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Abstract: RNA sequencing (RNA-seq) has emerged as a prominent resource for transcrip-
tomic analysis due to its ability to measure gene expression in a highly sensitive and
accurate manner. With the increasing availability of RNA-seq data analysis from clinical
studies and patient samples, the development of effective visualization tools for RNA-seq
analysis has become increasingly important to help clinicians and biomedical researchers
better understand the complex patterns of gene expression associated with health and
disease. This review aims to outline the current state-of-the-art data visualization tech-
niques and tools commonly used to frame clinical inferences from RNA-seq data and point
out their benefits, applications, and limitations. A systematic review of English articles
using PubMed, Scopus, Web of Science, and IEEE Xplore databases was performed. Search
terms included “RNA-seq”, “visualization”, “plots”, and “clinical”. Only full-text studies
reported between 2017 and 2024 were included for analysis. Following PRISMA guidelines,
a total of 126 studies were identified, of which 33 studies met the inclusion criteria. We
found that 18% of studies have visualization techniques and tools for circular RNA-seq
data, 56% for single-cell RNA-seq data, 23% for bulk RNA-seq data, and 3% for long
non-coding RNA-seq data. Overall, this review provides a comprehensive overview of the
common visualization tools and their potential applications, which is a useful resource for
researchers and clinicians interested in using RNA-seq data for various clinical purposes
(e.g., diagnosis or prognosis).

Keywords: RNA-seq; sequencing; visualization

1. Introduction
Every somatic cell in our body contains the same set of genes encoded in our genome,

with the exception of gametes and certain specialized cells (i.e., red blood cells, gametes,
and some immune cells etc.). However, not all genes are active or expressed at the same
time, as gene expression varies depending on the cell type and its function. Each cell type,
depending on its conditions or stage of development, expresses a unique subset of RNA
transcripts. These include both protein-coding RNA (translated into protein) and non-
coding RNA (with regulatory or structural roles instead of being translated into protein).
The specific genes that are activated or deactivated define a cell’s function and offer insights
into health and disease. Profiling the dynamic set of RNA transcripts, including both
coding and non-coding RNA, has been a central focus of research for many years. Today, a
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common method for analyzing these diverse and distinguishing RNA molecules is RNA
sequencing (RNA-seq).

1.1. RNA Sequencing

RNA-seq combines the study of natural biological processes (such as RNA transcrip-
tion and degradation), experimental laboratory techniques (including RNA extraction,
library preparation, and sequencing), and computational analyses (for transcript quantifica-
tion, differential expression analysis, and functional annotation). It enables the sequencing
and characterization of the complete set of RNA transcripts in a cell or tissue at a specific
point in time, collectively known as the transcriptome [1]. At its core, RNA-seq is a method
that utilizes massively parallel sequencing, commonly known as next-generation sequenc-
ing (NGS), to examine the repertoire of RNA molecules in a sample. NGS offers ultra-high
throughput, scalability, and speed, making it an ideal platform for RNA-seq, which extends
these capabilities to rapidly sequence and analyze millions of RNA transcripts. Through
NGS, RNA-seq aims to capture a snapshot of dynamic gene expression by characterizing
the present RNA and quantifying the abundance of active transcriptional processes at a
given point in time or under specific physiologic conditions. RNA-seq has become a very
popular tool for analyzing gene expression and enables the examination of diverse gene
expression phenomena such as alternative splicing, post-transcriptional modifications,
gene fusion events, mutations or SNPs, temporal gene expression changes, or variances of
gene expression across different conditions or treatments. It is a transformative instrument
for transcriptomics—the analysis of the transcriptome—and stands out as a revolutionary
technique to decipher the molecular underpinnings of our genetic constitution.

RNA-seq has transformed the field of genomics since its inception by enabling the
sequencing of entire transcriptomes at a fraction of the time and cost of earlier methods.
Its growing accessibility and versatility has made it increasingly popular in genomics
and molecular biology, facilitating the study of a broader range of RNAs and providing
a deeper understanding of non-coding genomic sequences. RNA-seq is often selected
over traditional methods for gene expression profiling, including reverse transcription-
quantitative polymerase chain reaction (RT-qPCR), microarrays, serial analysis of gene
expression (SAGE), expressed sequence tags (EST), and Northern blotting, due to its
significant advantages for both research and clinical applications [2]. RNA-seq enables the
identification and quantification of both known and novel transcripts [3]. This powerful
technique revolutionized our understanding of gene regulation, signaling pathways, and
cellular complexity by uncovering non-coding RNA functions, alternative splicing events,
and post-transcriptional modifications. These advancements unraveled cellular processes
on an unprecedented scale, making RNA-seq a cornerstone of modern transcriptomics [4].

RNA-seq has become an indispensable tool for analyzing gene expression, with various
approaches tailored to specific research applications. Table 1 summarizes these RNA-
seq approaches and their unique advantages. Bulk RNA-seq is the most common and
well-established approach, measuring the average gene expression across a population
of cells. It is ideal for broad-scale gene expression analysis and remains a standard for
many studies [5]. Some studies will examine the entire transcriptome, while others will
be more focused on only the coding RNA. Single-cell RNA-seq (scRNA-seq), by contrast,
measures gene expression at the individual cell level, offering valuable insights into cellular
heterogeneity. This approach is particularly important for studying complex tissues, such
as the immune system or cancer microenvironments, where individual cell differences
drive biological outcomes [6]. Spatial transcriptomics builds upon scRNA-seq with the
addition of spatial context by mapping gene expression to specific locations within a tissue.
This approach enables researchers to explore the spatial organization of cells and their
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interactions within the tissue [5]. Long-read RNA-seq, using technologies like PacBio and
Oxford Nanopore, is effective for identifying novel isoforms and fusion transcripts, offering
a deeper understanding of transcriptome complexity by avoiding issues with short-read
limitations [7]. Small RNA-seq focuses on small non-coding RNAs, such as miRNAs,
which are key regulators of gene expression. This approach is essential for investigating
post-transcriptional regulation, especially in the context of disease [5]. Finally, targeted
RNA-seq enables the analysis of specific subsets of genes or transcripts, making it highly
suitable for clinical applications, such as biomarker discovery in precision medicine [8].
Each of these RNA-seq approaches offer distinct advantages for dissecting gene expression
and uncovering novel biological phenomena, contributing to diverse fields of research and
advancing our understanding of complex biological systems.

Table 1. Different types of RNA-seq

A. Bulk RNA Sequencing

Total RNA Sequencing (coding RNA and
non-coding RNA):

Sequencing entire transcriptome, both coding and noncoding
RNA (depleting over abundant rRNA) ideal for studies seeking a

comprehensive, broader picture of cellular processes.

mRNA Sequencing (coding RNA):

Sequencing only coding RNA (enriched by selectively captured
mRNA) ideal for studies centered on gene expression and

regulation. Can identify known and novel isoforms in the coding
transcriptome, detect gene fusions, and measure

allele-specific expression.

B. Specialized RNA Sequencing

Single-Cell RNA-Seq (cellular heterogeneity):

Sequencing (typically just coding RNA) on individually isolated
cells to examine distinct gene expression profiles to get a

high-resolution view of cellular heterogeneity and deeper picture
into cellular functions and states.

Spatial Transcriptomics (spatial context):

Sequencing (typically just coding RNA) which maps gene
expression within the spatial architecture of tissues, preserving

the positional information of transcripts. Enables visualization of
where specific genes are expressed within the tissue.

C. Application-Specific Enrichment Strategies

Small RNA Sequencing (regulatory RNAs):

Specialized sequencing designed to specifically evaluate small
RNA molecules in a sample. May include microRNAs (miRNAs),

small interfering RNAs (siRNAs), piwi-interacting RNAs
(piRNAs), and other small non-coding RNAs (sncRNAs).

RNA Exome Capture Sequencing
(coding regions):

Sequencing approach designed to evaluate the exonic regions of
the transcriptome (while excluding the non-coding

intrinsic elements).

Targeted RNA Sequencing (specific transcripts):
Sequencing approach designed to evaluate selective transcripts or

regions of interest, such as genes, exons, fusion transcripts, or
other target RNA molecules.

Ultra-Low-Input RNA Sequencing
(minimal samples):

Sequencing approach designed to evaluate RNA from extremely
small amounts of starting material. Ideal for scenarios where

sample is limited (such as rare cell populations or from biopsies).

1.2. Advantages of RNA-Seq over Other Methods of Gene Expression Analysis

RNA-seq has revolutionized transcriptomic analyses, offering distinct advantages over
traditional methods of gene expression analysis, particularly in clinical applications. Unlike
microarrays, which are restricted to detecting known genes, RNA-seq can identify novel
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transcripts, alternative splice variants, and other RNA species, making it a more versatile
tool for discovery-driven clinical research [9]. RNA-seq offers high resolution and precision,
accurately determining gene boundaries, exon structures, and even single-nucleotide
changes. This level of detail surpasses methods like expressed sequence tags (ESTs) or serial
analysis of gene expression (SAGE), which provide a more fragmented representation of the
transcriptome [10]. RNA-seq advantages regarding the identification of single nucleotide
polymorphisms (SNPs) and other mutations within transcribed regions can be crucial for
understanding disease mechanisms and personalizing treatments in the clinical context [11].
Microarrays are designed to detect gene-level expression and may miss complex splicing
events [12]. RNA-seq can detect fusion genes, which result from the combination of two
previously separate genes. Such fusions can be clinically significant, especially in the
context of certain cancers. For instance, fusion gene characterization via RNA-seq was
demonstrated in [13] as a useful complement in diagnosis and treatment of cancers such as
acute myeloid leukemia (AML). RNA-seq can provide a wide dynamic range by detecting
a vast range of expression levels, from lowly expressed to highly expressed genes. This
advantage contrasts with microarrays, which can become saturated at high expression
levels or fail to detect low-abundance transcripts [9]. RNA-seq also has lower background
noise compared to microarrays, which can have cross-hybridization issues. This enhanced
specificity is crucial in a clinical setting where accuracy is paramount [9].

Additionally, RNA-seq has a wide dynamic range, detecting expression levels from
low-abundance transcripts to highly expressed genes. This feature addresses the limita-
tions of microarrays, which may saturate at high expression levels or fail to detect lowly
expressed genes [9]. RNA-seq also boasts lower background noise compared to microar-
rays, which are prone to cross-hybridization issues. This enhanced specificity is especially
crucial in clinical settings, where accuracy is paramount for applications such as biomarker
discovery and diagnostic decision-making [9]. In clinical samples infected with pathogens,
RNA-seq can simultaneously assess both host and pathogen transcripts, offering insights
into host-pathogen interactions and aiding in the identification of infectious agents [14]. For
instance, as demonstrated in [15], researchers were able to offer insights into physiologic
host-pathogen changes to host-pathogen from interaction during an infection. Additionally,
RNA-seq does not rely on species-specific probes or primers, allowing for transcriptomic
analysis in species that do not have commercial arrays available [9].

Finally, RNA-seq has advantages over traditional methods regarding deploying sys-
tems in clinical settings. While RT-qPCR might be more cost-effective for analyzing a small
number of genes, RNA-seq has become increasingly cost-effective for large-scale studies,
especially given the rapid drop in sequencing costs over the years [16]. RNA-seq has been
shown to be more reproducible across labs and platforms than other techniques, which is a
key attribute for clinical applications [10].

1.3. Tools to Extract Clinically Relevant Information from RNA-Seq Analyses

For the clinical community, especially physicians, scientists, and laboratorians who
might not be deeply versed in the nuances of computational biology, the deluge of data
generated by RNA-seq can be daunting. The interplay of genes, their transcription levels,
and the broader context of health and disease requires an integrative approach for mean-
ingful interpretation. Sifting through millions of sequences to derive meaningful insights
demands tools that can distill complexity into an understandable format. This is where
data visualization becomes invaluable. Visualization tools serve as an essential bridge in
this context, converting complex data into comprehensible graphical representations and
making RNA-seq data clinically actionable.
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Given the widespread use and importance of RNA-seq analysis, we aimed to explore
the role and impact of visualization tools in RNA-seq data analysis for clinical applications,
leading to the emergence of several key research questions. Some of the key research
questions we are trying to address in this paper are as follows:

1. What are the primary visualization tools and techniques currently employed in RNA-
seq data analysis, with a particular focus on clinical interpretations?

2. How do these visualization tools enhance the understanding and interpretation of
RNA-seq data within the clinical realm?

3. What improvements can be made to existing tools, or what new tools are required, to
enhance the utility and effectiveness of RNA-seq analyses in clinical applications?

To address the above research questions, this review aims to outline the current
state-of-the-art data visualization techniques and tools commonly used to frame clinical
inferences from RNA-seq data and point out their benefits, applications, and limitations.
We intend this review to serve as a guide for improving existing visualizations and gener-
ating innovative new visualizations for physicians, laboratory scientists, and biomedical
researchers interpreting RNA-seq analyses.

The review is organized according to the following sections: Section 2 (Methods)
describes the methodology used to retrieve and extract articles for the systematic review,
and Section 3 (Results) presents the most common data visualizations and tools used for
RNA-seq analysis, examines the use of each visualization for clinical applications. Section 4
(Discussion) discusses the reviewed methods, including current challenges and future
research directions. Finally, Section 5 (Conclusions) concludes the paper.

2. Materials and Methods
2.1. Search Strategy

We conducted a systematic review of English-language articles using the following
online literature databases: PubMed, Scopus, Web of Science, and IEEE Xplore, adhering to
the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guide-
lines [17]. The workflow diagram for the systematic identification of scientific literature is
shown in Figure 1.

The search terms included various combinations of keywords related to “RNA-seq”
and “visualization,” connected using Boolean operators “OR” (to combine terms within the
same domain) and “AND” (to link terms from different domains). A search query using
the terms listed in Table 2 was used for the retrieval of primary studies. We limited our
search results to review original research articles published, from 2017 to 2024, to ensure
we captured the latest advancements in the field.

Table 2. Search query for the study retrieval.

((RNA-seq OR RNA sequencing) AND (analysis OR data analysis) AND
(visualization OR plot OR chart OR graph OR diagram) AND (clinical OR medical)

AND (application))
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Figure 1. PRISMA workflow for systematic identification of scientific literature.

2.2. Study Selection

We started our search using the query provided in Table 2 across the databases listed
in Figure 1. Based on the initial search results, we identified 126 studies. These 126 studies
were saved in an excel for further examination for duplicates. We identified 35 duplicate
studies in this review and removed them, leaving 91 studies for further analysis, as shown
in Figure 1 in the screening section. The resulting 91 studies were further evaluated for
the title/abstract screening phase. The title and abstracts of the resulting studies were first
screened to identify the studies related to visualization tools and methods for RNA-seq
analysis in clinical applications. This resulted in 69 eligible studies for full text review, as
shown in Figure 1 (eligibility section). After identifying the 69 eligible studies for full text
review, we applied additional inclusion and exclusion criteria to select the primary studies
for our review (details are provided in Figure 1). Studies were eligible if they fulfilled the
following inclusion criteria in our review: (1) focused on RNA-seq analysis; (2) written
and published in English; (3) published between March 2017 and January 2024; (4) full text
available rather than abstracts; (5) original studies published in peer-reviewed journals or
appeared in conference proceedings; (6) focused on visualization tools and techniques.

Studies were not eligible if they fulfilled the following exclusion criteria in our review:
(1) review articles rather than primary research; (2) developed visualization tools and
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techniques for other types of sequencing data; (3) full text not available; (4) published before
2017. The identified studies meeting the inclusion criteria were subsequently categorized
into 4 broad categories based on the visualization tools and techniques for each type of
RNA-seq data: (1) bulk RNA-seq; (2) single-cell RNA-seq; (3) circular-RNA seq; and (4) long
non-coding RNA. Finally, after applying the inclusion/exclusion criteria to the 69 studies,
we identified 33 studies to be included in the detailed review, as shown in Figure 1 in the
included phase.

2.3. Data Extraction and Evaluation

With the 33 articles identified, we conducted a more detailed review of the shortlisted
studies.The data were extracted from all studies meeting our inclusion criteria for the
review. It consists of tables containing study information (e.g., authors’ name, title, year of
study), visualization methods (e.g., volcano plots, heatmaps, backsplice visualization etc.),
visualization tools developed/used, type of RNA-seq data (e.g., Bulk RNA-seq, circular
RNA, single-cell RNA-seq), major outcomes, and clinically actionable insights (Table 2).

This full text review provided a deeper understanding of each visualization tool or
technique, its primary applications, its merits in the clinical context, inherent limitations,
and any proposed solutions or enhancements. In addition, by extracting and synthesizing
this wealth of data, we aim to provide a comprehensive overview of the current land-
scape of RNA-seq data visualizations in clinical applications. Through this process, we
aim to highlight the most widely used tools, emphasize their advantages, address the
challenges, and identify potential areas for innovation and improvement. The data for all
studies were independently extracted by all authors (VG, FM, and CT), and any discrep-
ancies were resolved through mutual discussion among all authors. The extracted data
were finally evaluated by all authors independently and consensus was reached through
mutual agreement.

3. Results
We identified 126 articles in the identification phase. Thirty-five duplicate articles

were removed to produce 91 articles for title and abstract screening. We further excluded
22 articles in the title and abstract screening, and accessed the full texts of the remaining
69 articles for further evaluation in the eligibility phase. Finally, 33 articles met our inclusion
criteria and were considered as primary studies for this review, as shown in Table 3.

The development of visualization tools and techniques for clinical applications has
grown steadily in recent years. As shown in Figure 2, studies published between 2020
and 2024 account for 73% of the total, with only nine studies published before 2020. This
indicates an upward trend in the number of publications over the past five years.

Figure 2. Distribution of studies by publication year.
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Table 3. A brief summary of reviewed studies.

References Visualization Methods Tools RNA-Seq Data Types Major Outcome Identified Clinically Actionable Insights

Cole et al., 2021 [18] MA plots, heatmaps, volcano
plots, PCA plots

Searchlight with R scripts
(1 tool) Bulk RNA-seq

Streamlines differential
expression analysis
and visualization

Efficient analysis for
disease-related gene expression

Bothos et al., 2022 [19] RNA signal plots, MDS,
PCA, heatmaps

SeqCVIBE, JBrowse
(1 tool)

Bulk RNA-seq, Long
non-coding RNAs

Facilitates real-time RNA-seq
data exploration and analysis

Discovery of novel RNAs like
lncRNAs for disease research

Nazarie et al., 2019 [20] Graph-based 3D RNA-seq
assembly graphs Graphia Professional Bulk RNA-seq

Captures complexity of
transcript isoforms and

splicing events

Identifies transcript diversity
important for
disease mechanisms

Wu et al., 2023 [21] PCA, MDS, t-SNE, UMAP CIRI-hub Bulk RNA-seq,
Circular RNAs

Identifies novel circRNAs with
diagnostic potential in cancers

Potential diagnostic biomarkers
for cancer

Zheng et al., 2020 [22] Circular RNA splice
events visualization CIRI-vis Circular RNA-seq

Reconstructs and visualizes
circRNA isoforms and

splicing events

Enhances understanding of
circRNA role in diseases

Webster et al., 2023 [23] Fusion-derived circular
RNA visualization

INTEGRATE-Circ &
INTEGRATE-Vis Circular RNA-seq Sensitive detection of

fusion-derived circular RNAs
Potential for discovering
cancer biomarkers

Feng et al., 2019 [24] Circular RNA structures,
exons, and introns CircView Circular RNA-seq

Facilitates exploration of
circRNAs with exon

composition and
regulatory elements

Identifies circRNAs involved in
cancer progression

Humphreys et al., 2019 [25]
Sushi genomic visualization,

backsplice junction
visualization

Ularcirc Circular RNA-seq
Visualizes circRNA biogenesis,

open reading frames, and
splicing events

Provides insights into circRNA
function and regulation
in diseases

Nguyen et al., 2024 [26] Interaction network
visualization CircNetVis Circular RNA-seq

Investigates circRNA
interactions with miRNAs

and mRNAs

Aids in studying circRNA roles
in gene regulation

Lin et al., 2022 [27] Functional annotation
of circRNAs CircVIS Circular RNA-seq Visualizes circRNA isoforms

and subcellular localizations
Studies circRNA roles in gene
regulation

Paganin et al., 2023 [28] Gene expression changes in
subcellular compartments express youRcell Bulk RNA-seq,

Single-cell RNA-seq
Maps gene expression changes

to cellular compartments
Visualizes dynamic changes for
disease modeling
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Table 3. Cont.

References Visualization Methods Tools RNA-Seq Data Types Major Outcome Identified Clinically Actionable Insights

Dey et al., 2017 [29] Structure plot for
sample clustering CountClust Bulk RNA-seq,

Single-cell RNA-seq
Identifies mixed memberships
of samples in multiple clusters

Uncovers gene expression
heterogeneity in disease samples

Bunis et al., 2020 [30] Dimensionality reduction
plots, heatmaps, scatter plots dittoSeq Bulk RNA-seq,

Single-cell RNA-seq
Universal toolkit for RNA-seq

data visualization
Identifies differentially expressed
genes in clinical studies

Ludt et al., 2022 [31] PCA plots, MA plots, volcano
plots, heatmaps

pcaExplorer, ideal,
GeneTonic (3 tools)

Bulk RNA-seq,
Single-cell RNA-seq

Integrates functional
enrichment with gene

expression data

Identifies key pathways and gene
signatures in diseases

Perampalam et al., 2020 [32] PCA, heatmaps,
volcano plots BEAVR Bulk RNA-seq Simplifies DGE analysis

and visualization
Applicable in oncology for
diagnostics and therapy

Wang et al., 2018 [33] PCA, t-SNE, heatmaps VASC Single-cell RNA-seq
Reduces scRNA-seq data

dimensionality while handling
dropout events

Identifies rare cell subtypes
critical in disease research

Wu et al., 2018 [34] 2D embedding of cells
and genes SWNE Single-cell RNA-seq Captures global and local

structures of cell states

Reveals cell differentiation
trajectories important for
developmental biology

Lewsey et al., 2022 [35] Cluster and values mode, 3D
UMAP clustering scCloudMine Single-cell RNA-seq

Allows visualization of
scRNA-seq data for
comparative studies

Enables discovery of complex
biological processes

Patil et al., 2023 [36] UMAP, feature plots,
violin plots scViewer Single-cell RNA-seq

Provides co-expression analysis
and differential

expression insights

Identifies disease-specific cell
type patterns

Liu et al., 2020 [37] ssPCA plots ssPCA Single-cell RNA-seq Balances local and global
structure in scRNA-seq data

Captures cell progression and
transitions for disease insights

Garrido et al., 2022 [38] Nonlinear autoencoder-based
2D embedding DTAE Single-cell RNA-seq Visualizes hierarchical

structures in scRNA-seq data
Tracks cell differentiation in
disease contexts

Wang et al., 2018 [39] Mapper graphs Mapper Single-cell RNA-seq Preserves local and global
structures of scRNA-seq data

Identifies branching trajectories
in cell differentiation

Linderman et al., 2019 [40] Accelerated t-SNE and
heatmap visualization FIt-SNE Single-cell RNA-seq

Visualizes gene expression
patterns and cell clusters in

large datasets

Identifies complex gene
expression patterns in diseases
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Table 3. Cont.

References Visualization Methods Tools RNA-Seq Data Types Major Outcome Identified Clinically Actionable Insights

Yousuff et al., 2024 [41] 2D scatter plots CP-PaCMAP Single-cell RNA-seq
Enhances compactness and

structure preservation in
dimensionality reduction

Useful in classifying or clustering
cells based on gene expression

Hoek et al., 2021 [42] t-SNE, UMAP, violin
plots, heatmaps WASP Single-cell RNA-seq

Enables interactive data
exploration with minimal
computational expertise

Applicable in studying tumor
heterogeneity and cellular
differentiation

Li et al., 2023 [43] UMAP, violin plots,
volcano plots scRNASequest Single-cell RNA-seq Harmonizes scRNA-seq data

across large datasets
Identifies cell-type-specific
gene expression

Vasighizaker et al., 2022 [44] t-SNE, PCA, Isomap MLLE, ICA Single-cell RNA-seq
Improves dimensionality

reduction and clustering for
novel cell type discovery

Identifies biologically relevant
cell subtypes and pathways

Hsu et al., 2023 [45] CA biplots, UMAP corral Single-cell RNA-seq Improves clustering accuracy
and batch integration

Identifies cell subpopulations
and gene associations

Xu et al., 2023 [46] Euclidean and hyperbolic
space visualizations DV framework Single-cell RNA-seq Preserves data structures while

correcting for batch effects
Uncovers cellular hierarchies and
disease-related gene networks

Cho et al., 2018 [47] Neural t-SNE embeddings net-SNE Single-cell RNA-seq Scales to large datasets with
parametric approach

Generalizable to new cells
without re-analysis

Hou et al., 2022 [48] Grid-based gene
expression visualization SCUBI Single-cell RNA-seq

Provides unbiased, scalable
visualization of
scRNA-seq data

Helps in exploring gene
expression in disease studies

Xu et al., 2023 [49] UMAP with
graph embeddings autoCell Single-cell RNA-seq Handles sparse scRNA-seq

data for trajectory inference
Denoises data for identifying
cellular subpopulations

Hong et al., 2022 [50] Violin plots, density
plots, scatterplots SCTK-QC Single-cell RNA-seq

Provides comprehensive
quality control for
scRNA-seq data

Ensures high-quality data for
accurate downstream analysis
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Single-cell RNA-seq data is the most commonly used RNA-seq type in the reviewed
studies for which visualization methods and tools have been developed in recent years.
As shown in Table 3, 24 tools have been developed for single-cell RNA-seq data, while
13 tools have been developed for bulk RNA-seq data. However, only seven tools have
been developed for circular RNA-seq and one tool for long non-coding RNA-seq. Different
visualization methods are used in the studies to visualize RNA sequencing data that can be
categorized into broader themes such as dimension reduction and clustering techniques,
differential expression and gene expression visualization, RNA structure and splicing
visualization, functional and network visualization, and genome browser and signal plots,
as shown in Table 3. There are different types of tools, which can be broadly categorized
into browser-based tools, stand-alone tools, R and Python packages, and command line
tools. Based on the tools listed, the computational languages and platforms used for their
development are predominantly R and Python, with some tools developed in C/C++ and
web technologies like JavaScript. The major outcomes of the studies can be categorized
into broader themes such as enhancing data visualization and interpretation, dimension-
ality reduction and clustering, identification of novel biomarkers and therapeutic targets,
integration of functional and pathway analysis, facilitating single-cell RNA-seq analysis,
and user accessibility and interactive exploration of sequencing data.

3.1. Major Themes Identified

We divided the reviewed studies into four major categories based in the RNA-seq data
type: (1) bulk-RNA seq; (2) single-cell RNA-seq; (3) circular RNA-seq; and (4) long non-
coding RNA. Each category comprises the visualization tools and techniques developed for
clinical applications to interpret that specific RNA-seq data type. Over half of the studies
(22) fell under the category of single-cell RNA-seq, with fewer studies categorized into bulk
RNA-seq (nine), circular RNA-seq (seven), and long non-coding RNA (one). Since some
studies covered multiple RNA-seq data types, the total count of data types mentioned (39)
exceeds the number of primary studies reviewed (33).

3.1.1. Single-Cell RNA-Seq

Visualizing scRNA-seq data is crucial for interpreting complex datasets, identifying
distinct cell populations, understanding developmental trajectories, and uncovering under-
lying biological processes. Numerous tools have been developed to facilitate the visualiza-
tion of scRNA-seq data, each employing various methods to represent high-dimensional
data in an interpretable format.

A significant category of visualization tools focuses on dimensionality reduction tech-
niques to project high-dimensional scRNA-seq data into lower-dimensional spaces while
preserving meaningful biological relationships. For instance, Wang et al. [33] developed
VASC, a deep variational autoencoder model that reduces dimensionality while addressing
dropout events common in scRNA-seq data. VASC transforms high-dimensional data
into two-dimensional representations, generating visual outputs like PCA, t-SNE, and
heatmaps, offering clear visual distinctions of different cell populations, including rare
subtypes. Similarly, Wu et al. [34] proposed SWNE (single-cell gene expression datasets
with similarity-weighted non-negative embedding), which combines non-negative matrix
factorization with a shared nearest neighbor network to embed both cells and genes in a
two-dimensional space. SWNE retains global and local structures of the dataset, providing
precise visualizations of both continuous and discrete data, and embeds genes and bio-
logical markers directly into the visualization for added context. Another tool, net-SNE,
proposed by Cho et al. [47] utilized a neural network-based adaptation of t-SNE that
enhances scalability and generalization. t-SNE (t-distributed stochastic neighbor embed-
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ding) is a dimensionality reduction algorithm that projects high-dimensional data into
2D or 3D, preserving local structures. Similarly, net-SNE, an extension of t-SNE, embeds
graph-structured data into low-dimensional spaces by leveraging network topologies, such
as edge weights and connectivity. Both algorithms are effective for visualizing complex
patterns and relationships in biological or graph-based datasets. net-SNE enables mapping
new cells onto existing embeddings without re-running the entire analysis, producing
smooth and interpretable visualizations while preserving the local structure of the data.

Tools that integrate with existing R packages provide user-friendly interfaces for
scRNA-seq data visualization. Bunis et al. [30] developed an R-based toolkit, dittoSeq,
which integrates with popular analysis structures like Seurat. In the same vein, scViewer,
introduced by Patil et al. [36] utilizes Seurat for data analysis and provides functionali-
ties such as cell-type-specific gene expression visualization, co-expression analysis, and
differential expression analysis across various biological conditions.

Visualization methods that preserve hierarchical relationships and capture develop-
mental trajectories are also prominent. Garrido et al. [38] proposed DTAE , which combines
clustering techniques with an autoencoder to generate visual representations of hierarchical
structures in scRNA-seq data. DTAE preserves both global and local structures, ensuring
that biologically relevant branching events are captured, making it highly applicable in
developmental biology and lineage tracing studies. Topological data analysis offers another
approach to visualize scRNA-seq data. Wang et al. [39] emphasized the use of Mapper,
which constructs combinatorial graphs to capture topological features of high-dimensional
data. Mapper’s graph-based representations preserve the continuity in the data by visualiz-
ing the continuous trajectory of cells over the space of gene expression profiles, allowing
for a better understanding of cell trajectories and differentiation processes. The biological
meaning of specific pathways and genes are explored through different filter functions or
color coding schemes.

Some studies also employed tools that focus on comprehensive analysis pipelines,
which include integrated visualization capabilities. Li et al. [43] developed scRNASequest ,
an end-to-end solution for scRNA-seq data analysis that includes preprocessing, harmo-
nization, cell type annotation, and differential expression analysis. The pipeline generates
interactive reports with visualization tools like UMAP plots, violin plots, volcano plots,
and dot plots, facilitating seamless data management and sharing. Likewise, SCTK-QC ,
developed by Hong et al. [50], focuses on the generation and visualization of quality control
metrics. The pipeline integrates multiple QC tasks and emphasizes visualization through
detailed HTML reports, including scatterplots, violin and density plots, and dimensionality
reduction plots, to visualize contamination or poor-quality cells.

3.1.2. Bulk RNA-Seq

The typical workflow involves extracting total RNA from tissues or cells, preparing
a complementary DNA (cDNA) library through reverse transcription and fragmentation,
sequencing the cDNA using next-generation sequencing platforms to generate millions
of short reads, and processing the data through quality checks and, when applicable,
alignment to reference genomes or de novo assembly for organisms without reference
genomes. Quantification of gene or transcript abundance follows, often normalized to
account for sequencing depth and technical variability. Differential expression analysis
is then applied to identify genes that are differentially expressed between experimental
conditions, and functional annotation and pathway analyses help interpret the biological
significance of these changes.

Visualization plays a crucial role in interpreting RNA-seq data, enabling researchers to
explore complex datasets, identify patterns, and communicate findings effectively. Various
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tools and methods have been developed to facilitate the visualization of bulk RNA-seq data,
often clustered into categories based on their approach and functionality. One category
encompasses automated and user-friendly platforms that streamline RNA-seq data analysis
and visualization. For instance, Cole et al. [18] proposed Searchlight , an automated plat-
form that simplifies bulk RNA-seq exploration by generating dynamic R scripts. Searchlight
automates differential expression analysis and produces standard visualizations. Users
can adjust visual elements like font sizes, axis labels, and colors, which, though small
adjustments, can greatly improve the clarity and customization of visual outputs for differ-
ent audiences, such as clinicians, regulatory bodies, and funding agencies. Nevertheless,
the main strength of these tools lies in their ability to effectively process, analyze, and
visualize complex RNA-seq data.Though Searchlight is considered a strong platform, it
requires some familiarity with R for advanced customization, and specialized analyses
may necessitate manual adjustments, which can limit its suitability for complex projects.
Similarly, BEAVR , introduced by Perampalam et al. [32], is a browser-based tool that
simplifies differential gene expression analysis through a graphical user interface built with
R Shiny. BEAVR uses ggplot2 to create various standard plots and pathway enrichment
visualizations, aiding in the exploration of gene pathways and novel gene interactions
without requiring programming expertise. While BEAVR simplifies analysis, it still requires
users to format data precisely and may require some bioinformatics skills, especially for
customization or advanced workflows.

Another category includes interactive visualization tools that allow real-time data
exploration and customization. Bothos et al. [19] introduced SeqCVIBE , a web-based
platform built on the R Shiny framework. SeqCVIBE enables users to manage and visualize
RNA-seq data interactively, offering dynamic plots such as RNA signal plots, average
coverage plots, faceted plots, and multidimensional scaling (MDS) for gene clustering and
correlation analysis. Users can customize and export visualizations in various formats,
making the tool accessible even for non-experts. Bunis et al. [30] presented dittoSeq , a
universal, user-friendly toolkit for visualizing both single-cell and bulk RNA sequencing
data. dittoSeq integrates with popular analysis structures like Seurat and supports various
data formats. It provides a range of customizable visualizations, including dimensionality
reduction plots (UMAP, PCA), scatter plots, heatmaps, bar plots, and dot plots. The outputs
are compatible with ggplot2, allowing for further customization, and the tool is designed
to be colorblind-friendly by default.

Interestingly, using three Bioconductor packages—pcaExplorer, ideal, and GeneTonic,
Ludt et al. [31] discussed the exploration and modeling of RNA-seq data through interactive
workflows. These tools offer a variety of visualization options: pcaExplorer provides PCA
plots to explore gene expression patterns; ideal offers MA plots, volcano plots, and box
plots for differential expression analysis; and GeneTonic integrates expression data with
functional enrichment results, allowing visualization of gene signatures and pathways
through interactive plots.

A different approach is seen in graph-based visualization methods, which are particu-
larly useful for representing complex transcript structures and alternative splicing events.
Nazarie et al. [20] utilized graph-based methods to capture the diversity and complexity
of RNA assemblies. By representing sequencing reads as nodes and similarity scores as
edges, and employing the force-directed multilevel maximally modular (FMMM) algorithm
for 3D layout, this method allows for visualizations of complex transcript isoforms and
splicing events. Moreover, FMMM algorithm improves the interpretability of complex
biological networks by displaying clusters of biologically relevant interactions in a spatially
intuitive manner. This helps in understanding the behaviour of interconnected biological
components in a graph to uncover disease mechanisms. Tools like Graphia Professional
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play a crucial role in rendering these assembly graphs, offering a more detailed picture
than traditional visualization tools. Recently, Paganin et al. [28] developed expressyouRcell
, an R-based package for visualizing gene expression changes in time, space, and single
cells. expressyouRcell maps gene expression data onto schematic representations of cells,
creating static and dynamic cellular pictographs. Static cellular pictographs are the static
images depicting the the components of a cell and cellular processes; however, dynamic
cellular pictographs provide interactive visualizations of cellular processes and enable
researchers to interact with the complex and evolving cellular activities. By using color-
coded compartments within detailed cellular illustrations, it enables spatial visualizations
of gene expression variations within cells over time, aiding in the interpretation of complex
biological processes.

Dey et al. [29] explored the use of grade of membership (GoM) models for visualizing
RNA-seq expression data, offering an alternative to traditional clustering methods such as
k-means or hierarchical clustering. The traditional clustering methods cluster each sample
into one cluster, such as a tumor sample, which can either be classified as highly expressed
in one cluster or lowly expressed in other. However, GoM allows each sample to belong
to multiple clusters and quantify the degree of association of a sample to a cluster. For
instance, using GoM, a tumor sample can be partially highly expressed with one gene set
and partially expressed with another gene set. GoM models allow samples to have partial
membership in multiple clusters, reflecting the heterogeneous nature of biological data.
Visualization is achieved through the structure plot, which represents the membership
proportions of each sample as stacked bar charts. This method provides a nuanced view
of complex data structures, revealing the degree of similarity and mixed characteristics
among samples.

3.1.3. Circular RNA-Seq

Circular RNAs (circRNAs) are a class of non-coding RNAs characterized by cova-
lently closed loop structures without 5’ to 3’ polarity or polyadenylated tails. They play
significant roles in gene regulation and are implicated in various diseases, including cancer.
Detecting and analyzing circRNAs present unique challenges due to their circular struc-
ture and back-splicing junctions (BSJs). Several specialized tools have been developed for
circRNA sequencing analysis, each employing specific visualization methods to interpret
complex data.

One category of tools includes interactive web-based platforms that facilitate broad
data exploration and visualization of circRNAs. Wu et al. [21] introduced CIRI-hub , a
comprehensive web-based platform designed specifically for the analysis and visualization
of circRNAs in cancer research. CIRI-hub integrates data from thousands of RNA-seq
libraries and allows users to perform automated circRNA analyses by uploading their
datasets or selecting circRNAs from the integrated database. It offers robust visualization
capabilities, providing customizable plots and charts using dimension reduction techniques
like PCA, MDS, t-SNE, and UMAP to distinguish between normal and tumor samples
based on circRNA expression. It visualizes circRNA expression across different tissues
and cancer types, allowing interactive customization of visual outputs, including color
schemes and algorithms. However, some limitations of CIRI-hubinclude the need for
high-performance computing resources to manage large datasets, and its effective use may
require bioinformatics expertise, which can limit accessibility to non-experts. Moreover, the
identification of circRNAs involves computationally intensive steps like split-read mapping
and filtering false positives, which require tailored pipeline setups. This complexity is
reflected in tools integrated into CIRI-hub , such as CIRIquant , which provides robust
detection capabilities but demands thorough familiarity with sequencing data nuances
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and library preparation techniques. Another web-based tool is CircNetVis, developed
by Nguyen et al. [26], which is designed to visualize and explore circRNA interaction
networks. It allows users to input circRNAs in various formats and integrates multiple
interaction networks to investigate relationships between circRNAs, microRNAs (miRNAs),
mRNAs, and RNA-binding proteins (RBPs). Visualization is achieved through interactive
network representations, where users can manipulate the layout to explore relationships
within the circRNA interaction networks. Nevertheless, CircNetVis is limited to human and
mouse circRNAs and relies on external databases, which can slow down real-time analysis.

Another group comprises Java-based visualization tools that provide detailed graph-
ical representations of circRNAs and their splicing events. Zheng et al. [22] developed
CIRI-vis , a command-line tool designed to visualize circRNAs and their complex splicing
events. CIRI-vis integrates with other bioinformatics tools to reconstruct and quantify
circRNA isoforms from RNA-seq datasets, representing the internal structure of circR-
NAs graphically, including forward splice events and BSJs (back-splicing junctions). This
command-line interface and Java dependency may be challenging for non-experts, and
it demands significant computational resources for large RNA-seq datasets. Similarly,
CircView , developed by Feng et al. [24], is a Java-based desktop tool that integrates
circRNA data detected from multiple tools. CircView provides an intuitive interface to
explore circRNAs across different samples, displaying exons as colored arcs and introns as
connecting lines, and allows users to view detailed information on exon composition and
regulatory elements. Additionally, Ularcirc , introduced by Humphreys et al. [25], is an
open-source software designed to visualize and analyze circRNAs by integrating both BSJs
and canonical forward-splice junctions (FSJs). Ularcirc provides genomic views showing
junction counts as loops overlaid on gene models, allowing users to examine exon–intron
boundaries and internal splicing patterns within circRNAs. CircView may struggle with
performance on large datasets and requires an understanding of circRNA biology, while
Ularcirc needs high sequencing depth and may lack efficiency in filtering false positives.

Specialized tools focusing on specific aspects of circRNA analysis include INTEGRATE-
Circ and INTEGRATE-Vis , developed by authors in [23]. These tools specialize in detecting
and visualizing fusion-derived circRNAs (fcircRNAs) formed through backsplicing events
within fusion gene transcripts by integrating RNA and whole-genome sequencing data.
Both need substantial computational power and rely on whole-genome sequencing data
for accurate fcircRNA detection, with challenges in distinguishing between true fusion
events and read-through events. Using both tools INTEGRATE-Circ and INTEGRATE-
Vis in tandem enables seamless integration from detection to visualization. However,
INTEGRATE-Circ can function independently for detection purposes, and INTEGRATE-
Vis can visualize outputs from compatible tools. For best results, combining both ensures
comprehensive analysis and user-friendly presentation. Lin et al. [27] introduced CircVIS,
a web-based platform that annotates circRNAs based on their subcellular localizations and
aligns them to reference transcripts, comparing derived open reading frames (ORFs) to
their parental proteins. The visualization integrates circRNA annotations with reference
transcripts and exon usage, aiding in understanding how circRNAs function across different
cellular compartments. CircVIS has some challenges because of its limited availability of
compatible datasets and a scarcity of subcellular RNA-seq data, necessitating additional
experimental validation for certain circRNAs.

These specialized tools and their visualization methods empower researchers to un-
ravel the complexities of circRNAs. Interactive web-based platforms like CIRI-hub and
CircNetVis facilitate broad data exploration and interaction networks, while Java-based
tools like CIRI-vis and CircView provide detailed graphical representations of circRNA
structures and splicing events. Tools like Ularcirc and INTEGRATE-Vis offer specialized
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visualization of splicing patterns and fusion-derived circRNAs, contributing to a deeper
understanding of circRNA biology. CircVIS adds another dimension by focusing on subcel-
lular localization and functional annotation visualization, enabling researchers to predict
circRNA behavior based on cellular compartments. Collectively, these tools advance our
knowledge of circRNAs’ roles in gene regulation and disease.

3.1.4. Long Non-Coding RNA-Seq

Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides
that do not code for proteins but play crucial roles in regulating gene expression and various
biological processes. Sequencing and analyzing lncRNAs present unique challenges due to
their low expression levels, tissue specificity, and complex regulatory functions. To address
these challenges, specialized tools and software have been developed to enhance lncRNA
analysis. One key platform is SeqCVIBE, as highlighted in the paper [19]. SeqCVIBEis
an R Shiny web application that allows researchers to perform differential expression
analysis, calculate RNA abundances over both annotated and non-annotated genomic
regions, and visualize results in real-time. This capability is particularly beneficial for
investigating novel lncRNAs, such as WiNTRLINC1, which is involved in Wnt signaling in
cancer studies. The platform offers a database of pre-analyzed RNA-seq data, facilitating
comprehensive lncRNA research. The primary purpose of SeqCVIBE seems to be providing
a comprehensive platform for managing, visualizing, and analyzing RNA-seq data, with
features such as dynamic signal plotting, differential gene expression analysis (DGEA), and
genome browsing. It was designed to facilitate RNA-seq workflows broadly rather than
being developed specifically for lncRNA analysis. SeqCVIBE’s ability to calculate RNA
abundances and visualize data in non-annotated genomic regions makes it particularly
suitable for studying novel or uncharacterized lncRNAs.

Another significant tool is PANDORA , a weighted p-value combination algorithm
designed to optimize differential gene expression analysis (DGEA) [19]. PANDORA excels
in lncRNA-specific settings due to its ability to address key RNA-seq biases like gene
length and normalization framework variability. Its simulation-based weighted p-value
scheme optimizes the precision-sensitivity tradeoff, making it particularly effective for
low-count RNA molecules such as lncRNAs. PANDORA is useful for analyzing lncRNAs
by controlling biases from different normalization frameworks and is implemented in
Bioconductor packages like metaseqR and metaseqR2.

Visualization is critical in lncRNA analysis for interpreting complex RNA-seq data.
SeqCVIBE excels in providing visualization methods tailored for lncRNA research. It gen-
erates dynamic RNA-seq signal plots, allowing users to visualize averaged RNA-seq signal
coverage for both known and novel lncRNAs across samples, including non-annotated
regions where new transcription events are detected. An essential feature within SeqCVIBE
is the integration of JBrowse, a genome browser enabling detailed mapping of RNA-seq
signals across the genome. This integration helps visualize lncRNA interactions with other
genomic elements and their potential regulatory roles. The application also supports statis-
tical visualization methods like principal component analysis (PCA) and multi-dimensional
scaling (MDS) plots to assess sample variability and relationships between lncRNAs and
other genes. JBrowse is suitable for lncRNA visualization due to its ability to handle
sparse expression data and provide detailed views of genomic regions. Its interactive
zoom and multi-track alignment help identify subtle signals and regulatory components
like enhancers or splice sites. Real-time customization allows researchers to explore novel
lncRNAs and their genomic contexts effectively. Tangible examples, such as discovering
lncRNAs with low read coverage or mapping enhancer–promoter interactions, would
enhance its relevance to lncRNA research. Beyond SeqCVIBE, visualization methods for
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lncRNA sequencing often involve heatmaps, volcano plots, and gene expression profiles
to represent differential expression patterns. Tools like the Integrative Genomics Viewer
(IGV) are utilized for detailed views of genomic alignments and annotations, aiding in the
identification of novel lncRNAs and understanding their regulatory roles. The integration
of these advanced tools and visualization methods significantly enhances the understand-
ing of lncRNA functionality and their roles in various biological processes, as the paper
emphasizes, ultimately contributing to advancements in fields such as cancer research and
functional genomics.

4. Discussion
RNA-seq has the potential to transform clinical diagnostics, especially in oncology,

by offering a powerful way to identify disease-specific biomarkers. This ability allows
diagnostic laboratories to gain valuable insights into diseases like cancer. For example,
RNA-seq excels at identifying differentially expressed genes (DEGs) through processes such
as alternative splicing, which plays a critical role in cancer and tumor classification [51].
DEGs are critical to RNA-seq investigations as they provide insights into changes in gene
expression under different experimental conditions and time points. These molecular
assays enable earlier and more accurate disease diagnoses, ultimately improving patient
outcomes through timely and targeted interventions. RNA-seq also plays a pivotal role in
understanding disease mechanisms. By revealing regulatory pathways and transcriptomic
patterns, laboratories can uncover actionable targets for precision therapies. For instance,
RNA-seq has identified disease phenotypes linked to dysregulated gene networks, enabling
therapies that address root causes rather than just symptoms. Traditional methods for
analyzing gene expression like RT-qPCR, microarrays, and Northern blotting still have
their merits and specific applications. Indeed, RT-qPCR remains the gold standard for
targeted gene expression studies, primarily due to its cost-effectiveness. We align with
other studies [52] in suggesting that RNA-seq is expected to become more cost-effective as it
sees wider adoption. Its reproducibility and reliability are essential for clinical applications,
where data cross-validation and compliance with regulatory standards are paramount.

The systematic review conducted in this study aimed to explore the current landscape
of visualization techniques and tools used in RNA-seq data analysis, with a particular
focus on their applications and limitations in clinical contexts. By analyzing 33 primary
studies published between 2017 and 2024, we have provided a comprehensive overview of
state-of-the-art visualization methods employed across different types of RNA-seq data,
including bulk RNA-seq, single-cell RNA-seq, circular RNA-seq, and long non-coding
RNA-seq. Our findings revealed a significant emphasis on single-cell RNA-seq data, with
24 out of 33 tools developed for this data type. This trend reflects the growing importance
and adoption of single-cell technologies in clinical research, as they offer unparalleled
resolution in understanding cellular heterogeneity and disease mechanisms at the individ-
ual cell level. Emerging technologies like single-cell RNA-seq and spatial transcriptomics
are further enhancing our understanding of disease pathology and treatment responses.
Single-cell RNA-seq offers unprecedented resolution, capturing cellular heterogeneity
and differentiation patterns. This is particularly valuable in cancer, where identifying
rare cell subpopulations or stem cell-like properties can inform treatment strategies. Spa-
tial transcriptomics adds another layer, linking gene expression to tissue architecture—a
transformative advance for pathology. While these technologies hold great promise, they
also present challenges. For instance, interpreting high-dimensional data from single-cell
RNA-seq requires sophisticated tools like UMAP or t-SNE plots, which reduce complexity
into intuitive 2D visualizations. These tools highlight rare cell types or disease-associated
subpopulations. Similarly, trajectory analyses, often visualized as tree-like structures, map
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cellular differentiation paths, providing insights into processes like cancer progression
or immune dysfunction. However, correlating single-cell findings to bulk tissue data
and standardizing protocols for emerging techniques like spatial transcriptomics remain
key obstacles.

Previous studies have highlighted the transformative impact of single-cell RNA-seq
in fields like oncology and immunology, enabling the discovery of rare cell populations
and elucidating complex biological processes [33,40]. Our review corroborates these trends,
demonstrating that visualization tools are keeping pace with advancements in single-cell
sequencing technologies.

In contrast, fewer tools were developed for bulk RNA-seq (13 tools), circular RNA-seq
(7 tools), and long non-coding RNA-seq (1 tool). This discrepancy may be attributed to the
complex nature of single-cell data requiring more sophisticated visualization approaches,
as well as the burgeoning interest in single-cell analyses in clinical applications. However,
bulk RNA-seq remains a staple in clinical research for its utility in profiling average gene
expression across cell populations. Tools like Searchlight [18] and BEAVR [32] stream-
line differential expression analysis and visualization for bulk RNA-seq data, facilitating
efficient interpretation of gene expression changes relevant to disease states.

Visualization methods identified in the studies include dimensionality reduction
techniques such as t-SNE and UMAP, clustering algorithms, heatmaps, and network vi-
sualizations. These methods are crucial for interpreting high-dimensional RNA-seq data
and uncovering underlying patterns and structures. For instance, tools like SWNE [34]
and VASC [33] enhance the visualization of single-cell data by preserving both global and
local data structures, which is essential for accurate interpretation of cellular differentiation
pathways and disease progression. Visualizations like heatmaps and volcano plots are
indispensable for interpreting RNA-seq data in this context. Heatmaps provide an intuitive
way to group patient samples based on shared expression patterns, aiding both disease
classification and biomarker discovery. Meanwhile, volcano plots help pinpoint genes with
high diagnostic potential by showcasing statistical significance against fold changes. For
instance, these plots can identify circRNAs with regulatory roles in tumor progression
and metastasis [21]. Such tools make it easier for clinical laboratories to connect molecular
findings to real-world diagnostics.

Visualizations such as pathway enrichment plots, Sankey diagrams, and gene inter-
action networks are also instrumental. Sankey diagrams are used for flow analysis. They
consists of nodes and flow arrows. Nodes represent the entities and arrows represent the
flow with the width of arrow is proportional to the value it represent. For RNA-seq analy-
sis, Sankey diagrams are paramount to visualize DEGs, alternative splicing events, and
pathway enrichment. For instance, to compare two disease conditions, Sankey diagrams
can provide information on the gene expression and its magnitude through the width
of arrows.

Pathway enrichment plots are used to identify biological pathways significantly as-
sociated with a set of genes in RNA-seq studies. Pathway enrichment plots highlight
overrepresented pathways in DEGs, aiding in the identification of molecular drivers of
disease. Sankey diagrams trace gene flows through regulatory networks, while interaction
networks offer a dynamic view of transcriptomic changes, uncovering potential therapeutic
targets. Interestingly, Sankey diagrams, traditionally used in research, are finding clinical
applications. For example, they have been adapted to track cancer symptom trajectories,
providing insights for symptom monitoring [53]. Similarly, pathway enrichment plots can
shed light on immune-related pathways in autoimmune disorders, paving the way for
innovative diagnostic assays. However, bridging the gap between identified molecular
mechanisms and actionable treatments requires interdisciplinary collaboration and exten-
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sive validation. Developing tools that balance simplicity and accuracy will be critical for
integrating these visualizations into clinical workflows.

Our second research question aimed to understand how these visualization tools
enhance the understanding and interpretation of RNA-seq data within the clinical realm.
The tools identified in our review offer various benefits, such as enabling the identification
of differentially expressed genes, uncovering novel biomarkers, and visualizing complex
gene expression patterns associated with diseases. For example, CIRI-hub [21] specializes
in identifying novel circular RNAs with diagnostic potential in cancers, while expressy-
ouRcell [28] maps gene expression changes to cellular compartments, aiding in disease
modeling. These tools play a pivotal role in translating complex RNA-seq data into clini-
cally actionable insights. They allow clinicians and researchers to interpret large datasets
intuitively, facilitating the discovery of disease-associated genes, pathways, and cell pop-
ulations. This is particularly important in personalized medicine, where understanding
individual variability at the molecular level is crucial for tailored treatments [54].

The predominance of visualization tools for single-cell RNA-seq data underscores a
significant shift in biomedical research toward single-cell analyses. This shift has profound
implications for clinical applications, as it enables a more nuanced understanding of
diseases at the cellular level. The ability to identify rare cell types and understand cellular
heterogeneity can lead to the development of more precise diagnostic tools and therapeutic
strategies [42,43]. Moreover, the increasing number of visualization tools indicates a
recognition of the importance of making complex RNA-seq data accessible to a broader
range of users, including clinicians who may not have extensive computational expertise.
Tools with user-friendly interfaces, such as dittoSeq [30] and scViewer [36], lower the
barriers to entry, allowing more researchers to leverage RNA-seq data in clinical studies.
Although both dittoSeq and scViewer have been widely utilized in research settings for
analyzing and visualizing RNA-seq data, specific examples of their adoption in clinical
laboratories remain sparse. We highlight these tools as models to illustrate how user-
friendly interfaces can potentially bridge the gap between complex data analysis and
clinical decision-making. There are other popular tools, like Galaxy [55], which are well-
known among biomedical researchers for their flexibility and ease of use but have yet to
see widespread adoption in clinical settings. Addressing barriers to implementation, such
as integration with clinical workflows and regulatory compliance, could pave the way for
broader acceptance of these tools in clinical applications. However, the relatively limited
number of tools for circular RNA-seq and long non-coding RNA-seq suggests potential
gaps in the field. Given the emerging roles of these RNA types in gene regulation and
disease, there is a pressing need to develop more specialized visualization tools to facilitate
their study [23,27]. This could unlock new avenues for understanding disease mechanisms
and identifying novel therapeutic targets.

Despite these advancements, transitioning RNA-seq findings into practical clinical
assays remains challenging. Validating biomarkers across diverse patient populations
requires large-scale datasets, which create logistical and computational bottlenecks for
many laboratories. For instance, obtaining sufficient patient samples representative of
different age groups, ethnic backgrounds, and disease stages often involves multicenter
collaborations that are challenging to coordinate. Moreover, integrating new biomarkers
into existing workflows without disrupting established practices requires careful plan-
ning and validation. For example, introducing RNA-seq-derived biomarkers into clinical
workflows may necessitate standardization of RNA extraction and library preparation
protocols, which vary widely across laboratories. Furthermore, ensuring compatibility with
existing diagnostic platforms and regulatory compliance involves extensive optimization
and rigorous testing, often leading to delays in clinical adoption. Overcoming these bar-
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riers is essential to fully harness RNA-seq’s potential in diagnostics. Indeed, in oncology,
RNA-seq has become a cornerstone for molecular diagnostics and personalized medicine.
By tailoring treatments to a patient’s molecular profile, RNA-seq can improve treatment
efficacy while minimizing side effects. Kaplan–Meier survival plots, a popular RNA-seq
visualization method in oncology, offer insights into the relationship between gene expres-
sion and survival outcomes [56]. These plots help identify prognostic biomarkers that
inform clinical decisions. Commercial tools have already started incorporating survival
plots to guide diagnostics, but their adoption faces hurdles like a lack of in-house bioin-
formatics expertise and the need for robust clinical validation frameworks. Additionally,
personalized approaches require sophisticated algorithms to integrate multi-omics data,
addressing challenges like intratumoral variability and therapeutic resistance.

Gene expression profiling using RNA-seq provides a comprehensive snapshot of
cellular processes, offering valuable insights into disease progression and treatment re-
sponses. Custom gene expression panels tailored to individual patients enable highly
targeted therapies. Visualizations like bar plots, PCA plots, and violin plots enhance the
interpretability of these data. For instance, PCA plots group samples by similar expression
profiles, revealing patterns related to disease progression, while violin plots highlight gene
expression variability that might influence therapy responses. Despite their utility, these
approaches face challenges such as variability across sequencing platforms and difficulties
with data reproducibility. Normalizing data to mitigate batch effects is a persistent issue, as
inconsistencies can compromise downstream analyses. Advanced computational tools and
expert interpretation are crucial to overcome these challenges.

Maintaining data quality is fundamental to ensuring reproducibility and reliability
in RNA-seq applications. Clinical laboratories employ rigorous quality control protocols
to verify data integrity, filtering out low-quality samples that could skew results. Visual-
izations like box plots, PCA plots for batch effect assessment, and quality heatmaps are
invaluable for assessing data reliability. However, the lack of universal quality control
standards across sequencing methods complicates efforts to standardize analyses. Addi-
tionally, computational tools must meet clinical-grade requirements to ensure accurate and
consistent results.

Currently, many RNA-seq visualization tools cater to research settings and are not op-
timized for clinical decision-making. To bridge this gap, some tools, like the FDA-approved
Oncomine (Thermo Fisher Scientific) [57] and cBioPortal [58], incorporate visualizations
like bar plots and Kaplan–Meier curves into user-friendly interfaces. Kaplan–Meier curves
are particularly valuable in cancer research, where RNA-seq data can identify gene ex-
pression signatures associated with patient survival. For example, genes overexpressed in
specific cancers, as detected by RNA-seq, can be categorized into high- and low-expression
groups, and Kaplan–Meier plots can illustrate differences in survival rates between these
groups. Despite their utility, these tools often fall short of integrating RNA-seq analysis
with electronic health records or clinical decision support systems, limiting their adoption
in routine clinical workflows. Integrating RNA-seq data with electronic health records has
the potential to improve clinical workflows, with improved disease diagnosis, prognosis,
and understanding of treatment effects, by combining clinical context with genetic insights.
This will help in advancing precision medicine and generate novel insights on various
complex disease conditions. Further research should focus on developing pipelines that
automate the integration of RNA-Seq data into electronic health records, accompanied by
visualization tools tailored to clinical needs. Examples include dashboards for monitoring
disease progression through gene expression trends or predictive algorithms that flag
potential complications based on transcriptomic patterns. Addressing these challenges will
bring us closer to realizing the full potential of RNA-Seq in enhancing patient care.
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While our review provides valuable insights, it is essential to acknowledge certain
limitations. The studies included were limited to those published in English and available
in full text, potentially excluding relevant research in other languages or inaccessible
publications. A key limitation of this review is that we relied on tool descriptions provided
in the literature or documentation and did not independently test all the tools due to time
and resource constraints. Future efforts should prioritize direct testing of tools to provide
more accurate assessments of their usability and applicability. Additionally, future research
should focus on developing more intuitive and accessible visualization tools that cater to
users with varying levels of computational expertise. Integrating graphical user interfaces
and providing comprehensive documentation can enhance usability for clinicians and
researchers without programming backgrounds.

5. Conclusions and Future Research
In conclusion, the findings emphasize the need for the continued development of

specialized, user-friendly visualization methods that can handle diverse RNA-seq data
types. By addressing current limitations and focusing on future research directions, we can
enhance the utility and effectiveness of RNA-seq analyses in clinical applications, ultimately
contributing to improved outcomes in healthcare.

There is also a need to expand visualization tools to underrepresented RNA-seq data
types. Given the limited tools for circular RNA-seq and long non-coding RNA-seq, future
efforts should prioritize developing visualization methods for these data types. This could
involve adapting existing tools or creating new ones that address the unique challenges
associated with these RNA species. Combining RNA-seq data with other omics data, such
as proteomics and epigenomics, can provide a more holistic view of biological systems.
Developing visualization tools capable of integrating and representing multi-omics datasets
can enhance our understanding of complex disease processes [26,38]. As datasets continue
to grow in size and complexity, tools must be optimized for performance and scalabil-
ity. Leveraging cloud computing and advanced algorithms can improve the efficiency of
data processing and visualization [48,49]. Establishing standards for data formats and
visualization practices can facilitate data sharing and collaboration. Tools that support
interoperability between different platforms and data types will be invaluable for large-
scale collaborative research efforts. Moreover, future research should focus on validating
these tools in clinical settings and assessing their impact on diagnosis, prognosis, and treat-
ment decisions. Looking ahead, advancements in RNA-seq visualizations must focus on
usability for clinicians. Integrating artificial intelligence and automation can help generate
simplified, interpretable outputs. For instance, incorporating deep learning into spatial
transcriptomics workflows could overlay transcriptomic data onto digital pathology slides,
making molecular findings accessible within routine clinical workflows. Such innovations
will be pivotal in translating RNA-seq’s promise into actionable clinical solutions.
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Abbreviations
The following abbreviations are used in this manuscript and Table 3:

MDE Multiple differential expression
MA plots M versus A plots
PCA plots Principal component analysis
DGEA Differential gene expression analysis
MDS Multidimensional scaling
circRNAs Circular RNAs
BSJ Back-splicing junction
UMAP Uniform manifold approximation and projection for dimension reduction
t-SNE t-distributed stochastic neighbor embedding
fcircRNAs Fusion-derived circular RNAs
MREs MicroRNA response elements
RBP RNA-binding protein
ORF Open reading frame
miRNAs MicroRNA
GoM Grade of membership
K Number of clusters
GUI Graphical user interface
GSEA Gene set enrichment analysis

BEAVR
Browser-based tool for the exploration and
visualization of RNA-seq data.

scRNA-seq Single-cell RNA sequencing
VAE Deep variational autoencoder
SWNE Similarity-weighted non-negative embedding
ssPCA Semisupervised principal component analysis
DTAE Density tree-biased autoencoder
FIt-SNE Fast interpolation-based t-SNE
CP-PaCMAP Compactness preservation pairwise controlled manifold approximation projection
WASP Web-accessible single-cell RNA-seq processing platform
CA Correspondence analysis
DV Deep visualization
net-SNE Neural t-distributed stochastic neighbor embedding
SCUBI Single-cell unbiased
autoCell Autoencoder network algorithm
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