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Abstract—Cancer is one of the leading causes of death world-
wide. Pathogenic viruses are estimated to be responsible for 15%
of all human cancers globally and pose significant threats to pub-
lic health. Viruses integrate their genetic material into the host
genome, increasing the risk of cancer promoting changes in it. To
understand the molecular mechanisms of virus-mediated cancers,
it is crucial to identify viral insertion sites in cancer genomes.
However, this effort is hindered by the rapidly increasing volume
of tumor sequencing data, along with the challenges of accurate
data analysis caused by high viral mutation rates and the
difficulty of aligning short reads to the reference genome. Thus it
is crucial to develop an efficient method for virus integration site
detection in tumor genomes. This paper proposes a novel pipeline
to identify viral integration sites leveraging deep Convolutional
Neural Networks (CNN). Our contributions are twofold: (i) We
propose and integrate three novel matrix generation methods
into the pipeline, developed after aligning the host and viral
genomes with their respective reference genomes.; (ii) We employ
one-hot encoded images with reduced computational complexity
to represent viral integration sites and harness the capabilities
of Deep CNN networks for detection. The paper illustrates
our proposed approach and presents experiments conducted
using both synthetic and real sequencing data. Our preliminary
experimental results are promising, showcasing the effectiveness
of the proposed methods in detecting viral integration sites.

Index Terms—CNN, sequencing, NGS, matrix

I. INTRODUCTION

Cancer poses a significant threat to global health, with
the incidence of the disease steadily increasing. By the end
of 2024, it is projected that around 2 million new cancer
cases will be diagnosed, and approximately 600,000 people
will die from the disease in the United States alone [1].
Pathogenic viruses pose significant threats to public health
throughout the world and are estimated to be responsible for
15% of all human cancers globally [2] [3]. For example,
human papillomavirus (HPV) causes 91 percent of cases of
cervical cancer, the fourth most common cancer in women
globally [4]. To effectively diagnose and treat cancer, it is
essential to deepen our understanding of oncogenesis.

Viruses are a significant cause of oncogenesis. Some com-
mon viruses that contribute to oncogenesis include Human
papillomavirus (HPV), which is linked to reproductive cancers;
Epstein-Barr virus, often associated with lymphoma; and Hep-
atitis B and C, which are related to liver cancers. In cervical

cancer and some other viral mediated cancers, viruses can
integrate their genetic material into host cell genome [5]–[10].
The process of viral integration damages the host cell’s DNA
and elevates the risk of cancer-promoting changes in the host
genome [7], [8]. Insertion of viral DNA can be particularly
devastating at proto-oncogenes where cell proliferation is con-
trolled. Therefore, to understand the molecular mechanisms of
viral mediated cancers, a necessary step is to detect viruses and
their insertion sites in cancer genomes. The initial step in this
process is the precise identification of viral integration sites
within the host genomes. Identifying viral insertions in the host
genome will facilitate the recognition of patterns associated
with viral integrations and help pinpoint pathways involved in
cancer development.

Over the past two decades, rapid advances in next-
generation sequencing (NGS) technologies [11]–[13] have led
to their widespread use in hospitals. Consequently, many NGS-
based tools have been developed to detect viruses and their
insertion sites. However, due to the challenges associated with
accurate detection, the sensitivity of current tools remains un-
satisfactory, falling short compared to established quantitative
technologies [14], [15]. Virus insertions in human genomes
contribute to genomic instability, resulting in increased mu-
tation rates. These fusion-induced mutations complicate the
alignment of short reads to reference genomes, making it
difficult to detect virus integration sites. Additionally, the
high mutation rates of viruses lead to sequence divergence,
which negatively affects detection. As a result, NGS reads
sampled from actual virus genomes are less likely to align
with commonly used virus reference sequences.

Current NGS tools employ statistical models to detect viral
integration events [16]–[21]. However, due to noise in se-
quencing data and uncertainties in read alignment, these tools
only keep reads that meet specific quality criteria for analysis.
The thresholds for these filters are primarily set empirically
to manage false positive rates. This filtering compromises the
ability of current tools to detect cryptic viral insertions. Some
tools, like VirusFinder [11], [12], have been instrumental in
identifying integration sites of diverse, previously undiagnosed
viruses from sequencing data. Due to its precision and unique
methodology, VirusFinder has been extensively used in inves-



tigating various types of cancer [15], [22]. However, as the
volume of genomic data grows exponentially and due to the
limitations of detecting cryptic viral insertions, further research
is needed to address these challenges.

With recent advances in machine learning, deep neural
networks are now widely applied in various fields, including
image recognition, genomic analysis, and COVID-19 detec-
tion. Deep Convolutional neural networks (CNNs) are highly
effective in visual recognition tasks, as they efficiently capture
the spatial and temporal dependencies within the input [23].
Recently Deep CNNs are used in the genomics field of re-
search [24], [25]. This is because after sequencing reads from a
sample are aligned to the reference genome (or transcriptome),
they effectively create an image. In contrast to traditional
methods, deep CNNs consist of multiple layers of process-
ing, allowing them to hierarchically learn complex features
from imaging data. This capability makes them well-suited
for addressing the complexities involved in virus integration
detection [26].

In this paper, we propose a deep convolutional neural
network (CNN) based approach to detect virus integration
sites in tumor genomes to improve NGS-based detection of
virus integration. Our major contributions in this paper can be
summarized as follows:

1) We propose a novel pipeline to identify viral integration
sites in tumor genomes leveraging Deep Convolutional
Neural networks (CNNs).

2) We propose and integrate three novel matrix generation
methods into the pipeline, developed after aligning the
host and viral genomes with their respective reference
genomes as an image to apply Deep CNNs.

3) We employ one-hot encoded images with reduced com-
putational complexity to represent viral integration sites
and harness the capabilities of Deep CNN networks for
detection.

4) We experiment on both synthetic and real sequencing
data and evaluate the performance using various metrics.

To the best of our knowledge, this paper represents the
first effort to use different image matrix representations to
characterize virus integration sites from NGS data that is effi-
cient, and accurate. This will not only aid cancer researchers
in exploring the etiological relationship between viruses and
cancer but also create a cutting-edge tool for the scientific
community.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 describes the dataset
followed by the data description and novel matrix generation
algorithms. Section 4 describes the experiments and results
and Section 5 concludes the paper.

II. RELATED WORK

Recent research on viral integration site detection methods
includes statistical methods [16]–[21] and deep learning meth-
ods [24], [25], [27]–[31].

GENE-IS [16] is the Genome Integration Site Analysis
Pipeline which is developed to provide efficient and accurate

detection of NGS-based viral integration sites in gene therapy
data. GENE-IS used many traditional statistical approaches
to detect the viral integration sites. [17] developed VirTect
to detect viral integration sites from multiple related tumor
sequencing data from the same patient. Their algorithm exam-
ined the short reads after mapping to the reference genome,
cluster them, and then applied local realignment procedure
to detect the exact breakpoint of the integration sites. [18]
proposed a tool HGT-ID to detect viral integration sites
through multiple steps including preprocessing of unaligned
read, viral site detection using soft clipping and discordant
approach, and finally arranging them using a scoring function.
[19], [20] developed an approach to utilize single breakends
and correcting the read alignment for accurate viral integration
site detection. All the statistical methods and tools have
shortcomings to keep reads that satisfy specific quality criteria
based on thresholds which limits the application to specific use
cases.

There are some works using Deep CNNs for virus integra-
tion sites detection. [24] developed a deep learning framework
to detect human T-cell leukemia virus type 1 (HTLV-1) inte-
gration sites and leveraged it for multiple applications such
as motif discovery, and cis-regulatory factor identification.
Deep-HINT [25] employs a CNN combined with an attention
module to capture the contextual sequence features of HIV
integration, allowing it to predict HIV integration sites from
primary DNA sequences. In addition to HIV, similar frame-
works have been employed to investigate the local genomic
environments of integration sites for other virus types, such
as HBV [28] and HPV [27]. Deep CNNs have also gained
considerable popularity for detecting genomic variants from
NGS data. DeepVariant, a tool that led this approach, converts
aligned reads indicative of candidate variants into images,
subsequently using CNNs to identify small variants [29].
Another tool, NeuSomatic, utilizes CNNs to detect somatic
variants rather than germline variants [30]. Deep CNNs have
also demonstrated strong performance in detecting complex
structural variations (SVs) [31]. Unlike the above approaches
for viral integration site detection, our proposed approach
also used Deep CNN’s however we proposed novel matrix
generation approaches which was not explored in any of the
aforementioned approaches.

III. METHODOLOGY

In this section, we briefly describe our overall pipeline, pro-
posed matrix generation methods, and CNN approach used to
build the predictive models for viral integration site prediction.

A. Overall Framework

Earlier methods extracted viral integration sequences from
their surrounding sequence context. In this work, we employ
three methods that progressively incorporate the sequence con-
text at increasing levels. Figure 1 shows the proposed pipeline
for virus integration site detection in tumor genomes using
Deep CNN. Our approach begins with Fastq files that contain
viral integration sites. These files are aligned to the hg19



Fig. 1. Pipeline for Virus integration site detection in Tumor genomes using Deep CNN

reference genome utilizing the Bowtie2 alignment program
as shown in Fig 1. We used hg19 reference genome as the
collected data was based on hg19 reference genome so to
maintain consistency across samples, hg19 reference genome
is used. The Bowtie2 program is wrapped in a novel python
wrapper that implements the Bowtie2 program. Bowtie2 gen-
erates a Sequence alignment/map format (SAM) file. This
SAM file is stored as a Binary alignment Map (BAM) file
which is then ordered before the Matrix generation portion. As
noted earlier, significant attention was devoted to developing
and comparing three methods for generating matrices. The
generated SAM files are organized in such a way that the
resulting DNA sequence matrix accurately reflects the order
of the genes.

The novelty of our approach is that DNA sequences with vi-
ral integrations are analyzed in relation to the complementary
DNA strand and their arrangement within the chromosome.
These factors are taken into account at varying levels, depend-
ing on the matrix generation method used. We proposed three
novel algorithms for generating these matrices in this paper.
The matrices are represented as a tensor and equivalent to
images of genomic regions. These matrices are labeled. The
data in this format is split into training and testing sets as
shown in Fig 1. Finally, a CNN is trained using the training
set and applied to the test set to predict the viral integration
sites in the given tumor genome sequences.

B. Matrix Generation Method 1

We employ one-hot encoded images to represent viral
integration sites because they lead to a simplified CNN archi-
tecture with lower computational complexity for both training
and prediction. One-hot encoded images are 3-dimensional
images with many channels, each recording a certain align-
ment signal. These one-hot encoded images are represented
as a 3-dimensional tensor, corresponding to the three channels
in an image. These images are generated from the matrices.
The matrix is created by aligning the reads from the input
genomic sequence with the reference genome sequence. If
there is a match among the characters A, C, G, T, a value
of 1 is assigned; otherwise, a value of 0 is assigned for no
match.

We proposed algorithm 1 as the first matrix generation
method. This idea of this method is based on the matrix

generation performed in the DeepHBV [28] data pipeline.
As shown in Algorithm 1, the input consists of a DNA
sequence that has to be aligned with the reference genome
sequence (Line 1). However, the output is a 3-dimensional
tensor representing the matrix generated (Line 2). For each
sequence in S and for each base pair in the sequence, if there
is a match with the reference genome, a value of 1 is assigned;
otherwise, a value of 0 is assigned for no match (Lines 2-6).
This process is repeated until there is no sequence left. Finally,
it returns a matrix T (3-dimensional tensor) of zeroes and ones.
This matrix generation has sequences with viral integration
and without viral integration. Each row contains a sequence
with or without a viral integration site.

Algorithm 1 Matrix generation method 1
Input:S ← a DNA sequence list
Output: T ← a 3-Dimensional Tensor

1: procedure MATRIX-GENERATOR-FIRST(S)
2: for each s ∈ S do
3: for each base b ∈ s do
4: T ← 1 at Base location
5: end for
6: end for
7: end procedure

C. Matrix Generation Method 2

The second matrix generation method takes account of
both strands in order of appearance in the genome. Each line
represents a strand of DNA with opposing strands being in the
following row. This allows for the matrix to be created within
the context of the strand itself rather than just as a single
strand. For each line in the BAM file, there are three values
extracted from it, CIGAR (Compact Idiosyncratic Gapped
Alignment Report) value, Sequence, and position. The position
of the insert is also input for labeling purposes. Each base in
the sequence has a 1 inserted into the tensor that corresponds
to the column of that base.

We proposed algorithm 2 as the second matrix generation
method. As shown in Algorithm 2, the input consists of a DNA
sequence that has to be aligned with the reference genome
sequence and a BAM file (Line 1). However, the output is a
3-dimensional tensor representing the matrix generated (Line



Algorithm 2 Matrix generation method 2
Input:S ← a DNA sequence list, B ← BAM File
Output: T ← a 3-Dimensional Tensor

1: procedure MATRIX-GENERATOR-SECOND(S,B)
2: Len← 0
3: Ind← 0
4: for each b ∈ B do
5: Cigar list← split(CIGAR)
6: if len(Cigar list) == 2 then
7: if Cigar == ’M’ then
8: for each base b ∈ S do
9: T ← 1 at Base location

10: end for
11: else
12: Len← 0
13: Ind← 0
14: for time in range(len(Cigar list)/2) do
15: if Cigar == ’M’ then
16: for j ← Len to

Len+ Cigar list[time+ 2]− 1 do
17: T ← 1

at Base location in Tensor
18: end for
19: end if
20: Len← Len+ Cigar list[time+ 2]
21: end for
22: end if
23: end if
24: end for
25: end procedure

2). We initialized the length and index as zero (Lines 2-3) For
each base pair in the BAM file, we split the CIGAR value,
if the length of CIGAR list value is 2 and then if value is a
match then a value of 1 is assigned (Lines 1-10). Otherwise,
if the length of CIGAR list value is greater than 2, then we
loop through every 2 elements of the CIGAR value. If there
is a match ”M” in the cigar value for the set of indexes in
the sequence, so for all those indices, 1 is inserted into the
tensor that corresponds to the column of that base (Lines 12-
24). This process is repeated until there is no sequence left in
the BAM file. Finally, it returns a matrix T (3-dimensional
tensor) of zeroes and ones. In this method, we have used
the CIGAR list value as 2 as CIGAR is a column generated
in a BAM/SAM file that shows the matches, deletions, and
insertions for the read maps between the DNA sequence with
the reference genome. We divided the CIGAR column into a
list where the odd-indexed elements represent the number of
bases, and the even-indexed elements indicate whether it was
a match or a deletion. If the length of the Cigar list exceeds 2,
we iterate through it, performing different actions depending
on the values it contains.

D. Matrix Generation Method 3

The third matrix generation method is the most context-
dependent. It takes into account whether or not the bases
match with the corresponding strand at the base pair location.
Previous matrix generation methods do not take into account
whether or not the base pair strands match. This adds to the
novelty of the matrix generation methods. The algorithm starts
with creating a dataset with a row for each base in the sequence
that includes direction, location, and whether it matches with
reference. Then separate that data by direction 3’à5’ one way
5’à 3’ the other way. We loop through the data to check with
there is a match from reference genome and insert 1 to tensor.
Then we check for the matching opposite strand. If matches
then insert 3 in the strand.

Algorithm 3 Matrix generation method 3
Input:F ← BAM file
Output: M ← Mapping List

1: procedure MATRIX-GENERATOR-THIRD(F)
2: for each line l in F do
3: if base == match then
4: M ← seq, mat, pos, dir, count
5: end if
6: end for
7: M ←M sorted by values of pos
8: Three five←M in 3’→ 5’ direction
9: Five three←M in 5’→ 3’ direction

10: for each row in M do
11: if dir == 3’ → 5’ then
12: if b aligned genome then
13: T ← 1
14: if b matches with opposing strand then
15: T ← 3
16: end if
17: else if b match with opposing strand then
18: T ← 2
19: end if
20: else if dir == 5’ → 3’ then
21: if b aligned genome then
22: T ← 1
23: if b matches with opposing strand then
24: T ← 3
25: end if
26: else if b match with opposing strand then
27: T ← 2
28: end if
29: end if
30: end for
31: end procedure

We proposed algorithm 3 as the third matrix generation
method. As shown in Algorithm 3, the input consists of a BAM
file containing all the sequences with viral integration sites
and with no integration sites (Line 1). However, the output is
a mapping list (Line 2). For each line in the BAM file (F), if



there is a match for the base pairs between reference genome
and the input sequence then a mapping list is generated with
the sequence, position, and count attributes (Lines 2-6).

E. Convolutional Neural Network

Recent advances in artificial intelligence have made deep
CNN the primary model for virtually every image related
problem. Deep CNN, as a class of deep learning algorithms,
is composed of stacks of processing layers, allowing it to
learn complex features hierarchically from imaging data. The
CNN networks typically utilize multiple convolution-pooling
modules that are built on top of each other to learn from input-
output pairs. Input images will be fed into the first convolution-
pooling module of the CNN networks to perform a series of
convolution operations followed by rectified linear activation
(ReLU) and max-pooling to extract linear features from the in-
put image. The output of the final convolution-pooling module
of the CNNs will be fed to a fully connected module, which
will be trained to perform predictions. Model training is fully
automated, thereby removing the need of feature engineering
and human intervention. This makes deep CNNs suitable for
handling the complexity of virus insertion site characterization,
and thus, effectively avoiding the limitations of today’s tools.

IV. EXPERIMENTS AND RESULTS

This section provides the experimental results to evaluate
the effectiveness of our proposed approaches in the real and
synthetic sequencing datasets.

A. Dataset and experimental setup

We applied our proposed matrix generation methods with
CNN approach for viral integration site detection on a set of
real sequencing data and synthetic data. The synthetic data is
generated with 5 viral integration sites for the experimental
purpose. We generated the synthetic dataset by following the
distribution used in the paper [11]. Aligning samples to a
reference genome can be computationally expensive, so to
reduce the time while alignment, we used only Chromosome
1 viral insertions for our experiments. For preliminary testing,
we utilized simulation data with a single viral insertion. After
that, we web scrapped viral integration site data from VISDB
which is Viral Integration Site Database that offers viral
integration site sequences and location. The data we used from
this site was focused on Chromosome 1 HBV viral integration
sites. Some of these viral integration sites are overlapping.
Each viral integration was looked at including 10,000 bases
both upstream and downstream from the viral integration site.
[28]. For this project, Google Colab was utilized for all steps
of development. Google Colab’s basic computing offers 12.7
GB of System RAM, 15 GB of GPU, and 112.6 GB of Disk
space.

We have used the simple convolutional neural network
(CNN) for our experiments. Our CNN architecture consists of
3 convolutional layers, 3 one-dimensional max-pooling layers
of pool size 2, and one dense layer followed by the final
classification layer. One convolutional layer has 32 filters with

3 kernels and the other 2 convolutional layers have 64 filters
with 3 kernels. The dense layer has 64 units with the activation
function RELU and the classification layer has 1 unit with the
activation function as sigmoid.

TABLE I
DEEP CNN RESULTS WITH ALL MATRIX GENERATION METHODS

Proposed Methods Testing Accuracy Loss
Matrix-generation-Method1 0.99 0.08
Matrix-generation-Method2 0.99 0.06
Matrix-generation-Method3 1.0000 0.69

B. Experimental results

We experimented with all three proposed matrix generation
algorithms on the real-data marking HBV site integrations
within Chr1. Synthetic data was primarily used for preliminary
testing to develop methods created for the data pipeline.
For each set of experiments, we apply the matrix-generated
method, followed by the CNN, and finally the evaluation per-
formance. The data is split into training and testing sets with
the training data used for training and testing data to evaluate
the model performance. We used 70% data for training and
30% for testing in the experiments. As shown in Table 1, all
the methods has good performance with Methods 1 and 2 as
accuracy 0.99 and Method 3 has accuracy of 1. Method 3 has
the best performance among all the methods. The accuracy of
the matrix generation methods developed is higher. However,
these are the preliminary results to demonstrate the feasibility
and effectiveness of the proposed methods. There is still a need
to broaden the scope of experiments across diverse clinical
datasets to achieve more comprehensive insights. Additionally,
it is necessary to adjust the contextual understanding of
viral integration sites, considering their placement within the
sequence and the number of upstream and downstream bases
included.

V. CONCLUSION

We have presented our proposed pipeline for virus integra-
tion site detection using Deep CNN approach in this paper. We
proposed three different matrix generation methods and evalu-
ated them on the synthetic dataset containing viral integration
sites. This approach has potential to improve the detection
accuracy of virus integration sites which will further help in
understanding the etiologic association of viruses with cancer
and other diseases. We are applying the proposed approach
in the real sequencing samples of various publicly available
datasets. In our future work, we aim to further refine the CNN
model and conduct testing on a broader dataset to enhance
the accuracy and precision of our deep learning predictive
models. Moreover, we will experiment with alternative CNN
architectures such as VGG16 or VGG19 etc.
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