombinant growth
factors in lieu of small molecule inhibitors for differentia-
tion. The EB protocol stages are as follows:

(1) Formation of EBs from PSCs using BMP4.

(2) Primitive streak induction using BMP4, bFGF, and
activin A.

(3) Cardiac mesoderm induction using VEGF and Wnt-
inhibiting factor DKK1.

(4) CM specification using VEGF, DKK1, and bFGFE.

Finally, we denote commercially purchased CMs as
“iCell” CMs.
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To assess to what extent these protocols achieved an
identity comparable with in vivo CMs, we acquired publicly
available bulk expression data as follows: eight studies
following the Burridge protocol, four exclusively following
the Lian protocol, six combining the Lian protocol with
the added metabolic selection step, two following one-
step Activin-based protocols, three following EB protocols,
and three studies using purchased iCell CMs, for a total of
23 studies and 809 samples across a range of stages of differ-
entiation (Note S2; Table S4). We queried each of these
studies with the PACNet classifier (Figure S1C). Comparing
among developmental stages, PACNet analysis showed
that most CM protocols demonstrated a gradual, consistent
increase in heart classification score and decrease in ESC
classification score over their differentiation time courses
(Figure S1D). Although increased time in culture was gener-
ally associated with a higher PACNet heart classification
score, shorter protocols were still able to achieve near-
maximal classification (Figure S1E and S2A; Note S3).
Because expression of marker genes has been used as a sur-
rogate for overall transcriptional fidelity, we explored the
extent to which PACNet classification score was predicted
by expression of individual markers of CM fate. Across sam-
ples, we computed the correlation between heart classifica-
tion scores and the expression of key CM marker genes,
including TNNT2, TBXS, and MYL2 (Figure S2B). PACNet
heart classification scores correlated substantially with
marker expression (R? ranging from 0.35-0.73). However,
this correlation was imperfect such that the samples with
the highest classification scores (primary heart, as ex-
pected) did not have maximal expression of TNNT2 and
TBXS5. Conversely, samples with maximal marker gene
expression (some engineered CMs) did not have the high-
est classification scores. Therefore, for these samples and
marker genes, classification scores better reflect cell identity
than the expression of any single marker gene.

We noticed that, even within the same protocol, study,
and time point, classification scores of replicates could
vary greatly. Intra-lab and inter-lab reproducibility and
consistency are important characteristics to consider in
CFE; thus, we asked to what extent CMs engineered using
the same protocol vary within and across studies. To do
so, we computed the PACNet heart classification score for
individual studies within and across protocols for “puri-
fied” CMs (metabolically selected CMs not yet designated
as “mature”) from Burridge and combined and all mature
CMs (Figure 2B). To facilitate a fair comparison for this
and subsequent analyses, we excluded any CMs with dis-
ease phenotypes, drug exposure, or genetic perturbations
that might obscure accurate assessment of protocol fidelity.
In cases where a study had multiple protocol variations, we
selected the variant that yielded samples with the highest
mean classification score for the target CT. In one notable
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case, a large study that generated almost 300 samples across
19 independent rounds of differentiation (Strober et al.,
2019) produced purified CMs with heart classification
scores ranging from 0.016-0.611 (Figures 2B, S1C, and
S1D). Other studies with higher variability in classification
score included Ward and Pavlovich (Burridge protocol), Ba-
novich (Combined), and Zhao2 (EB) (Figure 2C). The
source of this intra-study variation is unclear; however,
one likely contributor is PSC line-specific differentiation
bias. For example, it is known that independently derived
ESC lines can generate unique differentiation biases
(Abeyta et al., 2004; Osafune et al., 2008) and that iPSCs
can retain epigenetic memory of their initial cell type
(Kim et al., 2010). The studies that achieved the highest
mean score within their respective protocols often
achieved the most consistent scores as well, as in the cases
of Tian and Lam (Burridge), Ang (Combined), Estaras (Acti-
vin-based), and Shafaattalab (EB) (Figures 2B and 2C).
These all generated CMs from an intra-study-consistent
starting cell type: Tian and Hookway from fibroblast-
derived iPSCs, Lam from PBMC-derived iPSCs, and Estaras
and Shafaattalab from ESCs. Whereas the highest mean
score often achieved the most consistent scores for intra-
study comparisons, inter-study classification scores varied
more greatly for all protocols, with a standard deviation
(SD) in heart classification score of 0.153 (Burridge) and
0.152 (Combined) for purified CMs and ranging from
0.115 (Lian) to 0.198 (Activin-based) for mature CMs (Fig-
ure S2C). The ability of a protocol to produce the most
highly classifying CMs did not relate to protocol variability,
with comparable top-scoring samples observed in the Lian,
Burridge, EB, and Combined protocols irrespective of pro-
tocol SD (Figure S2D).

To investigate how differences in protocols contributed
to differences in heart classification, we next examined dif-
ferential expression (DE) among purified and mature CM
samples derived via the best-performing study per proto-
col. We were particularly interested in the effects of meta-
bolic selection on heart classification score because this

step was performed in 15 of 25 studies that produced puri-
fied or mature CMs. Thus, we selected the top-classifying
Burridge and Combined studies (Tian, Lam, and Cyganek)
to compare against the top-classifying Lian studies (Zhang
and Mills). We limited the Zhang samples to the two that
had not undergone additional study-specific purification
via sorting for MYL2 positivity. Gene set enrichment anal-
ysis (GSEA) of the DE genes revealed an enrichment in gene
sets related to cardiac morphogenesis and action potential
in Burridge and Combined samples (Figure 2D), corrobo-
rating an increased CM fate in response to metabolic selec-
tion. We also examined another relevant comparison
within the Activin-based protocol, in which Estaras per-
formed metabolic selection but Hsu did not. GSEA revealed
an enrichment of cellular respiration and inner mitochon-
drial membrane function (oxidative phosphorylation) in
the metabolically selected Estaras samples (Figure 2E).
This is consistent with the known transition from more
glucose- and glycolysis-dependent metabolism during em-
bryonic heart development to more mitochondrion- and
fatty acid oxidation-dependent metabolism after birth
(Chung et al., 2007; Lopaschuk and Jaswal, 2010). The
higher classification scores of metabolically selected
mature CMs may reflect this transition away from glycol-
ysis and toward oxidative phosphorylation. Interestingly,
we noticed that the two Zhang samples that underwent
sorting for MYL2 positivity achieved heart classification
scores comparable with the top-classifying Burridge and
Combined studies. Thus, we asked whether this sorting-
based increase in heart classification scores reflected a com-
mon underlying metabolic phenotype. GSEA comparing
the Zhang MYL2-sorted samples with top-classifying,
non-sorted Lian samples demonstrated an enrichment in
cardiac muscle function but surprisingly also in glucose
catabolism (Figure S2E). In fact, when comparing against
Burridge and Combined samples, we observed the same
enrichment in glucose catabolism in the MYL2-sorted
Zhang samples (Figure S2F). This suggests that Burridge
and Combined samples achieve a strong CM identity

Figure 2. Cross-study meta-analysis of CM engineering protocols

(A) Schematic of representative protocols in DD of CMs. Protocols are aligned by developmental stage. ESC, embryonic stem cell; iPSC,

induced pluripotent stem cell; EB, embryoid body.

(B) Heart classification scores by study/first author and protocol for healthy/unperturbed purified and mature CM samples (from the top-
performing protocol variant, if relevant) per study. Within each facet, studies are ordered by decreasing mean heart classification score.
(C) SD in heart classification scores by study/first author and protocol for the same purified and mature CM samples as in (B).

(D) Summary plot for GSEA performed on DE genes comparing profiles of top-classifying CMs from the Burridge and Combined protocols
(Tian, Lam, Cyganek, and Hookway, which include a metabolic selection step) versus top-classifying CMs from the Lian protocol (Mills and
Stoehr, which do not include a metabolic selection step). The top 2 classifying samples by Zhang were excluded from this comparison
because they were purified using a study-specific method of sorting for MYL2 positivity.

(E) Summary plot for GSEA performed in DE genes between two Activin-based protocol studies: Estaras et al. (who did perform metabolic
selection) to Hsu (who did not). NES, normalized enrichment score; Padj, adjusted p value based on Benjamini-Hochberg correction.

See also Figures S1 and S2.
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through a different mechanism compared with MYL2-
sorted Zhang samples, which implies a potential for a com-
pounded increase in CM identity when metabolic selection
is combined with sorting for MYL2.

It has been observed that directed differentiation and
direct conversion can activate transcriptional programs
of unintended cell types (Cahan et al., 2014; Kong et al.,
2022; Morris et al., 2014). Therefore, we assessed whether
there were any off-target lineages detectable in engineered
CMs. Although off-target effects were not prominent,
we found three minor off-target signatures among CM
studies. Two studies showed an aberrant fibroblast signa-
ture, although the mature CM samples predominantly
still classified as heart (Figure 3A). We corroborated the
fibroblast signature with key markers of fibroblast identity,
including COL1A1 and THY1 (Figure 3B). The latter of the
two studies, Hsu et al. (2018), also showed a noticeable in-
testinal signature (Figure 3A), which we corroborated with
expression of key intestinal genes, including SLC10A2 and
MUC2 (Figure S2G). Interestingly, the metabolically
selected counterparts (Estaras) to the Hsu CMs lacked
both of these off-target signatures (Figure S2H), suggesting
that metabolic selection may act to remove off-target cells
as well as other cardiac-lineage cells (Andersen et al., 2018;
Zhang et al., 2019). A subset of samples from two studies
(from the same publication; Zhao et al., 2019) demon-
strated an off-target liver signature (Figure 3C), which we
corroborated with expression of key liver markers,
including ALB, SERPINA1, and CEBPA (Figure 3D). These
two studies followed EB protocol variations for CM differ-
entiation (Zhao et al., 2019). It is worth noting that early
activation of activin/Wnt signaling also specifies the
definitive endoderm adjacent to precardiac mesoderm
(Kubo et al., 2004; Toivonen et al., 2013) and endodermal
derivatives are often present in cardiac organoids (Drakh-
lis et al., 2021; Rossi et al., 2021). Thus, these protocols
may be permissive to hepatic differentiation as well.

To identify transcription factors (TFs) whose modula-
tion might improve CFE protocol performance, we used
the network influence score (Cahan et al., 2014) (NIS)
with the minor modification of using rank-transformed

expression estimates instead of quantile-normalized
expression estimates. The NIS evaluates the need for
up- or down-regulation of cell type-specific TFs
based on the expression of those TFs and their target
genes. Across engineered mature CMs, NKX2-5 (NK2 ho-
meobox 5) was most strikingly assigned the lowest mean
score, indicating a predicted need for upregulation. This
is consistent with the role of NKX2-5 as a master regu-
lator of CM fate, controlling a subnetwork of CM TFs,
including TBX5, TBX20, HAND1, and HANDZ2 (Akazawa
and Komuro, 2005), which also had moderately strong
negative scores (Figure S2I). The NIS successfully priori-
tized the upregulation of NKX2-5 in CM samples with
more prominent off-target signatures (Figure S2I),
including Ward (with off-target fibroblasts; Figure 3A).
It also recognized the already prominent NKX2-5 activity
in highly classifying CM samples, including Cyganek and
Zhang (Figures 2B and S2J). Taken together, these results
demonstrate the utility of PACNet in assessing cross-
study performance and identifying actionable points for
protocol improvement.

Hepatocyte engineering studies have diverse
performance outcomes

We next identified common hepatocyte (HC) derivation
protocols in the field. With less consensus in specific deri-
vation protocols than in CM CFE, we divided hepatic pro-
tocols into four general categories: directed differentiation
(DD), ESC/iPSC-derived hepatic organoid differentiation
(PSC-0), transdifferentiation (TD; i.e., direct conversion),
and primary HC-derived or primary liver-derived organoid
(P-O) culture. We analyzed 24 studies, divided as follows:
12 DD studies, 6 PSC-O studies, 4 TD studies, and 8 P-O
studies (Table S4; Note S4). We summarize each of these
derivation strategies below (and illustrate a representative
protocol for each in Figure 4A).

(1) DD protocols followed an overall consistent pattern:

(a) Unanimous induction of definitive endoderm

from PSCs with activin A, with some adding
Wnt3a or BMP4.

Figure 3. Off-target signatures in CM engineering

(A) Heatmap of classification scores for Ward et al. (left) and Hsu et al. (right) studies, which produced CMs with an off-target fibroblast

signature.

(B) Heatmap of gene expression for canonical CM and fibroblast marker genes for the study with the most highly classifying CMs (Cyganek

et al.) compared with the Ward et al. and Hsu et al. studies.

(C) Heatmap of classification scores for two separate GEO accession studies from the same authors (Zhao et al.), which produced CMs with
an off-target liver signature. Heatmap color scale: Z score of log-transformed gene counts.
(D) Heatmap of gene expression for canonical CM and Lliver marker genes for the study with the most highly classifying CMs (Cyganek et al.)

compared with Zhao et al. studies.

(B and D) Heatmap color scale: per-gene Z score of log-transformed TPM.

See also Figure S2.
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(b) Inducing the transitions from definitive endo-
derm to foregut or hepatic endoderm followed
two major strategies: application of BMP4 and
FGF2 (Boon et al., 2020; Deaton et al., 2018; Qin
et al., 2016) or of 2-mercaptoethanol and DMSO
(Carpentier et al., 2020; Ehrlich et al.; Sagi et al.,
2019). Other strategies included BMP4 combined
with transforming growth factor p (TGF-B) inhibi-
tion and Wnt inhibition (Touboul et al., 2016).

(c) Differentiation to hepatoblasts and HCs or HC-
like cells was, with large consensus, induced
with some combination of oncostatin M, dexa-
methasone, and HC growth factor (HGF).

(2) PSC-O protocols followed global strategies similar to
DD, but with the addition of various common orga-
noid-promoting factors, including R-spondinl,
epidermal growth factor (EGF), Noggin, FGF10, and
gastrin (Huch et al., 2013; Pleguezuelos-Manzano
et al., 2020) at various stages. Two studies incorpo-
rated the TGF-Binhibitor SB431542 and the adenylyl
cyclase activator forskolin (Akbari et al., 2019; Wang
et al., 2019) during specification to mature hepatic
organoids, with one distinct study also adding
BMP7 and the Notch signaling inhibitor DAPT dur-
ing this final stage (Akbari et al., 2019). A unique or-
ganoid protocol achieved differentiation through
transduction of the transcriptional regulators (TFs)
GATA6, PROX1, and ATF5 as well as CRISPR-medi-
ated activation of endogenous CYP3A4 (Velazquez
etal., 2021).

(3) Direct conversion or TD of fibroblasts into HCs
involved transduction of specified hepatic TFs,
most commonly a combination of HNF family and
FOXA family TFs, followed by culture in HC induc-
tion medium (Du et al., 2014; Gao et al., 2017; Xie
etal., 2019). One unique TD method reverted gastric
epithelial cells to an endodermal progenitor state us-
ing a cocktail of small-molecule inhibitors, followed
by a standard HC differentiation procedure (Wang
etal., 2016).

(4) In P-Os, two major protocols, which we hereafter
denote by first author, were used: Huch (Huch

et al., 2015) and Hu (Hu et al., 2018). Huch estab-
lished a system to expand adult bile duct-derived bi-
potent liver progenitor organoids, which, upon sup-
plementation with additional factors, can give rise
to HCs. Hu then elaborated on this system to estab-
lish long-term expansion conditions specifically for
HC-derived organoids.

We first assessed to what extent these protocols achieved
an identity comparable with in vivo HCs using the PACNet
classifier (Figure S3A). Whereas engineered CMs had shown
a consistent gradual increase in heart classification score
over the course of differentiation, engineered HCs gener-
ally experienced a late, sharp increase in liver classification
score in the transition from hepatic progenitor to mature
HCs (Figures S3B and S3C). Studies demonstrated a concur-
rent decrease in ESC classification score (or fibroblast classi-
fication score for relevant TD studies), although most sam-
ples retained a detectable ESC signature (Figures S3B and
S3C). Like with CM studies, the correlation between
expression of HC markers and liver classification score
was again imperfect such that many engineered samples
with maximal marker gene expression had only low or
moderate classification scores, again suggesting that the
classification score better reflects identity than does the
expression of select marker genes (Figure S3D).

Next, we asked which protocols produced populations
with the highest PACNet classification score. The highest-
classifying mature HCs were produced by Xie (Figures 4B
and 4C), who used a two-step, 37- to 47-day TD protocol.
This protocol first converts embryonic fibroblasts into he-
patic progenitor cells through transduction of HNF4A,
HNF6A, GATA4, FOXA2, and HHEX, followed by differenti-
ation into functionally competent mature HCs using for-
skolin and the ALKS inhibitor SB431542. Almost equally
well classifying were two DD studies performed by Tilson
and Deaton (Figures 4C, S4A, and S4B), which followed ad-
aptations of a protocol by Hannan et al. (2013) for HC-like
cell derivation. While Tilson followed the Hannan method
of including the phosphatidylinositol 3-kinase (PI3K) in-
hibitor LY294002 during definitive endoderm induction,
Deaton used a commercially available definitive endoderm

Figure 4. Cross-study meta-analysis of HC engineering protocols

(A) Schematic of representative protocols from each HC derivation strategy. HEF, human embryonic fibroblast; SynTF(CYP3A4), synthetic

TF for endogenous CYP3A4 activation.

(B) Classification heatmap for the study that produced the most highly classifying HC samples (Xie et al.; TD from human embryonic fi-

broblasts to HCs).

(C) Liver classification scores by study/first author and protocol for healthy/unperturbed, fully mature, or differentiated HC and hepatic
organoid samples (from the top-performing protocol variant, if relevant) per study. Within each facet, studies are ordered by decreasing

mean liver classification score.

(D) SD in liver classification scores by study/first author and protocol for the same HC or hepatic organoid samples as in (C).

See also Figures S3 and Sé4.
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kit. Deaton also uniquely included the myosin II inhibitor
blebbistatin during induction of hepatic endoderm from
definitive endoderm. Finally, a DD protocol performed by
Qin that included supplementation of vitamin K2, known
to contribute to HC maturation (Avior et al., 2015b) and to
increase expression of mature HC gap junction protein
GJB1 (Qin et al., 2016), also had one of the highest mean
classification scores (Figures 4C and S4C).

We next examined intra- and inter-study variability in
classification score and their relationship to study perfor-
mance. To facilitate a fair comparison, we again excluded
engineered samples with conditions or perturbations that
were unrelated to protocol improvement, and when a
study had multiple protocol variations, we again selected
the variation producing the more highly classifying sam-
ples. In CMs, we had observed that intra-study consistency
increased with higher mean heart classification score. In
contrast, for HC derivation overall, SD was not associated
with mean PACNet classification, and low SD did not
reflect high protocol performance (Figures 4C, 4D, and
$4D). Only the Tilson DD study had a mean classification
of over 0.5 while maintaining an SD under 0.05. The Xie
study, which did have a mean classification score of over
0.5, had a higher SD of 0.089. Of the PSC-O and P-O
studies, Velazquez and Giobbe, respectively, had the high-
est mean classification scores while maintaining SDs under
0.05 (Figures 4C and 4D). At the inter-study level, while DD
and TD protocols had higher SDs of 0.259 and 0.190 respec-
tively, DD and TD samples significantly outperformed P-O
and PSC-O samples on average (Figure S4E). The extent to
which inter-study and inter-protocol variability in
PACNet score reflect functional variability in engineered
populations is unknown. Nonetheless, having a quantita-
tive metric of population quality will be useful because
the field places more emphasis on reducing variability
within protocols.

We next wanted to investigate to what extent DD and TD
protocols might each have independent qualities that
could help improve the other. To this end, we performed
DE analysis and GSEA on mature samples from the most
highly classifying DD study (Tilson) and the most highly
classifying TD study (Xie). GSEA revealed, in Xie-derived
HCs, a slight enrichment of genes involved in liver-related
functions, including fatty acid metabolism (CYP4A11 and
EHHADH) and bile acid metabolism (NR112, NR1H4, and
SLC27A5). On the other hand, the Tilson-derived HCs
demonstrated a slight enrichment of genes (including
PROS1, FGG, FGA, and F9) related to the blood coagulation
system, in which HCs are known to play a role (Kopec and
Luyendyk, 2014; Figure S4F). Therefore, approaches that
leverage aspects of both protocols could lead to additive in-
creases in HC identity. We also again investigated liver-spe-
cific TFs whose modulation might improve classification

performance using the NIS, which successfully prioritized
upregulation of the key liver TF NR1H4 in engineered sam-
ples with modest liver classification scores and prominent
off-target scores (Figures S4G, S4H, and S5A-S5C; Note S5).

We finally explored off-target signatures in engineered
HCs, which were more prevalent than in CM CFE studies
(Figures S1C and S3A). PACNet was able to identify the sig-
natures of supporting cell types included during co-culture
in two HC derivation studies (Figures S5B and S5D; Note
S6). PACNet also detected a consistent aberrant intestine/
colon classification score in several PSC-O and P-O studies
(Figure 5A). This was unsurprising given the shared endo-
dermal lineage of intestine and liver and because of shared
culture medium components with intestinal organoid cul-
ture protocols, including R-spondinl and EGF (Pleguezue-
los-Manzano et al., 2020). Expression of intestinal marker
genes, including CDX1, CDX2, and SI, confirmed the off-
target classification (Figure 5B). Interestingly, the samples
derived from different studies seemed to express some
mutually exclusive intestinal markers, suggesting further
specification into intestinal cell subtypes. Upon examina-
tion of specific subtype markers, most studies showed
some enterocyte and goblet cell lineage enrichment, with
McCarron samples being most consistently enriched in
these markers. Ouchi samples had a slight tuft cell enrich-
ment based on expression of markers DCLKI and NREP,
while Akbari and Ye samples had increased expression of
enteroendocrine (CHGA, NEURODI1, and NKX2-2) and
tuft cell markers (Figure 5B). This intriguingly suggests po-
tential avenues for intestinal subtype-specific cell deriva-
tion protocols.

Primary liver-derived organoids exhibit consistent off-
target neural signatures

Surprisingly, we observed that several studies of P-Os and
one PSC-O study (Hu, Giobbe, Artegiani, and Akbari)
showed an unexpected aberrant neuronal classification
(Figure 6A) that is absent in samples from healthy human
liver (Figures 1A and 5A). Thus, we more closely examined
what might contribute to this off-target signal. We
confirmed expression of canonical neural marker genes,
including PAX6, SOX1, NEUROD1, NEUROD4, and ASCL1
(Figure 6B), and of key neuronal genes from the PACNet
classifier (Figure S6A; Table S5) in samples that had
neuronal classification. To further investigate this observa-
tion and avoid potential batch effects that might arise
when integrating gene expression estimates from multiple
studies, we analyzed data from the Giobbe study alone. In
this study, PACNet analysis indicated that HC organoids
cultured in “standard hydrogel” had a stronger liver signa-
ture and weaker neural score, while organoids cultured in
“ECM hydrogel” had a stronger neural score and a negli-
gible liver score (Figure S6B). GSEA on DE genes between
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Figure 5. Off-target intestinal signatures in stem cell-derived hepatic organoids
(A) Classification heatmaps for highest-classifying HC derivation study (Xie et al.) vs. Broutier et al., Schneeberger et al., Wang S et al.,

Ouchi et al., McCarron et al., Akbari et al., and Ye et al.

(B) Heatmap of HC and intestinal (split into subcategories) marker gene expression for the same studies as in (A). Heatmap color scale:

per-gene Z score of log-transformed TPM.
See also Figure S5.

HC organoids cultured in ECM vs. standard hydrogel iden-
tified an enrichment of neocortex genes in the former,
including ASCL1, NEUROD4, and SLC17A6, and an enrich-
ment of liver-specific genes in the latter, including ALB,
SERPINA1, and HNF4A (Figure S6C). The independent
detection of brain-related genes sets by GSEA in samples
that had a neuronal PACNet classification further corrobo-
rates our observation of aberrant neural transcriptional
programs in some HC organoids. We noted that the pri-
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mary adult and fetal HC positive control samples provided
in the Hu study also showed aberrant neuronal classifica-
tion and expression of neural marker genes (Figures 6A
and 6B), potentially suggesting a technical issue with the
classifier. However, PACNet successfully classified primary
fetal liver, adult liver, fetal HC, and adult HC samples
from many other studies (Asai, Boon, Du, Gao, Qin,
Schneeberger, Touboul, Viiri, WangS, and Xie) as liver
and not neural (Figures S3B and S6D). Therefore, the
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Akbari et al.

(legend continued on next page)
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aberrant neural signature seen in primary samples from the
Hu study are unlikely to be due to classifier performance
but, rather, potentially arose from inadvertent misannota-
tion of some organoid samples as “primary”. Finally, we
note that not all P-O samples had this aberrant neural
signature; P-O samples generated by Schneeberger, Ouchi,
McCarron, Broutier, Ye, and Wang$S also lacked neuronal
classification (Figure 5A). This prompted us to look for dif-
ferences in derivation strategies that might explain the
origin of the neural signature.

P-Os fell into two broad protocols: (1) derivation of
bipotent progenitor organoids from EPCAM* cholangio-
cytes (WangS, Giobbe subset), followed by an HC specifi-
cation step (Huch, Schneeberger) and (2) direct deriva-
tion of organoids from HCs (Hu, Giobbe subset). The
former category also included a variation where bipotent
progenitor organoids were initially supplemented with
Wnt-conditioned medium and Noggin (Artegiani), fol-
lowed by the same HC specification step (Broutier). We
summarized these protocol differences in Figure SO6E.
The presence of a neural signature in only Artegiani,
Hu, and the Giobbe direct HC subset potentially impli-
cates two mechanisms of origin: (1) culture conditions
specific to the Wnt-conditioned medium- and noggin-
supplemented bipotent progenitor organoid stage or (2)
culture conditions specific to the Hu protocol. Further
studies will be necessary to identify the exact determi-
nants of this signature.

We next investigated whether the observed neural
signature was connected to related lineages with known
liver roles. Neuroendocrine (NE) factors are known to be
expressed during ductular reaction (DR) in cholangiopa-
thies (Alvaro et al.,, 2007; Banales et al., 2019; Ehrlich
et al., 2018; Munshi et al., 2011). We hypothesized that
NE gene expression might contribute to the neural signa-
ture and indeed observed that the aberrant samples also
consistently expressed high levels of several NE genes
and neuropeptides, including CHGA, CHRM3, and
PTHIR, relative to the most highly classifying HC samples
generated by Xie (Figure 6B). Liver ductal organoids
derived by Giobbe and PSC-Os derived by Akbari also ex-
pressed high levels of cholangiocyte (CL) marker genes,
including KRT19, EPCAM, PROMI1, and TACSTD2.
Furthermore, the CL marker SOX9 was also moderately
expressed across most aberrant neural samples, although
SOX9 is also a broad marker of neural stem cells (Scott
et al., 2010), astrocytes (Sun et al., 2017), and intestinal

cells (Blache et al., 2004). Interestingly, although they
had the least expression of neural/NE marker genes, Xie
engineered HCs had the highest expression of CL
markers, including KRT18 and KRT7. We also examined
inflammatory markers indicative of DR, including
TGFB2 and IL6 (Ehrlich et al., 2018), and found that their
expression was indeed generally associated with neural
and NE gene expression, particularly in Giobbe ductal or-
ganoids and standard hydrogel HC organoids. The fact
that many neurally classifying organoid samples did not
express CL markers (and that many Xie non-neurally clas-
sifying samples expressed CL markers) suggests that DR
may be insufficient to fully explain the observed neural/
NE signatures. Nonetheless, DR may contribute to these
signatures given that, within the organoid samples,
many with the highest neural/NE expression (Giobbe
ductal organoids and Akbari PSC-derived HC organoids)
also had the highest CL marker expression.

To test whether the aberrant neural/NE signature in
cultured P-Os could be recapitulated, we generated organo-
ids from primary human liver using established protocols
(Broutier et al., 2016; Huch et al., 2015). We performed
immunofluorescence (IF) staining for the HC markers albu-
min (ALB) and SERPINA1, the CL marker KRT7, the NE
marker NCAM1, and the neural markers SOX1 and
NEUROD1. We observed very little ALB expression
(Figures 6C and S6F), consistent with a lack of mature HC
identity, while the early HC marker SERPINA1 was more
abundant (Figures 6D and S6F). KRT7 was detectable
(Figures 6F and S6F), consistent with a ductal-like biliary
phenotype (Huch et al., 2015). Positive staining of
NCAM]1, SOX1, and NEUROD1 corroborated the compiled
RNA-seq data from P-Os (Figures 6C-6E and S6F) and
confirmed the presence of a neural/NE signature. Although
NEUROD1 expression was primarily localized to the cyto-
plasm, import of NEUROD1 to the nucleus has known reg-
ulatory dependencies, including dimerization with partner
proteins (Mehmood et al.,, 2009) or glucose-dependent
phosphorylation (Andrali et al., 2007). Taken together,
these data support a prominent off-target neural and NE
signature in P-Os.

DISCUSSION

Our comprehensive analysis of major protocols for CM and
HC engineering resulted in several key observations that

(B) Heatmap of HC and neuronal marker gene expression for the same studies as in (A). Heatmap color scale: per-gene Z score of log-

transformed TPM.

(C-E) IF staining for (C) the NE marker NCAM1 (green) and the HC marker albumin (ALB; red), (D) the neuronal marker SOX1 (green) and the
HC marker SERPINA1 (red), and (E) the neuronal marker NEUROD1 (green) and the CL marker KRT7 (red). Blue, DAPI. Scale bars, 100 um.

See also Figure S6.

1734 Stem Cell Reports | Vol. 18 | 1721-1742 | August 8, 2023



are relevant to the CFE field. For CM engineering, we found
that two methods of purification at the later stages of differ-
entiation proved especially effective: (1) metabolic selec-
tion via glucose deprivation and sodium DL-lactate supple-
mentation and (2) cell sorting for myosin light chain 2
positivity. These purification methods were non-redun-
dant because differentiated MLC2v"® CMs retained a
glucose catabolism signature more similar to the metabolic
profile of CMs that did not undergo metabolic selection,
suggesting that a combination of the two techniques could
achieve even higher classification scores.

In examining variability within and across CM deriva-
tion studies, we observed that studies with higher mean
classification scores generally achieved a higher consis-
tency (via lower intra-study SD). At the inter-study level,
the ability of a protocol to produce the most highly clas-
sifying CMs did not relate to protocol variability, with
comparable top-scoring samples observed across protocols
irrespective of SD. In contrast, across HC and hepatic or-
ganoid engineering studies, at the intra-lab and inter-lab
levels, low variability was not associated with high
PACNet scores. Our broad assessment of transcriptional fi-
delity of CFE protocols was not designed to determine the
contributors to intra- and inter-study variability. However,
on the CM side, protocols with high intra-study vari-
ability tended to use PSCs originating from a range of
sources, including dermal fibroblasts, mesenchymal stem
cells, and peripheral blood mononuclear cells. Further
investigation of cell of origin and other potential contrib-
utors to protocol variability will facilitate greater consis-
tency in CFE protocols.

Our analysis also identified several recurring off-target
signatures in CM and HC engineering studies. Most
notably, we observed joint neural and NE signatures in
primary liver- and primary HC-derived organoids. We
confirmed that this signature was not idiosyncratic to our
analytical method because we validated the expression of
key liver, neural, and NE marker genes via analysis of
expression profiles provided in the original studies and by
IF staining of liver organoids that we generated following
the same protocol. We postulate that CL-related DR may
contribute to the neural/NE transcriptional programs that
are detected in these organoids. Enrichment of neuron
development gene sets has also been observed in primary
murine liver organoids (Aloia et al., 2019), consistent
with a CL-neural signature relationship. Off-target cell
fate signatures could also potentially be explained by line-
age biases induced by the unanticipated impact of added
growth factors and small-molecule inhibitors. Ectopic orga-
noid culture-specific signatures have precedents in other
in vitro contexts as well. For example, endoplasmic reticu-
lum stress and glycolytic stress signatures are known to
appear in brain organoids which are not reflected in pri-

mary fetal tissue signatures (Bhaduri et al., 2020; Vértesy
et al,, 2022). Human kidney organoid culture protocols
are also known to exhibit unexpected neural signatures
(Howden et al., 2019; Liu et al., 2020; Wu et al., 2018),
potentially supporting an organoid culture-specific artifac-
tual neural signature. Further work will be necessary to
determine specific mechanisms that induce off-target
gene expression signatures in organoids and to characterize
shared aberrant patterns of intestinal, neural, and other sig-
natures across organoid derivation protocols, which could
have broad implications for organoid derivation and main-
tenance and their applications.

We note several caveats in this study and areas
for improving the PACNet platform. First, because
PACNet takes as input bulk RNA-seq data for training
and query, it is unable to distinguish hybrid signatures
from population heterogeneity in query engineered sam-
ples. Moreover, we have not demonstrated that PACNet
trained on bulk data is able to discern differences be-
tween cell subtypes. Computational methods tailored
for the analysis of single-cell RNA-seq (scRNA-seq) data,
such as Capybara (Kong et al., 2022), should be able to
address these issues with adequate training data. As
more single-cell RNA-seq studies are performed across
diverse CFE protocols and diverse reference cell types
(Tabula Muris Consortium, 2020; Tabula Muris Con-
sortium et al., 2018), we can extend PACNet to provide
comparisons of single-cell transcriptional studies in
CFE. Nonetheless, our bulk analysis still accurately evalu-
ates cross-sample and cross-study performance and de-
tects off-target signatures, whether they arise from hybrid
states or population heterogeneity.

Second, PACNet analysis is limited to transcriptional
data and does not consider epigenetic, proteomic, post-
translational, or functional characteristics. Transcriptional
profiles have been reported to have modest correlation
with proteomic (de Sousa Abreu et al., 2009) and epigenetic
(Jjiingo et al., 2012; Starks et al., 2019) profiles. Transcrip-
tional profiling also cannot explicitly measure post-transla-
tional events, including ligand-receptor interactions,
signal transduction events, and protein-protein interac-
tions, which play crucial roles in regulating cell type iden-
tity. Future efforts will be necessary to see how integration
of proteomic and epigenetic data types can further improve
cell type classification algorithms.

Finally, PACNet was trained using samples from adults;
thus, this platform is likely to be less sensitive to engineered
populations that are equivalent to embryonic or fetal stages
of development. Currently, primary postnatal or fetal sam-
ples can be included in analysis to detect on- and off-target
signatures relative to the primary adult samples on which
PACNet is trained. As more transcriptomic data accrue of
developmental stages, especially using scRNA-seq and
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single-nucleus RNA-seq, we expect that computational
methods that predict the developmental stage of specific
tissues and lineages will be readily trained and applied to
cell engineering.

We provide PACNet as a web platform (http://cahanlab.
org/resources/agnosticCellNet_web/) through which users
can browse engineered reference panels or perform analysis
and as code that can be downloaded, modified, and
executed locally (https://github.com/pcahan1/PACNet).
PACNet provides precise and sensitive classification to
detect on- and off-target transcriptional signatures and
makes predictions for improved expression of CT type-spe-
cific TFs. Importantly, PACNet also provides cross-study
comparisons among current state-of-the-field CFE proto-
cols for seven major CT types: liver, heart, neuron, skeletal
muscle, lung, intestine/colon, and HSPCs. Thus, PACNet
will be a valuable resource to the cell engineering commu-
nity as a tool that allows standard comparison of engi-
neered populations of cells and as a broad database of
CFE protocols.

EXPERIMENTAL PROCEDURES

Resource availability

Corresponding author

The corresponding author is Patrick Cahan (patrick.cahan@jhmi.
edu).

Materials availability

Primary liver-derived organoids are available upon request to the
corresponding author.

Data and code availability

The PACNet web application is available at http://cahanlab.org/
resources/agnosticCellNet_web/. Open-source, extensible code
for running PACNet is available at https://github.com/pcahan1/
PACNet.

RNA-seq preprocessing and adapting author-provided
expression data

Publicly available RNA-seq and expression microarray datasets for
query and training were curated from the NCBI GEO (Table S1). For
studies that did not provide preprocessed gene-by-sample expres-
sion matrices, we used the following pipeline. First, adapters and
low-quality bases were trimmed from FASTQ files using cutadapt.
Trimmed FASTQs were mapped and quantified using Salmon in
mapping-based mode to generate a gene-by-sample expression
matrix.

Cell/tissue-specific classifier training and validation

Primary human bulk RNA-seq training data were acquired from
NCBI GEO (Table S1). FASTQ files were preprocessed into gene-
by-sample expression matrices as described in the above pipeline.
For each query CT type, an RF classifier was trained on 2/3 of the
training samples from each CT type using the TSP algorithm as
described previously (Peng et al., 2021; Tan and Cahan, 2019).
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Briefly, template matching was used to identify the top 100 genes
highly correlating with each CT type. These genes were used as
input to a gene pair transformation, and each gene pair was ranked
by its ability to discriminate between CT types. Using the top 100
discriminative gene pairs, a gene pair-by-sample binary matrix was
constructed. A “random” cell type was generated by shuffling
values in the binary matrix, randomly sampling 70 profiles, and
appending these to the binary matrix. This matrix was used to train
an RF classifier of 2,000 trees, with stratified sampling of 25 sam-
ples from each cell type to ensure balanced training among CT
types. Validation of the classifier was performed on the remaining
1/3 of the training samples for each CT type and on 60 randomly
shuffled expression profiles. Classifier performance was assessed
using AUPR.

DE and GSEA

DE analysis for RNA-seq data was performed with DESeq2 (Love
et al., 2014). GSEA was performed with the R package Fast GSEA
(fGSEA) (Korotkevich et al., 2016), using the C2 and CS5 gene sets
from the Molecular Signatures Database (Liberzon et al., 2011; Sub-
ramanian et al., 2005).

Transcriptional regulator scoring

GRN construction was performed as described previously (Peng
et al., 2021), and for each CT type, the GRN was subset based on
genes present in all corresponding query samples. For each sample,
candidate TFs for improving the classification of its target CT type
were scored using the previously described NIS (Cahan et al., 2014;
Radley et al., 2017) applied to rank-transformed expression esti-
mates. In brief, the NIS of a TF is defined as follows:

n
NISrr = n x Zscore(TF) x weightry + Z Zscore(target;) x weight;

n=1
where

n = number of genes directly regulated by TF

The NIS function includes an optional parameter weight, whereby
the TF and target gene terms will be weighted according to their
expression in the target cell type.

Derivation of primary liver organoids

Primary liver organoids were derived as described previously
(Broutier et al., 2016; Huch et al., 2015). Donor liver tissue was
received submerged in PBS —/— in a 50-mL tube on ice directly
after the surgical procedure. Tissue was immediately transferred
to a 10-cm Petri dish in cold basal medium (Advanced DMEM/
F-12 with 100 U/mL penicillin, 100 pg/mL streptomycin, 2 mM
Glutamax, and 10 mM HEPES). A sterile scalpel was used to finely
mince tissue to make cells accessible for digestion. Tissue pieces
were transferred to a 15-mL tube and washed twice with wash
medium (DMEM with 1% fetal bovine serum (FBS), 100 U/mL
penicillin, 100 pg/mL streptomycin, 2 mM Glutamax), with su-
pernatant manually aspirated with a serological pipette after al-
lowing the minced tissue to settle. Tissue was digested with addi-
tion of 4 mL digestion solution (Hank’s balanced salt solution
[HBSS]+/+, 1.25 mg/mL collagenase IV, 0.1 mg/mL DNasel) on a
rotor at 37°C for 30 min. The digested cell suspension was brough
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to 15 mL with cold wash medium and passed through a 70-um
mesh into a 50-mL tube. Cells were pelleted at 300 x g for
5 min at 8°C, and the supernatant was gently aspirated. Cells
were washed an additional three times in cold wash medium
and a third time in cold basal medium. Medium was aspirated
gently with a serological pipette, and a fraction of the cells was
transferred to cold Matrigel GFR at a volume ratio of 1:3 to reach
a final ~40,000 cells/mL. 25-pL droplets of Matrigel suspension
were distributed into the centers of 48-well-plate wells. Plates
were incubated upside down in a tissue culture incubator
(37°C, 5% CO) for 10-20 min until the Matrigel completely
solidified. Cultures were overlaid with isolation medium (basal
medium with 1x B27 supplement without vitamin A, 1x N2
supplement, 1.25 mM N-acetylcysteine, 10% (v/v) RSPO1-condi-
tioned medium, 10 mM nicotinamide, 10 nM recombinant
human [Leu]-gastrin I, 50 ng/mL recombinant human EGE
100 ng/mL recombinant human FGF10, 25 ng/mL recombinant
human HGE 10 uM forskolin, 5 uM A83-01, 25 ng/mL recombi-
nant human Noggin, 30% (v/v) Wnt3a-conditioned medium,
and 10 uM Y-27632) for 4 days before switching to expansion me-
dium (isolation medium without Noggin, Wnt3A-conditioned
medium, or Y-27632), and changing the medium every 3-
4 days. Cultures were passaged on day 13 after isolation. The
use of primary human hepatocytes for research was approved
by ethical committees and informed consent was obtained from
donors when appropriate. No personally identifying information
has been released.

Passaging of human liver organoids

Organoids were passaged 13 days after the original isolation and
every 5-7 days afterward. Organoid cultures were disrupted with
a P1000 micropipette and the wells rinsed twice with 500 pL of
cold basal medium to dissolve the Matrigel droplet and transfer
the cells to a 15-mL centrifuge tube. Tubes were topped off to
13 mL with cold basal medium and agitated 5 times with a micro-
pipette to completely dissolve the Matrigel. Organoids were spun
at 200 x g for 5 min at 8°C and aspirated with 1 mL remaining,
then agitated using a micropipette until sufficiently dissociated.
Tubes were again topped to 13 mL with basal medium, spun at
200 x g for 5 min at 8°C, and aspirated. Cells were mixed with
cold Matrigel to reach a passage ratio of 1:6, and droplets were
formed and overlaid as in the isolation procedure but with
expansion medium instead of isolation medium.

IF staining and imaging

Whole-mount staining of primary human liver organoids was
performed as follows. Glass-bottom plates (Ibidi) containing
Matrigel droplet organoid suspensions were rinsed twice with
cold PBS —/— (Quality Biological), then fixed in 4% paraformal-
dehyde (PFA) (Electron Microscopy Sciences) for 30 min at room
temperature (RT); the remaining incubations and washes were
performed at RT unless otherwise specified. Wells were rinsed
three times with PBS—/— and then permeabilized with 0.3%
Triton X-100 for 25 min. Wells were again rinsed three times
in PBS—/— and blocked with 5% normal donkey serum (Jackson
ImmunoResearch Laboratories) for 45 min, rinsed once in
PBS—/—, and incubated overnight at 4°C with primary anti-

bodies in 5% donkey serum in 0.05% Tween 20 in PBS—/—
(PBST). A negative control was incubated under the same condi-
tions but with no primary antibodies. Cells were washed with
PBST three times for 10 min per wash and then incubated
with secondary antibody in PBST for 90 min. Wells were rinsed
twice with PBS and then incubated with a 1:1,500 dilution
of Hoechst (Invitrogen) in PBST for 10 min before a final 3
washes of 10 min each. The stained cultures were then imaged
on a Nikon Al spectral confocal microscope using z stack scans,
which were processed in Image] to generate the z projections
shown in the figures. The negative control that was incubated
with secondary but not primary antibodies was used to set the
parameters to determine the background threshold for each
channel. Antibody catalog numbers and dilutions are shown
in Table S6.
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