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Abstract—The global COVID-19 pandemic has strained health-
care systems and highlighted the need for accessible and efficient
diagnostic methods. Traditional diagnostic tools, such as nasal
swabs and biosensors, while accurate, pose significant logistical
challenges and high costs, limiting their scalability. This paper
explores an alternative, non-invasive approach to COVID-19
detection using machine learning algorithms to analyze vocal
patterns, particularly cough and breathing sounds. Leveraging a
publicly available dataset, we developed machine learning models
capable of classifying audio samples as COVID-19 positive or
negative. Our models achieve an AUC of up to 85% and an F1-
score of 81%, demonstrating the potential of machine learning in
enabling rapid, cost-effective COVID-19 diagnosis. These findings
suggest that audio-based diagnostics could be a practical and
scalable solution, particularly in resource-limited settings where
traditional methods are less feasible.

Index Terms—Coronavirus, COVID-19, machine learning,
coughs, breathing, vocal signal analysis, COVID-19 detection

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious
illness caused by the Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2) [1]. Since its emergence in late
2019, the virus has triggered one of the most devastating
pandemics in modern history, leading to a global health crisis.
With over 700 million confirmed cases and nearly 7 million
deaths worldwide, the pandemic has overwhelmed health-
care systems, particularly in regions with limited resources
[2] [3], [4] [5] [6]. The rapid spread of the virus and its
high transmission rates have made it difficult for healthcare
providers to meet the growing demand for timely testing and
treatment. This has driven an urgent need for more efficient
and accessible diagnostic solutions [7], [8].

While current diagnostic methods, such as nasal swabs,
biosensors, and blood tests, are highly reliable and accurate,
these methods are not without limitations. These methods are
often associated with high costs, making them inaccessible to
a large portion of the global population, especially in low-
income regions [9] [10] [11] [12]. Additionally, the logistical
processes involved in collecting, handling, and transporting
biological samples are time-consuming, further delaying the
diagnosis. These challenges underscore the necessity for al-
ternative diagnostic tools that are both scalable and non-
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invasive, enabling more widespread testing to be conducted
more quickly and affordably.

Machine learning (ML) offers a promising solution to these
challenges by providing a non-invasive approach to COVID-19
detection through the analysis of vocal signals. As COVID-19
primarily affects the respiratory system [13], it alters vocal
and respiratory sound patterns, including coughing, which can
be captured and analyzed for diagnostic purposes [12], [14].
Coughs, one of the most common symptoms of COVID-19,
present a valuable and accessible source of data for machine
learning models. By analyzing the frequency, amplitude, and
other acoustic features of these cough sounds, ML-driven tools
can detect subtle changes indicative of infection, providing a
more rapid and cost-effective alternative to traditional methods
[11], [12].

The development of machine learning algorithms capable
of analyzing both respiratory and non-respiratory sounds in-
troduces an innovative approach to diagnosing COVID-19.
These algorithms, when trained on cough and other audio
datasets, have demonstrated high accuracy in classifying audio
samples as either COVID-19 positive or negative [14], [15].
This technology’s scalability and non-invasive nature make it
particularly valuable for large-scale screening, especially in
low-resource settings where traditional testing methods may
not be feasible.

This paper explores the design and evaluation of machine
learning algorithms for detecting COVID-19 statuses using
sound patterns. We make the following contributions:

1) Design and Evaluation of machine learning models
for COVID-19 detection: Utilizing publicly available
datasets, we have developed various machine learning
models that non-invasively classify audio samples as
either COVID-19 positive or negative. Our models have
achieved an AUC of up to 85% and an F1-score of 81%.
These findings show the potential of machine learning
to provide rapid, cost-effective COVID-19 diagnosis,
offering a practical alternative to traditional, resource-
intensive testing methods like nasal swabs and biosen-
sors.

2) Comprehensive evaluation of developed models across
various audio scenarios: We have assessed the per-
formance of our machine learning models under two



practical scenarios: (1) using entire audio files, which
includes background noise and silences, and (2) using
segmented data after segmenting the input audio file
that focuses specifically on certain cough or breathing
patterns. This dual approach evaluates the models’ effec-
tiveness in both real-time, noisy environments and more
controlled settings. The results provide valuable insights
into potential adaptations of the models for telemedicine
and large-scale health monitoring systems.

II. RELATED WORK

In the wake of the COVID-19 pandemic, several studies
have been conducted to explore the potential of artificial
intelligence to detect COVID-19 by analyzing cough audio
[16]-[26]. Many studies collected the data through mobile
phone apps and developed a unique dataset for analysis
through machine learning algorithms. Authors in [16] and [17]
developed a mobile application to collect breath, voice, and
cough data and apply ML algorithms to detect COVID-19 with
symptoms and COVID-19 without symptoms. Many studies
[18]-[20] used crowdsourcing to collect data for COVID-19
however the analytics methods differ. The authors in [18]
employed both traditional and deep learning techniques to
detect COVID-19 using voice, cough, and breathing sounds.
In contrast, [19] focused solely on cough and breathing sounds
to differentiate COVID-19 from other respiratory conditions.
[20] developed a generalized Al model to detect COVID-19
using cough samples only which predicts accurately when
applied on Latin America and South Asia clinical samples.
An interpretable Al model is developed using cough sound in
[21]. Overall, these studies demonstrate the potential of Al in
COVID-19 detection.

Common techniques in this area of research include ex-
tracting features such as Mel-frequency cepstral coefficients
(MFCCs) and utilizing neural network classifiers like Convolu-
tional Neural Networks (CNNs) [27]. Other approaches, such
as transfer learning [23] [17], are also frequently employed.
Challenges of working with poor audio quality [28], unbal-
anced datasets and insufficient evaluation strategies can lead to
an over-optimistic assessment of model performance [24], but
preprocessing techniques such as segmenting cough clusters
[29], oversampling from minority classes [30] and frequency
filtering techniques [26] can improve model performance. The
results from these experiments are promising, indicating that
COVID-19 exhibits a distinct pathophysiology that can aid
in virus detection [17]. Additionally, in certain instances, Al-
assisted diagnostic tools have been shown to enhance the
testing capacity of healthcare systems by up to 43% [22].
However, many of these papers emphasize the need for clinical
validation of their proposed methods [17]. In summary, the
analysis of audio data from voice, cough, and breathing
is challenging and requires rigorous clinical validation and
interpretability to understand the features and outcomes. This
paper analyzes the publicly available crowdsourced dataset for
analysis of respiratory and non-respiratory audio signals using

conventional machine learning approaches, along with rigor-
ous performance evaluation across various audio scenarios.

III. METHODOLOGY
A. Dataset Description

Our study uses the Coswara dataset [2], a publicly available
crowd-sourced dataset designed for the analysis of respiratory
and non-respiratory audio signals, primarily aimed at detecting
COVID-19 through sound. The dataset contains audio samples
such as coughs, breathing patterns (both deep and shallow),
and sustained vowel sounds, as well as speech recordings from
2,746 participants. These participants self-reported their health
status, including whether they tested positive or negative for
COVID-19, along with symptoms like cough, fever, or sore
throat.

The Coswara dataset [2] includes several health status
classifications. These classifications consist of healthy, no res-
piratory illness exposed, respiratory illness not identified, and
recovered in full, which we grouped as COVID-19 negative,
representing 1,984 individuals. Additionally, 81 participants
were classified as under validation and were excluded from
the study. The remaining categories — positive mild, positive
moderate, and positive asymptomatic — were classified as
COVID-19 positive, totaling 681 individuals.

B. Tools Used

We used the Python programming language for this work,
with Jupyter Notebook as our coding environment. The Python
library librosa was utilized for audio pre-processing and fea-
ture extraction, while Scikit-Learn was employed for building
the machine learning models. Additionally, Pandas and Numpy
were used for statistical analysis and data manipulation.

C. Dataset Preparation

To prepare our dataset for this study, we downloaded the
dataset from the Coswara GitHub repository [31]. The dataset
is organized by collection date folders, and within each col-
lection date, there are subfolders corresponding to individual
participants. For each participant, we accessed their CSV file
located in their subfolder to examine the "COVID Status”
column. Based on this status, we reassigned the original class
labels: participants marked as “Healthy,” "No Respiratory
Illness Exposed,” “Respiratory Illness Not Identified,” and
”Recovered in Full” were relabeled as ‘Negative,” while those
marked as “Positive Mild,” ”Positive Moderate,” and "Positive
Asymptomatic” were relabeled as ‘Positive.” Entries labeled
”Under Validation” were excluded from our dataset.

We then created two main directories, "COVID Positive”
and "COVID Negative,” to organize the cough and breathing
audio files according to the relabeled COVID status. Within
each category, we further divided the files into subfolders for
”Cough Samples” and Breathing Samples.” Finally, a verifica-
tion process was performed to ensure the correct classification
and organization of all audio files within the dataset.

After the data reorganization, we performed a preprocessing
step prior to feature extraction. During this step, we resampled



the dataset to 22 kHz, normalized the audio data to reduce
amplitude variability and pre-emphasized the audio signals
using a first-order differencing filter. Audio files that were too
short, too quiet, and potentially empty were dropped during
this step. We then extracted features as described in the next
section.

D. Exploratory Analysis of Audio Features for COVID-19
Status Classification

To explore the potential of utilizing audio recordings of
coughing and breathing in our study, we examined both the
time and frequency domain features of these sounds to deter-
mine if there are any discernible differences between positive
and negative cases. Figure 1 showcases two examples of these
audio recordings. The figure provides a comparative analysis
of breathing patterns from individuals tested for COVID-19,
with one testing positive and the other negative. Each subject’s
data is represented in two segments: the upper section shows
the time-domain waveform, while the lower section displays
the corresponding spectrogram of the audio.

For the COVID-positive subject, shown in Figure 1la, the
waveform features notable spikes and variations in ampli-
tude which are indicative of irregular breathing patterns —
commonly associated with COVID-19. These irregularities are
also reflected in the spectrogram as variations in intensity and
color, particularly pronounced in the lower frequency bands,
suggesting episodes of breathing difficulty. Conversely, the
audio from the COVID-negative subject, depicted in Figure 1b,
shows a more consistent and rhythmic breathing pattern, with
minimal fluctuations in both the waveform and spectrogram.

This exploratory analysis not only facilitates the identifi-
cation of potential differences in breathing sounds associated
with COVID-19 but also suggests potential for a powerful,
non-invasive tool for early COVID-19 screening. These pre-
liminary findings are in line with earlier works, for example, in
[2] [32], which demonstrate that spectrograms of breath sounds
captured via smartphone can effectively distinguish between
asthmatic conditions and those of healthy individuals through
distinct patterns. Leveraging these insights, along with other
time and frequency-domain features, we extracted features as
described in the next section for our machine learning models.

E. Feature Extraction

Multiple audio handcrafted features were extracted from
each audio sample to capture various characteristics of the
sound signal, similar to the approach used in [19]. These fea-
tures capture the temporal, spectral, and harmonic properties
of the audio, enabling accurate classification of respiratory
sounds.

# | Feature Count
1. | Average, Standard Deviation, Zero Crossing Rate 3
2. | Spectral centroid, rolloff, contract, chroma stft 4
3. | The first 14 MFCC coefficients 14
4. | The first 14 Delta-MFCC coefficients 14
5. | The first 14 Delta-Delta MFCC coefficients 14

TABLE I: Features extracted from the cough sounds.

Table I summarizes the features extracted from our filtered
cough sounds, using the Python audio and music process-
ing package Librosa [33]. The features included statistical,
spectral, and MFCC features that are popularly used for au-
dio/sound classification. The feature extraction phase gave us a
total of 49 features that were used as inputs to our models. This
feature set was further standardized using z-scale to ensure
features with different magnitudes don’t disproportionately
influence the models’ classifications.

F. Model Training and Evaluation

During the initial exploration phase, we evaluated several
machine learning algorithms, including k-Nearest Neighbors
(kNN), Support Vector Machines (SVM), Random Forest,
and XGBoost. To efficiently search for optimal hyperparam-
eters, we employed RandomizedSearchCV, which explored a
range of hyperparameter combinations across the models. This
method allowed for an efficient and comprehensive hyper-
parameter search by testing different configurations without
exhaustive grid searches. A validation dataset comprising 40%
of the original data was reserved for this search to support
hyperparameter tuning and model comparison. In addition, K-
fold cross-validation was applied to each model, splitting the
dataset into multiple subsets for training and testing. This pro-
cess reduced the likelihood of overfitting and provided a more
reliable estimate of each model’s generalization performance
on unseen data.

Following this initial exploration, the two top-performing
algorithms—Random Forest and SVM—were selected for
final model training and evaluation. Random Forest performed
best with the hyperparameters: class_weight="balanced”,

min_samples_leaf=2, min_samples_split=35, and
n_estimators=200, while SVM performed best with
a radial basis function (RBF) kernel, degree=3, and

class_weight="balanced”. These parameters were specifically
chosen to balance the class distribution and improve the
robustness of the models, especially for imbalanced datasets,
ensuring that both classifiers could effectively handle minority
and majority classes in the COVID-19 detection task.

After selecting the classifiers, the models were trained and
evaluated on the preprocessed dataset. The features were first
standardized to have a mean of zero and a standard deviation
of one, facilitating more consistent and efficient learning.
Principal Component Analysis (PCA) was then applied to
reduce the dataset’s dimensionality while preserving 99%
of its variance, removing noise and reducing computational
complexity. To further address the issue of class imbalance,
Synthetic Minority Oversampling Technique (SMOTE) was
utilized, oversampling the minority class in the training set
only. This process ensured that both classifiers learned from
balanced data and avoided biases toward the majority class,
leading to more equitable and accurate predictions.

To evaluate the performance of our models, we employed
several widely-used metrics for imbalanced datasets, including
area under the curve (AUC), precision, recall, and Fl-score,
given by the equations below:



(a) Breathing, COVID-positive.

(b) Breathing, COVID-negative.

Fig. 1: Time-domain waveform and spectrogram of breathing audio recordings from (a) a COVID-positive subject and (b) a

COVID-negative subject.

1
AUC = / TPR(FPR)d(FPR) 1)
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Fl-Score — 2 x Prec%s%on x Recall @
Precision 4+ Recall

where TP represents True Positives, the number of correctly
predicted positive cases; TN represents True Negatives, the
number of correctly predicted negative cases; FP represents
False Positives, the number of negative cases incorrectly
predicted as positive; and FN represents False Negatives, the
number of positive cases incorrectly predicted as negative. For
equation 1, TPR is the True Positive Rate while FPR is the
False Positive Rate.

G. Evaluation Scenarios

To comprehensively evaluate the performance of our mod-
els, we consider two scenarios: (1) using the whole audio
file, and (2) using segmented data as input to our models.
These two approaches allow us to explore different aspects
of the model’s ability to process and classify cough sounds
effectively in various practical situations.

In the whole audio file scenario, the entire recording —
including coughs, pauses, and any background noise — is
fed into the model for classification. This approach mirrors
real-world conditions where users may submit continuous,
unprocessed recordings. Evaluating the model’s performance
in this scenario is important because it tests the model’s
robustness to various environmental factors, such as noise and
variability in the length and quality of the recordings.

In contrast, the segmented data scenario focuses on classi-
fying specific portions of the audio, such as individual coughs,

in real-time scenarios. This approach allows for quick, low-
latency processing, which is crucial for applications requiring
immediate responses, like telemedicine or remote health mon-
itoring. It also optimizes resource usage, making the system
more scalable and efficient, especially for low-power devices
or large-scale implementations.

Under each of the above scenarios, we consider different
audio sounds from the dataset to evaluate our models (1)
breathing (deep and shallow) sounds only, (2) cough (deep
and shallow) sounds only, and finally when both are merged,
i.e., breathing and cough sounds. These further classifications
of our dataset provide a more comprehensive evaluation.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the performance
evaluation of our models in classifying the different types of
respiratory sounds across various scenarios. We have organized
our results first by the type of sound analyzed, and then
further categorized them based on whether segmented data
or the entire audio file was utilized. This structure allows us
to thoroughly analyze how each model performs in different
conditions, providing insights into the model’s capabilities
in handling diverse types of respiratory sounds and input
formats. Our results are based on the two best-performing
machine learning algorithms for the scenario and dataset used
for training and testing. For reference, the parameters set for
these models are detailed in the section above.

A. Classification Results Using Breathing Sounds Only

In this subsection, we present the performance evaluation
of our models trained and tested using only breathing sounds
(both deep and shallow) from the dataset. This analysis focuses
on assessing how effectively the models classify COVID-19
statuses based solely on breathing sound patterns. The top two
best-performing classifiers in this scenario were XGBoost and
SVM, thus reporting results from these two classifiers in this
subsection.



Classifier | Score Type | AUC  Precision Recall F1-Score
Macro 64% 71% 65%
SVM ‘ Weighted ‘ TR 4w 1% 80%
Macro 68% 66% 67%
XGBoost ‘ Weighted ‘ T g3e sa%  84%

TABLE II: Model performance for COVID-19 status classifi-
cation using breathing sounds only from the entire audio file.

1) Classification Results Using Entire Audio Files of
Breathing Sounds Only: In this subsection, we present the
results when the models are trained and tested using the entire
audio files, without segmentation. The performance of our top
two best-performing classifiers, XGBoost and SVM, in classi-
fying COVID-19 statuses using the complete audio files for
breathing sounds only, is shown in Table II. The performance
metrics are calculated for both macro and weighted averages.
Macro averages treat each class equally, whereas weighted
averages account for class imbalances present in the dataset,
ensuring that classes with more instances are given greater
weight. Our dataset is largely imbalanced with more negative
samples than positive.

For the SVM, the AUC score was 77%. The macro average
precision, recall, and F1-Score were 64%, 71%, and 65%,
respectively. When considering weighted averages, SVM’s
precision increased to 84%, with a recall of 77% and an F1-
Score of 80%. XGBoost also achieved an AUC score of 77%,
with a macro precision of 68%, a recall of 66%, and an F1-
Score of 67%. The weighted average for XGBoost showed an
improved performance with a precision of 83%, a recall of
84%, and an F1-Score of 84%. This indicates that XGBoost
was slightly more effective in handling class imbalances and
maintaining a balance between precision and recall in the
weighted evaluation. Overall, XGBoost outperformed SVM
slightly, particularly in the weighted averages, though the
difference in macro scores was minimal.

Classifier | Score Type | AUC  Precision Recall ~F1-Score
Macro 69% 77% 71%
SVM ‘ Weighted ‘ % s 9% 81%
. Macro 76% 70% 72%
XGBoost ‘ Weighted ‘ 8%  saq 8% 84%

TABLE III: Performance of our classifiers for COVID-19
status classification using segmented breathing sound audio.

2) Classification Results Using Segmented Audio Data of
Breathing Sounds Only: In this subsection, we present the
performance results when the models were trained and tested
on segmented breathing sound only. As detailed in Section
??, this approach focuses on analyzing individual breathing
segments rather than the entire audio file. Table III shows
the performance of our top two best-performing classifiers,
XGBoost and SVM, in classifying COVID-19 statuses using
segmented breathing sounds. SVM achieved an AUC score of
84%, with a macro precision of 69%, a recall of 77%, and

an F1-Score of 71%. When considering weighted averages,
SVM’s performance further improved, reaching 84% in preci-
sion, 79% in recall, and an 81% F1-Score.

On the other hand, XGBoost performed slightly better
overall, achieving an AUC score of 85%. It recorded a macro
precision of 76%, a recall of 70%, and a macro F1-Score
of 72%. When considering the weighted averages, XGBoost
achieved a precision of 84%, a recall of 85%, and an F1-Score
of 84%. Overall, XGBoost outperformed SVM while using the
segmented audio.

Compared to classification using the entire audio file, both
classifiers showed improved performance for both macro and
weighted averages while using the segmented audio. This
improvement could be attributed to the segmentation process,
which created more samples for training, allowing the models
to capture relevant features more effectively. Additionally, seg-
mentation may have helped by removing portions of the audio
that contained silence, noise, or other irrelevant content, which
can interfere with feature extraction and degrade performance
in the case of long, unsegmented audio.

B. Performance Evaluation using Cough Sounds Only

This subsection presents the performance evaluation of our
models trained and tested using only cough sounds (both deep
and shallow) from the dataset. It assesses how effectively the
models classify COVID-19 statuses based solely on cough
sound patterns. The two best-performing classifiers in this
scenario were Random Forest (RF) and XGBoost, and we
report the results from these two classifiers in this subsection.
For the remainder of the results, we report only the weighted
averages, as the cough sound data is largely imbalanced, with
more negative than positive cases.

Classifier \ AUC  Precision Recall F1-Score
Random Forest | 77% 83% 85% 84%
XGBoost 73% 83% 83% 83%

TABLE IV: Model performance for COVID-19 status classi-
fication using cough sounds only from the entire audio file.

1) Classification Results Using Entire Audio Files of Cough
Sounds Only: Table IV shows the performance of our two
best classifiers, Random Forest and XGBoost, in classifying
COVID-19 status using cough sounds from the entire audio
file. Random Forest achieved slightly better overall results
with an AUC of 77%, indicating stronger discriminative ability
compared to XGBoost’s AUC of 73%. Additionally, Random
Forest had a higher Recall (85%) compared to XGBoost
(83%), meaning it was better at correctly identifying COVID-
19 positive cases. Both models demonstrated equally strong
Precision at 83%, indicating that the models were similarly
effective at minimizing false positives.

In terms of the F1-Score, Random Forest slightly outper-
formed XGBoost with a score of 84% compared to XGBoost’s
83%. This indicates that while both models are well-balanced
in identifying positive cases, Random Forest is marginally
more effective, especially in handling true positives. Overall,



both classifiers performed well, but Random Forest showed a
slight edge in overall classification performance.

Classifier \ AUC  Precision Recall F1-Score
Random Forest | 76% 81% 81% 81%
XGBoost 75% 81% 80% 80%

TABLE V: Model performance for COVID-19 status classifi-
cation using segmented cough sounds only.

2) Classification Results Using Segmented Audio Data of
Cough Sounds Only: Table V shows the performance of our
two best classifiers, Random Forest and XGBoost, in classify-
ing COVID-19 status using segmented cough sounds. Random
Forest achieved an AUC of 76%, slightly outperforming XG-
Boost, which had an AUC of 75%. Both models demonstrated
equal Precision (81%), indicating that they were similarly
effective in minimizing false positives. However, Random
Forest had a marginally higher Recall (81%) compared to
XGBoost (80%), meaning it was slightly better at identifying
true positives. This resulted in F1-Scores of 81% for Random
Forest and 80% for XGBoost, with Random Forest showing
a slight overall performance advantage in handling segmented
audio data.

C. Performance Evaluation Using Both Breathing and Cough
Sounds

WF =]

[ AUC
I Precision

Recall
F1-Score |

oo
ot
T

s}
(e}
T

N |
(e}
T

(e
Ut
T

60
Entire Audio  Segmented Audio

Dataset Used

Fig. 2: Classifier performance using combined breathing and
cough sounds for COVID-19 status classification

Figure 2 shows the performance of our best classifier,
Random Forest, using combined breathing and cough sounds
for COVID-109 status classification. The figure displays a com-
parison of classifier performance metrics across two different
approaches: using entire audio files versus segmented audio
sounds. For “Entire Audio,” the classifier achieved slightly
lower scores across all metrics compared to ”Segmented Au-
dio.” Specifically, the AUC and F1-Score for “Entire Audio”
are around 75% and 84% respectively, while for ”Segmented
Audio,” these values are closer to 83% and 83%. Precision and
Recall also show improvement in the segmented approach,

emphasizing that processing audio in segments may help in
enhancing the classifier’s ability to accurately predict COVID-
19 status based on both cough and breathing sounds.

V. CONCLUSION AND FUTURE WORK

This study explored a non-invasive approach to COVID-19
detection using machine learning to analyze vocal patterns,
specifically cough sounds, addressing the limitations of tradi-
tional diagnostic methods like nasal swabs and biosensors. By
leveraging a publicly available dataset, we developed machine
learning models that achieved an AUC of up to 85% and an
Fl-score of 81%, demonstrating the potential for rapid, cost-
effective COVID-19 diagnosis. These findings highlight the
promise of audio-based diagnostics, particularly in resource-
limited settings where traditional testing is not feasible. While
the results are promising, further research is needed to validate
these models in real-world clinical environments and across
diverse populations. Future work should focus on expanding
datasets to enhance model robustness, addressing biases such
as age and gender, and integrating these tools into telemedicine
platforms for scalable, remote health monitoring. This could
pave the way for the use of vocal signals not only for COVID-
19 but also for broader applications in diagnosing respiratory
diseases.
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