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AbstractÐThe global COVID-19 pandemic has strained health-
care systems and highlighted the need for accessible and efficient
diagnostic methods. Traditional diagnostic tools, such as nasal
swabs and biosensors, while accurate, pose significant logistical
challenges and high costs, limiting their scalability. This paper
explores an alternative, non-invasive approach to COVID-19
detection using machine learning algorithms to analyze vocal
patterns, particularly cough and breathing sounds. Leveraging a
publicly available dataset, we developed machine learning models
capable of classifying audio samples as COVID-19 positive or
negative. Our models achieve an AUC of up to 85% and an F1-
score of 81%, demonstrating the potential of machine learning in
enabling rapid, cost-effective COVID-19 diagnosis. These findings
suggest that audio-based diagnostics could be a practical and
scalable solution, particularly in resource-limited settings where
traditional methods are less feasible.

Index TermsÐCoronavirus, COVID-19, machine learning,
coughs, breathing, vocal signal analysis, COVID-19 detection

I. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious

illness caused by the Severe Acute Respiratory Syndrome

Coronavirus-2 (SARS-CoV-2) [1]. Since its emergence in late

2019, the virus has triggered one of the most devastating

pandemics in modern history, leading to a global health crisis.

With over 700 million confirmed cases and nearly 7 million

deaths worldwide, the pandemic has overwhelmed health-

care systems, particularly in regions with limited resources

[2] [3], [4] [5] [6]. The rapid spread of the virus and its

high transmission rates have made it difficult for healthcare

providers to meet the growing demand for timely testing and

treatment. This has driven an urgent need for more efficient

and accessible diagnostic solutions [7], [8].

While current diagnostic methods, such as nasal swabs,

biosensors, and blood tests, are highly reliable and accurate,

these methods are not without limitations. These methods are

often associated with high costs, making them inaccessible to

a large portion of the global population, especially in low-

income regions [9] [10] [11] [12]. Additionally, the logistical

processes involved in collecting, handling, and transporting

biological samples are time-consuming, further delaying the

diagnosis. These challenges underscore the necessity for al-

ternative diagnostic tools that are both scalable and non-

* The first and second authors contributed equally to this work.

invasive, enabling more widespread testing to be conducted

more quickly and affordably.

Machine learning (ML) offers a promising solution to these

challenges by providing a non-invasive approach to COVID-19

detection through the analysis of vocal signals. As COVID-19

primarily affects the respiratory system [13], it alters vocal

and respiratory sound patterns, including coughing, which can

be captured and analyzed for diagnostic purposes [12], [14].

Coughs, one of the most common symptoms of COVID-19,

present a valuable and accessible source of data for machine

learning models. By analyzing the frequency, amplitude, and

other acoustic features of these cough sounds, ML-driven tools

can detect subtle changes indicative of infection, providing a

more rapid and cost-effective alternative to traditional methods

[11], [12].

The development of machine learning algorithms capable

of analyzing both respiratory and non-respiratory sounds in-

troduces an innovative approach to diagnosing COVID-19.

These algorithms, when trained on cough and other audio

datasets, have demonstrated high accuracy in classifying audio

samples as either COVID-19 positive or negative [14], [15].

This technology’s scalability and non-invasive nature make it

particularly valuable for large-scale screening, especially in

low-resource settings where traditional testing methods may

not be feasible.

This paper explores the design and evaluation of machine

learning algorithms for detecting COVID-19 statuses using

sound patterns. We make the following contributions:

1) Design and Evaluation of machine learning models

for COVID-19 detection: Utilizing publicly available

datasets, we have developed various machine learning

models that non-invasively classify audio samples as

either COVID-19 positive or negative. Our models have

achieved an AUC of up to 85% and an F1-score of 81%.

These findings show the potential of machine learning

to provide rapid, cost-effective COVID-19 diagnosis,

offering a practical alternative to traditional, resource-

intensive testing methods like nasal swabs and biosen-

sors.

2) Comprehensive evaluation of developed models across

various audio scenarios: We have assessed the per-

formance of our machine learning models under two



practical scenarios: (1) using entire audio files, which

includes background noise and silences, and (2) using

segmented data after segmenting the input audio file

that focuses specifically on certain cough or breathing

patterns. This dual approach evaluates the models’ effec-

tiveness in both real-time, noisy environments and more

controlled settings. The results provide valuable insights

into potential adaptations of the models for telemedicine

and large-scale health monitoring systems.

II. RELATED WORK

In the wake of the COVID-19 pandemic, several studies

have been conducted to explore the potential of artificial

intelligence to detect COVID-19 by analyzing cough audio

[16]±[26]. Many studies collected the data through mobile

phone apps and developed a unique dataset for analysis

through machine learning algorithms. Authors in [16] and [17]

developed a mobile application to collect breath, voice, and

cough data and apply ML algorithms to detect COVID-19 with

symptoms and COVID-19 without symptoms. Many studies

[18]±[20] used crowdsourcing to collect data for COVID-19

however the analytics methods differ. The authors in [18]

employed both traditional and deep learning techniques to

detect COVID-19 using voice, cough, and breathing sounds.

In contrast, [19] focused solely on cough and breathing sounds

to differentiate COVID-19 from other respiratory conditions.

[20] developed a generalized AI model to detect COVID-19

using cough samples only which predicts accurately when

applied on Latin America and South Asia clinical samples.

An interpretable AI model is developed using cough sound in

[21]. Overall, these studies demonstrate the potential of AI in

COVID-19 detection.

Common techniques in this area of research include ex-

tracting features such as Mel-frequency cepstral coefficients

(MFCCs) and utilizing neural network classifiers like Convolu-

tional Neural Networks (CNNs) [27]. Other approaches, such

as transfer learning [23] [17], are also frequently employed.

Challenges of working with poor audio quality [28], unbal-

anced datasets and insufficient evaluation strategies can lead to

an over-optimistic assessment of model performance [24], but

preprocessing techniques such as segmenting cough clusters

[29], oversampling from minority classes [30] and frequency

filtering techniques [26] can improve model performance. The

results from these experiments are promising, indicating that

COVID-19 exhibits a distinct pathophysiology that can aid

in virus detection [17]. Additionally, in certain instances, AI-

assisted diagnostic tools have been shown to enhance the

testing capacity of healthcare systems by up to 43% [22].

However, many of these papers emphasize the need for clinical

validation of their proposed methods [17]. In summary, the

analysis of audio data from voice, cough, and breathing

is challenging and requires rigorous clinical validation and

interpretability to understand the features and outcomes. This

paper analyzes the publicly available crowdsourced dataset for

analysis of respiratory and non-respiratory audio signals using

conventional machine learning approaches, along with rigor-

ous performance evaluation across various audio scenarios.

III. METHODOLOGY

A. Dataset Description

Our study uses the Coswara dataset [2], a publicly available

crowd-sourced dataset designed for the analysis of respiratory

and non-respiratory audio signals, primarily aimed at detecting

COVID-19 through sound. The dataset contains audio samples

such as coughs, breathing patterns (both deep and shallow),

and sustained vowel sounds, as well as speech recordings from

2,746 participants. These participants self-reported their health

status, including whether they tested positive or negative for

COVID-19, along with symptoms like cough, fever, or sore

throat.

The Coswara dataset [2] includes several health status

classifications. These classifications consist of healthy, no res-

piratory illness exposed, respiratory illness not identified, and

recovered in full, which we grouped as COVID-19 negative,

representing 1,984 individuals. Additionally, 81 participants

were classified as under validation and were excluded from

the study. The remaining categories Ð positive mild, positive

moderate, and positive asymptomatic Ð were classified as

COVID-19 positive, totaling 681 individuals.

B. Tools Used

We used the Python programming language for this work,

with Jupyter Notebook as our coding environment. The Python

library librosa was utilized for audio pre-processing and fea-

ture extraction, while Scikit-Learn was employed for building

the machine learning models. Additionally, Pandas and Numpy

were used for statistical analysis and data manipulation.

C. Dataset Preparation

To prepare our dataset for this study, we downloaded the

dataset from the Coswara GitHub repository [31]. The dataset

is organized by collection date folders, and within each col-

lection date, there are subfolders corresponding to individual

participants. For each participant, we accessed their CSV file

located in their subfolder to examine the ºCOVID Statusº

column. Based on this status, we reassigned the original class

labels: participants marked as ºHealthy,º ºNo Respiratory

Illness Exposed,º ºRespiratory Illness Not Identified,º and

ºRecovered in Fullº were relabeled as ‘Negative,’ while those

marked as ºPositive Mild,º ºPositive Moderate,º and ºPositive

Asymptomaticº were relabeled as ‘Positive.’ Entries labeled

ºUnder Validationº were excluded from our dataset.

We then created two main directories, ºCOVID Positiveº

and ºCOVID Negative,º to organize the cough and breathing

audio files according to the relabeled COVID status. Within

each category, we further divided the files into subfolders for

ºCough Samplesº and ºBreathing Samples.º Finally, a verifica-

tion process was performed to ensure the correct classification

and organization of all audio files within the dataset.

After the data reorganization, we performed a preprocessing

step prior to feature extraction. During this step, we resampled



the dataset to 22 kHz, normalized the audio data to reduce

amplitude variability and pre-emphasized the audio signals

using a first-order differencing filter. Audio files that were too

short, too quiet, and potentially empty were dropped during

this step. We then extracted features as described in the next

section.

D. Exploratory Analysis of Audio Features for COVID-19

Status Classification

To explore the potential of utilizing audio recordings of

coughing and breathing in our study, we examined both the

time and frequency domain features of these sounds to deter-

mine if there are any discernible differences between positive

and negative cases. Figure 1 showcases two examples of these

audio recordings. The figure provides a comparative analysis

of breathing patterns from individuals tested for COVID-19,

with one testing positive and the other negative. Each subject’s

data is represented in two segments: the upper section shows

the time-domain waveform, while the lower section displays

the corresponding spectrogram of the audio.

For the COVID-positive subject, shown in Figure 1a, the

waveform features notable spikes and variations in ampli-

tude which are indicative of irregular breathing patterns Ð

commonly associated with COVID-19. These irregularities are

also reflected in the spectrogram as variations in intensity and

color, particularly pronounced in the lower frequency bands,

suggesting episodes of breathing difficulty. Conversely, the

audio from the COVID-negative subject, depicted in Figure 1b,

shows a more consistent and rhythmic breathing pattern, with

minimal fluctuations in both the waveform and spectrogram.

This exploratory analysis not only facilitates the identifi-

cation of potential differences in breathing sounds associated

with COVID-19 but also suggests potential for a powerful,

non-invasive tool for early COVID-19 screening. These pre-

liminary findings are in line with earlier works, for example, in

[2] [32], which demonstrate that spectrograms of breath sounds

captured via smartphone can effectively distinguish between

asthmatic conditions and those of healthy individuals through

distinct patterns. Leveraging these insights, along with other

time and frequency-domain features, we extracted features as

described in the next section for our machine learning models.

E. Feature Extraction

Multiple audio handcrafted features were extracted from

each audio sample to capture various characteristics of the

sound signal, similar to the approach used in [19]. These fea-

tures capture the temporal, spectral, and harmonic properties

of the audio, enabling accurate classification of respiratory

sounds.

# Feature Count

1. Average, Standard Deviation, Zero Crossing Rate 3
2. Spectral centroid, rolloff, contract, chroma stft 4
3. The first 14 MFCC coefficients 14
4. The first 14 Delta-MFCC coefficients 14
5. The first 14 Delta-Delta MFCC coefficients 14

TABLE I: Features extracted from the cough sounds.

Table I summarizes the features extracted from our filtered

cough sounds, using the Python audio and music process-

ing package Librosa [33]. The features included statistical,

spectral, and MFCC features that are popularly used for au-

dio/sound classification. The feature extraction phase gave us a

total of 49 features that were used as inputs to our models. This

feature set was further standardized using z-scale to ensure

features with different magnitudes don’t disproportionately

influence the models’ classifications.

F. Model Training and Evaluation

During the initial exploration phase, we evaluated several

machine learning algorithms, including k-Nearest Neighbors

(kNN), Support Vector Machines (SVM), Random Forest,

and XGBoost. To efficiently search for optimal hyperparam-

eters, we employed RandomizedSearchCV, which explored a

range of hyperparameter combinations across the models. This

method allowed for an efficient and comprehensive hyper-

parameter search by testing different configurations without

exhaustive grid searches. A validation dataset comprising 40%

of the original data was reserved for this search to support

hyperparameter tuning and model comparison. In addition, K-

fold cross-validation was applied to each model, splitting the

dataset into multiple subsets for training and testing. This pro-

cess reduced the likelihood of overfitting and provided a more

reliable estimate of each model’s generalization performance

on unseen data.

Following this initial exploration, the two top-performing

algorithmsÐRandom Forest and SVMÐwere selected for

final model training and evaluation. Random Forest performed

best with the hyperparameters: class weight=ºbalancedº,

min samples leaf=2, min samples split=5, and

n estimators=200, while SVM performed best with

a radial basis function (RBF) kernel, degree=3, and

class weight=ºbalancedº. These parameters were specifically

chosen to balance the class distribution and improve the

robustness of the models, especially for imbalanced datasets,

ensuring that both classifiers could effectively handle minority

and majority classes in the COVID-19 detection task.

After selecting the classifiers, the models were trained and

evaluated on the preprocessed dataset. The features were first

standardized to have a mean of zero and a standard deviation

of one, facilitating more consistent and efficient learning.

Principal Component Analysis (PCA) was then applied to

reduce the dataset’s dimensionality while preserving 99%

of its variance, removing noise and reducing computational

complexity. To further address the issue of class imbalance,

Synthetic Minority Oversampling Technique (SMOTE) was

utilized, oversampling the minority class in the training set

only. This process ensured that both classifiers learned from

balanced data and avoided biases toward the majority class,

leading to more equitable and accurate predictions.

To evaluate the performance of our models, we employed

several widely-used metrics for imbalanced datasets, including

area under the curve (AUC), precision, recall, and F1-score,

given by the equations below:
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(a) Breathing, COVID-positive.
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(b) Breathing, COVID-negative.

Fig. 1: Time-domain waveform and spectrogram of breathing audio recordings from (a) a COVID-positive subject and (b) a

COVID-negative subject.

AUC =

∫
1

0

TPR(FPR) d(FPR) (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1-Score = 2×
Precision × Recall

Precision + Recall
(4)

where TP represents True Positives, the number of correctly

predicted positive cases; TN represents True Negatives, the

number of correctly predicted negative cases; FP represents

False Positives, the number of negative cases incorrectly

predicted as positive; and FN represents False Negatives, the

number of positive cases incorrectly predicted as negative. For

equation 1, TPR is the True Positive Rate while FPR is the

False Positive Rate.

G. Evaluation Scenarios

To comprehensively evaluate the performance of our mod-

els, we consider two scenarios: (1) using the whole audio

file, and (2) using segmented data as input to our models.

These two approaches allow us to explore different aspects

of the model’s ability to process and classify cough sounds

effectively in various practical situations.

In the whole audio file scenario, the entire recording Ð

including coughs, pauses, and any background noise Ð is

fed into the model for classification. This approach mirrors

real-world conditions where users may submit continuous,

unprocessed recordings. Evaluating the model’s performance

in this scenario is important because it tests the model’s

robustness to various environmental factors, such as noise and

variability in the length and quality of the recordings.

In contrast, the segmented data scenario focuses on classi-

fying specific portions of the audio, such as individual coughs,

in real-time scenarios. This approach allows for quick, low-

latency processing, which is crucial for applications requiring

immediate responses, like telemedicine or remote health mon-

itoring. It also optimizes resource usage, making the system

more scalable and efficient, especially for low-power devices

or large-scale implementations.

Under each of the above scenarios, we consider different

audio sounds from the dataset to evaluate our models (1)

breathing (deep and shallow) sounds only, (2) cough (deep

and shallow) sounds only, and finally when both are merged,

i.e., breathing and cough sounds. These further classifications

of our dataset provide a more comprehensive evaluation.

IV. RESULTS AND DISCUSSION

In this section, we present and discuss the performance

evaluation of our models in classifying the different types of

respiratory sounds across various scenarios. We have organized

our results first by the type of sound analyzed, and then

further categorized them based on whether segmented data

or the entire audio file was utilized. This structure allows us

to thoroughly analyze how each model performs in different

conditions, providing insights into the model’s capabilities

in handling diverse types of respiratory sounds and input

formats. Our results are based on the two best-performing

machine learning algorithms for the scenario and dataset used

for training and testing. For reference, the parameters set for

these models are detailed in the section above.

A. Classification Results Using Breathing Sounds Only

In this subsection, we present the performance evaluation

of our models trained and tested using only breathing sounds

(both deep and shallow) from the dataset. This analysis focuses

on assessing how effectively the models classify COVID-19

statuses based solely on breathing sound patterns. The top two

best-performing classifiers in this scenario were XGBoost and

SVM, thus reporting results from these two classifiers in this

subsection.



Classifier Score Type AUC Precision Recall F1-Score

SVM
Macro

77%
64% 71% 65%

Weighted 84% 77% 80%

XGBoost
Macro

77%
68% 66% 67%

Weighted 83% 84% 84%

TABLE II: Model performance for COVID-19 status classifi-

cation using breathing sounds only from the entire audio file.

1) Classification Results Using Entire Audio Files of

Breathing Sounds Only: In this subsection, we present the

results when the models are trained and tested using the entire

audio files, without segmentation. The performance of our top

two best-performing classifiers, XGBoost and SVM, in classi-

fying COVID-19 statuses using the complete audio files for

breathing sounds only, is shown in Table II. The performance

metrics are calculated for both macro and weighted averages.

Macro averages treat each class equally, whereas weighted

averages account for class imbalances present in the dataset,

ensuring that classes with more instances are given greater

weight. Our dataset is largely imbalanced with more negative

samples than positive.

For the SVM, the AUC score was 77%. The macro average

precision, recall, and F1-Score were 64%, 71%, and 65%,

respectively. When considering weighted averages, SVM’s

precision increased to 84%, with a recall of 77% and an F1-

Score of 80%. XGBoost also achieved an AUC score of 77%,

with a macro precision of 68%, a recall of 66%, and an F1-

Score of 67%. The weighted average for XGBoost showed an

improved performance with a precision of 83%, a recall of

84%, and an F1-Score of 84%. This indicates that XGBoost

was slightly more effective in handling class imbalances and

maintaining a balance between precision and recall in the

weighted evaluation. Overall, XGBoost outperformed SVM

slightly, particularly in the weighted averages, though the

difference in macro scores was minimal.

Classifier Score Type AUC Precision Recall F1-Score

SVM
Macro

84%
69% 77% 71%

Weighted 84% 79% 81%

XGBoost
Macro

85%
76% 70% 72%

Weighted 84% 85% 84%

TABLE III: Performance of our classifiers for COVID-19

status classification using segmented breathing sound audio.

2) Classification Results Using Segmented Audio Data of

Breathing Sounds Only: In this subsection, we present the

performance results when the models were trained and tested

on segmented breathing sound only. As detailed in Section

??, this approach focuses on analyzing individual breathing

segments rather than the entire audio file. Table III shows

the performance of our top two best-performing classifiers,

XGBoost and SVM, in classifying COVID-19 statuses using

segmented breathing sounds. SVM achieved an AUC score of

84%, with a macro precision of 69%, a recall of 77%, and

an F1-Score of 71%. When considering weighted averages,

SVM’s performance further improved, reaching 84% in preci-

sion, 79% in recall, and an 81% F1-Score.

On the other hand, XGBoost performed slightly better

overall, achieving an AUC score of 85%. It recorded a macro

precision of 76%, a recall of 70%, and a macro F1-Score

of 72%. When considering the weighted averages, XGBoost

achieved a precision of 84%, a recall of 85%, and an F1-Score

of 84%. Overall, XGBoost outperformed SVM while using the

segmented audio.

Compared to classification using the entire audio file, both

classifiers showed improved performance for both macro and

weighted averages while using the segmented audio. This

improvement could be attributed to the segmentation process,

which created more samples for training, allowing the models

to capture relevant features more effectively. Additionally, seg-

mentation may have helped by removing portions of the audio

that contained silence, noise, or other irrelevant content, which

can interfere with feature extraction and degrade performance

in the case of long, unsegmented audio.

B. Performance Evaluation using Cough Sounds Only

This subsection presents the performance evaluation of our

models trained and tested using only cough sounds (both deep

and shallow) from the dataset. It assesses how effectively the

models classify COVID-19 statuses based solely on cough

sound patterns. The two best-performing classifiers in this

scenario were Random Forest (RF) and XGBoost, and we

report the results from these two classifiers in this subsection.

For the remainder of the results, we report only the weighted

averages, as the cough sound data is largely imbalanced, with

more negative than positive cases.

Classifier AUC Precision Recall F1-Score

Random Forest 77% 83% 85% 84%
XGBoost 73% 83% 83% 83%

TABLE IV: Model performance for COVID-19 status classi-

fication using cough sounds only from the entire audio file.

1) Classification Results Using Entire Audio Files of Cough

Sounds Only: Table IV shows the performance of our two

best classifiers, Random Forest and XGBoost, in classifying

COVID-19 status using cough sounds from the entire audio

file. Random Forest achieved slightly better overall results

with an AUC of 77%, indicating stronger discriminative ability

compared to XGBoost’s AUC of 73%. Additionally, Random

Forest had a higher Recall (85%) compared to XGBoost

(83%), meaning it was better at correctly identifying COVID-

19 positive cases. Both models demonstrated equally strong

Precision at 83%, indicating that the models were similarly

effective at minimizing false positives.

In terms of the F1-Score, Random Forest slightly outper-

formed XGBoost with a score of 84% compared to XGBoost’s

83%. This indicates that while both models are well-balanced

in identifying positive cases, Random Forest is marginally

more effective, especially in handling true positives. Overall,



both classifiers performed well, but Random Forest showed a

slight edge in overall classification performance.

Classifier AUC Precision Recall F1-Score

Random Forest 76% 81% 81% 81%
XGBoost 75% 81% 80% 80%

TABLE V: Model performance for COVID-19 status classifi-

cation using segmented cough sounds only.

2) Classification Results Using Segmented Audio Data of

Cough Sounds Only: Table V shows the performance of our

two best classifiers, Random Forest and XGBoost, in classify-

ing COVID-19 status using segmented cough sounds. Random

Forest achieved an AUC of 76%, slightly outperforming XG-

Boost, which had an AUC of 75%. Both models demonstrated

equal Precision (81%), indicating that they were similarly

effective in minimizing false positives. However, Random

Forest had a marginally higher Recall (81%) compared to

XGBoost (80%), meaning it was slightly better at identifying

true positives. This resulted in F1-Scores of 81% for Random

Forest and 80% for XGBoost, with Random Forest showing

a slight overall performance advantage in handling segmented

audio data.

C. Performance Evaluation Using Both Breathing and Cough

Sounds
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Fig. 2: Classifier performance using combined breathing and

cough sounds for COVID-19 status classification

Figure 2 shows the performance of our best classifier,

Random Forest, using combined breathing and cough sounds

for COVID-19 status classification. The figure displays a com-

parison of classifier performance metrics across two different

approaches: using entire audio files versus segmented audio

sounds. For ºEntire Audio,º the classifier achieved slightly

lower scores across all metrics compared to ºSegmented Au-

dio.º Specifically, the AUC and F1-Score for ºEntire Audioº

are around 75% and 84% respectively, while for ºSegmented

Audio,º these values are closer to 83% and 83%. Precision and

Recall also show improvement in the segmented approach,

emphasizing that processing audio in segments may help in

enhancing the classifier’s ability to accurately predict COVID-

19 status based on both cough and breathing sounds.

V. CONCLUSION AND FUTURE WORK

This study explored a non-invasive approach to COVID-19

detection using machine learning to analyze vocal patterns,

specifically cough sounds, addressing the limitations of tradi-

tional diagnostic methods like nasal swabs and biosensors. By

leveraging a publicly available dataset, we developed machine

learning models that achieved an AUC of up to 85% and an

F1-score of 81%, demonstrating the potential for rapid, cost-

effective COVID-19 diagnosis. These findings highlight the

promise of audio-based diagnostics, particularly in resource-

limited settings where traditional testing is not feasible. While

the results are promising, further research is needed to validate

these models in real-world clinical environments and across

diverse populations. Future work should focus on expanding

datasets to enhance model robustness, addressing biases such

as age and gender, and integrating these tools into telemedicine

platforms for scalable, remote health monitoring. This could

pave the way for the use of vocal signals not only for COVID-

19 but also for broader applications in diagnosing respiratory

diseases.
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